+ All Categories
Home > Documents > Supplementary Materials for · *Corresponding authors ([email protected]; [email protected]) This...

Supplementary Materials for · *Corresponding authors ([email protected]; [email protected]) This...

Date post: 14-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
72
www.sciencemag.org/cgi/content/full/science.1249252/DC1 Supplementary Materials for Total Synthesis of a Functional Designer Eukaryotic Chromosome Narayana Annaluru, Héloïse Muller, Leslie A. Mitchell, Sivaprakash Ramalingam, Giovanni Stracquadanio, Sarah M. Richardson, Jessica S. Dymond, Zheng Kuang, Lisa Z. Scheifele, Eric M. Cooper, Yizhi Cai, Karen Zeller, Neta Agmon, Jeffrey S. Han, Michalis Hadjithomas, Jennifer Tullman, Katrina Caravelli, Kimberly Cirelli, Zheyuan Guo, Viktoriya London, Apurva Yeluru, Sindurathy Murugan, Karthikeyan Kandavelou, Nicolas Agier, Gilles Fischer, Kun Yang, J. Andrew Martin, Murat Bilgel, Pavlo Bohutski, Kristin M. Boulier, Brian J. Capaldo, Joy Chang, Kristie Charoen, Woo Jin Choi, Peter Deng, James E. DiCarlo, Judy Doong, Jessilyn Dunn, Jason I. Feinberg, Christopher Fernandez, Charlotte E. Floria, David Gladowski, Pasha Hadidi, Isabel Ishizuka, Javaneh Jabbari, Calvin Y. L. Lau, Pablo A. Lee, Sean Li, Denise Lin, Matthias E. Linder, Jonathan Ling, Jaime Liu, Jonathan Liu, Mariya London, Henry Ma, Jessica Mao, Jessica E. McDade, Alexandra McMillan, Aaron M. Moore, Won Chan Oh, Yu Ouyang, Ruchi Patel, Marina Paul, Laura C. Paulsen, Judy Qiu, Alex Rhee, Matthew G. Rubashkin, Ina Y. Soh, Nathaniel E. Sotuyo, Venkatesh Srinivas, Allison Suarez, Andy Wong, Remus Wong, Wei Rose Xie, Yijie Xu, Allen T. Yu, Romain Koszul, Joel S. Bader, Jef D. Boeke,* Srinivasan Chandrasegaran* *Corresponding author. E-mail: [email protected] (J.D.B.); [email protected] (S.C.) Published 27 March 2014 on Science Express DOI: 10.1126/science.1249252 This PDF file includes: Materials and Methods Supplementary Text Figs. S1 to S19 Tables S1 to S9 References
Transcript
Page 1: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

www.sciencemag.org/cgi/content/full/science.1249252/DC1

Supplementary Materials for

Total Synthesis of a Functional Designer Eukaryotic Chromosome

Narayana Annaluru, Héloïse Muller, Leslie A. Mitchell, Sivaprakash Ramalingam, Giovanni Stracquadanio, Sarah M. Richardson, Jessica S. Dymond, Zheng Kuang, Lisa

Z. Scheifele, Eric M. Cooper, Yizhi Cai, Karen Zeller, Neta Agmon, Jeffrey S. Han, Michalis Hadjithomas, Jennifer Tullman, Katrina Caravelli, Kimberly Cirelli, Zheyuan

Guo, Viktoriya London, Apurva Yeluru, Sindurathy Murugan, Karthikeyan Kandavelou, Nicolas Agier, Gilles Fischer, Kun Yang, J. Andrew Martin, Murat Bilgel, Pavlo

Bohutski, Kristin M. Boulier, Brian J. Capaldo, Joy Chang, Kristie Charoen, Woo Jin Choi, Peter Deng, James E. DiCarlo, Judy Doong, Jessilyn Dunn, Jason I. Feinberg, Christopher Fernandez, Charlotte E. Floria, David Gladowski, Pasha Hadidi, Isabel

Ishizuka, Javaneh Jabbari, Calvin Y. L. Lau, Pablo A. Lee, Sean Li, Denise Lin, Matthias E. Linder, Jonathan Ling, Jaime Liu, Jonathan Liu, Mariya London, Henry Ma, Jessica Mao, Jessica E. McDade, Alexandra McMillan, Aaron M. Moore, Won Chan Oh, Yu

Ouyang, Ruchi Patel, Marina Paul, Laura C. Paulsen, Judy Qiu, Alex Rhee, Matthew G. Rubashkin, Ina Y. Soh, Nathaniel E. Sotuyo, Venkatesh Srinivas, Allison Suarez, Andy

Wong, Remus Wong, Wei Rose Xie, Yijie Xu, Allen T. Yu, Romain Koszul, Joel S. Bader, Jef D. Boeke,* Srinivasan Chandrasegaran*

*Corresponding author. E-mail: [email protected] (J.D.B.); [email protected] (S.C.)

