+ All Categories
Home > Documents > Supplementary Information for : Plasticization-resistant ... · Supplementary Information for :...

Supplementary Information for : Plasticization-resistant ... · Supplementary Information for :...

Date post: 26-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
12
Supplementary Information for : Plasticization-resistant Ni 2 (dobdc)/polyimide composite membranes for CO 2 removal from natural gas Jonathan E. Bachman 1 and Jeffrey R. Long 1,2,3* 1 Department of Chemical and Biomolecular Engineering, 2 Department of Chemistry, University of California, Berkeley, California, 94720, USA, 3 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA. Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2016
Transcript
  • SupplementaryInformationfor:Plasticization-resistantNi2(dobdc)/polyimidecompositemembranesforCO2removalfromnaturalgas

    JonathanE.Bachman1andJeffreyR.Long1,2,3*

    1DepartmentofChemicalandBiomolecularEngineering,2DepartmentofChemistry,UniversityofCalifornia,Berkeley,California,94720,USA,3MaterialsSciencesDivision,LawrenceBerkeleyNationalLaboratory,Berkeley,California,94720,USA.

    Electronic Supplementary Material (ESI) for Energy & Environmental Science.This journal is © The Royal Society of Chemistry 2016

  • Methods

    SynthesisofNi2(dobdc)nanocrystals

    Solid2,5-dihydroxyterephthalicacid(1.0g,5.0mmol;H4(dobdc))and16mmolofNi(NO3)2·6H2O

    wereaddedtoamixtureof400mLofDMF,27mLofethanol,and27mLofwaterina500-mL

    round bottom flask. 5 mL of triethylamine was added rapidly while stirring under an N2

    atmosphere. The Ni2(dobdc) nanocrystals precipitated within minutes, but was allowed to

    continue for 2 hours. The dispersed Ni2(dobdc) nanoparticles were immediately collected by

    centrifugation,thesolidwasredispersedin250mLofDMF,andthesuspensionwasheatedat

    120°Cfor6h.TheNi2(dobdc)undergoesacolorchangefromgreentobrownuponheating.The

    centrifugationandDMFwashingstepswererepeatedfivetimesinordertoremoveunreacted

    ligand. The nanocrystals were then collected by centrifugation and redispersed in 250mL of

    methanolandthesuspensionwasheatedat60°C for2-5h.Thecentrifugationandmethanol

    washing steps were repeated six times in order to exchange all of the DMF for methanol,

    includingthosemoleculescoordinatedtothemetalsites.FullremovalofDMFwasconfirmedby

    infraredspectroscopy.Nanocrystalswere thenstored inmethanoluntilmembranecasting,or

    driedunderreducedpressureat180°Cfor24hpriortogasadsorptionmeasurements.

    PolymerSynthesis

    6FDA-DAT, 6FDA-DAM, and 6FDA-durene were formed from 2,2'-bis-(3,4-dicarboxyphenyl)

    hexafluoropropanedianhydride(6FDA)andeither2,4,6-trimethyl-1,3-phenylenediamine(DAM),

    2,6-diaminotoluene(DAT)or2,3,5,6-tetramethyl-1,4-phenylenediamine(durene)usingstandard

    chemicalimidizationtechniques.1,2Therandom1:1copolymer6FDA-DAT:DAMwassynthesized

    in a similar manner, according to reported techniques.3The dianhydride and diamines were

    purchasedfromTCI.Beforeuse,6FDAwaspurifiedoncebyvacuumsublimation,DAMandDAT

    werepurifiedthreetimesbyvacuumsublimation,anddurenewaspurifiedbyrecrystallization

    in methanol. N-methyl-2-pyrrolidone (NMP) was purchased from Spectrum Chemicals and

    vacuumdistilled immediately beforeuse. Triethylamine and acetic anhydridewerepurchased

    fromEMDandSigma-Aldrich, respectively,andwereusedas received.Adryatmospherewas

    maintainedwithinthereactionglasswarebyflowinghousenitrogenthroughaDrieritecolumn

    (W.A.HammondDrieriteCo.,Ltd.,Xenia,OH)upstreamofthereactionvessel.Allglasswarewas

    attachedtoflowing,drynitrogenafterbeingflamedried.CelluloseacetateandMatrimid®were

    kindlyprovidedbyMembraneTechnologyandResearch(MTR)Inc.

  • Membranecastingandactivation

    Concentration ofNi2(dobdc) inmethanolwere determined by sonicating a stock solution and

    reducing a 1-mL aliquot to dryness to find the mass of activated nanocrystals, and resulting

    stock solutionswere found tobe~30mg/ml. For compositemembranes, analiquot from the

    Ni2(dobdc)stocksolutioninmethanolwastakenandredispersedin10mLofthecastingsolvent

    ina20mLvial.TheNi2(dobdc)wasthencentrifugedandredispersedin10mLofcastingsolvent

    in order to ensure no residual methanol was present during membrane casting.

