+ All Categories
Home > Documents > Summer Bridge Lab Manual 2014.docx - Napa Valley Web viewLAB MANUAL. 2014. Welcome! ... Every...

Summer Bridge Lab Manual 2014.docx - Napa Valley Web viewLAB MANUAL. 2014. Welcome! ... Every...

Date post: 31-Jan-2018
Category:
Upload: truongnga
View: 214 times
Download: 0 times
Share this document with a friend
114
LAB MANUAL 2014
Transcript

LAB MANUAL

2014

2 S u m m e r B r i d g e

S u m m e r B r i d g e 3

4 S u m m e r B r i d g e

Welcome!On behalf of Napa Valley College Hispanic Serving Institution Program, it is with great pleasure we welcome you to our 2014 Summer Bridge STEM Program!

As part of our extended STEM family, you will be working closely with our faculty, counselor and staff, as you engage in classroom settings that bring to life math and its relationship to science; counseling and its relationship to student leadership.

This is but the beginning of a journey to explore tomorrow’s most lucrative jobs and to explore the inner space of your imagination. Your ultimate journey will transfer you to the college of your choice, prepared for the academic challenges and the future only you can create through your education.

So jump on board and enjoy the ride!

José HernándezJosé HernándezAssistant DeanHispanic Serving InstitutionSTEM/MESANapa Valley College

Credits

S u m m e r B r i d g e 5

This Science, Technology, Engineering and Math (STEM) Summer Bridge Program has been presented to you as a joint effort in cooperation with the faculty, staff, and administration of Napa Valley College. Every person involved in this program is an expert in their respective field. These discipline experts have come together and worked many hours discussing the interrelationship between their disciplines in order to create a program that is integrated and comprehensive. This program could not have been done without the dedicated help of our staff and enthusiastic support of our administration. We thank everyone for their encouragement and support.

We hope you enjoy the program

Table of Contents Page

Welcoming Message 3

Credits 4

Meet Our Faculty 7

Schedule of Events 10

Campus Map 12

Laboratory Safety Rules 13

LeadershipLearning Styles and Preferences 16

Learning Styles Activity 19

Time Management 22

24-Hr Memory Rate 24

Draft Weekly Schedule 25

Revised Weekly Schedule 26

CounselingCounseling 97 Syllabus 28

Counseling 97 Course Outline 29

Program Planning for the A.A. and A.S. Degree 30

Intersegmental General Education Transfer Curriculum (IGETC) 32

CSU General Education (GE) Requirements 34

COUN 97 Take Home Final 36

Engineering Field Trip 37

6 S u m m e r B r i d g e

STEM Lab ManualBiology – Human Genetics 39

Chemistry – Esters and Amides 45

Physics – Speed of Sound 50

Biology - Phylogenetics 55

Chemistry - Biodiesel 58

Geology – Field Trip - Geology of Point Reyes 61

S u m m e r B r i d g e 7

Forest Quinlan – Professor of ChemistryForest grew up in the San Joaquin farming and oil communities of Bakersfield and Taft California. He attended Cal State Bakersfield for two

years before transferring to UC Santa Barbara. Three years later he graduated with a Bachelor’s degree in Chemical Engineering. He went to graduate school at UC Davis and received a Master’s degree working with nanoparticles, and then a Ph.D. in Chemical Engineering working with battery technology. After graduate school he did postdoctoral research at Hawaii’s Natural Energy Institute working on enzyme based fuel cells and then postdoctoral work in reaction kinetics at UC Davis. He joined the faculty of Napa Valley College in 2008 where he teaches Introductory and General Chemistry and he has served as club advisor to the MESA and SACNAS clubs on campus.

Stephanie Burns - Professor of BiologyProfessor Burns received her Ph.D. from U.C. Davis in Pharmacology and Toxicology. Her research interests included the effect of diet on the expression of metabolizing enzymes. She has been teaching biology at Napa Valley College since 2005. She has taught several college biology courses including general biology for non-majors, general biology for majors, and human biology. Prior to teaching at Napa Valley College she worked for the Peregrine Fund, researching the effects of pesticides on birds of prey.

Currently, Dr. Burns teaches Human Biology (BIOL 105) and General Biology (BIOL 120) and is serving as the division chair of Science, Mathematics & Engineering. Her extracurricular interests include bird watching and dog activities (agility and herding) with her two Belgian Malinois dogs.

Bonnie Moore - Professor of BiologyProfessor Moore received her Ph.D. from UC Davis and has been teaching biology at Napa Valley College since 1997. She has taught several college biology courses including non-majors biology, majors biology, reproductive biology, digestive physiology, cellular physiology, human anatomy, and human physiology. Currently, Dr. Moore teaches Human Anatomy (BIOL 218) and Human Biology (BIOL 105). She spends her spare time with her Whippet, Comet.

8 S u m m e r B r i d g e

Meet Our

Faculty

Richard Della Valle – Professor GeologyRichard received his B.S and M.S. in Earth and Environmental Sciences from Queens College CUNY and a Ph.D. in Geology and Geochemistry from the University of New Mexico. He was a Research Scientist at Los Alamos National Laboratory, Senior Research Petrologist with Phillips Petroleum and Senior Engineering Geologist/ Principle with Terradex Corporation. He has over 35 years of experience in geotechnical engineering, aqueous geochemistry, clay mineralogy, hydrology and curriculum development in

Environmental Technology and Geographic Information Systems. In the last few years he has been developing curriculum in Energy Systems Management. He has been teaching Geology, Geography and Environmental Technology courses at NVC since 1989. He has taught several courses at NVC including Physical Geology, Earth Science, Physical Geography, California Geography, Introduction to Environmental Technology, Hazardous Materials Management, Hazardous Waste Management, Safety and Emergency Response, and Geographic Information Systems. Currently he is teaching Physical Geology and Geographic Information Systems and is the Statewide Initiative Director for Environment, Health, Safety and Homeland Security (Economic and Workforce Development Program). As Initiative Director he coordinates the statewide activities of four Environmental Training Centers.

Antonio Castro – Professor of Engineering and PhysicsAntonio Castro teaches physics and engineering at Napa Valley College (NVC). He earned a B.S. in Electrical Engineering from California State University Fullerton in 2000. After working in industry for several years, he returned to college and earned a M.S. in Electrical Engineering from Stanford University. Antonio was born in Santa Ana, California; however, he grew up in the state of Jalisco, Mexico. At the age of thirteen, he returned to the United States. In 1994, he graduated 3rd from Valley High School in a class of 572 students. Antonio has

industry experience in design and manufacturing of amplifiers, electrical measurement and test equipment, and photovoltaic systems. He started working at NVC in 2006.

S u m m e r B r i d g e 9

Elizabeth Lara-Medrano - CounselorElizabeth Lara-Medrano is a first generation Latina who works at Napa Valley College as our HSI STEM Counselor. She obtained an Associates of Science in Natural Science and Mathematics at Napa Valley College, and participated in MESA, SSS, and EOPS Programs in addition to several student clubs and organizations such as MESA and Chicano Americano Club and Phi Theta Kappa Honor Society. She majored in Computer Engineering and transferred to University of

California Davis - College of Engineering but changed her major and obtained a Bachelor’s of Arts in Sociology and minor in Chicano Latino Studies and received a Masters of Arts Degree from Saint Mary’s College of California in Career Counseling and College Student Services.

As a bilingual, English/Spanish Counselor, she is ready to work with bilingual students interested in Science, Technology, Science and Engineering (STEM) majors. She brings more than 5 years of experience in Community College Counseling and has a true passion for academic, career, and transfer counseling and student success. Her work experience includes working at Napa Valley College as a Career Center Interim Counselor/Coordinator, Adjunct ESL and General Counselor, and Counseling Instructor both at the main Campus and at the Upper Valley Campus. She has been working at NVC for that last two years as a STEM Counselor.

10 S u m m e r B r i d g e

Schedule of EventsWeek One – June 23rd to June 27th

Mon

day Leadershi

pWorkshop

9:00 to 10:30 Luz Moreno

Coun 97 Class

10:40 to 12:30 Elizabeth Lara

Tues

day Leadershi

pWorkshop

9:00 to 10:30 Luz Moreno

Coun 97 Class

10:40 to 12:30 Elizabeth Lara

Wed

nesd

ay

LeadershipWorkshop

9:00 to 10:30 Luz Moreno

Coun 97 Class

10:40 to 12:30 Elizabeth Lara

Thur

sda

y

LeadershipWorkshop

9:00 to 10:30 Luz Moreno

Coun 97 Class

10:40 to 12:30 Elizabeth Lara

Frid

ay PhysicsField Trip 8:30 to 4:00 Antonio Castro 1836

S u m m e r B r i d g e 11

Week Two – July 28th to August 1st M

onda

y

Biology 9:00 to 11:00

Bonnie Moore/Stephanie Burns

2040

Chemistry

11:00 to 1:00

Forest Quinlan/Steven Fawl 1830

Lunch 1:00 to 1:30 Lunch Glade

Physics 1:30 to 3:00 Erin Quealy 1834

Tues

day Ecology 9:00 to

11:00Chris Farmer/Stephanie Burns

2040

Chemistry

11:00 to 1:00

Forest Quinlan/Steven Fawl 1830

Lunch 1:00 to 1:30 Lunch Glade

Geology 1:30 to 3:00 Richard Della Valle 1836

Wed

nesd

ay

Geology Field TripPoint Reyes

8:30 to 6:00 Richard Della Valle 1836

Thur

sday

Bus Ride 9:00 am

Go toBerkeley!

Check-In 11:00 amLunchUCB TourActivitiesStudent Panel

12:00 pm

Film on Campus 6:00 pmReturn to Napa for those unable to stay overnight at U.C. Berkeley

Frid

ay

Breakfast 8:00 am

Home fromBerkeley!

Activities 10:00 to 11:30 am

Lunch 12:00 to 1:00 pm

Bus Ride 1:30 pmAwards

Ceremony

5:00 pm

12 S u m m e r B r i d g e

S u m m e r B r i d g e 13

14 S u m m e r B r i d g e

LABORATORY SAFETY RULESYour participation in this laboratory requires that you follow safe laboratory practices. You are required to adhere to the safety guidelines listed below, as well as any other safety procedures given by your instructor(s) in charge of the course. You will be asked to sign this form certifying that you were informed of the safety guidelines and emergency procedures for this laboratory. Violations of these rules are grounds for expulsion from the laboratory.

Note: You have the right to ask questions regarding your safety in this laboratory, either directly or anonymously, without fear of reprisal.

Goggles must be worn at all times while in lab. Locate the emergency evacuation plan posted by the door. Know your exit

routes! Locate emergency shower, eyewash station, fire extinguisher, fire alarm,

and fire blanket. Dispose of all broken glassware in the proper receptacle. Never put

broken glass in the trashcan. Notify you instructor immediately if you are injured in the laboratory; no

matter how slight. Shoes must be worn in the laboratory. These shoes must fully enclose your

foot. Long hair must be tied up in a bun during lab work. Loose long sleeves

should be avoided in the lab. Never pipette fluids by mouth. Check odors cautiously (i.e. wafting).

Never taste a chemical. All biohazardous materials are to be disposed of in the special biohazard

receptacle. All biohazardous spills are to be reported to the instructor or to the

instructional assistant and are to be cleaned up using disinfectant and disposed of properly.

Dispose of all animal material in plastic bags. Exercise care in working with surgical instruments. Notify you instructor

immediately if you receive any type of injury in the laboratory no matter how slight.

Eating or drinking in the lab is prohibited. Do not drink from the laboratory taps.

Wash your hands before and after working in the lab. Turn off the Bunsen burner when you are not using it. Every chemical in a laboratory must be properly labeled. If a label is

unclear, notify your instructor. Follow the instructor’s directions for disposal of chemicals. If any reagents are spilled, notify your instructor at once. Only perform the assigned experiment. No unauthorized experiments are

allowed.

S u m m e r B r i d g e 15

Use the proper instrument (eye-dropper, scoopula, etc.) to remove reagents from bottles. Never return unused chemicals to the original container. Do not cross contaminate reagents by using the same instrument for 2 different reagents. (e.g. don’t use the mustard knife in the mayonnaise jar)

Do not operate or handle any equipment if you are not sure how to use it. Always ask instructor or lab assistant for clarification and instructions before using any equipment.

Exercise care in working with any instrument in the laboratory. Notify you instructor immediately if you receive any type of injury in the laboratory no matter how slight.

