+ All Categories
Home > Documents > SULFIDE EFFECT ON BIOGAS UPGRADING WITH A...

SULFIDE EFFECT ON BIOGAS UPGRADING WITH A...

Date post: 06-Oct-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
19
SULFIDE EFFECT ON BIOGAS UPGRADING WITH A BIOELECTROCHEMICAL SYSTEM CHRISTY DYKSTRA SPYROS G. PAVLOSTATHIS ATHENS 2017 5 th International Conference on Sustainable Solid Waste Management Athens, Greece, June 22, 2017 School of Civil & Environmental Engineering Georgia Institute of Technology Atlanta, GA 303320512, USA [email protected]
Transcript
Page 1: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

SULFIDE  EFFECT  ON  BIOGAS  UPGRADING  WITH  A  BIOELECTROCHEMICAL  SYSTEM  

C H R I S T Y   D Y K S T R AS P Y R O S   G .   P A V L O S T A T H I S

ATHENS 2017 5th International Conference on Sustainable Solid Waste ManagementAthens, Greece, June 22, 2017

School of Civil & Environmental EngineeringGeorgia Institute of TechnologyAtlanta, GA 30332‐0512, [email protected]

Page 2: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

INTRODUCTION  &  BACKGROUND

AnaerobicDigestion

MethaneCH4

Carbon DioxideCO2

Substrate

Biogas Yield(L/kg volatile 

solids)aMethane 

Content (%, v/v)

Fat 1,000 – 1,250 70 – 75 

Protein 600 – 700  68 – 73 

Carbohydrate 700 – 800  50 – 55 

a At 25°C, 1 atm; Petersson and Wellinger, 2009. IEA Bioenergy. 

2

Trace Gases 

(e.g., H2S, H2, N2)

Page 3: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

BIOGAS  UPGRADING3

• Energy intensive• Carbon waste product• Expensive consumables

Biogas Upgrading

AbsorptionPhysical

Chemical

Adsorption

Activated Carbon

Alumina

Zeolite

MembranesGas separation

Gas adsorptionCryogenics

BiologicalBiomass Production (e.g., algae)

Bioelectrochemical Systems

Direct conversion of CO2 to CH4

Page 4: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

BIOELECTROCHEMICAL  SYSTEMS4

Oxidation

Organics  CO2/ oxidized organics, H+, e‐

Reduction

CO2, H+, e‐CH4

• Microbes are an inexpensive, self‐renewing catalyst• The potential applied at A (< 1 V) can be supplied by photovoltaics/renewables• Optional proton exchange membrane, B

COCO2,CH4

>>CH4

Page 5: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

HYDROGEN  SULFIDE

• Corrosive, toxic (NIOSH, IDLH = 100 ppm)

• Produced by sulfate‐reducing bacteria during anaerobic digestion

• Inhibitory to methanogenesis during anaerobic digestion [1]

• Feedstock C:S ratio predicts biogas H2S [2]

Desulfovibrio vulgaris

[1] Chen, Y., et al., 2008. Biores. Technol. 99(10), 4044‐4064.

[2] Peu, P., et al., 2012. BioresourceTechnol. 121, 419‐424.

FeedstockC/S         (g/g)

Theoretical Biogas H2S       (%, range)

Grease trap waste 798 0.0 – 0.1

Biological sludge 59 0.6 – 1.9

Industrial WW biological sludge 46 0.8 – 2.0

Pig bristles 19 2.0 – 4.9

Harvested green seaweed 7 5.5 – 17.7

5

Page 6: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

RESEARCH  OBJECTIVEDetermine how the presence of hydrogen sulfide (H2S), a common contaminant in anaerobic digester biogas,  affects the conversion of carbon dioxide (CO2) to methane (CH4) in the cathode of a bioelectrochemical system (BES).

