+ All Categories
Home > Documents > Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven...

Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven...

Date post: 22-Jun-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
44
Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst Wenjin Dong, Jie Tang, Lijun Zhao, Li Deng* and Mo Xian* Table of Contents Control experiments, kinetics and thermodynamics…...……..……………….………………………………...……………….………….2 Quantum yield measurements……………………………………………………………………………………….…………………………4 Synthesis of L-glutamate……………………………………………………………………………… ……………………....……......….…7 NMR spectra (Figure S8 to S50)…….……………...………………………………………………………… …………………………..…9 Electronic absorption spectra (Figure S51 to S57)………….……………….………..…….…….……………………………………..…33 Molecular structures (Figure S58 to S60)…………..……………………...………………….…..………………………….…………..…38 Mass spectra (Figure S61 to S73)…………….……………………...……………………….…..…………....……………….………...…39 References……………………………………………………………...…………………….….………………..……………….………...…44 1 / 44 Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2020
Transcript
Page 1: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Supplementary Information

Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst Wenjin Dong, Jie Tang, Lijun Zhao, Li Deng* and Mo Xian*

Table of Contents

Control experiments, kinetics and thermodynamics…...……..……………….………………………………...……………….………….2

Quantum yield measurements……………………………………………………………………………………….…………………………4

Synthesis of L-glutamate……………………………………………………………………………… ……………………....……......….…7

NMR spectra (Figure S8 to S50)…….……………...………………………………………………………… …………………………..…9

Electronic absorption spectra (Figure S51 to S57)………….……………….………..…….…….……………………………………..…33

Molecular structures (Figure S58 to S60)…………..……………………...………………….…..………………………….…………..…38

Mass spectra (Figure S61 to S73)…………….……………………...……………………….…..…………....……………….………...…39

References……………………………………………………………...…………………….….………………..……………….………...…44

1 / 44

Electronic Supplementary Material (ESI) for Green Chemistry.This journal is © The Royal Society of Chemistry 2020

Page 2: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Control experiments, kinetics and thermodynamics

--BSA

ADHGSH ME

With

out 7

No irra

diatio

n0

20

40

60

80

100

120

TOF

(h-1

)

no NADH formed

Figure S1. Catalytic activities of 7 (10 uM) for transfer hydrogenation of NAD+ (1mM) in the presence of bovine serum albumin (BSA,

0.2mg mL-1), alcohol dehydrogenase (ADH, 2 U), glutathione (GSH, 1 mmol) and mercaptoethanol (ME,1 mmol) under irradiation of 40

w green LEDs (525 nm) with a fan at room temperature; reactions without 7 or irradiation can not afford NADH.

0 200 400 600 800 1000 1200

0.02

0.04

0.06

k (s

-1)

Conc. HCOONa (mM)

40 w LEDs (525 nm)50 uM Ru(tpy)(biq)Cl2

Equation y = a + b*x

Intercept 0.0193 ± 0.00206Slope 2.9898E-5 ± 3.606R-Square (COD) 0.97173

Figure S2. Rate constant (k) of the photosubstitution of 7 with formate as a function of HCOONa concentration.

(Rate constant (k) was calculated according to the results shown in Figure S51-S54)

2 / 44

Page 3: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

0.0031 0.0032 0.0033 0.0034 0.0035

2.8

3.0

3.2

3.4

3.6

3.8ln

(TO

F)

1/T (1/K)

T / K TOF / h-1285 20306 28322 39

Slope = -1593.31 ± 224.82R2 = 0.998

Figure S3. Relationship between TOF of NADH and temperature.

(Reaction conditions: 50 mL autoclave with a sapphire glass window on the top side and a thermocouple inside, 5 mL solution of 1mM

NAD+, 10 uM 7, 0.5 M HCOONa, irradiation of 100 w green LEDs. Note: higher or lower temperature will cause condensed water on

glass window, which affects the photo flux. )

As shown in Figure S3, apparent activation energy (Ea) was calculated according to Arrhenius equation:

Ea = −R𝑑ln(TOF)

𝑑(1T)

= 3.2 ± 0.4 kcal mol−1

Hydricity measurements were performed in sealed NMR tubes containing ca. 10 mM hydride donor at room

temperature (ca. 25 °C) and ca. 10 mM acceptor. Acetonitrile-d3 was degassed by freeze-pump-thaw cycle for

three times. Hydricity was calculated based on the thermodynamic equilibrium constant (K) according to:

DH + A AH- + D+

HydricityDH  =  Hydricity AH  +  𝛥G  =  Hydricity AH −  RTlnK

K  =  [AH] × [D][DH] × [A]

where K was estimated as 4.3 by integration of the 1H NMR spectra (Figure S44-S49), corresponding to a ΔG

of -0.9 kcal mol-1.

3 / 44

Page 4: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Quantum yield measurements

The quantum yield was calculated according to:

𝜙  =  mol NADH

photo flux  ×  t  × f1

where t is reaction time and f1 is the fraction of light absorbed by photocatalysts at 456 nm or 525 nm.

The photon flux of blue and green LEDs could be determined by standard ferrioxalate actinometry and

Reineckate’s salt actinomertry, respectively 1-3.