Turn off any electrical equipment, mechanical equipment, and/or the Bunsen burner when it is not in use.

Do not place power cables on aisles because anyone can trip and fall. Do not block exits or aisles for anyone to exit the laboratory room.

All radioactive materials should be handled according to the instructions provided by the instructor or lab assistant, and it should not be disposed of or taken outside the laboratory room.

Children and pets are not allowed in the laboratory. Material Safety Data Sheets (MSDS) are available for your reference.

These contain all known health hazards of the chemicals used in this course. In addition, there is information concerning protocols for accidental exposure to the chemical. You are advised to inspect this binder if you have any questions about the materials with which you will be working.

16 S u m m e r B r i d g e

Counseling andLeadership Program

2014

S u m m e r B r i d g e 17

Summer Bridge Leadership9:00 to 10:30 am

LEARNING STYLES AND

PREFERENCESLEARNING STYLES ACTIVITY #1

The following is an informal quick exercise to help you figure out what learning methods you use to remember things.Circle all the choices that apply to you. You will be given a key to check your answer.Note: This is just a fun activity, and it is not a validated authentic test!!!While concentrating quietly on an enjoyable task, which of the following activities would you find

SERIOUSLY DISTRACTING?a) Little kids running around the room (not screaming, just running around).b) Being able to see the TV out of the corner of your eye.c) Hearing the sound from a TV you can’t see.d) Two people talking nearby about something you’d like to talk about.e) A beginning musician practicing an instrument – badly.f) The room cluttered and disorganized with piles of paper about to fall over.g) Someone is counting items nearby.h) The story you are reading seems to not follow any pattern; some details of the story seem

contradictory.i) Colorful pictures in the magazine/book you are reading distract your attention from the story.j) When you are deeply involved in reading, someone quietly asks you a question.k) When you are deeply involved in reading, a person is talking on the phone nearby.

In general, which of the following do you find DISTRACTING OR REALLY ANNOYING?a) Discussing a subject you don’t know and don’t care much about.b) Putting together a new toy with no instructions on how to do it.c) Thinking of a great idea and not being able to tell anyone about it.d) Someone “backseat driving” while you are trying to put something in order.e) Solving a problem, only to find out that lots of people have already solved it.f) Having to work alone on a problem for several hours.g) The story you are reading doesn’t get to the main point until the end.h) The story you are reading goes on and on before you get any details.

18 S u m m e r B r i d g e

LEARNING STYLES AND PREFERENCES REFERENCE CHART AND ANSWER KEYSensory Preferencesa. Kinesthetic Prefer to learning through movement, doing things:

Study by using objects and motions Taking notes helps-you are doing something

b. Visual Prefer to learn by looking at illustrations, graphs, drawings: Study the figures in the book or make a flowchart Use color and sketches in your notes Use the CD/website that comes with the text

c. Auditory Learn best by listening to the information being presented: Study by listening to tapes, play music while studying Take notes using a tape recorder if you are permitted to Go to study groups or tutors to listen

d. Verbal Learn best by talking out the information: Study by describing and explaining (talk even if alone) Sub-vocalize while note-taking Find a tutor who will talk through the material

Learning talents or “intelligences”Note: There are more types of talents/intelligences than the ones described heree. Rhythmic A talent for learning rhythm, poetry, dance:

Study by making up rhymes, songs, etc. Moving rhythmi-cally while studying may help.

Playing instrumental music while studying may help.f. Spatial A talent for understanding size, shape, space, arrangements:

Study by moving and organizing objects. Lab classes may work well for you

Use spatial imagery to describe ideas (i.e. graphic organiz-ers)

g. Quantitative A talent for working with numbers, counting, sorting, etc.: Study by using numbers to describe work. Tables, charts,

and graphs may be helpfulOrganize your notes in a rational order

h. Systems A talent for learning how parts of a system or process work together: Study by making flow charts. Outlines may be good study

tools Sketching out processes or systems (words or pictures) may

helpi. Aesthetic A talent for understanding or producing art, music, design,

color: Study by using the “art” that you most enjoy and under-

stand. Take notes in several colors Study graphics & illustrations in your book Use your intuitive sense of how things fit together

S u m m e r B r i d g e 19

Personal Interaction Preferencesj. Interpersonal Talking and working together with other people:

Study in groups, teaching others Ask questions in class, go to office hours Discuss your notes with others

k. intrapersonal Working in a quiet setting where you can think and study alone: Study by solving problems in a quiet lace Sit in class and take notes quietly Go online to read more than the subject

Classroom Interaction Preferencesl. Avoidant Need to build confidence, engagement and/or interest:

Study by trying accessible materials firstm. Dependent Seek out structure from teacher, class materials:

Study by completing all required work, taking good notes, etc.

n. Participant Engaged and interested in problem solving and interpersonal interactions: Study by discussion, analysis, and other synthesis of authen-

tic problemso. Independent Engaged with the material, but not by interpersonal interactions:

Study alone, focusing on self-paced work and independent projects

p. Competitive Engaged with material and challenge of competition: Study in groups if you can be the leader, work on most chal-

lenging problemsq. Collaborative Engaged by interpersonal interactions first and material second:

Study in groups, work on group projectsInformation Processing Stylesr. Global Learner “Why does that work?”

Like to have the big picture first Study by getting main idea than adding detail Pay attention to section headings in the book

s. Analytical Learner “How does that work?” Need to have the details before the big picture Work on one section of the material at a time, until it makes

sense Take careful notes that include details

20 S u m m e r B r i d g e

LEARNING STYLES ACTIVITY #2: QUESTIONNAIRE

DIRECTIONS: Each item presents two choices. Circle the alternative that best describes you. In cases where neither choice suits you, select the one that is closer to your preference in the current science class you are taking CIRCLE the letter of your choice, count the a’s and the b’s and enter the totals for each part in the chart at the end of the questionnaire.

Part One: Auditory vs. Visual1. I would prefer to allow a set of:

a. oral directionsb. written directions

2. I would prefer to:a. attend a lecture given by a fa-

mous psychologistb. read an article written by the

psychologist3. When I am introduced to someone it is

easier for me to remember the person’s:a. nameb. face

4. I find it easier to learn new information using:

a. language (words)b. images (pictures)

Part Two: Applied vs Conceptual 8. I would prefer to:

a. work with facts and detailsb. construct theories and ideas

9. I would prefer a job involving:a. following specific instructionsb. reading, writing, analyzing

10. I prefer to:a. solve math problems using a for-

mulab. discover why the formula works

11. I would prefer to write a tern paper explaining:

a. how a process worksb. a theory

5. I prefer classes in which the instructor:a. lectures and answers questionsb. uses films and videos

6. To follow current events, I would prefer to:

a. listen to the news on the radiob. read the paper

7. To learn how to operate a fax machine, I would prefer to:

a. listen to a friend’s explanationb. watch a demonstration

12. I prefer tasks that require me to:

a. follow careful, detailed instruc-tions

b. use reasoning and critical analy-sis

13. For a criminal justice course, I would prefer to:

a. discover how and when a law can be used

b. learn how and why it became law

14. To learn more about the operations of a high-speed computer printer, I would prefer to:

a. work with several types of print-ers

b. understand the principles on which they operate

S u m m e r B r i d g e 21

Part Three: Spatial vs. Verbal15. To solve a math problem, I prefer to:

a. draw or visualize the problemb. study a sample problem and use it as a

model16. To best remember something, I:

a. create a mental pictureb. write it down

17. Assembling a bicycle from a diagram would be:

a. easyb. challenging

18. I prefer classes in which I:a. handle equipment or work with modelsb. participate in a class discussion

Part Four: Social vs. Independent22. For a grade in biology lab, prefer to:

a. work with a partnerb. work alone

23. When faced with a difficult personal problem, I prefer to:

a. discuss it with othersb. resolve it myself

24. Many instructors could improve their classes by:

a. including more discussion and group activities

b. allowing students to work on their own more frequently

Part Five: Creative vs. Pragmatic29. To make a decision, I rely on:

a. my experiences and gut feelingsb. facts and objective data

30. To complete a task I:a. can use whatever is available to get the

job doneb. must have everything I need at hand

31. I prefer to express my ideas and feelings through:

a. music, songs, or poetryb. direct, concise language

32. I prefer instructors who:a. allow students to be guided by their

own interestb. make their expectation clear and ex-

plicit

19. To understand and remember how a machine works, I would:

a. draw a diagramb. write notes

20. I enjoy:a. drawing or working with my handsb. speaking, writing, listening

21. If I were trying to locate an office on an unfamiliar campus, I prefer:

a. a mapb. written directions

25. When listening to a lecturer or speaker, I respond more to the:

a. person presenting the ideasb. ideas themselves

26. When on a team project, I prefer to:a. work with several team membersb. divide the tasks and complete those as-

signed tome27. I prefer to shop and do errands:

a. with friendsb. by myself

28. A job in a busy office is:a. more appealing than working aloneb. less appealing than working alone

33. I tend to:a. challenge and question what I hear and

readb. accept what I hear and read

34. I prefer:a. essay examsb. objective exams

35. in completing an assignment, I prefer to:a. figure out my own approachb. be told exactly what to do

22 S u m m e r B r i d g e

Results

To score your questionnaire, record the total number of a’s you selected and the total number of b’s selected for each part of the questionnaire. Record your totals in the scoring grid provided below;

Scoring Grid

Part Total # of CHOICES “a” Total # of CHOICES “b”

One _______Auditory ________Visual

Two ________ Applied ________Conceptual

Three ________Spatial ________Verbal (non-spatial)

Four ________Social _________Independent

Five ________Creative ________Pragmatic

Circle the higher score for each part of the questionnaire. The word next to the score indicates a strength of our learning style. The next section explains how to interpret your scores.

S u m m e r B r i d g e 23

TIME MANAGEMENTTIME MANAGEMENT ACTIVITY #1: WEEKLY SCHEDULE

1. Read the information on the next couple of pages, and then fill out the provided Weekly Sched-ule.

2. Start by filling out your fixed activities. Include your classes, work schedule, family time, meals, other standing appointments (book clubs, church, etc.), commuting, exercise, and TV shows that you regularly watch.

3. Put in the hours you will study for your academic classes: 2 -3 hours / week / unit.

4. Evaluate your schedule. What can you change to make it more balanced? Do you have enough study time? Do you sleep enough? Are there any “open” times for unexpected changes?

Tips for managing your time better:

Many effective schedulers plan their days at a regular time: 5-10 minutes in the morning or be-fore going to bed.

Don’t schedule exceedingly long study sessions. Few people can study effectively for more than two or three hours without a substantial break.

Allow larger blocks of time for learning new material, grasping concepts, drafting a theme, etc. Divide these larger blocks of time into definite subparts the length of your attention span (20 minutes? 30 minutes?).

As you work on each subpart, jot down the time you expect to finish. When you’re through, re-ward yourself with a brief break – move around, talk to a friend, drink water, eat a snack…whatever works for you.

Use short periods of time (15-45 minutes) to review. It’s most effective to spend a few minutes reviewing immediately BEFORE a class involving discussion or immediately AFTER a class that is primarily lecture.

Schedule harder tasks when you are most alert and can concentrate best.

Do something daily – don’t let it all pile up.

Plan to really learn the first time. The rest of your study time should be spent reviewing through notes, and making up and answering potential test questions.

Don’t try to allocate all of your time. Know what needs to be done and how long it will take you. It’s HOW you use your time that counts.