Published 27 March 2014 on Science Express DOI: 10.1126/science.1249252

This PDF file includes:

Materials and Methods Supplementary Text Figs. S1 to S19 Tables S1 to S9 References

Page 2: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

Supporting Online Material for

Total Synthesis of a Functional Designer Eukaryotic Chromosome Narayana Annaluru†, Héloïse Muller†, Leslie A. Mitchell, Sivaprakash Ramalingam, Giovanni Stracquadanio, Sarah M. Richardson, Jessica S. Dymond, Zheng Kuang, Lisa Z. Scheifele, Eric M. Cooper, Yizhi Cai, Karen Zeller, Neta Agmon, Jeffrey S. Han, Michalis Hadjithomas, Jennifer Tullman, Katrina Caravelli‡, Kimberly Cirelli‡, Zheyuan Guo‡, Viktoriya London‡, Apurva Yeluru‡, Sindurathy Murugan, Karthikeyan Kandavelou, Nicolas Agier, Gilles Fischer, Kun Yang, J. Andrew Martin, Murat Bilgel‡, Pavlo Bohutski‡, Kristin M. Boulier‡, Brian J. Capaldo‡, Joy Chang‡, Kristie Charoen‡, Woo Jin Choi‡, Peter Deng‡, James E. DiCarlo‡, Judy Doong‡, Jessilyn Dunn‡, Jason I. Feinberg‡, Christopher Fernandez‡, Charlotte E. Floria‡, David Gladowski‡, Pasha Hadidi‡, Isabel Ishizuka‡, Javaneh Jabbari‡, Calvin Y.L. Lau‡, Pablo A. Lee‡, Sean Li‡, Denise Lin‡, Matthias E. Linder‡, Jonathan Ling‡, Jaime Liu‡, Jonathan Liu‡, Mariya London‡, Henry Ma‡, Jessica Mao‡, Jessica E. McDade‡, Alexandra McMillan‡, Aaron M. Moore‡, Won Chan Oh‡, Yu Ouyang‡, Ruchi Patel‡, Marina Paul‡, Laura C. Paulsen‡, Judy Qiu‡, Alex Rhee‡, Matthew G. Rubashkin‡, Ina Y. Soh‡, Nathaniel E. Sotuyo‡, Venkatesh Srinivas‡, Allison Suarez‡, Andy Wong‡, Remus Wong‡, Wei Rose Xie‡, Yijie Xu‡, Allen T. Yu‡, Romain Koszul, Joel S. Bader, Jef D. Boeke* and Srinivasan Chandrasegaran*

†These authors contributed equally to this work. ‡Build-A-Genome course students. *Corresponding authors ([email protected]; [email protected]) This PDF file includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9

Page 3: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

Supporting Online Material

Table of Contents

Section Page Supplementary Text 4

Figure S1. Map of synIII with common ORF names. 16 Figure S2. Map of synIII with systematic ORF names. 18 Figure S3. Hierarchy and nomenclature for synIII. 19 Figure S4. Schematic diagram of USER and Gibson isothermal assembly methods. 20 Figure S5. PCRTag analysis of synIII gDNA. 21 Figure S6. PCRTag analysis of wild-type gDNA (BY4742). 22 Figure S7. Incorporation of the synthetic version of YCP4 into synIII. 23 Figure S8. Karyotypic analysis of synIII and intermediate assembly strains by pulsed- field gel electrophoresis.

24

Figure S9. Validation of the left and right arm telomere ends of synIII. 25 Figure S10. Growth curves for wild type (BY4742) and synIII strains in absence of estradiol induction.

26

Figure S11. Colony sizes of wild type (BY4742) and synIII strains at different temperatures and on various media types.

27

Figure S12. SynIII strain cell morphology. 29 Figure S13. Transcript profiling of wild-type (BY4742) and synIII strains. 30 Figure S14. ChIPseq analysis of synIII strain. 31 Figure S15. Replication origins of synIII. 33 Figure S16. Conditional genome instability (SCRaMbLE) of synIII strain. 35 Figure S17. SUP61 essential tRNA complementation by a synthetic tRNA gene. 36 Figure S18. SCRaMbLE leads to a gain of mating type a behavior in synIII heterozygous diploids.