Photo flux  =  mol actinometry product𝜙actinometry  ×  t  × f2

where f2 is the fraction of light absorbed by ferrioxalate at 456 nm or Reineckate’s salt at 525 nm. The quantum

yield could be expressed as

𝜙  =  𝜙actinometry  ×  rNADH  ×  f2

ractinometry  ×  f1

where rNADH and ractinometry are reaction rate of NADH and actinometry product, respectively. (rNADH = mol NADH

/ t, ractinometry = mol actinometry product / t)

To determine the quantum yield of NADH regeneration in the presence of photocatalyst 1 under irradiation of

40 w blue LEDs, to a 4 mL cuvette (l = 1.0 cm) was added 2 mL 0.15 M ferrioxalate aqueous sulfuric acid (0.2 M)

solution. The cuvette placed 1 cm away from 40 w blue LEDs (456 nm). After irradiation for 5 seconds, 0.1 mL

of the ferrioxalate solution was added to 0.4 mL 0.15 M 1,10-phenanthroline sulfuric acid (0.2 M) solution. After

1h, the sample was diluted to 2 mL with 0.2 M sulfuric acid solution.

0 50 100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

A a

t 510

nm

Conc. Fe(II) (uM)

Equation y = a + b*x

Intercept 0.02322 ± 0.02Slope 0.00247 ± 1.67R-Square (COD) 0.98193

a)

4 / 44

Page 5: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

5 10 15 20 25 300

5

10

15

20

25

30

mol

of F

e(II)

(um

ol)

Time (s)

Equation y = a + b*x

Intercept 0.42782 ± 0.Slope 0.81097 ± 0.R-Square (COD) 0.99934

b)

Figure S4. a) standard curve for Fe(II) quantification; b) formation of Fe(II) under irradiation at 456 nm as a function of time.

The Fe(II) concentration of the resulting solution was measured by UV-Vis spectrometer at 510 nm. As shown

in Figure S4, the rate of Fe(II) formation (ractinometry) is 0.832 umol s-1. A solution (2 mL) of 1 mM NAD+, 0.5 M

HCOONa and 10 uM 1 was added to the same cuvette which was equipped with a rubber spetum cap and

purged with Ar through a needle. The solution was irradiated by the 40 w blue LEDs and cooled with a fan. After

15 min the NADH was measured by a UV-Vis spectrometer at 340 nm. As a result, rate of NADH formation

(rNADH) was 0.15 umol h-1. The f1 for 10 uM 1 was 0.117 (A = C1 × I × ε456 nm = 10uM × 1cm × 5368 M-1cm-1=

0.054, f = 1- 10-A =0.117). The Φactinometry and f2 for ferrioxalate were reported as 0.845 and 0.9926.2

𝜙  =  0.845  ×  0.15 ÷ 3600  ×  0.9926

0.832  ×  0.117 = 3.6 × 10−4

Therefore quantum yield of NADH regeneration in the presence of photocatalyst 1 was 3.6×10-4.

For the quantum yield of NADH regeneration in the presence of photocatalyst 7 under irradiation of 40 w green

LEDs (525 nm), Reineckate’s salt actinomertry was applied according to a reported procedure.3 Commercially

available ammonium Reinecke’s salt was converted to the potassium salt (KCr(NH3)(SCN)4) by dissolving in

warm (40-50 °C) water, adding excess solid potassium nitrate, cooling, and filtering. The product was

recrystallized carefully two times from warm water under dimmer condtions and dried under vacuum. 2 mL of 4

mM fresh potassium Reinecke’s salt solution was added to a 4 mL cuvette. After irradiation, 0.1 mL was added

to 0.9 mL 10 mM Fe(NO3)3 nitric acid (2.5 wt %) solution. After diluted 5 times with 2.5 wt% nitric acid, the

concentration of free thiocyanate anion was determined with a UV-Vis spectrometer at 440 nm. The rate of

SCN- formation (ractinometry) was 0.119 umol s-1. The rate of NADH formation (rNADH) in the presence of 7 under

the same irradiation was 1.56 umol h-1. The f1 for 10 uM 7 was 0.117 (A = C1 × I × ε525 nm = 10uM × 1cm × 3761

M-1cm-1= 0.038, f = 1- 10-A =0.084). The Φactinometry and f2 for Reinecke’s salt were reported as 0.286 and

0.639.[5]

𝜙  =  0.286  ×  1.56 ÷ 3600  ×  0.639

0.119  ×  0.084 = 7.9 × 10−3

Therefore quantum yield of NADH regeneration in the presence of photocatalyst 7 was 7.9×10-3.

5 / 44

Page 6: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

0 20 40 60 80 100 120 140 160 180

0.00

0.05

0.10

0.15

0.20

0.25

A a

t 440

nm

conc. SCN anion (uM)

Equation y = a + b*xIntercept 0.01389 ± 0.003Slope 0.00148 ± 4.885R-Square (COD) 0.99567

a)

5 10 15 200.0

0.5

1.0

1.5

2.0

2.5

mol

of S

CN

ani

on (u

mol

)

Time (s)

b)

Equation y = a + b*x

Intercept 0Slope 0.11933 ± 0.0050R-Square (COD) 0.99471

Figure S5. a) standard curve for SCN anion quantification; b) formation of SCN anion under irradiation at 525 nm as a function of time.

6 / 44

Page 7: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Synthesis of L-glutamate

For L-glutamate synthesis, 4 mL 0.1M phosphate buffer (pH = 7.4) solution containing 1 mM NAD+, 50 uM

photocatalyst 7, 2 U glutamate dehydrogenase (GDH), 0.5 M HCOONa, 0.05 M (NH4)2SO4 and 10 mM

α-ketoglutarate was added to a Schlenk tube equipped with a rubber stopper and a sampling syringe and then

the tube was purged with argon and placed in front of green LEDs (100 w, 525 nm). The reaction temperature

was kept lower than 40 °C through cooling with a fan. After 1.5 h irradiation, another 10 mM α-ketoglutarate

was added and irradiated for 1 h. After a certain time irradiation, the reaction mixture was sampled and

derivated with phenyl isothiocyanate as the following procedure: To each 200 uL diluted sample was added

100uL 2.5 wt% phenyl isothiocyanate acetonitrile solution and 100 uL 1 M NEt3 acetonitrile solution. The

resulting mixture was kept at room temperature for 1 h, then 600 uL hexane was used to extract unreacted

phenyl isothiocyanate. 200 uL of bottom layer (acetonitrile) was added to 800 uL water and filtered for HPLC

analysis. Analysis of derivated L-glutamate samples was done on a Shimadzu Prominence 20 HPLC system,

equipped with a C18 column and a UV-Vis detector.

