+ All Categories
Home > Documents > Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in...

Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in...

Date post: 29-Jun-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
38
PROJECT PROGRESS REPORT Electrocatalytic Energy Conversion at the Interfaces of Hybrid Carbon-Bismuth Nanoparticle Assemblies Submitted To The 2014 Summer NSF CEAS REU Program Part of NSF Type 1 STEP Grant Sponsored By The National Science Foundation Grant ID No.: DUE-0756921 EEC: 1004623 College of Engineering and Applied Science University of Cincinnati Cincinnati, Ohio Prepared By Trevor Yates, Chemical Engineering, University of Cincinnati Adam McNeeley, Chemical Engineering, University of Cincinnati Will Barrett, Chemical Engineering, University of Cincinnati Report Reviewed By:
Transcript
Page 1: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

PROJECT PROGRESS REPORT

Electrocatalytic Energy Conversion at the Interfaces of Hybrid Carbon-Bismuth Nanoparticle Assemblies

Submitted ToThe 2014 Summer NSF CEAS REU Program

Part ofNSF Type 1 STEP Grant

Sponsored ByThe National Science Foundation

Grant ID No.: DUE-0756921 EEC: 1004623

College of Engineering and Applied Science University of Cincinnati

Cincinnati, Ohio

Prepared By

Trevor Yates, Chemical Engineering, University of CincinnatiAdam McNeeley, Chemical Engineering, University of Cincinnati

Will Barrett, Chemical Engineering, University of Cincinnati

Report Reviewed By:

Dr. Anastasios Angelopoulos

REU Faculty Co-MentorAssociate Professor

Department of Biomedical, Chemical and Environmental EngineeringUniversity of Cincinnati

June 29, 2014

Page 2: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

1. Abstract.

Bismuth has potential as an electrocatalyst because of its conductive properties and low cost.

Former studies have electrodeposited Bismuth nanoparticles on Graphite Felt electrodes. They

have found that Bismuth improves the energy conversion efficiency of Vanadium Redox Flow

Batteries (VRFBs). [2,5] In this project, Bismuth nanoparticles will be further investigated as an

electrocatalyst by implementing Standard Layer by Layer (sLBL) assemblies with Carbon and a

cationic polymer on a Glassy Carbon electrode.

2. Introduction.

Making solar energy more economical is one of the 14 National Academy of Engineering grand

challenges presented to all engineers because of the necessity to increase sustainability. Solar

energy’s major flaw is its intermittence. When it is cloudy or dark, there is no sun available, thus

no electricity can be generated to support a power grid. Having an effective way to store large

amounts of energy would be a major step towards making solar energy viable. One method of

storing energy that shows promise in this application is the VRFB. The VRFB is a redox flow

battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the

cell stacks, just like a voltaic cell. A VRFB includes storage tanks, pumps, electrodes, and a

membrane that is permeable to cation diffusion. The VRFB has tremendous potential for energy

storage because the electrolyte solution is inert to degradation during the charging and

discharging cycles.2 The capacity and power output of the VRFB is also very customizable

depending on the volume of electrolyte and number of cell stacks. If more energy is needed,

Page 3: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

then increase the size of the tanks or the number of cell stacks. The major issues with the VRFB

include poor energy conversion, rate capability, and power density.2 These issues keep the VRFB

from becoming a viable solution to this grand challenge.

There needs to be a larger effort to transition away from fossil fuels. Renewable energy sources

including wind, hydro, solar, wind, biofuels, and other biomass made up only 7.8% of the total

energy consumption in the United States in 2013. Wind and solar, the primary applications for

the VRFB, make up only 29% of that renewable energy.6 The United States Department of

Energy claimed in 2010 that it will take 104 years for the world to deplete all of its fossil fuel

reserves. This is assuming that the consumption rate is constant throughout. Since projections

show a doubling in energy demand every 14 years, due to population increase, it appears likely

that, unless major change takes place, the young generation will face a major energy crisis.8

The VRFB is expensive and must be improved in order to make intermittent sources more

economical options for replacing fossil fuels. A VRFB unit is estimated to have a production cost

of $217/kWh and an electricity storage cost of $0.10/kWh.8

A brief cost analysis will show the price of a 1 kWh unit and show how the overall cost

compares with fossil fuel energy. A VRFB consists of many components which will be looked at

individually.

