Date post: | 28-Dec-2015 |
Category: |
Documents |
Author: | roxanne-holt |
View: | 212 times |
Download: | 0 times |
Superconductivity and Superfluidity *
Dietrich EinzelWalther-Meiner-Institut fr TieftemperaturforschungBayerische Akademie der Wissenschaften
Outlook:
Phenomenological description Superconducting and superfluid systems Generalized microscopic description* D. Einzel, Lexikon der Physik, Spektrum Akademischer Verlag, Heidelberg, 2000
Motivation: Physics Nobel prize 2003Alexei A. Abrikosov (born 1928)Argonne National Laboratory,USAVitalii L. Ginzburg (born 1916)P. N. Lebedev Physical InstituteMoscowAnthony J. Leggett (born 1938) University of Illinois atUrbana-Champaign, USA
Phenomenological description: London vs. Ginzburg-LandauQM particle with mass M, charge Q, density Ns in external el.mag. PotentialsQuantum-mechanical condensate wave functionF. und H. London, 1935, Max von Laue, 1938, V. L. Ginzburg und L. L. Landau, 1950Schrdinger equationcharge-supercurrentNeutral masssupercurrentApplication: pairs
Superconducting and superfluid systems
Superconducting and superfluid systems (ctd.)
Current relaxation in normal Fermi liquidsCharged Fermions in metalsNeutral Fermi liquidsDrudeslawHagen-Poiseuilleslawmomentum conservation(exception: walls)momentum relaxation:impurities, Phonons...
Indications of superconductivity:Vanishing resistance Heike Kamerlingh-Onnes, 1911Indications of superfluidity:Vanishing shear viscosity (?)J. M. Parpia, D. Einzel., 1987viscosity paradox
GUT of superconductivity and superfluidity charged neutral
Fermi Bose
spin singlet spin triplet even parity odd parity
BCS non-BCS
conventionel unconventionelAspects andsystems to be unified:Restrictions: pair correlated Fermi systems
weak coupling limit
parabolic bands in D=3 und D=2
BCS mean field treatment of superconductivity and superfluidityPair attraction nearthe Fermi surfaceSpontaneous pair formation in k-space: pair (Gorkov-) amplitude Pair potential (energy gap)Broken gaugesymmetry
Classification of pair potentialsA. Spin structure Pauli principle:Singlet (s=0): even parityTriplet (s=1): odd parity
Classification of pair potentials (ctd.)B. Orbital structure Conventional pairingshares the symmetry of the Fermi surface;only gauge symmetry brokenExamples: classical singlet SCs like Hg, Al, V, ...
(Moritz, 11 years)The broken lattice symmetry in cuprates
Conventional and unconventional model pairing states:S=0: singletS=1: triplet
System NameNode-structure conv. SCs 1 - isotropic 3He-A UBe13Axial (3D)
3He-B - pseudo- isotropic UPt13 - E1g
E2u Cuprates (hole- doped) - B1g Sr2RuO4Axial (2d)B1g x Eu
The d-wave controversy in the High-Tc communityPHYSICS TODAY MAY 1993
IN HIGH-TC SUPERCONDUCTORS,IS d-WAVE THE NEW WAVE?
BARBARA GOSS-LEVIPHYSICS TODAYPHYSICS TODAY FEBRUARY 1994
IN EXPLAINING HIGH-TC,IS d-WAVE A WASHOUT?