24 S u m m e r B r i d g e

When leaving a lecture:

13% recall

2 days later

90%recall

within 10

92% recall24 hours

later

94% recalla week

later

24-Hr Memory Rate: The Importance of Reviewing Notes

Quick breakdown of your time:

Week = 168 hoursOur Favorite Student’s

Week at a Glance Your Week…(fill it out)

Sleep 8 hours / day = 56 hours

Food prep & eating 21 hours

School (12 units) 20 hours

Work, study, family, fun 71 hours (10 of every 24)

Draft Weekly Schedule Study Time Formula Legend

S u m m e r B r i d g e 25

3rd review 1st review

2nd review

No review

Semester ____________2-3 hours/week/unit12 units x 2 hours = 24 study hrs/week12 units x 3 hours = 36 study hrs/week

Sleep – ZZ Work - W Study – S In class - CLeisure – L Other - O

S M T W T F S6-7am

7-8am

8-9am

9-10am

10-11am

11-12pm

12-1pm

1-2pm

2-3pm

3-4pm

4-5pm

5-6pm

6-7pm

7-8pm

9-10pm

10-11pm

11-12am

Revised Weekly ScheduleSemester ____________

Study Time Formula Legend

26 S u m m e r B r i d g e

2-3 hours/week/unit12 units x 2 hours = 24 study hrs/week12 units x 3 hours = 36 study hrs/week

Sleep – ZZ Work - W Study – S In class - CLeisure – L Other - O

S M T W T F S6-7am

7-8am

8-9am

9-10am

10-11am

11-12pm

12-1pm

1-2pm

2-3pm

3-4pm

4-5pm

5-6pm

6-7pm

7-8pm

9-10pm

10-11pm

11-12am

Academic Planner Semester _______________ S u m m e r B r i d g e 27

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

28 S u m m e r B r i d g e

Summer Bridge Counseling10:40 to 12:30

S u m m e r B r i d g e 29

Date College & Career Success Skills

June 23rd

Introduction Overview of class Graduation Requirement Journal 1 assigned

June 24th Time Management Journal #1 due Journal #2 assigned

June 25th

Note Taking Test Anxiety Learning Disabilities Journal #2 due Journal #3 assigned Take Home Final distributed

June 26th Journal #3 due Take-home final due

Instructor: Elizabeth Lara-Medrano, M.AClass Meets On: Monday –Thursday, June 23- 26th from 10:40-12:30 pmRoom: 1807

Counseling 97- MANAGING THE COLLEGE EXPERIENCE - 0.5 Units

Course DescriptionThis is a short term course designed for first year students who would like to develop skills and strategies for success in college. Students will be introduced to strategies for managing their time, note taking, reading textbooks, other resources, life issues, and changes that will occur in college. Students will also be exposed to transfer options available to them.

Student Learning Outcomes1. Successfully navigate the college environment and experience.2. Practice the strategies for successful college classroom behaviors.3. Actively participate in the use of college skills for success in courses at Napa Valley College

and the university.4. Articulate personal and academic strengths, goals, and needs.

Textbook HOW TO GET GOOD GRADES: In Ten Easy Steps by Linda O’Brien. Woodburn Press 2013.

AttendanceWith this being a short term course it is essential that you DO NOT miss any classes. All assignments must be turned in to get full credit and pass the class. Problems and concerns should be discussed with the instructor.

GradingDaily journal reflections are required and a final take-home exam are to be turned in at the end of the class. Final grade will be based on:

3 Journal Reflections 15 Points Time Mgmt. Sheet 10 Points Assist.org Print Outs 1 UC/1 CSU 20 Points Copy of Your Ed Plan 20 Points Take Home Final 20 Points Participation 15 Points (Total 100)

Assignments After each class you will be assigned a one page journal reflecting on the topics discussed in class. Journals must be typed. Late assignments will be docked 50% of the points possible.

Special AccommodationsAny student who feels s/he may need an accommodation based on the impact of a learning disability should contact Learning Services in the Library and Learning Resource Center (LLRC), room 1766, phone (707) 256-7442. A Learning Disability Specialist will review your needs and determine appropriate accommodations. All information and documentation is confidential. Please feel encouraged to make an appointment with me privately to discuss your specific learning needs in my class.

Contacts: If you have concerns or questions you may contact any of us at: (707) 256-7663, [email protected]

30 S u m m e r B r i d g e

COUNSELING 97 MANAGING THE COLLEGE EXPERIENCE

COURSE OUTLINE AND ASSIGNMENTS

One page minimum, double spaced, 12 point font for all Journals. Each journal is worth 5 points.

You must attend ALL classes to pass this class. All assignments must be typed including the final exam

6/23/14 Introduction / Overview of class / Graduation Requirement Assignment Journal # 1: What are some of the challenges you have experienced with your

education? How do you see this class helping you overcome those challenges? 6/24/14 Time Management (Journal #1 due)Assignment Journal #2: Write about your experience following your schedule for one week?

Was it easy or hard to stay on track? Why?

6/25/14 Note Taking / Test Anxiety / Learning Disabilities (Journal #2 due)Assignment Journal # 3: Write about your current note taking process. Try one of the

techniques presented in class. Write about your experience using a new method for note taking.

Distribute final exam

6/26/14 Journal #3 and Take-home final due

S u m m e r B r i d g e 31

Napa Valley CollegeProgram Planning for the A.A. and A.S. Degree

Effective Fall 2014 Through Summer 2015

Student Name: ID Number:

A.A. Major: A.S. Major

Transfer Units to be used from:_ (Name of College)

Graduation Date: Fall 20 Spring 20 Summer 20 Military used for P.E.

Certification Date: Evaluator:

The following are the minimum requirements to be filled for graduation with an Associate of Arts and/or an Associate in Science degree from Napa Valley College.

Petition: Every candidate for graduation must file a petition in the Admissions and Records Office in the semester prior to the semester in which graduation is anticipated.Grade Average: Candidates must complete at least 60 semester units with a grade point average of at least 2.0 (C). Only courses numbered 90 to 399 may be counted towards the 60 semester units.Total semester units completed as of / / . Units still required to complete 60: .Residence:Candidates must complete at least 12 semester units at Napa Valley College and be in attendance during thesemester prior to graduation or have completed 30 units of work at Napa Valley College. (See “Grade Average” above for additional clarification of units required.)Residence semester units completed as of / / . Units still required: .Major:For an A.A. Degree, students must complete at least 18 semester units in one discipline or related disciplines aslisted in the Napa Valley College catalog under A.A./A.S. Degree Requirements. For an A.S. Degree, the requirement is usually 30 or more semester units in the major, as listed in the Napa Valley College catalog under Occupational Programs.

Major Courses UnitsTerm

Course completed

CurrentlyEnrolled

To BeTaken Major Courses Units

TermCourse

Completed

CurrentlyEnrolled

To BeTaken

PE/Health Ed: Choice of 3 units of Physical Education and Dance courses or complete Health Education 106.

Exemptions:1) Students majoring in Health Occupations2) Veterans with six months service receive unit credit for P.E. and Health Education 106.3) Completion of Police Academy.

American History/ Institutions:A.A. Degree Only: Students must select one course from U.S. History (HIST 120, 121, 150 or 152) and one course from Political Science (POLI 120 or 121). The courses chosen to satisfy this requirement cannot be used to satisfy Area B, Social and Behavioral Sciences.

General Ed Requirements:Must complete 18 to 21 semester units (see reverse side). If you are a transfer student, choose only courses that appear both here and on the appropriate transfer general education/breadth sheet.

32 S u m m e r B r i d g e

Total

Courses completed at Napa Valley College are circled; courses in progress are underlined; equivalent courses transferred to Napa Valley College are enclosed in a box. A course may be used for only one category except in the case of Area E for the AS degree. Students are required to complete 18-21 semester units in Areas A through E below.

Term/YearCompleted

Units Competency Requirements in Reading, Writing, and Mathematics:

The student can demonstrate reading competency with a grade of “C” or better in a transferable course with a strong reading component.Writing competency can be demonstrated through the completion of the English composition requirement with a “C” or better (see Section D-1).

Math competency can be demonstrated through tests offered by the Learning Skills Center or a “C” or better in the mathematics requirements under Section D-2.

General Education Requirements:A total of 18-21 semester units must be completed in A through E below. The same course cannot be usedto satisfy a requirement in more than one category except in the case of Area E and the AS degree.

A. Natural Science: (Choose 3 units)

ANTH 120; ASTR 110, 111; BIOL 103, 105, 110, 112, 117, 120, 218; CHEM 110, 111, 120; EART110; ENVS 115; GEOG 110, 114; GEOL 110; HEOC 100; PHYS 110, 120, 140.

B. Social and Behavioral Sciences: (Choose 3 units)

ADMJ 121, 122, 125; ANTH 121, 122, 130, 131, 145, 150, 180, 200; CFS 120, 140, 180; COUN 120; ECON 100, 101, 120;ENGI 110; HIST 120+, 121+, 122, 123, 140, 142, 145, 150, 152, 153; LGBT120; POLI 120+, 121+, 125, 130, 135, 140; PSYC 120, 123, 124, 125, 126, 127, 128, 135, 220; SOCI 120, 122, 123, 220; SPCOM 126.

C. Humanities: (Choose 3 units)

ANTH 150; ARTS 100; ARTH 105, 106, 118, 130, 135; ASL 120, 121; CFS 145; DART 120;ENGL 121, 123, 213, 214, 215, 216, 220, 223, 224, 225, 226; FILM 100, 110, 125A, 125B, 125C,125D; FREN 120, 121; HIST 122,123; HUMA 100, 101, 112, 113, 125, 151, 160, 170, 174, 185,186, 189A, 189B, 189C, 189D; ITAL 120, 121; MUSI 110, 112, 114, 121, 122; PHIL 120, 121, 125,127, 128, 129, 130, 131, 133, 134, 137; PHOT 120; SPAN 111, 120, 121, 240, 241, 280, 281, 282; THEA 100, 105, 215

D. Language and Rationality:1. ENGLISH COMPOSITION (Choose 3 units and complete with a “C” or better.)

BUSI 105; ENGL 1202. MATHEMATICS (choose 3 units; complete with at least a “C”; may demonstrate

competency with a test).MATH 94, 99, 106, 108, 115, 120, 121, 220, 221, 222, 232, 235; TECH 107

3. COMMUNICATION AND ANALYTICAL THINKING (Choose 3 units; complete with a “C” or better)

ADMJ 123, 124; ANTH 150, 200; ASL 120; ASTR 111; BIOL 103, 110, 112, 120, 219, 220, 240,

S u m m e r B r i d g e 33

241

; BTV 98, 109; BUSI 103, 108, 110, 143; CFS 123, 135, 140, 155, 160; CHEM 110, 111, 120,121; COUN 100, EART 110; ECON 100, 101; ENGI 123; ENGL 121, 123, 125, 200, 201, 202, 213,214, 215, 216, 220; ESL 106; FILM 110, 203; HEOC 101; HUMA 100, 101, 125, 185, 186; MATH90, 94, 97, 99, 106, 108, 115, 120, 121, 220, 221, 222, 232, 235; PHIL 120, 121, 125,126, 130, 131; PHYS 110, 120, 121, 140, 240; POLI 125, 135, 140; PSYC 124, 135, 220; RESP 120; SOCI 122,220; SPAN 240, 241, 280, 281; SPCOM 120, 122, 124, 126, 128; TECH 92, 107; THEA 110,140*, 156, 210, 244

E. Multicultural/Gender Studies: Effective Fall, 2001 for the A.S. Degree only, choose 3 units which may double count for one other area of GE, providing the course is listed in that area. Effective Fall, 1995 for the AA Degree, choose 3 units in addition to other GE area requirements

ADMJ 123; ANTH 121, 145, 150, 180; CFS 140, 180; COUN 124; ENGL 224; FILM 110;HIST 145, 150, 152; HUMA 100, 101, 112, 113, 151, 174, 186; LGBT 120; PHOT 182; PSYC 128; SPCOM 126; THEA 105

*Two unit courses or variable unit courses+A.A. degree only; courses chosen to satisfy the History and Institutions requirement cannot be used to satisfy area B.

Counselor or Evaluator’s Signature: Date:________________________________

34 S u m m e r B r i d g e

Napa Valley CollegeIntersegmental General Education Transfer Curriculum (IGETC)

Effective FALL 2014 through SUMMER 2015

Completion of all the requirements in the Intersegmental General Education Transfer Curriculum (IGETC) will permit you to transfer from a community college to a campus in either the California State University (CSU) or the University of California (UC) system without the need, after transfer, to take additional lower- division, general education courses to satisfy campus general education requirements. All campuses will accept IGETC EXCEPT for UC, San Diego’s Eleanor Roosevelt and Revelle Colleges and UC, Berkeley’s School of Business Administration.

T he I G E T C i s not ad v i s ab l e f or a ll t r an s f er s tudent s . If you are pursuing a major that requires extensive lower-division preparation you may be better served by taking courses which fulfill the CSU General Education-Breadth requirements or those of the UC campus or college to which you plan to transfer. Majors include, but are NOT LIMITED to: Engineering, Business, Pre-professional programs.

For majors with Associate Degrees for Transfer (ADT), students m u s t complete either CSU-GE orIGETC. Please consult a Counselor for updated ADT information.