37

Table S1. SynIII minichunk plasmids. 38 Table S2. Summary of eleven iterative one-step assemblies and replacements of native chromosome III with synthetic fragments needed to construct synIII

43

Table S3. Yeast strains used in this study. 44 Table S4. Sequence variants in the synIII chromosome. 46 Table S5. Wild type and synthetic PCRTags and the expected size of the amplicons. 47 Table S6. SynIII restriction sites that were removed. 60 Table S7. SynIII restriction site “landmarks” that were added. 63 Table S8. PCRTags for non-essential segments analysis. 65 Table S9. Replication origins in native chromosome III (from SGD) and synIII. 67 References 68

Page 4: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

4

Supplementary Text Expanded Materials and Methods SynIII Design Yeast chromosome III (12) that is well studied and characterized genetically (27-30), was redesigned extensively based on the version of III available as of [01/12/2006] on SGD; which is from S288C-derived strains (31). SynIII was produced in silico using the genome editing suite BioStudio (manuscript in preparation; chromosome version chr03.3_41). Systematic edits introduced globally to native III include TAG/TAA stop-codon replacements, PCRTag watermark sequences and insertion of loxPsym sites (Figures S1 and S2). Once completed genome-wide in the final Sc2.0 strain, elimination of all TAG stop codons by recoding to TAA will free the TAG codon for future genetic code expansion and could serve as a mechanism of reproductive isolation and control (32). Sc2.0 design principles prioritize a wild-type phenotype and a high level of fitness despite the incorporated modifications; synIII has a sequence alteration approximately every 500 bp, ~2.5% of total sequence is altered, and carries 98 loxPsym sites. The design principles used to guide introduction of changes were: (i) The change should confer a (near) wild-type phenotype and fitness; (ii) The synthetic chromosome should lack destabilizing elements such as tRNA genes or transposons; and (iii) The synthetic chromosome should incorporate genetic flexibility to facilitate future studies Designed synIII comprises 272,907 bp, a ~13.8 % overall reduction in size from native III. Ten transfer RNA genes, 21 Ty elements and/or derived long terminal repeats (LTRs), the silent mating loci HML (3,967 bp) and HMR (4,818 bp), and subtelomeric sequences lying to the left of YCL073C (6,099 bp) and the right of YCR098C (16,880 bp) were removed. The auxotrophic marker LEU2 (1,095 bp) was removed to serve as a selectable marker during assembly. The telomeres were specified by a designer “universal telomere cap” (UTC) comprising 305 bp of T(G)1-3 sequence. Systematic edits introduced globally to native III include TAG/TAA stop-codon replacements, PCRTag sequences and insertion of loxPsym sites (Figures S1 and S2). PCRTags are short pairs of recoded sequences unique to either the wild-type or synthetic genome, used to verify both introduction of synthetic sequence and removal of native sequence using PCR. We inserted loxPsym sites 3 bp after each nonessential gene stop codon and at major genomic landmarks, such as sites of LTR and tRNA deletion or flanking the centromere (Figures S1& S2 and Supplementary Text). Overall, the synIII designed sequence has a total of 5,410 bp base changes (PCRTags, RE sites, stop codon changes, etc) compared to the native yeast III and is shorter than the native sequence by 43,710 bp owing to the removal of 47,841 bp, inclusion of 99 loxPsym sites (3,366 bp) and added strategically positioned restriction enzyme (RE) sites. Native III encodes seven intron-containing protein-coding genes; introns from these genes were systematically removed in synIII. A single copy tRNA gene on III, SUP61, encoding tRNASer (CGA) is essential and therefore was encoded in trans on a centromeric plasmid allowing deletion of the gene (32). Version control Each editing step was assigned a new version number to enable rollbacks in case of errors made during the design process. A systematic nomenclatural hierarchy was developed to name all DNA elements used in the project (see Hierarchy and nomenclature). The versions consisted of