HCOO-

hv

HCO3-

NN

NRu

N

N

X

X = Cl, OH, HCOO or H

GDH OH

O

OHO

O

OH

O

NH2

HO

O

+ NH4+

NAD+

NADH

Scheme S2. Enzymatic synthesis of L-glutamate with NADH regeneration system.

0 200 400 600 800 1000 1200

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

peak

are

a

concentration of L-glutamate / ppm

Equation y = a + b*x

Intercept 8299.82184 ± 3038.13Slope 2562.31905 ± 5.80121R-Square (COD) 0.99997

Figure S6. Standard curve for quantification of L-glutamate.

7 / 44

Page 8: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

L-glutamate (derivated)

Figure S7. HPLC chart of L-glutamate after 2.5 h irradiation.

8 / 44

Page 9: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

NMR spectra

-3.0-2.0-1.00.01.02.03.04.05.06.07.08.09.010.011.012.013.014.015.016.0

f1 (ppm)

-5.0E+06

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

4.0E+07

4.5E+07

5.0E+07

5.5E+07

Mar07-2019-0306-DL-1.1.1.1r

1.00

1.98

1.01

1.96

1.07

2.00

1.07

1.03

1.02

1.00

2.05

2.03

1.02

0.99

3.33

4.89

7.05

7.05

7.06

7.06

7.07

7.08

7.08

7.33

7.34

7.35

7.35

7.36

7.37

7.37

7.38

7.40

7.71

7.71

7.72

7.72

7.74

7.74

7.76

7.76

7.77

7.78

7.93

7.93

7.95

7.95

7.97

7.97

8.00

8.01

8.02

8.02

8.02

8.04

8.04

8.16

8.18

8.20

8.32

8.32

8.34

8.34

8.36

8.36

8.50

8.52

8.54

8.56

8.66

8.68

8.79

8.81

10.21

10.22

7.007.207.407.607.808.008.208.408.608.80.00

f1 (ppm)1.00

1.98

1.01

1.96

1.07

2.00

1.07

1.03

1.02

1.00

2.05

2.03

1.02

9.810.010.210.410.6

f1 (ppm)

Figure S8. 1H NMR (400 MHz, Methanol-d4) spectrum of complex 1.

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

-2.0E+05

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

2.0E+06

2.2E+06

2.4E+06

2.6E+06

2.8E+06

3.0E+06pdata/1

122.38

123.22

123.42

123.47

126.09

126.68

127.14

134.12

135.51

136.62

137.02

151.48

151.93

152.24

156.34

158.12

158.89

158.90

158.60158.70158.80158.90159.00159.10159.20

f1 (ppm)

0.0E+00

5.0E+05

1.0E+06

1.5E+06

158.89

158.90

Figure S9. 13C NMR (151 MHz, Methanol-d4) spectrum of complex 1.

9 / 44

Page 10: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Figure S10 . 1H NMR (400 MHz, Methanol-d4) spectrum of complex 2.

Figure S11 . 13C NMR (101 MHz, Methanol-d4) spectrum of complex 2.

10 / 44

Page 11: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Figure S12 . 1H NMR (400 MHz, Methanol-d4) spectrum of complex 3.

Figure S13 . 13C NMR (101 MHz, Methanol-d4) spectrum of complex 3.

11 / 44

Page 12: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5

f1 (ppm)

Apr15-2019-ZXH-OCH3.1.fid

2.91

2.90

1.00

0.99

1.94

0.99

1.92

2.00

2.05

1.00

1.99

2.00

1.00

3.88

4.24

6.65

6.66

6.67

6.67

7.01

7.03

7.35

7.35

7.36

7.37

7.37

7.38

7.39

7.64

7.64

7.65

7.66

7.80

7.80

7.81

7.81

7.91

7.91

7.93

7.93

7.95

7.95

8.08

8.10

8.10

8.12

8.38

8.38

8.51

8.51

8.53

8.53

8.62

8.64

9.93

9.94

Figure S14 . 1H NMR (400 MHz, Methanol-d4) spectrum of complex 4.

Figure S15 . 13C NMR (101 MHz, Methanol-d4) spectrum of complex 4.

12 / 44

Page 13: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Figure S16 . 1H NMR (400 MHz, Methanol-d4) spectrum of complex 5.

Figure S17 . 13C NMR (101 MHz, Methanol-d4) spectrum of complex 5.

13 / 44

Page 14: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-3-2-1012345678910111213141516

f1 (ppm)

9.09

3.00

3.00

6.10

1.09

2.18

1.18

1.11

4.15

3.24

2.13

3.18

6.73

6.74

7.32

7.34

7.35

7.42

7.44

7.46

7.72

7.74

7.90

7.92

7.94

7.97

7.98

8.07

8.09

8.12

8.14

8.34

8.36

8.40

8.42

8.44

8.46

Figure S18 . 1H NMR (400 MHz, D2O) spectrum of complex 6.

Figure/Scheme S19 . 13C NMR (101 MHz, D2O) spectrum of complex 6.

14 / 44

Page 15: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Figure S20. 1H NMR (400 MHz, Methanol-d4) spectrum of complex 7.

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

120.

2912

0.36

122.

5412

3.45

123.

5212

6.96

128.

2312

8.33

128.

5512

9.04

129.

3413

0.37

130.

