+ All Categories
Home > Documents > Superposition of Waves - Dr. James Hedberg, CCNY...

Superposition of Waves - Dr. James Hedberg, CCNY...

Date post: 26-Jun-2018
Category:
Upload: vulien
View: 250 times
Download: 0 times
Share this document with a friend
17
v v v v 2 2 2 2 2 2 2 1 1 1 1 1 1 1 Superposition of Waves What happens when two waves touch. Principle of Superposition When two marbles collide, they bounce back. That's how material objects behave. Two different objects can't occupy the same space at the same time. Waves, on the other hand, can occupy the same space. These two wave pulses are moving towards each other, then start to overlap, then continue on. Principle of Superposition This is one of the major concepts of physics - superposition. The concept of superposition is a very fundamental part of physics. It is the underlying cause for many phenomena in optics, acoustics, quantum mechanics, and other sub fields. Superposition also plays a large role in engineering fields, especially electrical. If you want to send several chunks of information down the same electrical wire, you'll rely on aspects of superposition. We'll look at how it occurs in simple systems like a wave on a string as well as more complicated situations like 2 dimensional acoustic interference. Later, you'll use the same concepts and tools to treat more complicated situations. What ever the two waves are, all we need to do is add them up in order to find the new wave. This animation shows two different wave approaching, interacting, then receding. (x, t)= (x, t)+ (x, t) y y 1 y 2 PHY 208 - superposition updated on 2018-02-01 J. Hedberg | © 2018 Page 1
Transcript

v

v v

v

2

2

2

2

2

2

2

1

1

1

1

1

1

1

Superposition of Waves

Whathappenswhentwowavestouch.

Principle of Superposition

Whentwomarblescollide,theybounceback.That'showmaterialobjectsbehave.Twodifferentobjectscan'toccupythesamespaceatthesametime.

Waves,ontheotherhand,canoccupythesamespace.Thesetwowavepulsesaremovingtowardseachother,thenstarttooverlap,thencontinueon.

Principle of Superposition

Thisisoneofthemajorconceptsofphysics-superposition.

Theconceptofsuperpositionisaveryfundamentalpartofphysics.Itistheunderlyingcauseformanyphenomenainoptics,acoustics,quantummechanics,andothersubfields.Superpositionalsoplaysalargeroleinengineeringfields,especiallyelectrical.Ifyouwanttosendseveralchunksofinformationdownthesameelectricalwire,you'llrelyonaspectsofsuperposition.We'lllookathowitoccursinsimplesystemslikeawaveonastringaswellasmorecomplicatedsituationslike2dimensionalacousticinterference.Later,you'llusethesameconceptsandtoolstotreatmorecomplicatedsituations.

Whateverthetwowavesare,allweneedtodoisaddthemupinordertofindthenewwave.

Thisanimationshowstwodifferentwaveapproaching,interacting,thenreceding.

(x, t) = (x, t) + (x, t)y′ y1 y2

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 1

0 1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8

1 m/s 1 m/s

2 3 4 5 6 7 82 3 4 5 6 7 8

2 3 4 5 6 7 8

A B

DC

Thesetwowaves(theredandtheblue)areaddedtogethertogetthepurple

Redcurve:wave1:

Bluecurve:

Quick Question 1

Thesetwowavesareapproachingeachotheratt=0.Whatwillthesumlooklikeatt=2s?

Math of Superposition

Let'saddtwowavestravelinginthesamedirectiononthesamestring.( , ,and arethesame)

wave1:

wave2:

Since,

withatrigidentity(below)

Thisisaveryusefultrigidentity:

Theonlydifferencebetweenthesetwowavesisthephasefactorthatappearsinthesecondone.Thisjustindicatesthatthewavesmighthavedifferentamplitudesatt=0.

The sum of two waves

k ω A

(x, t) = A sin(kx − ωt)y1

(x, t) = A sin(kx − ωt+ ϕ)y2

(x, t)y′ ==

(x, t) + (x, t)y1 y2A sin(kx − ωt) + A sin(kx − ωt+ ϕ)

(1)(2)

(x, t) = [2Acos ] sin(kx − ωt+ )y′ϕ

2

sinα + sinβ = 2 sin (α + β) cos (α − β)12

12

ϕ

(x, t) = A sin(kx − ωt)y1

(x, t) = A sin(kx − ωt+ ϕ)2

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 2

wave. wave2:

PurpleCurve:

Summary of interference types

Interferenceisusedtodescribethisphenomenon.