The Vanadium electrolyte solution stores the potential energy at 25 Wh/kg and costs $1.60/kg

when purchased in bulk quantities. This means that $64 must be spent on the electrolyte solution.

In addition to paying for the electrolyte solution, the storage tanks have to be considered. Since

Page 4: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

there is 153 L of solution total then two 100 liter tanks will be suitable. Tanks vary in cost

depending on the material, ranging from $432 (PCO Poly) to $637 (Stainless Steel). It is safe to

assume that the tanks will cost around $500. Next will be the pumps which cycle the electrolyte

solutions from the cell stacks to the storage tanks. Each pump must be able to move 153 L of

electrolyte at a rate of 0.0866 L/min.

100 L tank is expected to be at a height of 0.5 m. The energy required from a pump is so small

for this unit that it can be assumed to be one horsepower at around $110. The size of the

electrode is also important to consider. Since 800 A of current will be required with a nominal

voltage of 1.26 V, the surface area must be 2.5 m2. This same surface area will be assumed for

the proton exchange membrane with Nafion 117. The electrodes will cost around $40. The

ultimate price to pay will be the membrane. At around $100/ft2 the membrane will cost $2,634 in

a 1 kWh unit. The total for every component comes to $3,238. It cannot be assumed that the unit

cost will scale linearly with energy increase due to the many factors involved; however, as a

rough estimate, a 1 MWh unit should cost roughly 3.2 million dollars. Making this system

cheaper and more cost effective is the ultimate result that this project hopes to accomplish

through the development of a good electrocatalyst.

The first goal of this project is to investigate Bismuth as an electrocatalyst in hybrid electrodes to

improve energy conversion and rate capability. Bismuth has great promise because it is cheap

and serves as an excellent conductor. However, Bismuth as an electrocatalyst has not yet been

extensively documented, but on the other hand, previous research found that when Bismuth is

electrodeposited on graphite felt electrodes in VRFBs, there is an increase of energy efficiency

by 11% at high current density (150 mA/cm^2).2

Page 5: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

The next goal of this project is to test the performance of a hybrid Carbon-Bismuth electrode

using Layer by Layer assembly. Carbon itself is a stable electrocatalyst but does not produce an

adequate amount of current density to be effective. The hope is that Bismuth will increase the

current density without losing the stability characteristic of Carbon.

3. Methods.

Particle and Polymer Preparation

The preparation of Bismuth nanoparticles and the cationic polymer have been important to the

testing because they were the two main compounds used to coat the electrode in Layer by Layer

applications. The nanoparticles proved to be particularly difficult to deal with. The solution of

dark black nanoparticles had a tendency to coagulate and precipitate out of solution. The

solution had to be thoroughly agitated before use in order to ensure that it was well mixed. The

Bi-Sn nanoparticles stability was dependent on the solution pH, which was found to be ideal at 3.

If the pH was higher than 3, the Bi-Sn structure would not hold together and be stable. If the pH

was lower than 3, then the Bismuth would oxidize.

The first Bi-Sn nanoparticles used were old and leftover from a previous experiment. These

particles had a very thick consistency, and the solution oxidized and turned white. Fresh

particles were prepared and required three days to set up. The new particles had a much thinner

consistency and were easier to work with. After the old particles had been oxidized, extra care

was taken to prevent the new ones from being exposed to air. Parafilm was wrapped around the

Page 6: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

lid of the vial containing the particles when it was no longer being used and nitrogen was

pumped into the vial to provide protection from oxygen.

The polymer was prepared prior to any testing. The concentration of the polymer was 0.12 g/L

and was a clear solution. The same polymer solution was used for all of the tests. After initial

test results showed the polymer having a poor effect on the Bi-Sn nanoparticles, a portion of the

existing polymer was used to create a polymer with a slightly lower pH. The original polymer

had a measured pH of 4.4 and was reduced to 2.67 by adding 2 M H2SO4 drop wise. This

modified polymer was used for only one experiment just to see if it had a major effect. Every

other test used the same cationic polymer with a pH of 4.4.