4313

0.65

135.

4213

6.32

137.

4413

8.35

151.

1015

1.76

152.

4615

8.55

158.

9515

9.28

161.

78

Figure S21. 13C NMR (101 MHz, Methanol-d4) spectrum of complex 7.

15 / 44

Page 16: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Figure S22. 1H NMR (400 MHz, DMSO-d6) spectrum of complex Ru(tpy)(biq)(Cl)PF6.

105110115120125130135140145150155160165170175

f1 (ppm)

-500000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

7000000

7500000

8000000

8500000

120.

3912

0.42

122.

2912

2.52

123.

3212

6.67

127.

3112

7.81

128.

0612

8.33

128.

4112

8.75

129.

5412

9.95

129.

9913

4.88

135.

6113

7.02

137.

59

149.

9415

0.46

151.

75

157.

6915

8.09

160.

92

Figure S23. 13C NMR (101 MHz, DMSO-d6) spectrum of complex Ru(tpy)(biq)(Cl)PF6.

16 / 44

Page 17: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Figure S24. 1H NMR (400 MHz, MeCN-d3) spectrum of complex Ru(tpy)(biq)(MeCN)(PF6)2.

Figure S25. 13C NMR (101 MHz, MeCN-d3) spectrum of complex Ru(tpy)(biq)(MeCN)(PF6)2.

17 / 44

Page 18: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.513.0

f1 (ppm)

Jun-18-2019-DL-0618-1

Jun-18-2019-DL-0618-1

1.01

0.99

0.98

3.87

1.81

0.92

1.29

1.05

4.75

6.96

2.01

1.95

3.15

1.05

1.96

1.96

1.90

3.06

1.09

0.99

1.08

1.07

1.02

1.09

0.99

3.33

4.88

6.93

6.95

7.23

7.25

7.27

7.30

7.32

7.34

7.37

7.46

7.47

7.49

7.81

7.83

7.84

7.85

7.85

7.86

7.87

7.89

7.91

7.94

7.94

7.96

7.96

7.98

7.98

8.25

8.26

8.27

8.29

8.29

8.34

8.36

8.48

8.50

8.67

8.69

8.73

8.75

8.84

8.87

8.94

8.96

9.03

9.06

7.07.58.08.59.09.5

f1 (ppm)

Jun-18-2019-DL-0618-1

Jun-18-2019-DL-0618-1

Figure S26. 1H NMR (400 MHz, MeOH-d4) spectrum of complex Ru(tpy)(biq)(HCOO)PF6.

6.76.86.97.07.17.27.37.47.57.67.77.87.98.08.18.28.38.48.58.68.78.88.99.09.19.2.3

f1 (ppm)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

A (d)

9.05

B (d)

8.95

C (d)

8.85

D (d)

8.74

E (d)

8.68

F (m)

8.50

G (dd)

8.35

H (dt)

8.27

I (td)7.96

J (m)7.85

K (ddd)7.47

L (m)7.32

M (t)7.25

N (d)

6.94

0.99

0.94

1.86

1.07

5.69

2.13

2.07

1.09

2.24

2.07

1.06

0.95

1.11

1.00

6.93

6.95

7.25

7.30

7.32

7.34

7.47

7.47

7.81

7.83

7.83

7.84

7.85

7.85

7.86

7.86

7.86

7.87

7.88

7.89

7.89

7.89

7.94

7.94

7.96

7.96

7.98

7.98

8.25

8.26

8.27

8.28

8.29

8.34

8.34

8.36

8.36

8.48

8.48

8.50

8.50

8.51

8.67

8.69

8.73

8.75

8.84

8.86

8.94

8.96

9.03

9.06

Figure S27. 1H NMR (101 MHz, MeOH-d4) spectrum of complex Ru(tpy)(biq)(DCOO)PF6.

18 / 44

Page 19: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

6.36.46.56.66.76.86.97.07.17.27.37.47.57.67.77.87.98.08.18.28.38.48.58.68.78.88.99.09.19.29.3

f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

6.64

6.66

7.07

7.09

7.10

7.12

7.14

7.23

7.25

7.26

7.52

7.54

7.59

7.60

7.76

7.79

7.80

7.82

7.84

7.97

8.00

8.15

8.17

8.19

8.25

8.27

8.28

8.35

8.37

8.46

8.48

8.53

8.55

8.72

8.74

8.79

8.81

Figure S28. 1H NMR (400 MHz, D2O) spectrum of complex [Ru(tpy)(biq)(OH)]+.

-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-101234567891011123

f1 (ppm)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

Jun-11-2019-DL-0611-2/14

A (d)

9.80

B (d)

6.74

C (d)

8.87

D (d)

8.72

E (d)

8.46

F (d)

8.35

G (t)7.99

I (t)7.45

K (m)7.79

L (t)7.05

J (t)7.17

M (s)

-14.71

N (d)

8.68

O (m)

8.26

P (d)7.58

0.83

0.91

1.66

0.86

0.94

2.59

5.97

1.01

3.07

0.97

2.09

1.01

0.97

1.00

1.00

-14.

716.

736.

757.

037.

057.

077.

157.

177.

197.

437.

457.

477.

577.

587.

737.

757.

787.

797.

817.

827.

847.

977.

998.

018.

238.

248.

258.

268.

268.

268.

288.

288.

288.

348.

368.

458.

478.

678.

698.

718.

748.

868.

889.

799.

81

6.57.07.58.08.59.09.510.0

f1 (ppm)

7.03

7.05

7.07

7.57

7.58

7.73

7.75

7.78

7.82

7.84

7.99

8.25

8.26

8.26

8.26

8.28

8.28

8.28

8.45

8.47

8.67

8.69

8.86

8.88

Figure S29. 1H NMR (400 MHz, MeCN-d3) spectrum of complex Ru(tpy)(biq)(H)PF6.