RESEARCH  APPROACH

6

7 cycles 3 cycles 3 cycles 3 cycles 1 cycle 1 cycle 1 cycle

TIME (d)

0 2 4 6 8 10

ME

THA

NE

(mm

ol)

0

1

2

3

R2 = 0.997

R2 = 0.999

100% CO2,no H2S

99% CO2, 1% H2S

98% CO2, 2% H2S

97% CO2, 3% H2S

96% CO2, 4% H2S

95% CO2, 5% H2S

94% CO2, 6% H2S

• Compare the mean initial 3‐day CH4production rate following feeding

• Assess the effect of H2S on the full BES performance

Figure 1. Linear biocathode CH4 production during the first 3 days of a feeding cycle

Page 7: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

METHODS:  BIOELECTROCHEMICAL  SYSTEM7

Anode• 300 mL total, 250 mL liquid volume• Carbon felt electrode with 

exoelectrogens• Batch‐fed acetate (4 g COD/L) 

weekly

Cathode• 300 mL total, 250 mL liquid volume• Carbon felt electrode with 

methanogens and SS collector• Batch‐fed CO2 (g) (92 mL at 22°C, 1 

atm) weekly• Applied potential ‐0.8 V vs. SHE with 

Gamry Interface 1000 potentiostat• Continuously mixed with magnetic 

bars and stir plates at 22°C• Nafion 117 proton exchange 

membrane (PEM)

Page 8: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

RESULTS:  BIOCATHODE  CH4 PRODUCTION8

INITIAL CATHODE HEADSPACE H2S (%)

0 1 2 3 4 5 6

INIT

IAL

3-D

AY

CH

4 PR

OD

UC

TIO

N R

ATE

(mm

ol/d

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

n = 7

n = 3

n = 3n = 3

n = 1

n = 1n = 1

• H2S improves biocathode CH4production rate up to 2‐3% initial H2S

• Initial H2S concentrations of 4‐6% result in a decreased biocathode CH4 production rate

• Two competing effects:

• Depress CH4 production (≥4% H2S): Inhibition of methanogens?

• Improve CH4 production (≤3% H2S): What is/are the process(es) involved?

Figure 2. Mean initial 3‐day biocathode CH4production rates following feeding with an initial headspace concentration of 0‐6% H2S (n, number of feeding cycles). 

Page 9: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

ELECTROCHEMICAL  PERFORMANCE

‐0,03‐0,02‐0,010,000,010,020,030,040,050,060,07

‐1,2 ‐1,0 ‐0,8 ‐0,6 ‐0,4 ‐0,2 0,0

Curren

t (mA)

Voltage (V vs. Ag/AgCl)

0% H2S 4% H2S

5% H2S 6% H2S

H2S (%)

CE (%)

CCE (%)

0 11 100

4 19 99

5 58 13

6 58 15

CE, Coulombic Efficiency: The ratio of total Coulombs actually transferred to the anode from the substrate, to maximum possible Coulombs if all substrate removal produced current. [1]

CCE, Cathode Capture Efficiency:  The ratio of total Coulombs actually transferred to the CH4 from the cathode, to maximum possible Coulombs if all current produced CH4. [2]

[1] Logan et al., 2006. ES&T[2] Villano et al., 2013. Bioresource Technol.

9

2

2

2

2

Page 10: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

H2S  WITHIN  A  METHANOGENIC  BES

Anode Cathode

Potentiostat

PEM

CO2 H2S   CO2N2  N2 N2

Acetate

CO2

CO2

CO2

CH4

CH4

N2 CO2 CH4

H+ H+H+H+

e‐ e‐

H2SH2S

Henry’s Law constant in catholyte medium• CO2: 32.7 mM/atm• H2S: 82.0 mM/atm

10

Ag/AgCl reference electrode

Page 11: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

H2S   IN  THE  CATHODE  – INHIBITORY  EFFECT

CO2

CH4 H2SH2S

CH4

CO2

CO2

H2SH2S HS‐HS‐

H2SHS‐H2SHS‐

S2‐S2‐

e‐

e‐

H+

11

H2S is the most toxic of the sulfide species

80%

20%

Page 12: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

H2S   IN  THE  CATHODE  – INHIBITORY  EFFECT

CO2

CH4 H2SH2S

The methanogenic biocathode is semi‐protected from sulfide inhibition by biofilm formation and a local high pH at the cathode surface.