    Dichloromethanewasusedasthecastingsolventforallpolymersexceptcelluloseacetate,for

    whichacetonewasused.Thenanocrystalsuspensionwasthensonicatedusingahornsonicator

    for 1minwith addition of casting solvent in order tomaintain a total volume of 10mL. The

    polymerwasthendissolved intotheNi2(dobdc)suspensionandthemixturewassonicatedfor

    another 1 min. The mixture was cast onto a glass plate and the solvent was allowed to

    evaporateover thecourseof~24h,andtheresulting filmswere foundtobe40-70μmthick.

    The freestanding filmwas thendried inavacuumovenat120°C for24h inorder to remove

    residualcastingsolvent.

    The loading of Ni2(dobdc) nanocrystals in the composite film was determined by a

    thermogravimetric analysismethod. For reference, theNi2(dobdc) powderwas first activated

    underflowingN2at180°Cfor1.5htoensureactivation,andthenthesampleswereheatedto

    600°CunderflowingO2.Theremainingoxidemasswascomparedtotheinitialactivatedmass

    ofthemetal-organicframework.ThesameprocedurewasconductedfortheNi2(dobdc)/6FDA-

    DAMfilms.Thepercentageofmassremainingaftertherampto600°CunderO2isattributable

    to metal oxide, and from this the amount of activated M2(dobdc) present in the film was

    obtained.

    Gaspermeabilitymeasurements

    Singlecomponentgaspermeationexperimentswereconductedonan instrumentconstructed

    in-house.Theprocedureformembranesamplepreparationisdescribedinourpreviouswork.4

    Formulticomponentpermeationexperiments,anequimolarmixtureofCO2/CH4wassweptover

    the feed side of themembrane at a rate > 100x the permeation rate, in order to ensure no

    concentrationpolarization.Thecompositionofthepermeate,pCO2/(pCO2+pCH4),wasdetermined

  • bycollectingthepermeate,andthenexpandingittoamassspectrometer(MKSMicrovision2).

    Themassfractionof (mass44)/[(mass44)+(mass15)] inthecollectedpermeatewasusedto

    determine themixed-gas selectivity. A calibration of themass fractionwas determined using

    standardswith10%,50%,and90%CO2inmethane.StandarderroroftheCO2/CH4molefraction

    calibration is 0.79%. The uncertainty in the downstreammole ratio, aswell as uncertainty in

    mixed-gasselectivities,isapropagationofuncertaintyfromthestandarderrorinthemoleratio

    calibration.

    Gasadsorptionmeasurements

    Low-pressure gas adsorption data between 0 and 1.1 bar were measured using a high

    throughput gas-adsorption analyzer constructed by Wildcat Discovery Technologies, using a

    methoddescribedpreviously.5Samplesconsistingof50-100mgofNi2(dobdc)powder,polymer

    film,ormixed-matrixfilmwereloadedintoapreweighed4mL,andheatedat180°Cfor24h.

    Themassoftheactivatedsamplewasthenusedasthebasisfortheadsorptionmeasurements.

    Afteranadsorptionisothermwasmeasured,thesamplewasreactivatedat180°Cfor6hbefore

    measuringasubsequentadsorptionisotherm.

    Determinationofglasstransitiontemperatures

    The glass transition temperatures (Tg) were determined by differential scanning calorimetry

    usingaTAQ200instrument.Temperaturescanswereconductedat10°C/minstartingat50˚C

    andendingatatemperaturethatvarieddependingonthepolymer,whichwas~20˚Cabovethe

    observedTg.Multipletemperaturecycleswererun,andthereportedTgwastakenfromeither

    thesecondorthirdcycle.

    Calculatingpermeability

    In order to ensure steady-state permeation rates were attained, permeabilitymeasurements

    wererunforatleast6×thetimelag,wherethetimelagisdefinedastheinterceptonthetime-

    axisonthepressurevs.timeplotwherealineisdrawnfittingthelinearregion.6Thetimet=0

    corresponds towhen the downstream volume is closed to vacuum and the gas is allowed to

    beginaccumulating.Attheendof6×thetimelag,theslopeofthelinefittingthelast20%ofthe

    datawasusedtodeterminethesteady-statepermeationrate.Inthecasethatthetimelagwas

  • not detectable, i.e., for CO2 permeation in Ni2(dobdc)/6FDA-durene, the permeation at each

    pressurepointwasallowedtoproceedforthreeminutes.