19 / 44

Page 20: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-101234567891011123

f1 (ppm)

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Jun05-2019-DL-0605-2/3

0.98

1.24

1.12

2.04

2.21

1.60

2.33

1.35

1.39

5.11

1.38

1.00

-14.

63

7.05

7.06

7.12

7.13

7.15

7.29

7.31

7.33

7.78

7.79

7.81

7.83

7.84

7.87

7.89

7.91

7.94

7.96

7.98

8.18

8.20

8.22

8.61

8.63

8.65

8.67

8.69

8.86

8.88

9.69

9.70

Figure S30. 1H NMR (400 MHz, DMSO-d6) spectrum of complex Ru(tpy)(bpy)(H)PF6.

Figure S31. 1H NMR (400 MHz,MeCN-d3) spectrum of complex Ru(tpy)(bpy)(MeCN)(PF6)2.

20 / 44

Page 21: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

5000.0

117.31

123.47

123.53

124.15

124.29

126.68

127.50

127.84

136.79

137.38

137.66

138.55

151.18

152.47

153.12

155.91

157.56

157.59

158.33

Figure S32. 13C NMR (101 MHz,MeCN-d3) spectrum of complex Ru(tpy)(bpy)(MeCN)(PF6)2.

Figure S33. 1H NMR (400 MHz, CDCl3) spectrum of complex Rh(Cp*)(bpy)Cl2 .

21 / 44

Page 22: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

-500000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

7000000

7500000

8000000

8500000

9000000

9.20

76.7

2

97.1

1

125.

5412

8.43

140.

85

151.

1615

4.61

Figure S34. 13C NMR (101 MHz, CDCl3) spectrum of complex Rh(Cp*)(bpy)Cl2.

-3-2-1012345678910111213141516

f1 (ppm)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

4.0E+07

4.5E+07

Apr23-2019-DL-0423.1.1.1r

2.08

5.02

1.01

0.97

1.02

1.00

4.70

5.82

7.41

8.10

8.12

8.14

8.81

8.83

8.99

9.00

9.27

Figure S35. 1H NMR (400 MHz, D2O) spectrum of (BNA)Br.

22 / 44

Page 23: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

-2000000

-1000000

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

12000000

13000000

14000000

15000000

16000000

17000000

18000000

19000000

20000000

21000000

22000000

65.1

0

128.

6012

9.27

129.

6513

0.14

132.

2013

3.98

144.

2314

4.30

146.

50

165.

58

144145

f1 (ppm)

144.23

144.30

128.5129.0129.5130.0130.5

f1 (ppm)

128.60

129.27

129.65

130.14

Figure S36. 13C NMR (101 MHz, D2O) spectrum of (BNA)Br.

-3-2-1012345678910111213141516

f1 (ppm)

May29-2019-DL-0529-2/3

2.04

2.07

1.05

2.02

1.00

0.96

1.80

3.07

0.02

3.19

4.31

4.76

4.78

5.26

7.18

7.27

7.28

7.35

7.37

Figure S37. 1H NMR (400 MHz, CDCl3) spectrum of BNAH.

23 / 44

Page 24: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

May29-2019-DL-0529/5

22.8

8

57.4

2

77.0

2

98.6

410

3.20

127.

1812

7.80

128.

8312

8.99

137.

2414

0.05

170.

10

126.5127.0127.5128.0128.5129.0129.5

f1 (ppm)

0

500

1000127.

18

127.

80

128.

8312

8.99

Figure S38. 13C NMR (101 MHz, CDCl3) spectrum of BNAH.

-3-2-1012345678910111213141516

f1 (ppm)

Jun-25-2019-DL-0625-2

Jun-25-2019-DL-0625-2

2.51

3.34

5.79

7.45

7.46

7.52

7.54

8.07

8.08

8.09

8.10

8.46

8.48

9.02

9.04

9.13

Figure S39. 1H NMR (400 MHz, DMSO-d6) spectrum of (DMPY)PF6.

24 / 44

Page 25: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-100102030405060708090100110120130140150160170180190200210

f1 (ppm)

Jun-25-2019-DL-0625-2

Jun-25-2019-DL-0625-2

18.4

0

40.0

0

63.7

8

128.

2612

9.15

129.

6912

9.83

134.

7613

9.79

142.

5414

4.72

146.

79

Figure S40. 13C NMR (101 MHz, DMSO-d6) spectrum of (DMPY)PF6.

25 / 44

Page 26: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5

f1 (ppm)

0

50

100

150

200

250

300

350

400

450

Jun-27-2019-DL-0627-5/14

2.06

3.03

4.33

7.09

* * * *

26 / 44

Page 27: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Figure S41. (top) 1H NMR spectrum of (BNA)PF6 in D2O : methanol-d4 (1:1) (Blue line) and 1H NMR spectrum of the mixture of

(BNA)PF6 and Ru(tpy)(biq)(HCOO)PF6 in D2O : methanol-d4 (1:1) under dark condition for 3 h (Red line, * denotes the in-situ

generated 1,4-BNAH including coordinated 1,4-BNAH 4); (middle) 1H NMR spectrum of the mixture of 10mM (BNA)PF6 and 10 mM 7b

in acetonitrile-d6 within 5 min (# denotes the generated 1,4-BNAH); (bottom) 1H NMR spectrum of the reaction mixture of (BNA)PF6

and DCOONa in the presence of 7 after 1h irradiation (Reaction conditions: 0.5M DCOONa, 1mM (BNA)PF6, 20 uM 7, 10 mL water

and 80 w green LEDs, after 1h irradiation the mixture extracted with 2 mLX3 chloroform).