CH4

CO2

CO2

H2SH2S HS‐HS‐

H2SHS‐H2SHS‐

S2‐S2‐

e‐

e‐

High local pHN

eutral pH

12

80%

20%H2S is the most toxic of the sulfide species

H+

Page 13: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

H2S   IN  THE  ANODE  – ENHANCEMENT  EFFECT

N2

Acetate

CO2

CO2

H2S / HS‐

SO42‐

?Acetate

CO2SRB

• Low H2S → more electrons donated to the anode → more biocathode CH4 production• High H2S → s mulate SRB cycle → divert acetate eeq from the anode → less biocathode CH4 production

Potential anode H2S oxidation productsS0 Sx2‐ S4O6

2‐

S2O32‐ SO4

2‐

Sun et al., 2009. ES&T

13

N2

e‐

Page 14: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

H2S   IN  THE  ANODE  – ENHANCEMENT  EFFECT

N2

Acetate

CO2

CO2

H2S / HS‐

SO42‐

?Acetate

CO2SRB

• Low H2S → more electrons donated to the anode → more biocathode CH4 production• High H2S → s mulate SRB cycle → divert acetate eeq from the anode → less biocathode CH4 production

Potential anode H2S oxidation productsS0 Sx2‐ S4O6

2‐

S2O32‐ SO4

2‐

Sun et al., 2009. ES&T

14

N2

e‐

InitialCathode 

H2S   (%)

AcetateRemoval      

(%)

Final Anode SO4

2‐

(mM)

H2S Recovery as 

Anode SO4

2‐ (%)

0 91.4 0.00 0

4 99.6 0.18 24

5 91.7 0.17 18

6 91.0 0.20 18

Page 15: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

InitialCathode H2S   

(%)

AcetateRemoval     

(%)

Final AnodeSO4

2‐

(mM)

H2S Recovery as Anode SO4

2‐

(%)

Final H2S in Catholyte(mM)

Final H2S in Cathode Gas

(%)

H2S Removal Efficiency 

(%)

0 91.4 ‐ ‐ ‐ ‐ ‐

4 99.6 0.18 24 0.47 0.5 84.6

5 91.7 0.17 18 0.63 0.7 83.4

6 91.0 0.20 18 0.81 1.0 83.2

15BIOCATHODE  H2S  REMOVAL

Page 16: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

CONCLUSIONS

• Up to 3‐4% H2S in biogas can enhance biocathode CH4production by contributing electrons to the anode

• Above 4% H2S, biocathode CH4 production decreasesdue to: i) inhibition of methanogens at the cathode; ii) sulfide oxidation cycling in the anode, which diverts electron equivalents away from CH4 production

16

Page 17: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

ACKNOWLEDGEMENTS17

This material is based in part upon work supported by the US National Science Foundation Graduate Research Fellowship under Grant No. DGE‐1148903 (2012 to 2017) awarded to Christy M. Dykstra, who was also awarded the Canham Graduate Studies Scholarship by the Water Environment Federation (2016) and the Georgia Power Fellowship (2017). 

Page 18: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

METHODS:  ANALYTICAL18

• Gas pressure

• Gas composition

• Acetate

• Dissolved CO2, H2S

• Voltage

• Current

• Cyclic Voltammetry

Pressure transducer

Gas chromatography (GC) with Thermal Conductivity Detector (TCD)

GC with Flame Ionization Detector (FID)

Sample acidification (6 N H2SO4) followed by composition analysis of evolved gas (conditional calibration)

Handheld multimeter and GamryInterface 1000 potentiostat 

Page 19: SULFIDE EFFECT ON BIOGAS UPGRADING WITH A ...uest.ntua.gr/athens2017/proceedings/presentations/Pavlostathis.pdf · RESULTS: SERUM BOTTLE TESTS • Cathode inoculum: hydrogenotrophic,

RESULTS:  SERUM  BOTTLE  TESTS

• Cathode inoculum: hydrogenotrophic, methanogenic, suspended growth culture fed with H2/CO2 (80:20) and catholyte medium with vitamins and trace metals

• Similar methane production at all initial gaseous H2S concentrations up to 3% H2S

19

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 2 4 6 8

METHAN

E (m

mol)

TIME (d)

0% H2S0.38% H2S0.75% H2S1.50% H2S3.0% H2S


Recommended