PhasedifferenceinAmplitude InterferenceType

Degrees Radians wavelength0º 0 0 FullyConstructive120º .33 Intermediate

180º .5 0 Fullydestructive240º .67 Intermediate

360º 1 FullyConstructive

(Applicableforwaveswiththesameamplitudeandwavelengthtravelinginthesamedirection.)

Waves traveling in opposite directions.

Herearetwowaveswithequalamplitudesandfrequenciestravelinginoppositedirectionsonastring.(Thebluewaveisthesumofthetworedwaves)

Asyouwatchtheanimation,keepaneyeonthedarkblueline.Thisisthesumofthetworedlines.You'llnotethatitdoesn'tappeartomovinginthexdirection,onlytheydirection.Therearealsosomepointsthatnevermoveintheydirection(i.e.havenodisplacment,

(x, t) = A sin(kx − ωt+ ϕ)y2

(x, t) = [2Acos ] sin(kx − ωt+ )y′ϕ

2

2A2π3 A

π4π3 A

2π 2A

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 3

ever),andotherpointsthatoscillatebetween+Aand-A(maximumdisplacement).

Math of Superposition for opposite direction

Let'saddtwowavestravelinginoppositedirectiononthesamestring.( , ,and arethesame)

wave1:

wave2:

Since,

withatrigindentity(below)

Thisisnotofthestandardtravelingwaveformat!Indeed,thisequationdescribesastandingwave.

Standing waves

Fortravelingwaves,theamplitudeofdisplacementofeachelementwasthesame.Theywouldallgetdisplacedtoamaximum .Inastandingwave,theamplitudeswillbepositiondependent.

The argumentofthesinefunctionleadstothisphenomenon.

Nodes

Since ,wecandeterminewhereexactlytheamplitudeswillbezero.

Whenever , ,we'llobtainazeroforthedisplacement.

Rearranging:

.

Anti-Nodes

Likewise,when =1,theropewillundergoamaximumdisplacement.

k ω A

(x, t) = A sin(kx − ωt)y1

(x, t) = A sin(kx + ωt)y2

(x, t)y′ ==

(x, t) + (x, t)y1 y2A sin(kx − ωt) + A sin(kx + ωt)

(3)(4)

(x, t) = [2A sinkx] cos(ωt)y′

sinα + sinβ = 2 sin (α + β) cos (α − β)12

12

A

(x, t) = [2A sin ] cos(ωt)y′ (kx) positiondependent

kx

sin(nπ) = 0

kx = nπ n = 0,1,2,3...

x = nλ

2

sin(kx)

, , , . . .

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 4

Ifweoscillateafixedstringinsuchawaythatthereisanodeateachendpoint,wehaveeffectivelysetupastandingwave.Thiswillhappenwhenthefrequencyofoscillationisinresonancewiththestringcharacteristics.

Thus,onlywavelengthswhich'fit'inthestringwillcreateresonantoscillations.

Thesearecalled'harmonicmodes'(shownare1,2,and3).

L

Nodes and Antinodes

Hereisourstandingwave.

Onenodeandoneantinodearepointedout.(Althoughtherearemanymore)

Inabstractmath-land,allwehavetodotocreateastandingwaveisadduptwowavefunctions.Inthephysicaluniversehowever,wehavetodoalittlebitmore.Tounderstandhowastandingwaveiscreatedinaphysicalsystem,we'llneedtoseewhathappenswhenwavesbounce.

Boundary (hard)

Ifwesendawavepulsedownastring,wherethestringisfixedatthefarend,weseethatthewaveformflips.

Anotherwayofphrasingitistosay,thewaveformisinverteduponreflection,orundergoesaphaseflipof180°

Boundary (soft)

Ifwesendawavepulsedownastring,wherethestringislooseatthefarend,weseethatthewaveformdoesnotflip.

Creation of a standing wave

Standing waves and resonance

Theimagehereshowsthefirst3harmonicmodesofthestring,modes1,2and3.Thefirstmodeisoftencalledthefundamental,orlowestharmonic.

Resonance frequencies

Whatdeterminestheresonancefrequencies?

kx =

=

, , , . . .π

23π

25π

2

(n+ )π for n = 0,1,2...12

(5)

(6)

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 5

Rememberthat .Now,thevelocityofthewavewavegivenbythephysicalcharacteristicsofthestring:thelinearmassdensity, ,andthetension, .