27 / 44

Page 28: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Figure S42. 1H NMR spectrum of the mixture of 1b and Ru(tpy)(biq)(MeCN)PF6 in acetonitrile-d6 after 0.5 h at room temperature.

-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-101234567891011123

f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Jun-12-2019-DL-0612-2/16

-15.05-14.95-14.85-14.75-14.65-14.55-14.45

f1 (ppm)

-14.

71-1

4.69

1b7b

Figure S43. 1H NMR spectrum of the mixture of 1b and Ru(tpy)(biq)(MeCN)PF6 in acetonitrile-d6 after 21 h at room temperature.

28 / 44

Page 29: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-101234567891011123

f1 (ppm)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

Jun-12-2019-DL-0612-1/15

-14.

71

-16.0-15.5-15.0-14.5-14.0-13.5

f1 (ppm)

-14.

71

7b

Figure S44. 1H NMR spectrum of the mixture of 7b and Ru(tpy)(bpy)(MeCN)PF6 in acetonitrile-d6 after 21 h at room temperature.

-1-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-101234567891011123

f1 (ppm)

Jul-08-2019-DL-0708-1

DL-0708-1-1h

Figure S45 1H NMR spectrum of the mixture of 7b and (DMPY)PF6 in acetonitrile-d6 after 1 h at room temperature.

29 / 44

Page 30: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-1-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-101234567891011123

f1 (ppm)

Jul-09-2019-DL-0709-1

DL-0709-1-24h

0.23

5.33

1.16

9.28

0.97

5.26

3.51

0.58

9.32

1.73

0.23

1.85

1.54

0.29

9.73

1.82

0.35

8.59.09.510.010.511.0

f1 (ppm)

3.54.04.55.05.56.0

f1 (ppm)

1.41.61.82.02.22.42.62.8

f1 (ppm)

+

*

# #

#

#

##

=

=

=

=

=

=

$

$

K = [1.82*(1.54+0.29)] / [0.35*(9.32/3)] = 3.06

+

*

# #

#

#

#

=

=

=

=

=

$

$

Figure S46. 1H NMR spectrum of the mixture of 7b and (DMPY)PF6 in acetonitrile-d6 after 24 h at room temperature. (Chemical shifts

denoted +, *, #, = and $ are corresponding to 7b, [Ru(tpy)(biq)S]2+, 1,6-DHDMPY, 1,4-DHDMPY and DMPY)

-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-101234567891011123

f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

0.93

26.8

54.

7348

.28

3.52

27.9

118

.42

2.10

47.9

99.

770.

769.

268.

151.

0050

.81

7.58

1.00

K= [7.58*(8.15+1)] / [1*(48.28/3)] = 4.3

8.59.09.510.0

f1 (ppm)

Jul-10-2019-DL-0710-1/1

4.04.55.05.56.0

f1 (ppm)

1.52.02.53.03.5

f1 (ppm)

+

*

##

#

#

##

=

=

=

=

=

=

$

$

Figure S47. 1H NMR spectrum of the mixture of 7b and (DMPY)PF6 in acetonitrile-d6 after 48 h at room temperature. (Chemical shifts

denoted +, *, #, = and $ are corresponding to 7b, [Ru(tpy)(biq)S]2+, 1,6-DHDMPY, 1,4-DHDMPY and DMPY)

30 / 44

Page 31: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-101234567891011123

f1 (ppm)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

0.93

24.7

05.

0466

.66

4.18

26.5

716

.77

1.49

67.2

99.

810.

479.

608.

651.

7768

.96

9.18

1.00

8.59.09.510.0

f1 (ppm)

Jul-11-2019-DL-0711-1/2

DL-0711-1-72h

4.04.55.05.56.06.5

f1 (ppm)

1.52.02.53.03.5

f1 (ppm)

+

*

#

# #

#

#

#

= =

=

=

=

=

$

$

+

K= [9.18*(8.65+1.77)] / [1*(66.66/3)] = 4.31

Figure S48. 1H NMR spectrum of the mixture of 7b and (DMPY)PF6 in acetonitrile-d6 after 72 h at room temperature. (Chemical shifts

denoted +, *, #, = and $ are corresponding to 7b, [Ru(tpy)(biq)S]2+, 1,6-DHDMPY, 1,4-DHDMPY and DMPY)

-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-101234567891011123

f1 (ppm)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

Jul-12-2019-DL-0712-1/3

0.97

40.0

211

8.38

4.88

41.0

626

.23

0.76

1.94

115.

9716

.32

0.38

14.3

513

.20

2.07

107.

1111

.99

1.00

K = [11.99*(13.20+2.07)] / [1*(118.38/3)] = 4.6

Figure S49. 1H NMR spectrum of the mixture of 7b and (DMPY)PF6 in acetonitrile-d6 after 96 h at room temperature.

31 / 44

Page 32: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

-1-16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-101234567891011123

f1 (ppm)

Jul-15-2019-DL-0715-1

DL-0715-1-7day

0.88

93.9

531

.93

19.2

0

95.3

7

11.7

210

.65

1.63

10.7

8

1.00

K = [10.78*(10.65+1.63)] / [1*(93.95/3)] = 4.23

Figure S50. 1H NMR spectrum of the mixture of 7b and (DMPY)PF6 in acetonitrile-d6 after 7 days at room temperature.

32 / 44

Page 33: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Electronic absorption spectra

350 400 450 500 550 600 650 700 750

0.0

0.1

0.2

0.3

0.4

0.5

A

Wavelength (nm)

a)

0 50 100 150 200 250 3000.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

A (a

t 625

nm

)

Time (s)

Model ExpDecay1

Equation y = y0 + A1*exp(-(x-x0)/t1)t1 50.64563 ± 3.18448k 0.020±0.001R-Square (COD) 0.99414

b)

Figure S51. a) Electronic absorption spectra of 7 in 0.1 M HCOONa aqueous solution under green light (40 w) for 5 min at 298 K; b)

Time course of the change in absorption of 7 at 625 nm.