The stability of the Bismuth nanoparticles had become a major concern in the experiment. As

mentioned earlier, after a few days of exposure to air the Bismuth nanoparticles were observed to

have a yellow white film that separated on top of the black solution. After an extended amount

of time, usually a few days later, the solution would turn completely white. Along with this

noted change in physical appearance, there was a consistent decline in electroactivity with the

aging of the particles. This decline was noticed because tests conducted with the older particles

consistently produced smaller Bismuth peaks when scanned. It was hypothesized that the

Bismuth nanoparticles were being oxidized in air over time. To prevent this from happening,

measures were taken to keep the nanoparticles from being exposed to Oxygen. When the

particles were used for experimentation, a pure Nitrogen air stream was blown into the vial after

uncapping until Bismuth was extracted using an automatic pipette. This Nitrogen stream was

usually applied for about five seconds. After the Bismuth was extracted, the Nitrogen stream

was reapplied for 30 seconds before recapping the vial. This procedure was repeated every time

Page 7: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

the nanoparticles needed to be applied to the electrode. Once the nanoparticles were no longer

needed for the experiment, Nitrogen was blown into the vial for two minutes before being

capped and sealed with Parafilm.

4. V3+ Preparation

To prepare the V3+ electrolyte solution, it needed to be electrochemically reduced from V4+. To

do this two equal volumes of 0.1M V4+ solution were put into two halves of a cell. A potential

was then applied to the cell to charge it. Once the cell was charged, the negative side of the cell

contained V3+ and the positive side contained V5+. These two solutions were then transferred to

two sealable containers. Before they were put away for storage, Nitrogen was pumped into the

container to remove any Oxygen. This was done because these two solutions oxidized easily in

air. Once the Nitrogen was put into the containers, they were then sealed, with Parafilm wrapped

around the lids, making them completely air-tight.

Cleaning Process

The Glassy Carbon Electrode (GCE) used for the assembly of the electrodes being tested,

underwent a vigorous cleaning after each test trial. To make sure accurate data was being

collected, the GCE needed to be free of any impurities before being used. The GCE was tested

for impurities by connecting it to the cyclic voltammeter. The voltammeter ran at a preset sweep

rate of 250 mV/s. This was later changed to 50 mV/s to be used as a baseline for data analysis.

The resulting graph was then analyzed for current peaks that would signify if any electroactive

impurities were present. The GCE was scanned for 25 cycles which provided an opportunity for

Page 8: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

any minor impurities to be removed electrolytically. When no current peaks were observed the

GCE would be ready for experimentation.

A standard cleaning procedure was first used to clean the GCE. This involved first scrubbing the

electrode on a buffer pad using Alumina paste and deionized water. The GCE was scrubbed

with its face flat to the buffer pad applying light pressure in a figure eight motion. The GCE was

scrubbed for a short length of time and was then rinsed with deionized water. The GCE was then

placed in a 150 mL beaker half-filled with deionized water. This beaker was then placed in an

ultrasonicator turned on to the max setting. The beaker was allowed to sit in the ultrasonicator

for at least five minutes to allow for any particulates to vibrate off of the GCE. The GCE was

then removed from the 150 mL beaker and rinsed with deionized water. It was then connected to

the cyclic voltammeter to perform cleaning sweeps. After confirming the GCE was free of

electroactive impurities from the cleaning scan, the GCE was removed from the cyclic

voltammeter. The GCE was then rinsed with deionized water and placed on a stand to dry.

Once dry, the GCE would be ready for experiments. It was found that the Bi-Sn nanoparticles

were very difficult to remove from the GCE. Bismuth oxidation peaks were consistently

observed in the cleaning scans. This increased cleaning time because all of the cleaning steps

needed to be repeated until the cleaning scan showed the absence of a Bismuth peak or any other

impurity.