Certification: Be sure to request certification when requesting transcripts be sent to your choice of university or college. All courses MUST be completed with grades of “C” or better. Please consult with a counselor or the transcript evaluator regarding the use of courses from other colleges or universities. Students who choose to use the IGETC pattern are expected to complete all of the requirements of the pattern before transferring to a UC or CSU campus. However, if a student is unable to complete one or two IGETC courses he/she m ay be eligible for partial certification. Students should consult with a counselor for details regarding this option.

Restrictions: Student who have been registered at a UC campus m ay n ot be eligible for IGETC. Students should consult with a counselor regarding this issue. This restriction, though, does not apply to students who have taken only UC summer session or Extension classes.

AREA 1 ENGLISH COMMUNICATIONCSU: 3 courses required, one from Group A, B, and C UC: 2 courses required, one each from Group A and B.

Group A: English Composition, one course: 3 semester or 4-5 quarter unitsEnglish 120

Group B: Critical Thinking - English Composition, one course: 3 semester or 4-5 quarter unitsEnglish 123, 125

Group C: Oral Communications (CSU requirement only), one course: 3 semester or 4-5 quarter unitsSpeech Communication 122, 128

AREA 2 - MATHEMATICAL CONCEPTS AND QUANTITATIVE REASONINGOne course: 3 semester or 4-5 quarter units

Math 106+, 115+, 120+, 121, 220, 221, 222, 232, 235

AREA 3 - ARTS AND HUMANITIESAt least 3 courses, with at least one from the Arts and one from the Humanities.9 semester or 12-15 quarter units

Arts: Arts 100; Arth 105, 106, 110, 118, 130, 135, 180, 210; Film 100, 110, 120, 121, 125A,125B, 125C,125D; Huma 120, 121, 170, 174, 185, 186, 189A, 189B, 189C, 189D; Musi 110, 112, 114, 121,122; Phot 180; Thea 100, 105

Humanities: Asl 121; Engl 121, 213, 214, 215, 216, 220, 223, 224, 225, 226; Film 105, 106, 115; Hist 122,123; Huma 100, 101, 105, 106, 112, 113, 115, 125, 151, 160; Phil 120, 121, 125, 126, 127, 128, 129, 133,134, 137; Phot 181; Span 121, 240+, 241+, 280+, 281+, 282

S u m m e r B r i d g e 35

AREA 4 - SOCIAL AND BEHAVIORAL SCIENCESAt least 3 courses from at least two academic disciplines: 9 sem. or 12-15 qtr. units

4A. Anthropology and Archaeology: Anth 121, 122, 130, 131, 150, 180, 200; Cfs 1804B. Economics: Econ 100, 101, 120; Poli 1454C. Ethnic Studies: Huma 112, 113; Engl 224, 225, 2264D. Gender Studies: LGBT 120, Phil 1274E. Geography: Geog 1144F. History: Hist 120+, 121+, 122, 123, 135, 140, 142, 145, 150, 1524G. Interdisciplinary, Social and Behavioral Sciences: Spcom1264H. Political Science, Government & legal Institutions: Poli 120+, 121+, 125, 135, 140, 1454I. Psychology: Cfs 120+, 140+; Psyc 120, 123, 124, 125, 126, 127, 128, 135, 175, 220; Soci 123, 2204J. Sociology and Criminology: Anth 180; Cfs 180; Psyc 123, 135; Soci 120, 122, 123, 154

AREA 5 - PHYSICAL AND BIOLOGICAL SCIENCESAt least 2 courses, with one from the Physical Science and one from the Biological Science; at least one of the two courses must include a laboratory (indicated by a star “*”): 7-9 semester or 9-12 quarter units

Physical Sciences: Astr 110, 111; Chem 110*, 120*, 121*, 240*, 241*; Eart 110+*; Geog 110; Geol 110,111*; Phys 110+, 111*, 120+*,121+*, 140+*, 240+*, 241+*

Biological Sciences: Anth 120, 120L*; Biol 105+*, 110+*, 112, 117, 120+*, 218*, 219*, 220*, 240*, 241*

LANGUAGE OTHER THAN ENGLISH (UC requirement only) Complete the equivalent of two years ofhigh school study the same language.

Napa Valley College courses that meet the minimum proficiency level: Asl 120; Fren 120; Ital 120; Span 120 (or Span 110 & 111)

College Course: College:

Completed in High School: Course: High School:

Completed by Examination: Name of exam Score Date• SAT II: Subject Test in languages other than English.• Advanced Placement Examination with a score of 3 or higher• International Baccalaureate Higher Level Examination with a score of 5 or higher• Language other than English “O” level exam with grade of “A”,“B”, or “C”.• Language other than English International “A” Level exam with a score of 5, 6, or 7.• An achievement test administered by a community college, university, or other college in a language other thanEnglish.

Two years of formal schooling at the sixth grade level or higher in an institution where the language of instruction is not

English. Faculty member verification of a student’s competency.

CSU GRADUATION REQUIREMENT in US History, Constitution and American Ideals (N ot pa rt of I G ETC ; may be completed prior to transfer).

6 semester or 8-10 quarter units, one course from Group 1 and one course from Group 2.Group 1 Group 2

Hist 120, 121, 150, 152 Poli 120, 121

+Indicates that transfer credit may be limited by either UC or CSU or both. Please consult with a counselor for additional information.*Designates courses with a laboratory.

36 S u m m e r B r i d g e

Napa Valley CollegeCALIFORNIA STATE UNIVERSITY GENERAL EDUCATION (GE) REQUIREMENTS

Effective FALL 2014 through SUMMER 2015

The General Education Requirements for the California State University (CSU) system specifies courses within subject areas which will satisfy the 39 lower division GE requirements for any campus of the California State University System. Completion of CSU GE is not r e q u i r ed before transfer but it is highly r e c o m m ended for most students. For majors with Associate Degrees for Transfer (ADT), students m u s t complete either CSU-GE or IGETC. Please consult a Counselor for updated ADT information. For some students, in high unit majors, completing the pre-major course requirements will be a priority over completing GE requirements. Napa Valley College courses with a number designation of 100 through 299 are transferable to all CSU campuses, but only a select group of these courses qualify for CSU GE.

NVC CSU-GE Certification Process:• Students wishing to have CSU GE certification accompany their transcripts when they are sent to the CSU

must complete an official request and submit it to the Napa Valley College Admissions and Records office.• Courses taken at CSU campuses or other California Community Colleges will be applied to the subject areas in

which they were listed by the institution where the course was taken.

Students may qualify for either full certification or subject-area certification.• A student qualifies for full certification if the requirements for all 5 subject areas of CSU GE are satisfied

• A student qualifies for subject area certification for those subject areas where all requirements are satisfied.An example would be when a student completes Speech Communication 122, English 120 and English 125 for each of the 3 categories of Area A. The student qualifies for certification of Area A. If a student has n ot f u l l y completed the requirements of an area, that area m ay not be certified.

All CSU campuses allow applicants who submit full or area certifications to double count courses for general education and major requirements, but most campuses have limitations. See a counselor for the limitation imposed by each campus.

A. ENGLISH LANGUAGE COMMUNICATION AND CRITICAL THINKING (A minimum of 9 units is required) Select one course from A-1, A-2 and A-3.

A-1. Oral Communication (Grade of “C” or higher required.) Speech Communication 120, 122, 124, 128, 130A-2. Written Communication (Grade of “C” or higher required.) English 120A-3. Critical Thinking (Grade of “C” or higher required.)English 123, 125; Philosophy 120, 121, 126, 130, 131; SpCom 128

B. SCIENTIFIC INQUIRY AND QUANTITATIVE REASONING (A minimum of 9 units is required)Select one Physical Universe course (Area B-1) and one Life Forms course (Area B-2). At least one of the courses must include a laboratory, indicated by a star (*). In addition, select one Mathematics course from Area B-4.

B-1. Physical ScienceAstronomy 110, 111; Chemistry *110, *111, *120, *121, *240, *241; Earth Science *110; Geography 110; Geology 110, (add Geology *111 for lab); Physics 110 (add Physics 111 for lab),120,*140, *240, *241B-2. Life ScienceAnthropology 120, *120L; Biology *105, *110, 112, 117, *120, *218, *219, *220, *240, *241B-3. Laboratory Activity (Select at least one course in Area B-1 or B-2 with a star {*}) B-4. Mathematics/Quantitative Reasoning (Grade of “C” or higher required.) Mathematics 106, 108, 115, 120, 121, 220, 221, 222, 232, 235; Technology 107

S u m m e r B r i d g e 37

C. ARTS AND HUMANITIES (A minimum of 9 units is required) At least 3 units must be selected from Arts,Area C-1, and at least 3 units must be selected from Humanities, Area C-2. The remaining units may be selected from either Area C-1 or Area C-2, for a total of at least 9 units.

C-1. Arts: Arts, Cinema, Dance, Music, TheaterArts 100, 101, 102, 112; Art History 105, 106, 110, 118, 130, 135, 180, 210; Child Family Studies 196; Film 100,110, 117, 120, 121, 125A, 125B, 125C, 125D; Humanities 117, 120, 121, 125, 170, 174, 185, 186, 189A,189B,189C, 189D; Music 110, 112, 114, 121, 122, 196; Photography 120, 121, 180; Theater 100, 105, 115, 141,C-2. Humanities: Literature, Philosophy, Languages Other than EnglishAmerican Sign Language 120, 121; Child Family Studies 145; English 121, 200, 201, 202, 213, 214, 215, 216,220, 223, 224, 225, 226; Film 105, 106, 115; French 120, 121; History 122, 123; Humanities 100, 101, 105, 106,112, 113, 115, 125, 151, 160, Italian 120, 121; Philosophy 120, 121, 125, 126, 127, 128, 129, 133, 134, 137; Photography 181; Spanish 120 (or SPAN 110 & 111**), 121, 240, 241, 280, 281, 282

D. SOCIAL SCIENCES (A minimum of 9 units is required) A maximum of 2 courses may be selected from one of the following categories. Some courses may be listed in more than one category but may only count towardsatisfying one category.

D-0. Sociology and Criminology: Administration of Justice 120; Anthropology 180; Child Family Studies 180; Psychology 123, 135; Sociology 120, 122, 123, 154

D-1. Anthropology 121, 122, 130, 131, 145, 180, 200; Child Family Studies 180D-2. Economics 100, 101, 120; History 145; Political Science 145D-3. Ethnic Studies: English 224, 225, 226; History 145, Humanities 100, 101, 112, 113,

160; Psychology 128D-4. Gender Studies: Anthropology 150, History 150, 152; LGBT 120; Philosophy 127D-5. Geography 114D-6. History 120, 121, 122, 123, 135, 140, 142, 145, 150, 152, 153; Humanities 100, 101D-7. Interdisciplinary Social or Behavioral Science: Child Family Studies 120, 140; Speech

Communications 126D-8. Political Science 120, 121, 125, 130, 135, 140, 145; Administration of Justice 121D-9. Child Family Studies 120, 140; Psychology 120, 123, 124, 125, 126, 127, 135, 175, 220; Sociology 123, 220

Note: History 120, 121, 150 or 152 and Political Science 120 or 121 may double count for this area as well as satisfying CSU graduation requirements for American History and Institutions.

E. LIFELONG LEARNING AND SELF-DEVELOPMENT (A minimum of 3 units is required)E-1. Integrated Physiological, Social and Psychological Beings:

Child Family Studies 120; Counseling 100; Health 106; Psychology 120, 124, 135; Sociology 122, 130

E-2. Activity Courses:Dance 101, 126, 128, 128B, 132, 133, 134B, 135, 136, 136B, 137, 138, 138B, 140, 140C;Physical Education 100, 101, 102A, 102B, 105, 112, 112B, 113, 113B, 117, 118, 118B, 122, 123, 123B, 125,125B, 129, 129B, 130, 130B, 131, 131B, 132, 133, 133B, 145, 146, 146B, 147, 148, 148B, 149, 149B, 151, 151B,152, 152B, 153, 154, 154B, 160,162, 169, 171, 172, 173, 174, 176, 176B, 178, 199, 200, 255, 284, 285, 286, 287,Note: Effective Fall 2001, a maximum of 1.5 units in activity courses may be used to satisfy Area E.