Thereforewecanwrite:

Quick Question 2

Whenawireundertensionoscillatesinitsthirdharmonicmode,howmanywavelengthsareobserved?

1. 1/32. 2/33. 1/24. 3/25. 2

Quick Question 3

Whichofthesecouldbethefrequencyofastandingwavewithawavespeedof12m/sasitoscillatesona4.0-mstringfixedatbothends?(itmightnotbethelowestharmonic)

A. 2.5HzB. 5.0HzC. 10HzD. 15HzE. 20Hz

Example Problem: Piano String

ThelowestnoteonmostpianosisA0.Ithasafrequencyof27.5Hz.Thevibratingsectionofthiswireonagrandpianois1.9meterslong.[1meterofpianowirehasamassof200g]Whatisthetensioninthestring?

Interference

Consideraspeakerplayingaprettysinusoidalwavewithawavelength .

Then,anotherspeakerplayingtheexactsamepitchisplacedinfrontofSpeaker1,sothatthetwospeakersareexactlyonewavelengthapart.

Thetwosignals,orwaves,willconstructivelyinterferecreatingasignaloflargeramplitude.

v = λf

μ τ

f = = n = nv

λ

v

2L

τ

μ

−−√ 12L

Example Problem #1:

λ

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 6

spkr 1 spkr 2

sum of 1+ 2

Now,let’simaginethesecondspeakerwasproducingawaveexactlyoppositetothespeaker1wave.

Thesumofthesetwowaveswillnowbeequaltozero,sincetheyarealwayscreatingdestructiveinterference.

Thesetwowavesarecalled“outofphase”.

spkr 1 spkr 2

sum of 1+ 2

Math of 1-D audio interference

IfwanttoknowwhatthesoundislikeatpointA,we’llneedtoknowhowfaritisfrombothsources:

spkr 1 spkr 2

A

If isequaltowavelengthtimesawholenumber,thentheamplitudeoftheoscillationsisincreased:

If isequaltowavelengthtimeshalfanintegernumber,thentheamplitudeoftheoscillationsisdecreased:

Two speakers

Δd

Δd = nλ

Δd

Δd = nλ

2

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 7

Math of 1d interference

Thephasedifferencebetweentwowaveswilldeterminewhethertheinterferenceisconstructiveordestructive.Forconstructive:

andfordestructive:

Theequationsoftwotravelingwaves(travelinginthesamedirectionwiththesamefrequencyandwavelength)aregivenby:

and

Forthesewaves, meanstheintitialphaseconstantofwave1.

Thus,thephases,ortheargumentsofthesinetermsaregivenby:

and

Ifwesubtractthesetwophases,thatisfind (akathephasedifference):

Andso,forthecaseoftwosoundsourcesinonedimension,ifwewanttofigureoutwhenconstructiveinterferencewilloccur,basedoneithertheinitialphaseconstantsofthetwowaves,ortheseparationinspace:

Orfordestructiveinterference:

1d-interference

Hereisthephasedifferenceequation:

Wecanseethattherearetwocontributions:

1. Thepath-lengthdifference, ,inproportiontothewavelength.

Δϕ = 0, 2π, 4π…

Δϕ = π, 3π, 5π…

= A sin(k − ωt+ )y1 x1 ϕ10

= A sin(k − ωt+ )y2 x2 ϕ20

ϕ10

= k − ωt+ϕ1 x1 ϕ10

= k − ωt+ϕ2 x2 ϕ20

Δϕ

Δϕ = − = k( − ) + ( − ) = ( − ) + Δϕ2 ϕ1 x2 x1 ϕ20 ϕ102π

λx2 x1 ϕ0

Δϕ = ( − ) + Δϕ = 0, 2π, 4π…2π

λx2 x1

Δϕ = ( − ) + Δϕ = π, 3π, 5π…2π

λx2 x1

Δϕ = ( − ) + Δ2π

λx2 x1 ϕ0

−x2 x1

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 8

Consider2points.Weneedtofigureouthowfartheyarefromeachsoundsource.

point 1

point 2

crest

trough

L1L2

L2L1

2. Theinherentphasedifferencebetweenthetwooscillators.

Ifwehavetwoidenticalsourcesthatareinphase(i.e. ),thenonlythepathlengthdifferencewilldetermineifthewavesconstructivelyordestructivelyinterfere.

where isanintegerwillcreatemaximumconstructiveinterference.Thismakessense.Ifthewavesareseparatedbyawholenumberofwavelengths,thenit'sessentiallythesameasiftheyarenotseparatedatall.