To make sure that the electrode was clean extra steps were added to the process. This step was

done after removing the GCE from the ultrasonicator. Aqua regia was prepared in a vial by

mixing 18M HCl with 18M HNO3 in a 3:1 ratio. The Aqua regia was stored in a capped vial

inside the fume hood. After the GCE was removed from the ultrasonicator it was placed inside

Page 9: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

the fume hood facing down inside the vial of Aqua regia so that the surface of the Glassy Carbon

came into contact with the Aqua regia. The electrode was left to sit in the Aqua regia between

15 minutes to an hour. The GCE was then removed from the vial and rinsed with deionized

water. After rinsing the electrode it was placed in a 150 mL beaker half filled with deionized

water and put in the ultrasonicator again. The GCE was removed from the beaker and rinsed

with deionized water one last time. The electrode was then connected to the cyclic voltammeter

to check for electrochemical impurities.

It is important to note that for some of the early tests, the electrode showed very small Bismuth

oxidation peaks after multiple intensive cleanings using the Aqua regia step. These small peaks

were assumed negligible. Calibrated cleaning scans were used as the baseline for analysis of the

tested electrode.

Cyclic Voltammetry

Cyclic Voltammetry was the method of analysis for electroactivity of the GCE. Cyclic

Voltammetry involved three electrodes: a reference, a working, and a counter. The reference in

these experiments was an Ag/AgCl electrode. The counter in these experiments was a standard

Platinum electrode. The working electrode was the assembled GCE.

Two different types of electrolytes were used throughout this project. The electrolyte used to

electrochemically characterize Bismuth was a 0.5M solution of H2SO4. When experiments were

in this solution, they were typically scanned between -650 mV and 650 mV with respect to

Ag/AgCl. There were various scan rates used with H2SO4 solution but the main scan rate used

Page 10: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

for analysis was 50mV/s. The main focal point for analysis using this solution were the peak

current magnitude, and the stability of the peak currents after being cycled. The peak currents

can be observed in any scan but to analyze the stability the 2nd and 25th Bismuth peaks were

used. The second peak current was used instead of the first peak, because the first peak always

had a lot of noise and nothing could be interpreted from it. The 25th cycle was used to represent

a stable system.

The other electrolyte used was a 2M solution of H2SO4 with 0.1M V3+ ions. This electrolyte was

used to test the electrocatalytic effects of Bismuth on the Vanadium redox reaction between V3+

and V2+. The GCE in this electrolyte was scanned between -100 mV and -1100 mV with respect

to Ag/AgCl to get the Vanadium to react. It is important to keep the window as small as possible

because large potentials in the negative range reduces Hydrogen, which would damage the

integrity of the experiment. The electrodes were also scanned at different scan rates. For the

Vanadium solution the scan rates were either 10, 20, 30, or 40mV/s. The main focus for these

tests was to observe how large the peak currents separation between cathodic and anodic peaks,

and the magnitudes of the peak current. For the Vanadium solution the 25th cycle of the scan

was used for analysis.

Standard Layer by Layer

Standard Layer by Layer (sLbL) was a method that allowed for the controlled application of an

electrocatalyst on an electrode surface by using electrostatic attractions. Advantage is taken of

the positive surface charge of the cationic polymer and the negative surface charge the Bi-Sn

Page 11: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

nanoparticles. They were be stacked in such a way that they formed layers. Both the cationic

polymer and the Bi-Sn nanoparticles were in liquid form, and they were applied by a

micropipette drop-wise until covering the surface of the GCE. The first layer applied to the GCE

was the cationic polymer. The positive surface charge stuck to the negative surface charge of the

carbon on the GCE. Polymer was left on the GCE for two minutes. The GCE was then washed

in a beaker full of DI water to get rid of the excess polymer. The Bi-Sn nanoparticles were then

applied on top of the polymer and left on for two minutes. The GCE was then washed in a

beaker full of DI water to get rid of the excess nanoparticles. The nanoparticles are coated with a

thin shell of Sn, which should theoretically give the nanoparticles a negative surface charge.

Once the Bismuth and polymer were applied and washed, one layer was complete.

A control was used to test against the Layer by Layer method and to understand effect of the

cationic polymer. This control electrode was constructed by simply layering the Bi-Sn

nanoparticles on top of each other. Bismuth was applied to the surface of the GCE and left on

for two minutes before being washed. This was equivalent to one layer.