PHILIP W. ANDERSONPRINCETON UNIVERSITY
BCS mean field treatment of superconductivity and superfluidity (ctd.)Hamiltonian for spin singlet pairing(triplet pairing:A. J. Leggett, 1965)Nota bene: the energy
or Nambu space (Yoishiro Nambu, 1962) is a matrix in particle-hole spaceNota bene: spontaneous pair formation
off-diagonal long range order (ODLRO)
Bogoliubov-Valatin- diagonalisation Excitation spectrum ofBogoliubov-quasiparticlesQuasiparticle HamiltonianMomentum distributionof Bogoliubov-quasiparticles0n(xp)n(Ep)x/kT
Linear response of the quasiparticle systemExternal perturbationsThermal excitationsin local equilibriumtemperature changemagnetic fieldvector potentialThermally activated vs. nodal quasiparticlesAmpereZeemantemperature
Linear response of the condensate (BCS-Leggett theory)MacroscopiclimitBroken gaugesymmetryBroken spin-orbit symmetry(SBSOS)Leggett, 1971Charge supercurrentNew: spin supercurrent
01201T/TcisotropicaxialB1g, E1g,E2uC(T)/CN(T)Heat capacity ofBogoliubov-quasiparticles
Spin susceptibilityof Bogoliubov-quasiparticles10
0101T/TcisotropicE1g(||)E2uB1gE1g( )Bogoliubov quasiparticlecurrent and magneticfield penetration depthdlLm(T)/lLm(0)
The unconventional superconductivity in UPt3 (J. A. Sauls et al., 1996)singlet even parity (E1g)triplet odd parity (E2u)
Selected experimental resultsA. Quasiparticle heat capacity
Vanadium and Tin
UBe13 (H.-R. Ott et al., 1983)
Selected experimental results (ctd.)YBa2Cu3O7 (Junod et al., 1996) Sr2RuO4 (Deguchi et al., 2000)A. Quasiparticle heat capacityT[K]C(T)/CN(T)
Selected experimental results (ctd.)B. Quasiparticle spin susceptibility GdBa2Cu3O7 (Janossy et al. 1997)
Aluminium
Selected experimental results (ctd.)B. Quasiparticle spin susceptibility 3He-A, B(Ahonen et al., 1976)3He-A3He-B,
Selected experimental results (ctd.)C. Magnetic field penetration depth
Mercury
UBe13F. Gross et al., WMI, 1985
Selected experimental results (ctd.) C. Magnetic field penetration depth UPt3 (S. Schttl et al., WMI, 1999) YBa2Cu3O7 (W. Hardy et al., 1994)
Selected experimental results (ctd.)D. Electronic Raman scattering Bi 2212 (Hackl et al., WMI, 1994) Nb3Sn (Hackl et al., 1989)
Summary and conclusion: superconductivity and superfluidityPhysics Nobel prize 2003
Overwhelming application spectrum of the work by Vitalii Ginzburg, Alexei Abrikosov und Tony Leggett
Normal state of pair-correlated Fermi systems
Momentum relaxation and Drude conductivityMomentum conservation, shear viscosity and Hagen-Poiseuille law
Generalized BCS model of superconductivity and superfluidity
Parabolic Bands in D=3 und D=2Weak coupling limit Model pairing states
Superfluid 3He
First unconventional BCS superfluid (p-wave triplet pairing)Quantitative results for response und transport propertiesImplications for unconventional metallic superconductors
Unconventional superconductors
Singlet d-wave vs. triplet p- or f-waveNodal quasiparticles and low temperature power lawsApplication to Heavy Fermion SCs, organic SCs, Cuprates, Sr2RuO4
Future prospects: superconductivity and superfluidityUnconventional superconductivity, pairing symmetries, mechanisms, transport props.
Electron-doped cuprates Hole-doped cuprates: full doping dependenceHeavy Fermion SCs: UPt3, UBe13, ...Organic superconductorsThe Ruddlesden-Popper system Sr2Ru04
Dirty Fermi superfluids: 3He in aerogel
Local ResponseTransport and RelaxationZero SoundSpin wavesMultiple spin echosPair vibration modes
Two-fluid description of pair-correlated Fermi systems
Transport propertiesThermoelectric/mechanic effectsAnalytic treatment of the quasiparticle response and transport
Appendix A: Matthiessen rule classification
transport in metals
transport in cleanFermi liquids
transport in dirtyFermi liquids(3He in aerogel)
momentum conservation
momentum relaxation(el. + inel.)momentumrelaxation(elastic)