Sounds waves in 2-dimensions (or 3)

Hereisasinglesource.Imaginejustonespeaker,creatingpressurewavesintheair.

Nowweaddasecondsource.

We'llneedtobeverycarefulwithinterpretingthecontrast(i.ecolorscheme)ofthisplot.Ifapointisredorblue,thatmeansthemedium'sdisplacementislarge.Ifapointiscoloredwithwhite,thatmeansthemedium'sdisplacementiszero.Mostpositionswillalternatebetweenred,white,blue,white,redastimeadvances,andthewavepropagates.However,someregions,asyoucanseeintheanimatedversion,remainwhiteatalltimes.Thesearetheregionsofdestructiveinterferences,wherethewavesfromthetwosorcesinterferedestructively.Attheselocations,thereisnodisplacementofthemedium,andthusnosoundisheard.

Constructive and Destructive Interference

Wecanfindsomegeneralguidelinestodetermineifwe'llhaveconstructiveordestructiveinterferencebasedonthepositionofthelistener.

1. Case1:Thepathlengthdifferenceisequaltoawholenumberofwavelengths:

Thisyieldsconstructiveinterference2. Case2:Thepathlengthdifferenceisequaltoahalfnumberofwavelengths:

Thisyieldsdestructiveinterference

Rephrased in terms of phase.

Δ = 0ϕ0

Δx = mλ

m

ΔL = nλ

ΔL = (n+ ) λ12

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 9

Mathematicallyspeaking,interferenceisdeterminedbythephasedifferencebetweentwowaves.

If is0, ,oranymultipleof ,constructiveinterferenceoccurs

i.e. where

Thisiscontrarytodestructiveinterferencewhichoccursatoddmultiplesof

i.e. where

ϕ 2π 2π

ϕ = m× 2π m = 0,1,2,…

ϕ = (2m+ 1)π m = 0,1,2,…

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 10

Quick Question 4

crest trough trough crest

12

3

Herearetwosoundsourceemittingwoundwavesinphase.Thesolidlinesarethemaxiumumpressureregions,thedashedlinesshowthelocationoftheminimumpressureregions,at

Atpoint1,theinterferenceis

1. MaximumConstructive2. Constructive,butlessthanmaximum3. PerfectlyDestructive4. Destructive,butonlypartially5. Nointerference

Quick Question 5

Atpoint2,theinterferenceis

1. MaximumConstructive2. Constructive,butlessthanmaximum3. PerfectlyDestructive4. Destructive,butonlypartially5. Nointerference

Quick Question 6

Atpoint3,theinterferenceis

1. MaximumConstructive2. Constructive,butlessthanmaximum3. PerfectlyDestructive4. Destructive,butonlypartially5. Nointerference

t = t0

Example Problem #2:

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 11

Twospeakersinaplaneare2.0mapartandinphasewitheachother.Bothemit700HzSoundwavesintoaroomwherethespeedofsoundis341m/s.Alistenerstands5.0minfrontofthespeakersand2.0mtoonesideofthecenter.Describetheinterferenceatthispointinspace.

Reflecting sound waves

Justlikewithawaveonastring,iftheconditionsareright,we'llobtainastandingwaveinsidethetube.

And,justlikewithwavesonastring,onlycertainwavelengthswill'fit'.

Pressure and Displacement in tubes

closed-closed open-open∆(pressure)

displacement

∆(pressure)

displacement

m = 1

m = 2

m = 3

m = 1

m = 2

m = 3

Thisfigureshowsthefirstthreemodesofoscillationforstandingwavesintubes.Ontheleft,weseeatubethatisclosedonboth

Example Problem #2:PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 12

closed-open∆(pressure)

displacement

m = 1

m = 3

m = 5

…arejusttubeswithairflowing.Thelengthofthetubeisoneimportantaspect.Differentnotesarecreatedbycoveringholes,whicheffectivelychangethelengthofthetube.

ends.Sincethetubeisclosed,particlesofaircannotmovepasttheboundary.Thus,thedisplacementgraphsshowanodeattheendsofthetube.However,inthepressuregraph,theendsareoccupiedbyanti-nodes.Ontheright,thesameisillustratedbutfortubesthatareopenonbothends.Now,theparticlesarefreetomoveinandoutofthetubeattheend.However,sincethepressureattheendofthetubeissetbyatmosphericpressure,thisvaluecannotchange.Therefore,weseenodesinthepressuregraphsattheends,andanti-nodesinthedisplacementgraphs.

