+ All Categories
Home > Documents > Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for...

Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for...

Date post: 14-Dec-2015
Category:
Upload: kathleen-harrison
View: 218 times
Download: 1 times
Share this document with a friend
Popular Tags:
28
Submission doc.: IEEE 802.11- 15/1088r0 September 2015 Daewon Lee, Newracom Slide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors: N am e A ffiliations A ddress Phone em ail D aew on Lee N ew racom 9008 Research D r., Irvine, CA 92618 daew on.lee at new racom .com Sungho M oon N ew racom 9008 Research D r., Irvine, CA 92618 aiden.m atnew racom .com Yujin Noh N ew racom 9008 Research D r., Irvine, CA 92618 yujin.noh at new racom .com M inho Cheong N ew racom 9008 Research D r., Irvine, CA 92618 m inho.cheong at new racom .com H eejung Y u Y eungnam U niv./ N ew racom heejung atyu.ac.kr
Transcript
Page 1: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0September 2015

Daewon Lee, NewracomSlide 1

LTF Design for Uplink MU-MIMODate: 2015-09-14

Name Affiliations Address Phone email

Daewon Lee Newracom 9008 Research Dr., Irvine, CA 92618

daewon.lee at newracom.com

Sungho Moon Newracom 9008 Research Dr., Irvine, CA 92618

aiden.m at newracom.com

Yujin Noh Newracom 9008 Research Dr., Irvine, CA 92618

yujin.noh at newracom.com

Minho Cheong Newracom 9008 Research Dr., Irvine, CA 92618

minho.cheong at newracom.com

Heejung Yu Yeungnam Univ./ Newracom

heejung at yu.ac.kr

Authors:

Page 2: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0September 2015

Daewon Lee, NewracomSlide 2

Introduction

• LTF Sequence masking with orthogonal codes was proposed for Uplink MU-MIMO operation in [1].

• Issues with LTF sequence masking with orthogonal codes were identified in [2].

• This contribution presents further simulation results and an alternative method on obtaining orthogonality between spatial stream for frequency and phase offset compensation

Page 3: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Per-Stream Orthogonality using P-matrix

• P matrix masking• Proposal in [1] obtains per-stream pseudo-orthogonality by

masking P-matrix in the frequency domain.

Slide 3

September 2015

L1 L2 L3 L4 L5 L6 L7 L8

[ 1 1 -1 1 ][ 1 1 -1 1 ] Row ‘m’ of P matrix

x

x[ 1 ej2πθ ej2π2θ ej2π3θ ej2π4θ ej2π5θ ej2π6θ ej2π7θ ] CSD for SS #m

LTF sequence

Final Output Sequence

Orthogonal Code

Page 4: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Per-Stream Orthogonality using CSD

• Orthogonality CSD• Interestingly, per-stream orthogonality can be also obtain without

P-matrix masking, if the CSD is orthogonal between streams.

Slide 4

September 2015

L1 L2 L3 L4 L5 L6 L7 L8

x

x[ 1 ej2πθ ej2π2θ ej2π3θ ej2π4θ ej2π5θ ej2π6θ ej2π7θ ] CSD for SS #m

LTF sequence

Final Output Sequence

No P-matrix Masking

Orthogonal Code

Page 5: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Per-Stream Orthogonality using CSD (cont.)

Slide 5

September 2015

Lk Lk+1 Lk+2 Lk+3 Lk+4 Lk+5 Lk+6 Lk+7 Lk+8 Lk+9 Lk+10 Lk+11 Lk+12 ……

Spatial Stream # n

Spatial Stream # m

Lk Lk+1 Lk+2 Lk+3 Lk+4 Lk+5 Lk+6 Lk+7 Lk+8 Lk+9 Lk+10 Lk+11 Lk+12 ……

ej2πn/8 ej2π2n/8 ej2π3n/8 ej2π4n/8 ej2π5n/8 ej2π6n/8 ej2π7n/8 ej2π8n/8 ej2πn/8 ej2π2n/8 ej2π3n/8 ej2π4n/8 ej2π5n/8

x x x x x x x x x x x x x

ej2πm/8 ej2π2m/8 ej2π3m/8 ej2π4m/8 ej2π5m/8 ej2π6m/8 ej2π7m/8 ej2π8m/8 ej2πm/8 ej2π2m/8 ej2π3m/8 ej2π4m/8 ej2π5m/8

x x x x x x x x x x x x x

CSD operation

CSD operation

full CSD cycle

Instead of performing two step multiplication (P-matrix & CSD), simply perform one step multiplication (only CSD), where the CSD values are chosen such that spatial streams are orthogonal.