AMERICAN HISTORY AND INSTITUTIONS GRADUATION REQUIREMENT FOR CSU: Select one coursefrom the American History category and one course from the American Government category.American History:History 120, 121, 150 or 152

American Government:Political Science 120 or 121

Note: Courses selected for this requirement may also be used for Area D, Social and Behavioral Sciences

38 S u m m e r B r i d g e

COUN 97 Take Home FinalFinal must be typed

1) What are the ten steps to getting good grades? (just list them) 3 points

2) What are the four main types of diplomas/degrees you can receive at Napa Valley College? 2 points

3) How many units do you need to transfer? Will all the units you have completed count towards transfer?3 points

4) What are the three steps that improve your reading of the text? (just list them) 3 points

5) What are the six note taking methods that were presented in class? (just list them) 3 points

6) What is assist.org? What information will you find at the website? Why is this information impor-tant? (short answer 1 paragraph) 3 points

7) Now that you have had time to try the various study strategies (time mgmt, reading the text, note taking etc . . .) presented in class. What have you learned about yourself and how have you be-come a better student? (short answer 1 paragraph) 3 points

S u m m e r B r i d g e 39

Engineering Field Trip Friday, June 27th InstructionsPlease wear comfortable clothes and shoes. Please check the weather the day before to plan accordingly. Food and drinks will not be supplied. We will return to the Napa Valley College by 1:00.

9:00

am Napa Valley College 2277 Napa Vallejo

Hwy Napa, CA 94558

Meet outside of room 1836 with your lunch and drinks for the day.

9:15

– 1

0:45

am James Loudspeakers 535 Airpark Road

Napa, CA 94558James Loudspeaker is an industry leader and innovator in both high-end residential and commercial speaker solutions (indoor, outdoor, and marine). They have been manufacturing since 1999 and take pride in their sound innovation, unprecedented custom work, flawless sonic reproduction and excellence in design and quality. All James products are specially designed with minimal visual presence in your interior or landscape designs. The result is solid sonic precision in the beauty of your surroundings.

11:0

0 –

12:3

0 pm

Royce Instruments, LLC831 Latour Court, Suite

C,Napa, CA 94558

Royce Instruments celebrates 30 years as an innovative global leader for design and manufacture of precision assembly tools and high accuracy, low force bond testing equipment. Their products include equipment for wire bond and die bond testing, semiconductor die pick and place into trays, waffle pack, and GelPak™ and semi-custom die handling in the life sciences and laser diode industries. Royce Instruments' equipment continues to be utilized throughout the world by the leading semiconductor and photonics manufacturers, assembly subcontractors, computer manufacturers, aerospace companies, and most of the world’s largest auto and medical electronics device manufacturers.

Return to the college

40 S u m m e r B r i d g e

Summer BridgeLab Manual

2014

S u m m e r B r i d g e 41

Biology Experiment Human Genetics

INTRODUCTION

Physical traits are observable characteristics. While each of us shares some of our traits with many other people, our own individual combination of traits is what makes each of us look unique.

Physical traits are determined by specific segments of DNA called genes. Multiple genes are grouped together to form chromosomes, which reside in the nucleus of the cell. Every cell (except the gametes) in an individual’s body contains two copies of each gene. This is due to the fact that both mother and father contribute a copy at the time of conception. This original genetic material is copied each time a cell divides so that all cells contain the same DNA. Genes store the information needed for the cell to assemble proteins, which eventually yield specific physical traits.

Most genes have two or more variations, called alleles. For example, the gene for hairline shape has two alleles – widow’s peak or straight. An individual may inherit two identical or two different alleles from their parents. When two different alleles are present they interact in specific ways. For many of the traits included in this activity, the alleles interact in what is called a dominant or a recessive manner. The traits due to dominant alleles are always observed, even when a recessive allele is present. Traits due to recessive alleles are only observed when two recessive alleles are present. For example, the allele for widow’s peak is dominant and the allele for straight hairline is recessive. If an individual inherits:

Two widow’s peak alleles (both dominant), their hairline will have a peak One widow’s peak allele (dominant) and one straight hairline allele (re-

cessive), they will have a widow’s peak Two straight hairline alleles (recessive), their hairline will be straight.

A widespread misconception is that traits due to dominant alleles are the most common in the population. While this is sometimes true, it is not always the case. For example, the allele for Huntington’s Disease is dominant, while the allele for not developing this disorder is recessive. At most, only 1 in 20,000 people will get Huntington’s; most people have two recessive, normal alleles.

Most human genetic traits are the product of interactions between several genes. Many of the traits included in this activity, however, are part of the small number that may be due to only one pair of alleles. More information about these traits is listed below. Note that scientists usually use the shorthand of a “dominant trait” rather than saying that a trait is due to a dominant allele.

42 S u m m e r B r i d g e

1

Gender – Females have two X chromosomes, while males have an X and a Y chromosome. Maleness is determined by a specific region of the Y chromosome. Femaleness results from the lack of this region.

Earlobe attachment – Some scientists have reported that this trait is due to a pair of alleles for which unattached earlobes is dominant and at-tached earlobes are recessive. Other scientists have reported that this trait is probably due to several genes.

Thumb extension – This trait is reportedly due to a pair of alleles; straight thumb is dominant and hitchhiker’s thumb is recessive.

Tongue rolling – Tongue rolling ability may be due to a pair of alleles with the ability to roll the tongue a dominant trait and the lack of tongue rolling ability a recessive trait. However, many twins do not share the trait, so it may not be inherited.

Dimples – Dimples are reportedly due to a pair of alleles with dimples dominant (people may exhibit a dimple on only one side of the face) and a lack of dimples recessive.

Handedness – Some scientists have reported that handedness is due to a pair of alleles with right handedness dominant and left handedness reces-sive. However, other scientists have reported that the interaction of four alleles is responsible for this trait.

Freckles – This trait is reportedly due to a single gene; the presence of freckles is dominant, the absence of freckles is recessive.

Hair curl – Early geneticists reported that curly hair was dominant and straight hair was recessive. More recent scientists believe that more than two alleles may be involved.

Cleft chin – This trait is reportedly due to a pair of alleles with a cleft chin dominant and a smooth chin recessive.

Allergies – While allergic reactions are induced by things a person comes in contact with, such as dust, particular foods, and pollen, the tendency to have allergies is inherited. If a parent has allergies, there is a one in four (25%) chance that their child will also have allergy problems. This risk increases if both parents have allergies.

Hairline shape – This trait is reportedly due to a pair of alleles with a widow’s peak dominant and a straight hairline recessive.

Hand clasping – Some scientists report that there may be a genetic com-ponent to their trait while others have found no evidence to support this.

Colorblindness – Colorblindness is due to a recessive allele located on the X chromosome. Women have two X chromosomes, one of which usu-ally carries the allele for normal color vision. Therefore, few women are colorblind. Men only have one X chromosome, so if they carry the allele for colorblindness, they will exhibit this trait. Thus, colorblindness is seen more frequently in men than in women.

Sodium Benzoate tasting – the most common taste reactions to sodium benzoate are: sweet, salty, or bitter, although some people note other or no responses.

S u m m e r B r i d g e 43

Thiourea tasting – if you note a very bitter taste reaction, then you are a taster of thiourea. If the taste is like that of the Control Taste Paper, then you are a non-taster.

PTC Tasting For some people the chemical phenylthiocarbamide (PTC) tastes very bitter. For others, it is tasteless.

The ability to taste PTC shows dominant inheritance and is controlled by a gene on chromosome 7. This gene codes for part of the bitter taste receptor in tongue cells. One of its five alleles (forms) causes a lack of ability to sense bitter tastes; the other four alleles produce intermediate to fully sensitive taste abilities. Approximately 75% of people can taste PTC while the remaining 25% cannot.

PTC-like chemicals are found in the Brassica family of vegetables, such as cabbage, Brussels sprouts, and broccoli. People who can taste PTC often do not enjoy eating these vegetables, since they taste bitter to them. Non-tasters tend not to notice bitter tastes and therefore may be more likely to become addicted to nicotine (which is bitter). Some scientists think that tasters have fewer cavities, suggesting that there might be a substance in the saliva of tasters that inhibits the bacteria that cause cavities to form. Others think that PTC tasting may be in some way connected with thyroid function. PTC tasting was a chance discovery in 1931.

Materials Control taste paper; PTC taste paper; Sodium Benzoate taste paper; Thiourea taste paper; An Inventory of My Traits Survey

Procedures 1. Each person needs to fill out the survey, “An Inventory of My Traits.” Staple the surveys to the back of the lab. 2. Fill out the Data Table by going around to each group and gathering data. Make sure each student is included.

Data TableTrait Yes (#) No (#)

MaleDetached earlobesHitchhiker’s thumbTongue rollingDimplesRight-handed

44 S u m m e r B r i d g e

FrecklesNaturally curly hairCleft chinAllergiesWidow’s peakCross left thumb over rightSee the colors red and greenTaste PTCTaste Sodium BenzoateTaste Thiourea

3. Calculate the frequency of each trait by taking the number of students with the trait and dividing that by the number of students in the class. To get percent you must take that quotient and multiply by 100. Fill out the Frequency chart.

Frequency ChartTrait Frequency

MaleDetached earlobesHitchhiker’s thumbTongue rollingDimplesRight-handedFrecklesNaturally curly hairCleft chinAllergiesWidow’s peakCross left thumb over rightSee the colors red and greenTaste PTCTaste Sodium BenzoateTaste Thiourea

Compare the frequency of traits in the classroom population with the frequency in the general population:

S u m m e r B r i d g e 45

Trait FrequenciesGender Female – 50%

Male – 50%

Thumb extension Straight thumb – 75%Hitchhiker’s thumb – 25%

Tongue rolling Can roll tongue – 70%Cannot roll tongue – 30%

Handedness Right handed – 93%Left handed – 7%

Hand claspingLeft thumb on top – 55%Right thumb on top – 44%No preference – 1%

Color visionNormal females – almost 100%Colorblind females – less than 1%Normal males – 92%Colorblind males – 8%

4. Make a bar graph showing how many people in your group answered, “yes” for each trait.

46 S u m m e r B r i d g e

Number of Students

Trait

Summing up

1. What traits do you have in common with your lab partner?

_____________________________________________________________________________

2. What different traits do you have comparing yourself with your lab partner?

_____________________________________________________________________________

3. Which traits were the most common in your class?

_____________________________________________________________________________

4. Which traits were the least common in your class?

_____________________________________________________________________________

5. Are the most common traits always dominant?

_____________________________________________________________________________

6. Did the frequency of any traits in the classroom population come close to the frequency in the general population? If so, which one(s).

_____________________________________________________________________________

7. Which trait had the highest frequency?

________________________________

Chemistry Experiment S u m m e r B r i d g e 47

2

The Chemistry of Esters and Amides

INTRODUCTIONEsters and amides are among the most important kinds of organic compounds known. Your skin, hair and muscles are made from amino acids that are linked together using amide bonds. Esters are used to link fatty acids to make fats and are used in energy production with ATP. There are also a large number of non-biological uses for amides and esters; for example, polyester is used to make the fibers that are used to make clothing and rope. Polycarbonate is a type of ester used to make lenses for glasses and the goggles that you will be wearing and amides make up the exoskeletons of crabs and spiders.

One of the fun things about esters is that they tend to smell good. At one time esters were used in perfumes until it was discovered that they weren’t stable and tended to break down into foul smelling acids and alcohols. Even so, when you bite into a green apple you are smelling methyl butyrate which is the essence of green apple. Similar nice smelling compounds like banana, wintergreen, strawberry, raspberry, and pineapple are all esters.

Esters are made when a carboxylic acid reacts with an alcohol. The products are an ester and water. The reaction is given below,

The reaction typically yields 60-70% of the maximum yield.

Amide reactions are identical to esters except that they use amines instead of alcohols.

48 S u m m e r B r i d g e

CH3 C

O

OH CH2 CH3HO

Carboxylic acid Alcohol

CH3 C

O

O CH2 CH3 + H2O

Ester Water

H3C C OH

O

N C CH3

H

H H3C C

O

N C CH3

H

+ H2O

Carboxylic acid Amine Amide Water

In this experiment you will make some very nice smelling esters and synthesize another common ester, Aspirin. You will also make a common amide, Nylon, and then just for fun you can make a batch of slime using ingredients that you can buy at any store.

Experiment 1 – Making EstersInto each of 5 test tubes add 10 drops of the acid if it is a liquid or 0.10 grams if it is a solid and 10 drops of the alcohol as shown in the table below.