Page 5: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

5

three “global edits” named chr3.0_00 (wild-type) through chr3.3_00, which are as follows: global edit 1: insert loxPsym sites 3 bp downstream of the stop codon of all nonessential genes; global edit 2: exchange TAG stop codons for TAA (Stop codon swapping); global edit 3: insert PCRTags. “Global” genome editing was performed using custom scripts that eventually were incorporated into the genome editing application “BioStudio” (manuscript in preparation). Subsequently, “local editing” versions were generated (i.e. modifications made to chr 3 only) starting with chr3.3_01 and ending with chr3.3_41. [Dymond et al. 2010, (2) for the underlying design rules of the global edits]. Version chr3.3_42 represents the actual physical version of the sequence. After these global edit steps the left and right arms of native chr III were subdivided into contiguous sequence blocks of approximately 10 kb, and each of these 10 kb “chunks” was bounded by rare-cutting restriction enzyme sites (Fig. S1 and S2). Recoding to create or eliminate restriction sites (Table S6, S7) was only permitted within coding regions and was performed using GeneDesign (13). Subsequent rounds of local editing were performed to precisely delete introns, delete silent cassette information, delete tRNA genes and transposon sequences (regions lying between tRNAs and transposons or between clusters of transposon sequences were also deleted), removed LEU2 sequence and adjacent sequences removed in the construction of designer deletion leu20 (33), flanked the CEN3 sequence with loxPsym sites, and deleted repetitive subtelomeric sequences. With the exception of intron deletions, deletions were accompanied by insertion of a loxPsym site. All genes distal to GIT1 on the right arm were deleted, as very similar sequences to these are found in other telomeres. Moreover all these genes are absent from ring chromosome III, which reportedly has no growth defect (34). Special design features used in synIII Several design alterations were required to synthesize synIII. Unlike the previously designed synIXR, synthesized as a circular chromosome (2), synIII was designed to be linear and thus requires telomeres. A UTC was designed that could define each chromosome end, with T(G)1-3 exposed to serve as a telomere seed sequence. The UTCs used at each end of synIII are identical but in opposite orientations and specify precisely structured telomeres. Secondly, unlike chromosome IXR, native III encodes seven intron-containing protein-coding genes. These seven introns were systematically removed following the rules of RNA splicing, in the hope that it will be possible to eventually assemble a version of Sc2.0 lacking introns altogether. Finally, a single copy tRNA gene on III, SUP61, encoding tRNASer (CGA) is known to be essential based on genetic studies, as it alone decodes UCG codons (32). Consistent with prior work, deletion of this tRNA from the genome was impossible; we initially encoded it in trans on a centromeric plasmid. The synthetic SUP61S tRNA gene design consisted of the S. cerevisiae tRNA coding region (less its 18-bp intron) flanked by sequences from the corresponding tRNA locus in Eremothecium (Ashbya) gossypii. Universal Telomere Cap (UTC) Design A 305 bp UTC1 sequence conforming to the consensus (C1-3A)n, was designed by randomly concatenating sequences conforming to the consensus in silico. The UTC1 sequence was flanked by a NotI site on the centromere proximal end and a BsaI site on the centromere distal end. Cleavage with BsaI releases the telomere end with a 4 bp 5’ overhang within the (C1-3A)n

Page 6: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

6

sequence, providing a telomere seed sequence that can be extended by telomerase. This insert was synthesized and cloned into plasmid pUC19 to form pUTC1. Synthetic SUP61S Design The essential SUP61 gene was converted to a synthetic version SUP61S by removing the intron, and then, to avoid introducing S. cerevisiae repetitive sequences (such as LTR and Ty sequences), substituting sequences (500 bp 5´ and 20 bp 3´) flanking the corresponding isoacceptor tRNA from Eremothecium gossypii, a related species that retains a high degree of synteny with S. cerevisiae. The E. gossypii sequence was chosen in part because it lacks recognizable transposable element derived sequences, unlike native S. cerevisiae tRNA flanking regions. Furthermore, although the E. gossypii primary DNA sequence is distinct, there exists recognizable synteny with S. cerevisiae chromosomes and promoter and terminator sequences have been shown to function well in S. cerevisiae (35, 36). This synthetic SUP61S plasmid, tagged with the HIS3 selectable marker, was introduced prior to the step in which the native tRNA would have been deleted by incorporation of the relevant synIII segment (Table S1). As expected, although the CEN plasmid could readily be lost by nonselective growth prior to swapping in the SUP61-less fragment, once that portion of synIII had been introduced, the SUP61S plasmid became essential. Hierarchy and Nomenclature Hierarchy and an example A diagram of the hierarchy from oligonucleotide to intact chromosome is shown in Fig. S3. A Sample name for a specific BB, 3L.3_23.B2.07 and an oligonucleotide (o) within it are shown. The chromosome arm is IIIL – hence 3L. Chromosome versions The version in the example is 3_23 (global version 3, chromosome-specific version 23). Version 3_41 is the final version merging two separate designs originally made for the left and right arms separately. Thus it represents the “designed” version. Note that version 3_42 represents the experimentally determined sequence from strain HMSY011. Chunks and BBs The chunk number is B2. B is the ~30 kb “megachunk” and 2 is the second of three ~10 kb chunks in B. The Building Block (BB) is 07. There are typically 10-18 BBs per ~10 kb chunk. The oligo number is 07. This is the 7th oligo in BB11. A typical BB has 18 oligos. The small letter “o” indicates oligonucleotide. Nomenclature for BB clones 3L.3_23.B2.07.c05: This is the 5th clone (“c”) picked for BB07 in chunk B2 on the left arm of chromosome III. Nomenclature for systematic Sanger sequencing reads 3L.3_23.B2.07.c05.f1 for the forward read 3L.3_23.B2.07.c05.r1 for the reverse read Subsequent re-sequencing reads are labeled f2, etc.