Page 6: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Proposed CSD values for UL MU-MIMO

• No change to the waveform equations compared to 11ac. Simply use different CSD values.

• With 78.125kHz subcarrier spacing, candidate values are THE-CSD(m) = [ 0ns, -1600ns, -3200ns, -4800ns, -6400ns, -8000ns, -9600ns, -11200ns] • CSD is applied to each tone in the LTF and Data OFDM symbols

just like HT and VHT PPDU.

Slide 6

September 2015

)(2,,

~ mTkjkmkm

CSDHEfexx Modulated subcarrier with CSD, k is the subcarrier indexm is the spatial stream number.

Page 7: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Cyclic Orthogonal Property of CSD

Slide 7

September 2015

Lk Lk+1 Lk+2 Lk+3 Lk+4 Lk+5 Lk+6 Lk+7 Lk+8 Lk+9 Lk+10 Lk+11 Lk+12 ……

Spatial Stream # n

Spatial Stream # m

Lk Lk+1 Lk+2 Lk+3 Lk+4 Lk+5 Lk+6 Lk+7 Lk+8 Lk+9 Lk+10 Lk+11 Lk+12 ……

At HE-LTF OFDM symbol #1

Note:CSD results in cyclic orthogonality just like proposal [1].

ej2πn/8 ej2π2n/8 ej2π3n/8 ej2π4n/8 ej2π5n/8 ej2π6n/8 ej2π7n/8 ej2π8n/8 ej2πn/8 ej2π2n/8 ej2π3n/8 ej2π4n/8 ej2π5n/8

x x x x x x x x x x x x x

ej2πm/8 ej2π2m/8 ej2π3m/8 ej2π4m/8 ej2π5m/8 ej2π6m/8 ej2π7m/8 ej2π8m/8 ej2πm/8 ej2π2m/8 ej2π3m/8 ej2π4m/8 ej2π5m/8

x x x x x x x x x x x x x

CSD operation

Orthogonal in Frequency DomainOrthogonal in Frequency Domain

Both boxes results in perfect orthogonality

Page 8: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

CSD and PAPR

• CSD operation (i.e. multiplication of linearly increasing phase) in frequency domain is equivalent to cyclically rotating time domain signals.

• CSD does not change dynamic range of transmitted signals and therefore retains PAPR property of the modulated signal.• This is the biggest benefit of CSD.

• Per-stream orthogonality can be achieved with affecting the PAPR of the LTF sequence. Therefore, LTF sequence can be designed without any consideration of UL MU-MIMO operation.

• The biggest problem with P-matrix masking in LTF symbols is unpredictable changes to PAPR property of the underlying LTF sequence [See Appendix A for PAPR results].

Slide 8

September 2015

Page 9: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Simulation Setup

• BW: 20MHz

• Channel Model: TGac Channel D

• Configuration:• 4 Rx AP with FOUR of 1 Tx STA

• 8 Rx AP with SIX of 1 Tx STA

• Identical SNR among STAs

• Transmit timing spread among users: spread uniformly within 0us, 0.5us, and 1us

• MCS 6, Payload Size 1000 Bytes

• IPN: -41dBc (both at Tx and Rx)

• Carrier Frequency Offset: uniformly spread across ±500Hz (±0.1 ppm @ 5GHz)

• Real frequency/phase offset tracking• ‘K’ de-spread channel coefficients in frequency domain was used in tracking

• de-spread channel coefficients in time domain (after frequency/phase compensation) used in data symbol equalization

• Real channel estimation

Slide 9

September 2015

Page 10: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Simulation Setup (cont.)• Simulated Algorithms

1. P-matrix masking with 11ac CSDA. Frequency domain block-wise de-spreading using conjugate of P-matrix (MRC) after

removal of CSD

B. Frequency domain block-wise de-spreading using inverse of P-matrix & CSD (ZF)• Comparison between MRC de-spreading vs. ZF de-spreading shown in Appendix B.

2. P-matrix masking with Block-wise CSD (just for reference)• Block-wise de-spreading using conjugate of P-matrix (MRC) after removal of CSD

• CSD phase value is constant over a block of subcarriers. CSD phase values increment every 8 tones. An example shown in Appendix C.