Another variable in the electrode assembly involved washing the assembled electrode in 0.25M

Sodium Hydroxide (NaOH). The purpose of this was to test if some of the Tin shell on the

nanoparticles could be removed to expose more Bismuth. The assembled electrode was washed

in 0.25M NaOH for two minutes, was briefly rinsed, and then left to dry in air before being

tested.

Once testing was completed on the Bismuth electrodes, Carbon nanoplatelets were also

implemented into the sLbL assemblies. Based on previous studies, Carbon had a negative

Page 12: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

surface charge and was a strong electrocatalyst. The Carbon nanoplatelets were suspended in

solution and were applied in a similar manner as the polymer and Bi-Sn nanoparticles. The

Carbon would be applied until covering the surface of the GCE and left on for two minutes

before washing. Since both the Carbon nanoplatelets and Bi-Sn nanoparticles had a negative

surface charge they were separated by a layer of cationic polymer to meet sLbL requirements.

The layering order was polymer, carbon, polymer, Bi-Sn. Applying and washing those in order

would complete one layer. Each electrode with Carbon nanoplatelets and Bi-Sn nanoparticles

was washed in NaOH as described earlier in this section.

Directed Layer by Layer

Directed Layer by Layer (dLbL) was another Layer by Layer method for the controlled

application of an electrocatalyst. It was similar to sLbL in that it took advantage of electrostatic

charges, but the difference came from how these charges were layered. In dLbL the positive

polymer was still applied first to the base of the Glassy Carbon. The next layer applied was the

negatively charged carbon nanoplatelets. The next layer involved applying the negatively

charged Bi-Sn nanoparticles. The repulsion forces of like charges from the Carbon nanoparticles

“direct” the Bi-Sn nanoparticles onto any exposed polymer that the Carbon nanoparticles haven’t

covered. This technique was used because, in theory, it should minimize the insulative

properties of the polymer by packing the Bi-Sn into the spaces created by the polymer. After the

Bi-Sn layer was applied, one layer of dLbL had been applied and the process was repeated. The

dLbL method was being tested to compare to the sLbL method to determine which was more

effective for assembling a Carbon-Bismuth hybrid electrode. They were compared using 8

layers for both methods.

Page 13: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

5. Results and Discussion.

4-Layers vs. 8-Layers without Carbon

The first goal in understanding Bismuth is to investigate whether or not the peak current grows

linearly with the increasing of the layers. This is done by doubling the layers from four to eight

to observe if the peak height will double as well. The two assemblies compared are the 4-layer

sLbL assembly without NaOH wash and the 8-layer sLbL assembly without NaOH wash. The

results are not very stable, but they do indicate that increasing the number of layers increases the

peak height. The 4-layers produces an initial peak of 0.62 mA/cm2 while the 8-layers produces

an initial peak of 1.0 mA/cm2. The stability issue can plainly be seen especially in the 8 layer

test where irregularities are happening all over in the course of 25 cycles. Both tests clearly

show that the peak current dwindles down to a fraction of the initial peak.

Page 14: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

Figure 1. This shows the stability and reactivity of a 4-layer Bismuth electrode over 25 cycles.

Figure 2. This shows the stability and reactivity of an 8-layer Bismuth electrode over 25 cycles.

NaOH Wash vs. No NaOH Wash

Pure Bismuth nanoparticles currently cannot be produced due to the fact that Bismuth

nanoparticles need stabilization. The Bismuth nanoparticles used for this experiment are coated

with a thin Tin shell. Once the Bismuth is layered on the electrode there is no need for the shell.

The hypothesis is that removing some of the Tin will expose more Bismuth and make it more

electroactive. A test is conducted that includes a step treating the electrode in a solution that will

remove Tin but not Bismuth. For this experiment NaOH is used to treat the electrode. This

solvent is chosen because it is a strong base and Pourbaix phase diagrams indicate Tin will be

ionized and not Bismuth. Sodium is used as the support ion based on previous successful usage.

The results from this experiment are shown in figures three and four below. The initial peak

Page 15: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

density without the NaOH wash is 0.62 mV/cm2 while the peak with the NaOH is 2.9 mV/cm2.