Test Tube #

Carboxylic Acid

Alcohol Odor

1 Formic acid (l)

Isobutyl alcohol

2 Acetic acid (l) Benzyl alcohol3 Acetic acid (l) Isopentyl

alcohol4 Acetic acid (l) Ethanol5 Salicylic acid

(s)Methanol

Add 5 drops of concentrated sulfuric acid (CAUTION!) to each test tube and mix the contents by sharply tapping the test tube with your finger.

Now, place all five test tubes into a 60°C water bath for 15 minutes. Remove the test tubes and allow to cool for a few minutes. Add 2 mL of water to each test tube. There should be a thin layer of liquid floating on the surface. Remove some of this layer with a Pasteur pipette and place on a watch glass. Note the odor. You should be able to detect the odor of banana, peach, raspberry, nail polish remover, and wintergreen.

Experiment 2 – Making Nylon, a PolyamideA solution of decanedioyl dichloride in cyclohexane is floated on an aqueous solutionof 1,6-diaminohexane. Nylon forms at the interface and can be pulled out as fast as it isproduced forming a long thread – the ‘nylon rope’.

PROCEDURE:

Wear eye protection and disposable nitrile gloves when pulling out the thread.

Dispose of the mixture as follows: First shake the reaction to mix the two layers. A lump of

S u m m e r B r i d g e 49

Nylon will be produced which can be removed with tweezers, rinsed well with water, and disposed as solid waste. Failure to do this may result in the polymerization taking place in the sink, leading to a blockage. The remaining liquids can be mixed with detergent and put in a container in the hood.

The reaction is very simple. You will take a diacid (a carbon chain with an acid at either end) and react it with a diamine (a carbon chain with an amine at either end). What results is a continuous chain that is put together with amide links.

Two solutions should be available to you,

Solution 1 is made by adding 2.2 g of 1,6-diaminohexane to 50 mL of deionized water.

Solution 2 is made by adding 1.5 g of sebacoyl chloride to 50 mL of cyclohexane.

Pour 5 mL of the aqueous 1,6-diaminohexane (Solution 1) into a 25 mL beaker. Carefully pour 5 mL of the sebacoyl chloride solution (Solution 2) on top of the first solution so that mixing is minimized. Do this by pouring the second solution down the wall of the beaker or pour it down a glass rod. The cyclohexane will float on top of the water without mixing.

A greyish film of nylon will form at the interface. Pick up a little of this with a pair of tweezers and lift it slowly and gently from the beaker. It should draw up behind it a thread of nylon.

Pull this over a glass rod so that the rod acts like a pulley. Turn the rod quickly. This will pull the nylon thread at a fast rate until a few meters of nylon have been pulled from the beaker. Take care, the thread will be coated with unreacted monomer and may in fact be a narrow, hollow tube filled with monomer solution. Wearing disposable gloves is essential.

50 S u m m e r B r i d g e

Experiment 3 – The Synthesis of Aspirin

Salicylic acid is found in the bark of willow trees (trees of the genus Salix, from whence salicylic acid derives its name). Today all aspirin sold is synthesized from phenol, which, in turn, is obtained from petroleum. The last step of the commercial synthesis is the conversion of salicylic acid to aspirin using the Fisher ester synthesis. The conversion of salicylic acid to aspirin is not required in order for aspirin to work but the conversion to aspirin does make it more easily tolerated by the stomach.

The reaction of salicylic acid with acetic anhydride occurs rapidly. The reactants and a sulfuric acid catalyst are mixed, then warmed in a hot water bath. Solid salicylic acid is insoluble in acetic anhydride. Aspirin is soluble in a hot mixture of acetic anhydride and acetic acid, which is formed as the reaction proceeds. Thus, the course of the reaction can be followed by the disappearance of the solid salicylic acid. The reaction is essentially complete when all the salicylic acid has dissolved. Aspirin is only slightly soluble in a cold mixture of acetic anhydride and acetic acid. Therefore, as the mixture is cooled to room temperature, the aspirin precipitates.

At the end of the reaction period, the mixture contains aspirin, acetic anhydride, and acetic acid. Acetic acid is miscible with water, and acetic anhydride reacts fairly rapidly with water to yield acetic acid. By adding water to the reaction mixture and allowing the aqueous mixture to stand at room temperature for a few minutes, we can achieve a reasonable separation-the contaminants dissolve in the water, and the aspirin precipitates. Because of the presence of acetic acid and because aspirin is slightly soluble in water, about 10% of the aspirin remains in solution. Therefore, the mixture is thoroughly chilled before filtration and crystallization.

An additional small amount of aspirin can be recovered from the mother liquor if it is allowed to stand overnight. Despite this fact, it is not good practice to leave the bulk of the aspirin in acidic solution for an extended period of time because it will undergo a slow hydrolysis to yield salicylic acid and acetic acid, a typical acid-catalyzed ester hydrolysis.

S u m m e r B r i d g e 51

CO OH

OHCH3 C

OO C CH3

O

H2SO4

CO OH

O C CH3

O

AspirinSalicylic Acid

PROCEDURE

Place 2.8 g of salicylic acid in a dry 125-mL Erlenmeyer flask, then add 5.0 mL acetic anhydride and 3-4 drops concentrated sulfuric acid. Mix the resultant white slurry thoroughly with a spatula, and place the flask in a warm water bath (45-50°C) for 5-7 min. Swirl or stir the mixture occasionally to dissolve all the solid material. Because the reaction is slightly exothermic, a small temperature rise can be detected.

Allow the flask to cool. The aspirin begins to precipitate when the temperature of the solution is about 35-40°C, and the mixture becomes semisolid. When this occurs, add 50 mL water and break up any lumps with a spatula. Allow the mixture to stand for an additional 5 minutes, then chill the flask in an ice bath and remove the crystals by vacuum filtration.

Experiment 4 – Slime! Elmer's glue (most kinds of white craft glue will work) 2 disposable cups Food coloring (you pick the color) Water Borax Powder (available at most large grocery stores near the laundry

detergent) A plastic spoon (for stirring) A tablespoon (for measuring)

PROCEDURE:

1. Fill one small cup with water and add a spoonful of the Borax powder and stir it up. Then set it aside.

2. Fill the other small cup with about 1 inch (2.5 cm) of the glue.3. Add three tablespoons (20 ml) of water to the glue and stir. 4. Add a few drops of the food coloring and stir it up until mixed. 5. Now the fun part...Add one tablespoons of the Borax solution you made

earlier and stir well. Watch the slime form! 6. After the slime forms let it sit for about 30 seconds and then pull it off the

spoon and play with it!

Tip: Keep your slime in a tightly closed plastic bag when you are not playing with it, and keep it away from carpet and your little sister's hair.

52 S u m m e r B r i d g e

Physics Experiment Measuring the Speed of Sound

Overview:

Today we will measure the speed of sound waves using simple equipment:a tube of water, a tuning fork, a mallet, and your ears.

Background:

Sound is a traveling pressure wave in air. Pressure variation causes density variation in the air. High density regions have lots of molecules per unit volume, whereas low density regions have fewer molecules in a unit of volume.

In this lab, we will use a tuning fork to generate sound waves. As the tuning fork vibrates back and forth, it compresses the surrounding air as illustrated below:

Here we see a low amplitude (quiet) and a high amplitude wave (louder); this corresponds to hitting the tuning fork soft or hard.

The vibration shown above causes individual air molecules to vibrate back and forth. An animation of a traveling sound wave can be seen at:

http://www.acs.psu.edu/drussell/demos/waves/wavemotion.html

at this site, you will see the following picture animated:

S u m m e r B r i d g e 53

3

(This wave is called a longitudal wave, sound is this type of wave). The red dots indicate specific sound particles. Notice that the wave travels to the right, but the individual particles travels back and forth.

Instead of drawing the individual molecules, we often draw a wave as shown below, where the height can represent the pressure, density, or particle displacement (depending on what quantity you are looking at).

Let’s define some quantities about the wave:

Wavelength = the distance from over-dense regioin to over-dense region. They symbol for wavelength is the Greek letter lambda:

Frequency = how many times per second does the driving bar on the left oscillate? The symbol for frequency is f.

Wave speed = the speed (meters per second) of the over-dense regions (note, this is not the speed of the individual particles such as those in red, it is the speed of the wave shape). The symbol for speed is v.

Now, imagine that the sound wave travels in a tube with one end blocked. At the blocked end, the air molecules stay in a fixed position, they cannot move back and forth. At the open end of the tube, the molecules will be able to move back and forth. An illustration of the molecule displacement in the tube looks like this:

54 S u m m e r B r i d g e

Above we see the molecule displacement going from zero to the maximum value inside the length L of the tube. The molecule displacement at the left (blocked) side is always zero. At the right end of the tube, the molecules are free to move. Here, one quarter of the wavelength is enclosed in the tube.

If we put a blocked tube next to a tuning fork, at certain tube lengths, the air vibration will reinforce the tuing fork vibration. This is an example of resonance. At this resonance, the sound produced by the tuning fork will be very loud.

We will use this resonance, along with the equation:v = f

to measure the speed of sound in this room.

Note: v is in meters/second, is in meters, and f is in 1/seconds – so the units of this equation work out. It is a variation on distance = velocity x time

Lab Procedure

To measure the speed of sound, v, we will need to measure the wavelength and frequency of a sound wave.

How to measure frequency f:Luckily, tuning forks come in precise frequencies (corresponding to a pitch or musical note), so we will be able to read the frequency off of the tuning fork.

How to measure wavelength :To measure the wavelength, we will record the distances at which resonance occurs in the tube. We will change the effective length of the tube by changing the level of the water. At certain levels, the sound will be very loud. These resonance points occur at:

Length = ¼ Length = ( ½ + ¼ ) = ¾ Length = (1 + ¼ ) … and so on.

In general,

S u m m e r B r i d g e 55

Length = (n/4)* for n = any odd number

The series of lengths looks like this:

series of /4 values in horizontal pipe cartoon of lab equipment, the water level sets pipe length

Data Collection:

Choose a tuning fork and record the distance between the top of the water and the top of the tube. Do this for as many resonances as you can, before you run out of room on the tube. The relationship of each entry to the wavelength is shown in the first column. Use this to solve for lambda, the wavelength.

Tuning fork frequency = (Hz)Tube Depth (cm) Wavelength (cm) Wavelength (m)(1/4) =(3/4) =(5/4) =(7/4) =(9/4) =

Data Analysis:

We are almost finished! To compute the speed of sound, we need to multiply the wavelength by the frequency of the tuning fork. Which wavelength should you use? You can use a single measurement you think is accurate, or you can use an average of all your measurements.

56 S u m m e r B r i d g e

Average = (sum of measurements)/(number of measurements)

For example, if we had a series of three measurements, 0.3, 0.32, and 0.29

Average = (0.3 + 0.32 + 0.29) / 3 = 0.91/3 = 0.303

Now, calculate the speed of sound from the wavelength and the fork frequency. You should find something close to the accepted value: vsound = 343 m/s.

Are you surprised that you could measure the speed of sound from this set of tools?

S u m m e r B r i d g e 57

Phylogenetics Numerical Methods in Biology

What is Phylogenetics?Phylo- (from the Greek root meaning “race,” “tribe,” “kind”) genetics (the study of genes and inheritance) uses variation in organisms’ genes to construct an evolutionary “family tree”. Branches in this “family tree” (also called cladograms or phylograms) are created based on similarity between the genes of the various organisms included. The more similar two organisms’ genes are, the closer they are on the tree. Where two branches meet (also called a node), the tree is signifying that those two organisms shared a common ancestor at some point in the history of life on Earth.

Why do genes change?From generation to generation, genes slowly accumulate minor mutations that are passed from parents to offspring. Many of these mutations have no effect on the genes’ functions, but when two populations are separated for a long enough period of time (reproductive isolation), these minor changes create enough difference between those population’s genes that when they are put next to each other, or aligned, the number of mutations in the gene sequences can clearly be seen.

CladisticsIn the many years before science derived methods to accurately and efficiently sequence DNA and other genetic material, scientists who studied the difference between organisms, and attempted to derive their relationships were forced to use more observable characteristics such presence or absence of hair, type of reproduction, or skeletal structure. This study is known as Cladistics, and related organisms were placed in groups called clades. Technically, phylogenetics is a form of cladistics that uses genetics.