3. Orthogonal CSDA. Frequency domain block-wise de-spreading using conjugate of CSD

B. Time domain de-spreading using time-domain windowing• Detailed explanation of time domain processing is shown in Appendix D

• CSD phase values for each stream randomly chosen from• THE-CSD(m) = {0ns, -1600ns, -3200ns, -4800ns, -6400ns, -8000ns, -9600ns, -11200ns}

Slide 10

September 2015

Page 11: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Performance with LTF P matrix masking (1/6)

Slide 11

September 2015

Notes:• K = 242 uses all available tones for frequency/phase offset compensation• K = 8 only uses 8 tones for frequency/phase offset compensation (lower complexity)• Further details of K shown in [Appendix E]

SNR [dB]

20 25 30 35 40

PE

R

10-2

10-1

1001x4x4 ChD, 0us Timing Spread, 0.2ppm CFO Spread, K=242

P-matrix + 11ac CSD (MRC)P-matrix + 11ac CSD (ZF)

P-matrix + Block CSD (MRC)

Orthogonal CSD (FD)Orthogonal CSD (TD)

SNR [dB]20 25 30 35 40

PE

R10-2

10-1

1001x4x4 ChD, 0us Timing Spread, 0.2ppm CFO Spread, K=8

P-matrix + 11ac CSD (MRC)

P-matrix + 11ac CSD (ZF)P-matrix + Block CSD (MRC)

Orthogonal CSD (FD)

Orthogonal CSD (TD)

Page 12: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Performance with LTF P matrix masking (2/6)

Slide 12

September 2015

SNR [dB]20 25 30 35 40

PE

R

10-2

10-1

1001x4x4 ChD, 0.5us Timing Spread, 0.2ppm CFO Spread, K=242

P-matrix + 11ac CSD (MRC)

P-matrix + 11ac CSD (ZF)

P-matrix + Block CSD (MRC)Orthogonal CSD (FD)

Orthogonal CSD (TD)

SNR [dB]20 25 30 35 40

PE

R10-2

10-1

1001x4x4 ChD, 0.5us Timing Spread, 0.2ppm CFO Spread, K=8

P-matrix + 11ac CSD (MRC)

P-matrix + 11ac CSD (ZF)

P-matrix + Block CSD (MRC)Orthogonal CSD (FD)

Orthogonal CSD (TD)

Page 13: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Performance with LTF P matrix masking (3/6)

Slide 13

September 2015

SNR [dB]20 25 30 35 40

PE

R

10-2

10-1

1001x4x4 ChD, 1us Timing Spread, 0.2ppm CFO Spread, K=242

P-matrix + 11ac CSD (MRC)

P-matrix + 11ac CSD (ZF)

P-matrix + Block CSD (MRC)Orthogonal CSD (FD)

Orthogonal CSD (TD)

SNR [dB]

20 25 30 35 40

PE

R10-2

10-1

1001x4x4 ChD, 1us Timing Spread, 0.2ppm CFO Spread, K=8

P-matrix + 11ac CSD (MRC)P-matrix + 11ac CSD (ZF)

P-matrix + Block CSD (MRC)

Orthogonal CSD (FD)Orthogonal CSD (TD)

Page 14: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Performance with LTF P matrix masking (4/6)

Slide 14

September 2015

SNR [dB]10 12 14 16 18 20 22 24 26 28 30

PE

R

10-2

10-1

1001x8x6 ChD, 0us Timing Spread, 0.2ppm CFO Spread, K=242

P-matrix + 11ac CSD (MRC)

P-matrix + 11ac CSD (ZF)

P-matrix + Block CSD (MRC)Orthogonal CSD (FD)

Orthogonal CSD (TD)

SNR [dB]10 12 14 16 18 20 22 24 26 28 30

PE

R10-2

10-1

1001x8x6 ChD, 0us Timing Spread, 0.2ppm CFO Spread, K=8

P-matrix + 11ac CSD (MRC)

P-matrix + 11ac CSD (ZF)

P-matrix + Block CSD (MRC)Orthogonal CSD (FD)

Orthogonal CSD (TD)

Page 15: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Performance with LTF P matrix masking (5/6)

Slide 15

September 2015

SNR [dB]10 12 14 16 18 20 22 24 26 28 30

PE

R

10-2

10-1

1001x8x6 ChD, 0.5us Timing Spread, 0.2ppm CFO Spread, K=242

P-matrix + 11ac CSD (MRC)

P-matrix + 11ac CSD (ZF)

P-matrix + Block CSD (MRC)Orthogonal CSD (FD)

Orthogonal CSD (TD)