This data isn’t conclusive because both results show peak activity significantly decreasing after

each cycle and the results aren’t able to be reproduced. However, a general trend is observed

that showed electrodes treated with NaOH are more electroactive than electrodes without NaOH.

From this trend it is safe to conclude that NaOH wash has a positive effect on the electroactivity

of Bismuth on an electrode. The extent of this effect is currently unknown due to the instability

of the experiments and lack of reproducibility with Bismuth only sLbL experiments.

Figure 3. This figure shows the reactivity of a 4-layer electrode without the NaOH wash.

Figure 4. This figure shows the reactivity of a 4-layer electrode with the NaOH wash.

Page 16: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

Polymer vs. No Polymer

Experiments are conducted without polymer to test the effect of the polymer and the Layer by

Layer process on the electroactivity of the Bismuth nanoparticles. This is done by layering

Bismuth on top of itself. Theoretically the polymer should keep the Bismuth nanoparticles

spread out evenly in each layer. It should also provide a surface charge that allows the Bismuth

to stack resulting in a higher quantity of Bismuth applied. This should enable the reaction to

happen quickly and last longer. The results of these experiments show that the polymer does

improve the performance of the electrode by increasing the peak current and making the

electrode more stable.

Carbon vs. No Carbon

Carbon is used to study a sLbL hybrid with Bismuth nanoparticles. The Carbon nanoplatelets

that are used have been shown to be an effective electrocatalyst in the V4+/V5+ reaction. After

failing to make a solid conclusion about Bismuth nanoparticles, the Carbon nanoplatelets are

introduced into testing. The comparison between a Carbon and no Carbon electrode is seen in

figures six and seven. In figure six the current density peak decreases a significant amount with

each cycle. In figure seven the current density peak stabilizes fairly quickly and remains stable.

Figure six does have higher peak currents than figure eight, but peak heights decayed to similar

values within a few cycles. Figure seven is a very important test result, because it is the first that

can be easily reproduced. It is observed that when Carbon is introduced the Bismuth peaks

stabilize more quickly and sooner. Future research in this area will investigate why Carbon and

Bismuth nanoparticles have this favorable interaction.

Page 17: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

Figure 6. This figure shows the reactivity of an electrode that doesn’t include Carbon.

Figure 7. This figure shows the reactivity of an electrode that includes Carbon.

4-Layers vs. 8-Layers with Carbon

Previously it is discussed that there is a general trend in the peak current when the number of

layers is increased from four to eight. This trend is confirmed by comparing the more stable

Carbon-Bismuth hybrid with four and eight layers using the sLbL method. The result can clearly

be seen in figure eight below. The 8-layer electrode has an initial peak current of 0.19 mA/cm2

and the 4-layer peak current is 0.1 mA/cm2, a near doubling in the peak current from the

fourth layer to the eighth layer. This makes sense because the electroactive Bismuth is

applied in the same manner for all tests. The electrode with eight layers should have

about twice as much Bismuth as the one with four layers. Also, the 8-layer electrode

shows greater stability than the 4-layer electrode over the course of 25 cycles. This is

Page 18: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

important because it indicates that the electrode will increase in stability as more layers

are added with Carbon nanoplatelets present.

Figure 8. This figure compares the initial peaks of a 4-layer and an 8-layer electrode that involved Carbon.

dLbL vs. sLbL

The differences between the dLbL and sLbL Layer by Layer techniques are explained earlier in

the methods section. It is important to find out which method is most effective for assembling

the Carbon-Bismuth hybrid electrode. An eight layer dLbL and an eight layer sLbL are

compared in figures seven and eight. The sLbL technique displayed a more stable system than

the dLbL technique over 25 cycles. This is because sLbL uses electrostatic attractions to hold

each sublayer together while dLbL has some sublayers put together that have the same charge

Page 19: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

causing them to want to repel each other. This repulsion hurts the integrity of the structure

causing it to not be stable. The initial current density peak for sLbL is approximately 0.2

mA/cm2 while it is approximately 0.16 mA/cm2 for dLbL. More importantly, the sLbL method

shows greater stability over the course of 25 cycles than the dLbL method, with the sLbL peak

decaying to only 0.16 mA/cm2 and the dLbL peak decaying to 0.076 mA/cm2. This test clearly

indicates that the sLbL method is the most effective assembly method for the Carbon-Bismuth

hybrid electrode.