    Thepressure-basedpermeabilityiscalculatedusingEqn.1,wherePisthepermeability,listhe

    thicknessofthefilm,Vcell isthevolumedownstreamofthemembranewheregasisallowedto

    accumulateduringapermeationtest,Aistheareaofthemembraneexposedtopermeation,Pf

    is the upstream pressure, R is the gas constant, T is the temperature in K, 𝑑𝑝 𝑑𝑡 !!is the

    steady-statepermeationrate,and 𝑑𝑝 𝑑𝑡 !"#$istheleakrate.Wereportpermeabilitiesinthe

    unitofBarrer(1Barrer=10!!! !"! !"# ∗!"

    !"!∗!∗!"#$).

    𝑃 = !∗!!"##!∗!!∗!∗!

    𝑑𝑝𝑑𝑡 !!

    − 𝑑𝑝 𝑑𝑡 !"#$ (1)

    Uncertaintyinthepermeabilitywaspropagatedfromuncertaintyinthefilmthickness,filmarea,

    upstreampressuretransducer,temperature,anddownstreamvolume.

    GPC

    Molecularweightsweredeterminedusing aViscotek TDA302 size exclusion chromatography

    (SEC)systemcalibratedrelativetopolystyreneandusingtetrahydrofuran(THF)asthesolvent.

    Supplementary Table 1 presents the weight-averaged molecular weight, number-averaged

    molecularweight,andpolydispersityindexforthesamplesconsideredinthisstudy.

  • Figures

    SupplementaryFigure1|PowderX-raydiffractionpatternforNi2(dobdc)nanocrystals.

  • Supplementary Figure 2 | Equilibriumadsorption isothermsofCO2 (green) andCH4 (black) inneatNi2(dobdc)at35˚C.Blacklinescorrespondtodual-siteandsingle-siteLangmuir-FreundlichfitsforCO2andCH4,respectively.

  • SupplementaryFigure3|CO2/CH4adsorptiveselectivitiesinneatNi2(dobdc)aspredictedfromIdealAdsorbedSolutionTheory(IAST),withadsorptiondatatakenat35˚Candcalculatedat1bartotalgaspressure.

  • Supplementary Figure 4 | Thermogravimetric analysis curve for the decomposition ofNi2(dobdc).From0-110minutes,thesamplewasactivatedat180˚CunderflowingN2,andthenwasheated to 600 ˚Cunder flowingO2. Thedifferencebetween the activatedmass and finalmasswasusedtocalculatetheloadingofNi2(dobdc)inthecompositefilms.

    Supplementary Figure 5 |Thermogravimetric analysis curve for compositemembranes. FilmswerefirstactivatedunderflowingN2at180˚Candthenheatedto600˚CunderflowingO2.Thedifferenceinmassbetweentheactivatedfilmandremainingmetal-oxidewasusedtocalculatetheamountofNi2(dobdc)inthecomposite.

  • SupplementaryFigure6|CO2adsorptionisothermsintheneatpolymer(closedtriangles)andcomposite(closedcircles)membranes.OpencirclescorrespondtotheweightedaverageofCO2adsorbedbetweentheneatpolymerandNi2(dobdc)powder.Amountsadsorbedat1barwereused for thecalculationofpurecomponentsolubilityparameters,SCO2.

  • Supplementary Figure 7 | CO2 (circles) and CH4 (triangles) permeability data for neat (open) and composite(closed)membranesunderanequimolarfeedofCO2andCH4.UncertaintieswerepropagatedfromthestandarderrorinthecalibrationcurvewhichdeterminedtheCO2/CH4ratiointhepermeate.SupplementaryTable1|Sizeexlusionchromatographycharacterizationforeachpolymertested.MwandMnrefertoweightaverageandnumberaveragemolecularweight,respectively.PDIisthepolydispersityindex.

    Polymer Mn Mw PDI6FDA-durene 7,300 24,800 3.36FDA-DAM 69,500 166,000 2.46FDA-DAT:DAM 74,200 129,400 1.76FDA-DAT 15,700 37,000 2.3Matrimid® 34,800 79,500 2.3Celluloseacetate 62,600 166,000 2.7

  • References1.H.Ohya,V.V.Kudryavtsev,S.I.Semenova,GordonandBreachPublishers:Amsterdam(1996).2.M.K.Ghosh,K.L.Mital,Marcel:NewYork(1996).3.L.Wang,Y.Cao,M.Zhou,S.J.Zhou,Q.Yuan,J.MembraneSci.,2007,305,338-346.4.J.E.Bachman,Z.P.Smith,T.Li,T.Xu,J.R.Long.NatureMater.(accepted).5.J.M.Mason,T.M.McDonald,T.-H.Bae,J.E.Bachman,K.Sumida,J.J.Dutton,S.S.Kaye,J.R.Long.J.Am.Chem.Soc.,2015,137,4784-4803.6.H.L.Frisch,J.Phys.Chem.,1957,61,93-95.


Recommended