58 S u m m e r B r i d g e

4

ParsimonyWhen classifying organisms in this manner most scientists abide by the idea of parsimony. Parsimony is the rationalization that the same evolutionary changes are unlikely to occur multiple times, and thus the most likely answer is the one with the fewest number of changes. For example, it is unlikely that monkeys and tigers, although very different animals, both evolved fur coats independently, thus the parsimonious solution is that at some point in ancient history, monkeys and tigers shared a common ancestor that had fur, and both inherited that trait from that organism. Parsimony is still at the core of many of the statistical models used in phylogenetics.

Mutation RateSome genes accumulate changes very fast and are said to have a high mutation rate. Some genes with the highest mutation rates are unique in each individual (such as those used in forensics). Genes that accumulate mutations very slowly are said to have a low mutation rate, and are better to identify changes between organisms over a long period of time. Once the mutation rate of a gene is discovered, it can be used to identify how long it has been since two organisms shared a common ancestor based on the number of mutations in the gene sequences.

The numbers on the tree above represent percent divergence. In order to find the total percent divergence, start at one organism and travel down the branches of the tree, then back out to another organism, adding all of the numbers along the way. For example, the percent divergence between the human and corn on the tree above is 8.77 + 4.17 + 6.36 + 19.30 = 38.60%.

If the number of bases is known, and the mutation rate of the gene is known, the time since these two diverged can be calculated with the formula: (% difference) x (number of bases) x (mutation rate).

Ex. % divergence = 38.60% number of bases = 114 mutation rate = 21 million years per mutation (.386) x (114) x (21) = 924 million years!!

Exercise 1Using the organisms and the information below, construct a simple cladogram.

Dog Frog Horse Snail HumanBackbone   Yes   Yes   Yes No YesBrain yes yes yes   yes yesFour legs yes yes yes no noHair yes no yes no yesShell no no no yes no

S u m m e r B r i d g e 59

Exercise 2Using the organisms on the list provided, and your knowledge of these organisms, construct a cladogram that you think best represents their evolutionary heritage.

Exercise 3Using the online tool, select the organisms from Exercise 2 to see how close your cladogram is to the one generated based on simple parsimony and the one generated based on gene sequences. How close were you?

Exercise 4Using the cladogram generated based on genetic evidence in Exercise 3, estimate how long ago humans shared a common ancestor with each of the other organisms on the cladogram.

60 S u m m e r B r i d g e

Chemistry Experiment Making Biodiesel from Used Fats and Oils

This experiment demonstrates the use of fats, grease and vegetable oils as an alternative, renewable fuel. The reaction incorporates NaOH as a catalyst in order to achieve high yield and minimize waste. In addition, the glycerol by-product can be reused in order to make glycerine soap.

INTRODUCTION

The United States is the largest single consumer of fossil fuels in the world. Each year, the U.S. consumes 125 billion gallons of gasoline and 60 billion gallons of diesel fuel. With current energy consumption, the desire to find alternative fuels for our energy needs is increasing. One such alternative fuel is vegetable oil. Vegetable oil offers the benefits of a greener synthetic route for obtaining diesel fuel. This fuel source is commonly known as biodiesel, and can be synthesized on an individual level or on an industrial scale.

The methods behind biodiesel synthesis have been known for quite a while. In recent years, however, there has been significant interest in the production of biodiesel from the waste oils of the food industry. Every year, fast food restaurants in the U.S. produce over 3 billion gallons of used cooking oil. Since many gallons of this used oil inevitably end up in landfills and sewers, the production of biodiesel from waste oil has the potential to significantly reduce environmental impact.

In this experiment you will synthesize diesel fuel from a triester of glycerol (a triacylglycerol or triglyceride). This reaction is known as a transesterification reaction. Transesterification is the process of transforming one type of ester into another type of ester. This reaction incorporates the use of the strong base sodium methoxide in a base- catalysed nucleophilic addition/elimination reaction at the carbonyl carbon of the triglyceride. This experiment is not entirely “Green.” The methanol used in this experiment is derived from petroleum sources. Ethanol, derived from vegetable sources like corn, could have been used but the product is less volatile and more difficult to make than the methyl ester.

The overall mechanism is catalyzed by the presence of NaOH. In the first step of the reaction, NaOH reacts with methanol in an acid-base reaction. The product of this reaction is the very strong base sodium methoxide and water. In the second step, the sodium methoxide acts as a nucleophile and attacks the three carbonyl carbons of the vegetable oil. This produces a tetrahedral intermediate that is highly unstable. The overall result is the "cracking" of the triglyceride. The elimination of the glycerol backbone leads to the formation of

S u m m e r B r i d g e 61

5

the three methyl esters (the biodiesel) and glycerol. The NaOH is reproduced as a product in the reaction. If the biodiesel is removed from the mixture, glycerol and unreacted NaOH and methanol remain. The glycerol can be converted to soap through a saponification reaction if excess NaOH is used. Care must be exercised when using excess NaOH, because using too much will produce a jelly like mix of glycerol and soap.

EXPERIMENTAL PROCEDURE

1. Add 0.35 g of finely ground anhydrous NaOH into 20 mL of pure (99% or higher purity) methanol in a 250 mL Erlenmeyer flask containing a magnetic stir bar. Put the flask on a magnetic stir plate, and stir vigorously until all of the NaOH is dissolved. This flask now contains sodium methoxide. Note: Sodium methoxide is an extremely strong base and should be handled with care.

2. Warm up 100 mL of your fat, oil, or grease to about 40°C in a 250 mL beaker. Warming the oil up is not necessary, but increases the reaction rate.

3. When all of the NaOH is dissolved, pour the 100 mL of oil into the methoxide solution while continually stirring. At first the mixture will become cloudy, but should soon separate into two layers. Stir for 15-30 minutes on high. (Stop here if experiment is being done over 2 weeks.)

4. Transfer the contents of the flask into a 250 mL separatory funnel. The mixture will separate into two different layers. The glycerol will fall to the bottom, and the methyl ester (biodiesel) will float to the top. Since about 75% of the separation occurs within the first hour, you will be able to see immediate progress. Allow the experiment to sit for about an hour.

5. Open the stopcock of the separatory funnel and allow the glycerol to drain into a small beaker. Make sure not to get any biodiesel in the glycerol or glycerol in the biodiesel.

6. Use the IR spectrometer to identify your products. Print out the spectras and compare with known spectra. The biodiesel may be hard to compare, since most oils are comprised of different length carbon chains. Comparing to known spectra can easily identify the glycerol. The presence of glycerol indicates a successful reaction.

62 S u m m e r B r i d g e

1. What is the reaction that is occurring that produces biodiesel?

2. How “Green” is this experiment? Please answer the following,

a) Where did you get your oil/fat you used in this experiment and what would have happened to it had you not converted it to biodiesel?

b) What was the source of your methanol? Is methanol made from natural sources or is it a product of the oil industry? Is methanol “Green”?

c) What was in the waste product and what did you with it?

S u m m e r B r i d g e 63

Geology Field TripGeology of Golden Gate National Recreation

Area and Point Reyes National Seashore

Introductory Material:

The three families of rocks and the two subfamilies of igneous rocks are listed below. Based on this list, name the following and give examples of each:

Name ExampleA rock formed by the recrystallization of other rocksA rock formed by the cooling of magma undergroundA rock formed by the cementation of particles of other rocks or fossilsA rock formed by cooling of lava on the earth’s surface

For each rock family, indicate how it can be recognized in terms of structure (layering is absent or present), grain size (separated grains visible or not) and grain shape, when grains are visible (rock fragments or crystals)

Structure(layering absent or present)

Grain Size(grains visible or not visible)

Grain Shape(rock fragments or crystals)

Igneous Volcanic

Plutonic

Sedimentary

Metamorphic

64 S u m m e r B r i d g e

6

Field TripFrom Napa Valley College go south to highway 37 and north on 101 to San Francisco. Take the last exit before the Golden gate and make a left and go up the hill. Our first stop is the red outcrop across the road. Dress warmly in layers. Wear comfortable shoes and bring something to drink and snack on along the way.

1) Visitor Center and Earthquake Trail 8) McClures Beach,2) Tomales Bay Trail 9) Mount Vision on Inverness Ridge3) Point Reyes Lighthouse 10) Limantour Beach4) Chimney Rock area 11) Olema Valley5) Drakes Beach 12) Palomarin Beach6) Tomales Bay State Park 13) Duxbury Reef7) Kehoe Beach 14) Bolinas Lagoon/Stinson Beach area

Point Reyes (PR), Tomales Bay (TB), Drakes Estero (DE), Bolinas Lagoon (BL),Point Reyes Station (PRS), San Rafael (SR), and San Francisco (SF), Lucas Valley Road (LVR), and Sir Francis Drake Boulevard (SFDB).

OUTCROP 1-A

Identifying rocks and their environments of deposition

S u m m e r B r i d g e 65

Examine the uphill portion of the outcrop and look closely at the reddish brown rock. Describe the following:

Layering in the Outcrop? Grain Size? Grain Shape?

To what family of rocks must this outcrop belong?_______________________________

The sizes of grains in sedimentary rocks are often dictated by the energy of the environment they are deposited in or transported by. A low energy environment is indicated by fine particles while larger particles indicate a high energy environment.

Does the complete absence of visible grains in this rock indicate it was deposited in a low energy or high energy environment?_________________________________________

There are many environments of deposition (Rivers, Deltas, Deserts, Deep Ocean and Shallow Ocean) and each has its own particular energy. Shallow Ocean environments often show large particles because of high energy near shore while deep ocean sediments have much less energy. The rocks you see are definitely low energy and are also deposited in a special deep water environment called an Ocean Ridge.

What are the two types of sediment raining down on the ocean floor?_________________________________ and ___________________________________

The red rock you see is composed of which sediment?____________________________

Name the rock____________________________

Examine the very thin layers between the thicker reddish brown layers. What sediment composes these layers?_______________________________

Name the rock composing these layers?_________________________

66 S u m m e r B r i d g e

Identifying the Minerals and Elements PresentThe Chert Beds

What element gives the chert its red and brown color?______________________

This rock may have a variety of colors depending on which particular iron mineral is present in this rock. For the following colors name the mineral causing the color:

Red to red brown Yellow brown green

Joints are fractures in rocks that show no movement on either side of the fracture while Faults do show movements with many offsets.

What is the name for the fractures that are distributed throughout this outcrop and show no sign of fault movement?___________________

What element produces the blue black coloration on this outcrop? (Hint: This element can be mined from deep sea nodules)__________________________________________

Test the hardness of the rock by scratching it with a knife or a key. (You will make a groove if the rock is soft) Is the rock soft or hard?_______________________________

Test the rock with 10% Hydrochloric Acid. Does it fizz? _________________

Is the rock primarily silicate or carbonate? (Hint: carbonate will fizz)________________

We now know that this variety of chert is made of microfossils composed of silica.

Name the particular silica microfossil.______________________

S u m m e r B r i d g e 67

The White Veins

Examine the downhill portion of the road cut and look for the white veins cutting through the red chert. Determine the following about this mineral:

Hardness Acid Test Silicate or Carbonate

Since veins are formed by minerals crystallizing from hot water flowing along fractures, what would we find at the point where these veins reach the ocean floor?_____________

From what we know about the heat source for such geothermal features, evidence of what kind of geologic activity might we expect in this vicinity? _________________________

Explain how the silica-rich hot spring waters escaping into the ocean water above our heads, could contribute to the origin of the chert beds.

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Although occurring in a much different geologic environment than here, similar looking quartz veins in the Sierra foothills, contain what valuable mineral? (Hint: It is California’s State mineral).

_________________________________________________

OUTCROP 1-B

Proceed up the hill and stop after about 100 yards when you come to a dark blackish-green rock outcrop.

68 S u m m e r B r i d g e

Identifying the rocks and their environments of deposition

Describe the following from the overall view of the road cut and by looking at a chunk of the rock:

Layering in Grain GrainOutcrop? ______________ size? _______________ shape? ______________

To what family of rocks must this outcrop belong? (Check table)

________________________________________

Based on the color, is the rock high or low in iron? __________________________Name the rock. _____________________________________

In which two distinctly different geologic environments can this rock solidify?

(#1) __________________________ and (#2) ____________________________

What structures are diagnostic of each of these environments respectively?

(#1) ____________________________ and (#2) ___________________________

The structure displayed in this road cut is _____________________________ and

indicates that the rock solidified in which environment? _____________________

Generally we think of basalt as black. What aspect of this rock’s history may have produced the greenish color?