Figure 9. This figure shows the reactivity of an electrode constructed by using the standard layer by layer technique.

Figure 10. This figure shows the reactivity of an electrode constructed using the direct layer by layer technique.

Page 20: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

Carbon-Bismuth Relationship

Through this project it has been discovered that Carbon and Bismuth have a very interesting

relationship with each other. As mentioned earlier, it was observed that Carbon acts like a

stabilizing agent for the Bismuth. It has been seen from figures six and seven, when the

assembly doesn’t have Carbon in it, it doesn’t reach a stable state before the current is essentially

zero. This relationship between Carbon and Bismuth nanoparticles will need to be investigated

in future research. Currently it is too early to speculate on this interaction.

Vanadium Studies

All previous experiments have been completed in a 0.5M H2SO4 electrolyte due to the need to

have an understanding of the electrochemical properties of Bismuth nanoparticles. Once this

understanding is reached, experiments are completed in a 0.1M V3+ solution. This is done so

there can be an understanding of how the Carbon-Bismuth hybrid electrode affects the

performance of the negative side of a Vanadium Redox flow battery. Previous studies have

shown that the application of Bismuth to the positive cell has no significant effect so the focus

for this project is on the negative side.

Different experiments are completed so that the behavior of both Carbon and Bismuth in

Vanadium can be observed and analyzed. The first experiment is the Glassy Carbon control test.

The next experiment involves eight layers of Carbon and cationic polymer, which serves as a

control for Carbon. The eight layer Carbon sLbL assembly is compared to the Glassy Carbon

control to give an understanding of Carbon’s effect on the Vanadium reaction. The next

Page 21: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

experiment involves eight layers using sLbL with Bismuth and Carbon. The results for the

Bismuth-Carbon hybrid are compared to the results of the Carbon sLbL control to analyze the

effect of Bismuth on the Vanadium reaction. The final experiment that is completed involves

four layers using sLbL. This shows how the quantity of Bismuth will affect the Vanadium

reaction. Figure 11 shows the comparison of the four layer sLbL Bismuth-Carbon hybrid to the

eight layer sLbL Bismuth-Carbon hybrid. From this comparison it can be concluded that the

eight layer Bismuth-Carbon hybrid improved peak current density as well as shifting the

oxidation and reduction peaks closer together. The significance of the peak shifting is especially

important for the V3+/V2+ reduction reaction. This causes the negative peaks seen on the left side

of the graph below. This is important because H+ reduction in the electrolyte begins to happen

near the reduction peak and causes the peak to be less prominent. When the peak is shifted to a

more positive value it is shifted away from the H+ reduction. This improves energy conversion

efficiency since less energy is wasted on H+ reduction. Figure 12 shows the comparison of the

eight layer sLbL Carbon control and the eight layer sLbL Bismuth-Carbon hybrid electrode.

This graph distinctly shows the H+ reduction slope on the Carbon Control plot after -1V

referencing Ag/AgCl. The H+ reduction is also a contributing factor the cathodic peak being

greater in the Carbon control than the Carbon-Bismuth hybrid. There is also a distinct difference

in peak separation. This is an important result because it demonstrates Bismuth’s role as an

electrocatalyst in the Vanadium reaction. The Glassy Carbon control test fails to produce a

Vanadium reduction peak and goes directly towards H+ reduction when sweeping in the negative

range.

Page 22: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

Figure 11. This figure compares the electroactivity of a 4-layer electrode and an 8-layer electrode in a 0.1M V3+ electrolyte solution.

Page 23: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

Figure 12. This figure compares the electroactivity of an 8-layer electrode that just involves Carbon to one that involves Carbon and Bismuth.