Asyoucanseeinthetopleft,thefundamentalmodeforaclosed-closedtubehasafrequencywhosewavelengthisequaltotwicethelengthofthetube.Thesecondharmonicfrequencycontains1fullwavelength.

Pressure and Displacement in tubes

Theseplotsshowtubesthatareclosedononeend,andopenontheother.Thefundamentalmodeforaclosed-opentubewillhaveawavelengthequalto4timesthelengthofthetube.

Wind Instruments...

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 13

Tuningforksareverycleanoscillators.

Theends(calledtines)movebackandforthinaverysinusoidalmotion.

Thismotioncreatesthepressurewavesthatwehearasapuresinewave.

Thewavelengthandthusthefrequencyaregivenbythegeometryandmaterialsofthetuningfork.

disp

lace

men

t

time

Tuning Forks

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 14

Hereisatuningfork

Andhereisthefrequencyspectrumofthesoundthetuningforkmakes.Thespectrumisagraphofthesignalstrengthversesfrequency.Wecanseethatonefrequencyhasaveryhighvalue.

Sound, in general

Rarelydowehearperfectsinusoidaloscillations.Mostinstruments,noises,vocalizationsaremixturesofmanydifferentoscillations.

ThisismiddleConthepiano.Youcanseethefundamentalat261Hertz.Buttherearealotofhighertonesalsopresent.Thezoominshowsevenmorelittlepeaks.

Beats

Sofar,allthistalkofinterferencehasbeenabouttwosourceswiththesamefrequency.Inreallife,that’susuallynotthecase.

Herearetwoplotsofsinewavescomingfromtwospeakerslocatedatthesameplace.

Thetopsoundhasafrequencyof1Hertzwhilethebottomhasafrequencyof1.1Hertz.

It’shardtotelltheyaredifferent.

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 15

5 10 15 20

2

1

1

2

region of constructive interference

region of destructive interference

5 10 15 20

2

1

1

2

overlap

out of phase

Leteachofthetwosourcewavesbegivenby:

Theresultantdisplacementisthen:

= cos t and = cos ts1 sm ω1 s2 sm ω2

s = + = (cos t+ cos t)s1 s2 sm ω1 ω2 (7)

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 16

5 10 15 20

2

1

1

2

region of constructive interference

region of destructive interference

Since ,theterminbracketscanbeconsideredamodulatedenvelopeoscillatingatangularfrequency .

Itsminandmaxvaluesoccurtwiceinagivencycle.

Thisoscillationbetweenaminandmaxiswhatwehearasbeats.

or,intermsoffrequency, :

M

L

Mass(kg) (Hz)2.00 684.00 976.00 1178.00 13510.00 152

Usingatrigidentity,thisbecomes:

if and ,thentheaboveequationbecomesmoretidy:

Aheavymassissuspendedfroma1.65mlongsteelwire.(Thewirehasamassof5.85g)Thefrequenciesofthe3rdharmonicoscillationofthewireasafunctionofmassaregivenbelowinthetable.Usethisdatatodetermineavalueof.

Enter:Fit{{0,0},{2,68^2},{4,97^2},{6,117^2},{8,135^2},{10,152^2}}atwolframalpha.

Link

s = 2 cos[ ( − ) t] cos[ ( + ) t]sm

12

ω1 ω212

ω1 ω2 (8)

= ( − )ω′ 12

ω1 ω2 ω = ( + )12

ω1 ω2

s(t) = [2 cos t] cosωtsm ω′

s(t) = [2 cos t] cosωtsm ω′

ω≫ ω′

ω′

= 2 = 2( )( − ) = −ωbeat ω′ 12

ω1 ω2 ω1 ω2

f

= −fbeat f1 f2

f3

g

PHY 208 - superposition

updated on 2018-02-01 J. Hedberg | © 2018 Page 17


Recommended