____________________________________________________________________

By following the layering in the chert beds, do they appear to overlie or underlie the basalt? _____________________________

In what oceanic environment did this association of pillow basalt and chert originate?

________________________________________________________________________

S u m m e r B r i d g e 69

Identifying the minerals present

There are two kinds of veins cutting through the green rock, each composed of a different mineral. Test the following:

Mineral A Mineral B

Hardness? (hard or soft) ____________________ _____________________

Acid Test? (fizz or no fizz?) ____________________ _____________________

Primary silicate or carbonate? ____________________ _____________________

Name of mineral ____________________ _____________________

OUTCROP 1-C

Proceed up the hill and around the curve in the road.

Name the two rocks forming the thicker and thinner layers respectively in this outcrop.

_____________________________ and _____________________________

Sedimentary layering is so obvious that its significance is often overlooked. What does the presence of distinct “bedding planes” sharply separating the layers of chert and shale tell you about the history of sediment accumulation at this site on the ocean floor?

________________________________________________________________________

We know that chert forms by the raining down of microfossils of radiolarian fed in part by volcanic hot springs, while shale forms by the raining down of tiny clay particles dispersed through ocean water. What sudden changes in the environment could cause a sudden change from shale deposition to chert deposition, or vice versa?

(i) ____________________ (ii) ____________________ (iii) ____________________(Remember, bedding planes represent evidence of some sudden change in the environment).

70 S u m m e r B r i d g e

Look for a 2-inch thick layer of blue-black material in the chert. We saw thin deposits of this coating joints at outcrop 1-A. It is an important source of the element ____________and it may be eventually mined from the deep ocean floors where it forms round masses called __________________________.

Since we now have good evidence that the chert and pillow basalt originally formed in the deep ocean, thousands of miles from the continental edge, name the two processes by which they were first transported and then attached to the continent.

_______________________________ and _________________________________

In the process of subduction what force would you expect to act on the rock layers: tension or compression ?_______________________________________________

What are the general names for the two distinctly different types of structures developed in layered rocks by this force? ______________________________________

and ___________________________________.

Find a large fold in these layers and draw it, labeling the up arched position as the anticline and the down bent position as the syncline.Diagram:

Find examples of both joints and faults in the outcrop. Both are types of fractures. What is the distinction between them?________________________________________________________________________

What evidence in the layers on either side of a fracture, proves whether it is a joint or a fault?

________________________________________________________________________

We will now return to the cars and proceed to stop #2

Drive back down the hill and go back through the tunnel to rejoin Hwy. 101 North. Immediately after re-entering the highway, notice the massive gray outcrops in the big road cut to the left. The layering in these rocks indicates they must be sedimentary. The gray color is typical, and these are layers of

S u m m e r B r i d g e 71

sandstone called greywacke. A few hundred yards further on we pass on the left a reddish-brown, thickly layered outcrop of chert. After passing through the Waldo Tunnel with its rainbow paint job, look about 200 yards north of the tunnel at the dark greenish black outcrop to the left. It has good examples of pillow structure and is pillow basalt. We next take Lucas Valley road to the East.

After crossing the ridge with the huge painted boulder on the right side, we will stop about ½ mile further at a dark green road cut.

#2

Examine the outcrop and a broken chunk of this rock.

Layering Grain Grainin outcrop _____________ size? ______________ shape? ______________

By reference to the introductory table and by process of elimination, this rock might belong to either of what two rock families?

____________________________ or ____________________________

To further help in your identification, look for evidence of abundant faults cutting through the outcrop. The smooth, shiny surfaces on rocks from this outcrop are the result of polishing due to fault movement. Every shiny surface is a separate fault plane. What are these shiny surfaces called?

_______________________________________________________________________

Another clue is to look at the type of veins cutting through the rock. Can you see any white quartz (hard) or calcite (fizzes) veins? __________________________________

What is the lustrous greenish mineral in thin ¼” thick veins composed of fibers perpendicular to the walls of the veins and which shines in the sun like satin?

________________________________________________________________________

What 2 properties make this mineral valuable? _____________________________ and

________________________________________.

What is the other dull greenish white mineral in veins which is soft but doesn’t fizz?

_________________________________________.

72 S u m m e r B r i d g e

Name the rock. (Hint: It is California’s state rock.)______________________________

From what zone in the earth did this rock originate? _____________________________

By what two different processes could this rock have reached its present position?

#1 _________________________________________________________________

#2 _________________________________________________________________

Name two characteristic features in hand specimens, by which you can distinguish this rock from pillow basalt.

_____________________________ and _________________________________

Return to cars and proceed to Stop #3. Continue through the village of Nicasio and follow Nicasio Valley Road to the “T” intersection with Petaluma – Point Reyes Road. Turn left and go about 1 ¼ miles to a large gray road cut beside the Nicasio Reservoir.

#3

Is layering present or absent? ______________________________________.

To what family of rocks must this outcrop belong? _____________________________.

S u m m e r B r i d g e 73

There are two different rocks present here, a light gray rock and a dark gray rock. Pick up a chunk of each rock type and answer the following:

#1 light gray rock: grain grainsize? ___________ shape? __________ name? ___________

#2 dark gray rock: grain grainsize? ___________ shape? __________ name? ___________

In studying sedimentary rocks, geologists try to read the layers of rock like pages in a book to determine what the environment at a particular site was like at the time the layers were deposited. The size of the grains in the rock is particularly helpful in unraveling the story. To transport a large grain requires much more energy than to transport a tiny grain. Based on the grain size of the material in the shale, would you think it was deposited in a high energy, near shore environment like a beach or a low energy, deep water environment? __________________ .

What about the greywacke? High energy near shore, or low energy, deep water? ______________________________

Now look at the road cut again. How many changes in environment can you count?

_____________________________.

Remember that the presence of sharp separations between beds, called bedding planes, must indicate sudden changes in material being deposited. Consider a possible explanation for the many sudden changes from high energy to low energy conditions, being reported again and again at the same site.

For a possible explanation, consider how long ago in years these lavers were deposited?_____________________________________

At that time, what was present where the Sierra are today?_________________________

And from what we learned about plate tectonics, what is present offshore from every volcanic arc?_____________________________________

The normal grain size of sediment raining down into this deep water environment would be _____________________ and would harden into rock called ______________________________ .

74 S u m m e r B r i d g e

Now, we can see that in addition to this normal deep water sediment, we also get what seems to be a shallow water sediment deposited here. To understand this, name the two types of geologic violence you expect to be produced by the process of subduction. (Hint: Remember the video shown in lab.).

_____________________________ and _______________________________________

Given that the Sierras are 150 miles inland, which of these two violent phenomena had the greatest impact on sediments in this trench environment?_______________________

What would be the effect of a violent earthquake on the coarse high energy sediment dumped at the lip of this trench in the near shore environment?_____________________

Such an event causes a muddy mixture of sand and water to flow under the clear water at speeds up to 50 mph as a high density current called a ___________________________

Thus rather than indicating sudden change in sea level, each change from shale to greywacke gives a record of a possible ________________________________________

As this high speed current of sand rushes over the fine grained clay layer (shale) below it, what effect would you expect to occur?________________________________________Look for evidence of this effect in the outcrop. Name the two kinds of evidence we can see_______________________________ and __________________________________Return to the cars and continue past Nicasio Reservoir. As we pass the parking area and chain link fence besides the Nicasio Dam, notice the remarkable greenish to blackish green rock cuts. We continue through road cuts of this rock as far as the next stop sign and road intersection.

S u m m e r B r i d g e 75

Name the rock exposed in these road cuts. _______________

Continue to the town of Pt. Reyes Station. After passage through town, look for a bridge and turn right after you cross the bridge. The bridge marks the approximate east boundary of the San Andreas Fault Zone. The West boundary of the fault zone is at the base of the hills ahead of us. The flat stretch of road which we are driving on crosses the sediment filled erosional fault valley defining the San Andreas Fault Zone in this area. About ½ mile past the bridge, we cross a culvert and creek which is near the 1906 trace of the San Andreas Fault where approximately 22 feet of horizontal displacement was measured.

At the end of this straight stretch, turn left at the intersection and continue South to the Bear Valley Headquarters of Pt. Reyes National Seashore. We will have lunch in the picnic area.

#4 – LUNCH TIME

After a 45 minute lunch we will have a quick hike on the Earthquake Trail.

#5

After lunch and the Earthquake Trail hike, retrace the route to the junction with the main highway. About 2 miles north of this junction, stop on pullout on right shoulder and 100 yards south to the road cut.

Examine the road cut. Is layering absent or present?______________________________

Are crystals visible or not visible?____________________________________________

The rock is from which family?______________________________________________

Name the rock.________________________________

Name the 2 light colored minerals present and give the color of each.

Name Color

1

2

Name the dark colored mineral present.________________________________________

This rock is the basement rock in this region.

On which side of the San Andreas Fault are we on? (West or East)_________________

76 S u m m e r B r i d g e

What tectonic plate are we on? ______________________________

Where did this rock originally form geographically?______________________________

From here we continue North through Inverness and follow the signs to Pt. Reyes.

As we drive the twenty miles to the lighthouse, look at the rocks exposed in the road cuts as well as the overlying general topography of the Pt. Reyes Peninsula. We drive north past the town of Inverness and have a view of Tomales Bay on our right.

Tomales Bay marks the location of what geologic feature? ________________________

What is the specific name for this type of valley which has been flooded by the waters of Tomales Bay? __________________________________________

As we leave the flat bay side and climb over Inverness Ridge, the weathered light buff to tan colored rock in the road cuts is representative of the basement rocks found on the west side of the San Andreas Fault.

Name this rock. _____________________________

As we cross the Pt. Reyes Peninsula, notice how the land slopes down to near sea level at the Johnson Oyster Farm and then rises up again as we climb to Pt. Reyes itself. This down slope is actually a result of compression and folding. (Hint: think of the chert outcrop)

What is the name for this type of fold?_______________________________

S u m m e r B r i d g e 77

#6

After leaving the parking area, stop at the nearby whale viewing area.

Examine the rock past the Whale viewing area.

Layering? _______________

Grain size? ______________

Grain shape?_____________

Examine the large grains and name two rock types making up these rounded fragments.

________________________ and ____________________________.

To what family of rocks does this rock outcrop belong? ___________________________

Was it deposited in a high or low energy environment? ___________________________

From the list of environments on page 2, name the most likely environment for this rock.____________________________________________

Name the rock. _______________________________

As we walk toward the lighthouse look for more outcrops of this particular rock, especially where spheroidal weathering is evident.

At the informational sign describing the cause of various colors on the rock surface, name the material responsible for the bright orange coloration in these rocks.

___________________________________________________

A short distance past the park information and sales office is a remarkably varied outcrop.

To what family of rocks does the outcrop belong?________________________

Similar to the situation we studied in Stop#3, the layers here are composed chiefly of two distinctly different rocks. Name the two rock layers represented and for each indicate the relative grain size (fine, medium, coarse) and relative energy (high or low).

78 S u m m e r B r i d g e

Name of Rock Grain Size EnergyLayer#1Layer#2

Identify 3 different rocks present as rounded fragments in the conglomerate.

_____________________, _______________________, and ______________________

Thinking back to how we explained inter-layered greywacke and shale at Stop#3, how might you explain the association of two different rock layers of different energies here?

________________________________________________________________________

________________________________________________________________________

A key piece of evidence to support this would be the presence of scouring structures called sole marks. Find a sole mark and draw a simple cross section of it below. What is the evidence that this is not a down fold or syncline?

_______________________________________

Diagram:

What mineral is causing the rusty-brown layers and lines in the rock?

_________________________

S u m m e r B r i d g e 79

The horizontal rusty layers are produced by the oxidation of the black mineral magnetite which was originally present. It forms the common black sand at coastal beaches. However the striking rusty lines which are not parallel to the bedding have another origin. What is the origin of these concentric bands?

________________________________________________________________________

Examine the unusual honeycomb weathering in the rocks here. Which particular rock type shows this weathering pattern best?

_________________________________

Name the weathering pattern?_________________________________

By what general process did this weathering pattern from and why?

________________________________________________________________________Point Reyes is one of the most spectacular spots in California to appreciate the dynamic interface between land and sea. It is also, remarkably dynamic geologically. Explain briefly why it is often called “An Island in Time”.

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

From here we will return to Napa.

80 S u m m e r B r i d g e

Geologic Map of Point Reyes National Seashore

S u m m e r B r i d g e 81


Recommended