33 / 44

Page 34: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

350 400 450 500 550 600 650 700 750

0.0

0.1

0.2

0.3

0.4

0.5A

Wavelength (nm)

a)

0 50 100 150 200 250 300

0.05

0.10

0.15

0.20

A (a

t 625

nm

)

Time (s)

Model ExpDecay1Equation y = y0 + A1*exp(-(x-x0)/t1)t1 34.89146 ± 2.05766k 0.028 ± 0.002R-Square (COD) 0.99499

b)

Figure S52. a) Electronic absorption spectra of 7 in 0.2 M HCOONa aqueous solution under green light (40 w) for 5 min at 298 K; b)

Time course of the change in absorption of 7 at 625 nm.

34 / 44

Page 35: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

350 400 450 500 550 600 650 700 750

0.0

0.1

0.2

0.3

0.4

0.5A

Wavelength (nm)

a)

0 50 100 150 200 250 300

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

A (a

t 625

nm

)

Time (s)

b)

ExpDecay1 Model:y = y0 + A1*exp[-(x-x0)/t1]t1 = 29.34 ±1.29 sk = 0.034 ± 0.002 s-1

R2 = 0.9971

Figure S53. a) Electronic absorption spectra of 7 in 0.5 M HCOONa aqueous solution under green light (40 w) for 5 min at 298 K; b)

Time course of the change in absorption of 7 at 625 nm.

35 / 44

Page 36: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

350 400 450 500 550 600 650 700 750

0.0

0.1

0.2

0.3

0.4

0.5A

Wavelength (nm)

a)

0 50 100 150 200 250 3000.04

0.08

0.12

0.16

0.20

0.24

0.28

A (a

t 625

nm

)

Time (s)

Model ExpDecay1

Equation y = y0 + A1*exp(-(x-x0)/t1t1 20.4037 ± 1.10521E-8k 0.049±0.002R-Square (COD) 0.99584

b)

Figure S54. a) Electronic absorption spectra of 7 in 1 M HCOONa aqueous solution under green light (40 w) for 5 min at 298 K; b) Time

course of the change in absorption of 7 at 625 nm.

250 300 350 400 450 500 550 600 650 700 750 8000.0

0.2

0.4

0.6

0.8

A

Wavelength (nm)

1MLCT at 473 nm

50 uM Ru(tpy)(bpy)Cl2 in water(ε473 nm = 5368 mol-1cm-1 )(ε456 nm = 5142 mol-1cm-1)

Figure S55. Electronic absorption spectrum of 1 in H2O.

36 / 44

Page 37: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

250 300 350 400 450 500 550 600 650 700 750 8000.0

0.2

0.4

0.6

0.8

1.0

A

Wavelength (nm)

1MLCT at 548 nm

50 uM RuTPYBIQCl2 in water(ε548 nm = 4723 mol-1cm-1 )(ε525 nm = 3761 mol-1cm-1)

Figure S56. Electronic absorption spectrum of 7 in H2O.

250 300 350 400 450 500 550 600 650 700 750 8000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A

Wavelength (nm)

1MLCT at 555 nm

50 uM RuTPYBIQ(HCOO)PF6 in water(ε555 nm = 5739 mol-1cm-1 )

250 300 350 400 450 500 550 600 650 700 750 8000.0

0.2

0.4

0.6

0.8

1.0A

Wavelength (nm)

1MLCT at 606 nm

50 uM Ru(tpy)(biq)(H)PF6 in MeCN(ε606 nm = 7514 mol-1cm-1 )

Figure S57. (left) Electronic absorption spectrum of Ru(tpy)(biq)(Cl)PF6 in H2O; (right) Electronic absorption spectrum of

Ru(tpy)(biq)(H)PF6 in MeCN; (bottom)

37 / 44

Page 38: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Molecular structures

Figure S58. Molecular structure of [Ru(tpy)(biq)Cl]+ . Ellipsoids were drawn at 50 % probability and hydrogen atoms were omitted for

clarity. (CCDC number: 1920316)

Figure S59. Molecular structure of [Ru(tpy)(biq)MeCN]2+. Ellipsoids were drawn at 50 % probability and hydrogen atoms were omitted

for clarity. (CCDC number: 1920254)

Figure S60. Molecular structure of [Ru(tpy)(biq)HCOO]+. Ellipsoids were drawn at 50 % probability and hydrogen atoms were omitted

for clarity. (CCDC number: 1942074)

38 / 44

Page 39: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Table S1. Crystal data and refinement results for compounds Ru(tpy)(biq)(Cl)PF6, Ru(tpy)(biq)(MeCN)(PF6)2 and Ru(tpy)(biq)(HCOO)PF6

Compounds Ru(tpy)(biq)(Cl)PF6 Ru(tpy)(biq)(MeCN)(PF6)2 Ru(tpy)(biq)(HCOO)PF6

Crystal description Purple block Purple block Purple rod

Crystal size (mm) 0.40 x 0.35 x 0.20 0.17 x 0.09 x 0.05 0.30 x 0.26 x 0.04

Crystal system triclinic triclinic triclinic

Space group P1 P1 P1

a (Å) 13.5920(11) 12.8940(11) 11.1590(11)

b (Å) 13.6081(11) 12.8940(11) 12.3059(12)

c (Å) 14.0589(12) 12.9630(12) 14.8631(13)

α (°) 64.306(2) 82.985(2) 67.8750(10)

β (°) 73.922(4) 66.9870(10) 68.0450(10)

γ (°) 64.168(3) 88.659(2) 86.116(3)

V (Å3) 2096.63 1968.1 1747.3(3)

Z 2 0 2

μ (mm-1) 0.668 0.710 0.569

Total/unique reflections 10171 / 7153 10005 / 6807 8928 / 6060

Rint 0.0436 0.0906 0.0941

R[F2 > 2σ(F2)] 0.0635 0.0980 0.0942

wR2 (F2) 0.1569 0.2296 0.2165

GOF 1.046 1.095 1.136

No. of parameters 551 533 483

Δρmax /Δρmin (e Å-3) 0.983 / -1.084 2.096 / -2.021 1.591 / -1.072

CCDC 1920316 1920254 1942074

39 / 44

Page 40: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Mass spectra

Figure S61. Mass spectum of 1 in MeOH.