SNR [dB]10 12 14 16 18 20 22 24 26 28 30

PE

R10-2

10-1

1001x8x6 ChD, 0.5us Timing Spread, 0.2ppm CFO Spread, K=8

P-matrix + 11ac CSD (MRC)

P-matrix + 11ac CSD (ZF)

P-matrix + Block CSD (MRC)Orthogonal CSD (FD)

Orthogonal CSD (TD)

Page 16: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Performance with LTF P matrix masking (6/6)

Slide 16

September 2015

SNR [dB]10 12 14 16 18 20 22 24 26 28 30

PE

R

10-2

10-1

1001x8x6 ChD, 1us Timing Spread, 0.2ppm CFO Spread, K=242

P-matrix + 11ac CSD (MRC)

P-matrix + 11ac CSD (ZF)

P-matrix + Block CSD (MRC)Orthogonal CSD (FD)

Orthogonal CSD (TD)

SNR [dB]10 12 14 16 18 20 22 24 26 28 30

PE

R10-2

10-1

1001x8x6 ChD, 1us Timing Spread, 0.2ppm CFO Spread, K=8

P-matrix + 11ac CSD (MRC)

P-matrix + 11ac CSD (ZF)

P-matrix + Block CSD (MRC)Orthogonal CSD (FD)

Orthogonal CSD (TD)

Page 17: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Conclusion

• Use of orthogonal CSD in Uplink MU-MIMO results in better performance than the P-matrix masking approach proposed in [1].• Better or equal performance in all simulation scenarios.

• Better performance when large transmit time spread among STAs.

• Orthogonal CSD operations does not impact PAPR properties of the LTF sequence.• Low PAPR property of the LTF sequence can be kept.

• Support of orthogonal CSD is simple• No need for P-matrix masking

• Orthogonal CSD results in small set of phase values, {1, 1+j, j, 1-j, -1, -1-j, -j, 1-j}, that can simplify complex value multiplication.

Slide 17

September 2015

Page 18: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Strawpoll

• Do you agree add the following statement to SFD:• CSD parameters, that result in per-stream orthogonality within a

HE-LTF OFDM symbol, shall be used in HE-LTF of uplink MU-MIMO transmission.

• Y/N/A:

Slide 18

September 2015

Page 19: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0September 2015

Daewon Lee, NewracomSlide 19

References

[1] IEEE802.11-15/0602r1, “HE-LTF Sequence for UL MU-MIMO,” May 2015.

[2] IEEE802.11-15/0845r0, “LTF Design for Uplink MU-MIMO,” July 2015.

Page 20: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

APPENDIX

September 2015

Slide 20

Page 21: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Appendix A:PAPR of LTF Symbols with P matrix Masking

Slide 21

September 2015

Observation:• P matrix masked LTF can

have up to 8.8 dB PAPR• There is 80% probability

that data OFDM symbols have less than 8.8dB PAPR.

• P matrix masked LTF OFDM symbols have higher mean/median PAPR than data OFDM symbols

Page 22: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Appendix B: Comparison between MRC and ZF de-spreading

Slide 22

September 2015

Rx (AP)

Tx (STA1)

Tx (STA1)

Tx (STA3)

h1

h2

h3

LTF1 c

LTF2 c

LTF3 c

LTF332211 cccy hhh

If ck is orthogonal

133221111 hhhhHH ccccyc

(y’ is received signal with LTF sequence removed)

jkjHk

kHk

,0

,1

cc

cc

Conjugate de-spreading completely removes interference

If ck is non-orthogonal

H

H

H

HH hhhh

3

2

11

321

133221111

ˆ

ˆ

ˆ

ˆˆ

c

c

c

ccc

ccccyc

jkjkjHk

kHk

,

,1

cc

cc

Inverse de-spreading can remove interference

ZFMRCBoth schemes assume Channel is FLAT within the code length

ck is the p-matrix row vector (with CSD applied)

Page 23: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Appendix C: Comparison of Regular CSD vs. Block CSD

• Regular CSD (every tone) • Block CSD (every 4 tones)

September 2015

Slide 23

L1 L2 L3 L4 L5 L6 L7 L8

[ 1 1 -1 1 ][ 1 1 -1 1 ] Row ‘m’ of P matrix

x

x[ 1 ej2πθ ej2π2θ ej2π3θ ej2π4θ ej2π5θ ej2π6θ ej2π7θ ] CSD for SS #m

LTF sequence

Final Output Sequence

L1 L2 L3 L4 L5 L6 L7 L8

[ 1 1 -1 1 ][ 1 1 -1 1 ] x

x[ej2πθ ej2πθ ej2πθ ej2πθ ej2π5θ ej2π5θ ej2π5θ ej2π5θ ]