6. Conclusion.

Making solar energy economical is one of the 14 NAE grand challenges. This study focused on

energy storage, particularly the VRFB. Making the VRFB economically viable would be a step

towards making not just solar energy economically viable but all renewable energy. The

purpose is to investigate the application of a hybrid Carbon-Bismuth electrode in the negative

cell of the VRFB.

The first experiments that have been to understand the basics of Bismuth nanoparticle

electrochemistry and the sLbL application method. The results from the initial Bismuth studies

have shown that Bismuth nanoparticles are not very stable. These studies have provided a

Page 24: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

foundation for future experiments. These studies indicate that polymer is necessary to stack

Bismuth layers and washing the electrode in NaOH enhances electroactivity. The next

experiments have introduced Carbon nanoplatelets and a new type of application process: dLbL.

When Carbon was introduced, it was found that it stabilizes the system enough that the data was

reproducible. From these experiments it can be concluded that increasing layers increases

electroactivity, and sLbL is the most effective application method for the Carbon-Bismuth hybrid

electrode. The final set of experiments are centered on the V2+/V3+ reaction. From these

experiments show that the Bismuth-Carbon hybrid is the most effective at shifting the cathodic

peak away from H+ reduction and amplifying the cathodic and anodic peak currents. This also

shows that increasing layers enhances electrocatalytic effect, and that Bismuth nanoparticles play

an important role as an electrocatalyst.

The results of this research have a lot to be expanded upon. Future research will need to

investigate why Carbon and Bismuth have such positive interactions. Scanning Electron

Microscopy (SEM) will be used to visually understand what is going on at the surface of the

electrode. It will also be necessary to quantify the layering of Carbon-Bismuth hybrid electrode

and determine the exact mathematical relationship between the amount of layers and peak

current density. This information will be used to optimize an electrode for use in the negative

cell of a VRFB. Further testing will need to be conducted to find consistent electrochemical

properties of Bismuth nanoparticles. Nonetheless, these initial findings have shown promise for

the use of the hybrid Carbon-Bismuth nanoparticle assemblies as electrocatalysts in the negative

cells of VRFBs.

Page 25: Submitted To€¦ · Web viewThe VRFB is a redox flow battery that stores charged Vanadium in electrolyte tanks and carries out redox reactions in the cell stacks, just like a voltaic

7. References.

1. Evans, Dennis H.; O'Connell, Kathleen M.; et al. (1983). “Cyclic voltammetry,” Journal of

Chemical Education, Vol. 60, No. 4, pp. 290-293.

2. Li, Bin; Gu, Meng; et al. (2013). “Bismuth nanoparticle decorating graphite felt as a high-

performance electrode for an all-vanadium redox flow battery,” Nano Letters Vol. 13, No. 3, pp.

1130-1335.

3. Mabbott, Gary A. (1983). “An introduction to cyclic voltammetry,” Journal of Chemical Education,

Vol. 60, No.9, pp. 697-702.

4. St. John, Samuel; Dutta, Indrajit; Angelopoulos, Anastasios P. (2010). “Synthesis and

Characterization of Electrocatalytically Active Platinum Atom Clusters and Monodisperse Single

Crystals,” Journal of Physical Chemistry, Vol. 114, No. 32, pp. 13515-13525.

5. Suarez, David J.; Gonzalez, Zoraida; et al. (2014). “Graphite Felt Modified with Bismuth

Nanoparticles as Negative Electrode in a Vanadium Redox Flow Battery,” ChemSusChem, Vol.7,

No.3, pp.914-918.

6. Independent Statistics & Analysis United States Energy Information Association (EIA). Available

at: http://www.eia.gov/oiaf/aeo/tablebrowser/#release=AEO2014&subject=0-AEO2014&table=1-

AEO2014&region=0-0&cases=ref2014-d102413a. Accessed on 28 July 2014.

7. Kear, Gareth; Shah, Akeel; et al. (2011). “Development of the all-vanadium redox flow battery for

energy storage: a review of technological, financial and policy aspects,” International Journal of

Energy Research, No. 36, pp.1105-1120.

8. Eco info “When Will We Run out of Fossil Fuels?” Available at: http://www.eco-info.net/fossil-fuel-

depletion.html. Accessed on 28 July 2014.


Recommended