Figure S62. Mass spectum of 2 in MeOH.

Figure S63. Mass spectum of 3 in MeOH.

245.1366

304.2619526.0389

585.5343

+MS, 0.2-0.4min #(12-23)

0.0

0.5

1.0

1.5

2.06x10

Intens.

100 200 300 400 500 600 700 800 m/z

413.2676

550.0373

+MS, 0.4min #(24), Background Subtracted

0

20

40

60

80

100

Intens.[%]

400 450 500 550 600 650 700 750 m/z

554.0684

+MS, 0.3-0.3min #(16-18), Background Subtracted

0

20

40

60

80

100

Intens.[%]

300 400 500 600 700 800 m/z

40 / 44

Page 41: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Figure S64. Mass spectum of 4 in MeOH.

Figure S65. Mass spectum of 5 in MeOH

Figure S66. Mass spectum of 6 in MeOH.

586.0583

648.5570

+MS, 0.5-0.5min #(27-28), Background Subtracted

0

20

40

60

80

100

Intens.[%]

400 450 500 550 600 650 700 750 800 m/z

172.0947

301.1392414.9749

576.0274

+MS, 0.5-0.5min #(28-30), Background Subtracted

0

20

40

60

80

Intens.[%]

0 200 400 600 800 1000 1200 1400 m/z

356.9825 413.2670

554.0683

609.0399

+MS, 0.4-0.5min #(26-27), Background Subtracted

0

20

40

60

80

Intens.[%]

400 500 600 700 800 m/z

41 / 44

Page 42: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Figure S67. Mass spectum of 7 in MeOH.

Figure S68. Mass spectum of 7 in H2O.

Figure S69. Mass spectum of Ru(tpy)(biq)(MeCN)(PF6)2 in MeOH.

436.1845464.2158

626.0611

649.0642

697.6490

+MS, 0.5-0.5min #(30-31)

0

20

40

60

Intens.[%]

400 450 500 550 600 650 700 750 800 m/z

295.5508

608.1059

+MS, 0.3-0.4min #(17-22), Background Subtracted

0

20

40

60

80

100

Intens.[%]

200 400 600 800 1000 m/z

610.0910

777.0716

+MS, 0.5-0.5min #(27-28), Background Subtracted

0

2

4

6

8

10

12

Intens.[%]

400 500 600 700 800 900 m/z

42 / 44

Page 43: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Figure S70. Mass spectum of 7 and HCOONa in H2O after irradiation.

Figure S71. Mass spectum of Ru(tpy)(biq)(HCOO)PF6 in MeOH.

Figure S72. Mass spectum of Ru(tpy)(biq)(H)PF6 in MeOH.

608.1054

636.0993

+MS, 0.6min #(34), Background Subtracted

0

20

40

60

Intens.[%]

500 550 600 650 700 750 m/z

636.0981

+MS, 0.5min #(30), Background Subtracted

0

20

40

60

80

100

Intens.[%]

400 500 600 700 800 900 m/z

475.3257

531.8703

592.1086

626.0682701.4944

+MS, 0.4min #(26), Background Subtracted

0

20

40

60

80

Intens.[%]

500 550 600 650 700 750 m/z

43 / 44

Page 44: Supplementary Information - Royal Society of …Supplementary Information Visible-light-driven Transfer Hydrogenation of Nicotinamide Cofactors with a Robust Ruthenium Complex Photocatalyst

Figure S73. Mass spectum of Ru(tpy)(bpy)(H)PF6 in MeOH. [Note: Ru(tpy)(bpy)(H)PF6 is sensitive to CO2 and [Ru(tpy)(bpy)(HCOO)]+

was detected.]

References

1 Kuhn, H., Braslavsky, S. & Schmidt, R. Chemical actinometry (IUPAC technical report). Pure and

Applied Chemistry 2004, 76, 2105-2146.

2 Sun, X., Chen, J. T. & Ritter, T. Catalytic dehydrogenative decarboxyolefination of carboxylic acids.

Nat. Chem. 2018, 10, 1229-1233.

3 Wegner, E. E. & Adamson, A. W. Photochemistry of Complex Ions .3. Absolute Quantum Yields for

Photolysis of Some Aqueous Chromium(3) Complexes . Chemical Actinometry in Long Wavelength

Visible Region. J. Am. Chem. Soc. 1966, 88, 394.

4 Kobayashi, A., Takatori, R., Kikuchi, I., Konno, H., Sakamoto, K. & Ishitani, O. Formation of novel 1 :

1 adducts accompanied by regioselective hydride transfer from transition-metal hydrido complexes to

NAD(P) models. Organometallics 2001, 20, 3361-3363.

356.9801

413.2662

475.3242

536.0672

636.0996701.4952

814.5809

+MS, 0.4-0.5min #(26-27), Background Subtracted

0

20

40

60

80

100

Intens.[%]

400 500 600 700 800 m/z

44 / 44


Recommended