Final Output Sequence

Phase of CSD changed every few tonesPhase of CSD changed every tone

Not Orthogonal Orthogonal(Example Only)

Page 24: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Appendix D:Time Domain Processing using Windowing (1/3)

Slide 24

September 2015

Rx (AP)

Tx (STA1)

Tx (STA1)

Tx (STA3)

h1

h2

h3

1C

2C

3C

332211 ChChChy

)1(

1

0

Nj

j

j

k

k

k

k

e

e

e

C

Ck is the CSD matrix.Different STAs use different CSD phase value, θk

Number of diagonal terms is equal to number of subcarriers

)(1

)(1

)(0

kN

kkk hhh h hk is the channel vector for the entire frequency for

STA #k

Page 25: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Appendix D:Time Domain Processing using Windowing (2/3)

Slide 25

September 2015

)1(3)3(

1)2(3)3(

233)3(

323)3(

21)3(

103)3(

0

)1(2)2(1

)2(2)2(2

32)2(3

22)2(2

12)2(1

02)2(0

)1()1(1

)2()1(2

3)1(3

2)1(2

1)1(1

0)1(0

332211

NjN

NjN

jjjj

NjN

NjN

jjjj

NjN

NjN

jjjj

eheheheheheh

eheheheheheh

eheheheheheh

ChChChy

)1()3(

1)2()3(

232)3(

322)3(

21)3(

102)3(

0

)1()2(1

)2()2(2

3)2(3

2)2(2

1)2(1

0)2(0

)1(1

)1(2

)1(3

)1(2

)1(1

)1(0

33221111

NjN

NjN

jjjj

NjN

NjN

jjjj

NN

H

eheheheheheh

eheheheheheh

hhhhhh

ChChChyCr

Pow

er

time0 N-1

h(1)h(2) h(3)

Channel response for STA 2, h(2), is shifted in time domain. The shift amount depends on θ

Channel response for STA 1, h(1), is centered in DC

Determined by CSD for STA 2

Determined by CSD for STA 3

Page 26: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Appendix D:Time Domain Processing using Windowing (3/3)

Slide 26

September 2015

Pow

er

time0 N-1

h(1)h(2) h(3)

Channel response for STA 2, h(2), is shifted in time domain. The shift amount depends on θ

Channel response for STA 1, h(1), is centered in DC

Step 1) Convert received signal to time domain after removal of LTF sequence (just leave the CSD and channel in the received signal)

Step 2) Window (i.e. time domain masking) each channel response and convert it back to frequency domain

Pow

er

time0 N-1

h(1)

zero outConvert back to frequency domain.This completely removes channel from STA 2 and STA 3

Step 3) Perform different windowing and convert back to frequency domain for other channel responses.

Page 27: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Appendix E:Residual Frequency/Phase Offset Compensation with P

matrix masked LTF symbols

Slide 27

September 2015

perform de-spreading per stream

Received LTF symbols (freq-domain)

D

estimate residualfrequency/phase offset

Compensated LTF symbols for time domain de-spreading processing

‘K’ de-spreaded tones used for residual frequency/phase offset

Nss x 242

Nss x K Nss x K

fo &θ per STA

Nss x 242

Note:We have performed tests with various K.Obviously high K values means higher complexity or larger die size at the AP receiver.

Page 28: Submission doc.: IEEE 802.11-15/1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: 2015-09-14 Authors:

Submission

doc.: IEEE 802.11-15/1088r0

Daewon Lee, Newracom

Appendix E:Residual Frequency/Phase Offset Compensation with P

matrix masked LTF symbols (cont.)

Slide 28

September 2015

L1 ejθ L2 ej2θ -L3 ej3θ L4 ej4θ L5 ej5θ L6 ej6θ -L7 ej7θ L8 ej8θ L9 ej9θ L10 ej10θ -L11 ej11θ

Freq.LTF sequence w/ CSD

L1* e-jθ L2

* e-j2θ -L3* e-j3θ L4

* e-j4θ L5* e-j5θ L10

* e-j10θ L11* e-j11θ

x

h1 h2…

x

h10…

In total ‘M’ number of potential channel coefficient estimates from de-spreading

Selectively compute(sub-sample)

h2h6 h10 …

Total of ‘K’ number of channel coefficient estimates for frequency/phase tracking


Recommended