Page 7: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

7

SynIII synthesis and assembly The designed synIII chromosome sequence was divided into 367 BBs with an average size of 0.75 kb, of which 133 BBs corresponded to synIIIL, including a single BB [3L.3_23. D3.10] spanning CEN3; 234 BBs encoded synIIIR. At the next higher level of organization, the synIII chromosome was divided into 127 minichunks, ranging from ~2-4 kb in size, of which 43 minichunks corresponded to synIIIL, 83 minichunks corresponded to synIIIR, and one minichunk, encoded by pNA044, spanned the centromere CEN3 (Table S1). Each minichunk consisted of 3 to 5 BBs with a single BB overlap specified for adjacent minichunks. The wet-bench workflow consisted of three major stages: 1) The 750 bp building blocks (BBs) were produced starting from overlapping 60- to 79-mer oligonucleotides designed to have compatible melting temperatures using GeneDesign (13) and assembled using standard polymerase chain assembly methods (14). All BBs were verified by sequencing (17). This critical step produced most of the starting material for the project and was carried out by undergraduate students in the Build-A-Genome class at Johns Hopkins University (Fig. 2A). 2) The 133 synIIIL (+ CEN) BBs were assembled into 44 overlapping minichunks of ~2-4 kb using one of two methods: (i) Uracil Specific Excision Reaction (USER) (16) or (ii) the “Gibson” isothermal assembly reaction (19) with a 40 bp overlap between adjoining BBs. The 234 synIIIR BBs were assembled into 83 overlapping DNA minichunks of ~2-4 kb in size using either the isothermal assembly reaction or by direct homologous recombination in yeast (Fig. 2B) (18, 19). The minichunks were also verified by sequencing. 3) All adjacent minichunks for synIII were designed to overlap one another by one BB, thus enabling further assembly in vivo by homologous recombination in yeast (20, 21). Using an average of 12 minichunks and alternating selectable markers in each experiment, the native sequence of S. cerevisiae III was systematically replaced by its synIII counterpart in eleven successive rounds of transformation (Table S2). The iterative replacement of native genomic segments of III with pools of overlapping synthetic DNA minichunks encoding alternating genetic markers enabled the total synthesis of the first functional designer eukaryotic chromosome, synIII, in vivo in yeast (Fig. 2C). Synthesizing Building Blocks (BBs) from Oligonucleotides The first step of the synthesis process, referred to as “templateless” PCR (T-PCR), involves assembling ~18 overlapping oligonucleotides that comprise the ~750 bp building block (BB), a method also known as polymerase chain assembly. Oligonucleotides in these reactions serve as both template and primers; the product appears as a smear when examined by agarose gel electrophoresis. The desired full-length ~750 bp BB is obtained by the “finish” PCR (F-PCR), using a dilution of the T-PCR product as template and the two outermost 5’ and 3’ primers (15, 39). Problematic BBs were assembled using a “touchdown” PCR protocol in the F-PCR step, in which successively lower annealing temperatures are used during each cycle in the early phase of the PCR. Lowering the extension temperature of the reaction from 72°C to 68°C helps to amplify through A-T rich templates that are less stable at the higher temperature. Each full-length ~750 bp BB was ligated to the pGEM-T vector (Promega), which allows for blue-white screening when transformed to E. coli. Twelve to twenty-four white colonies per BB were analyzed for insert size by colony PCRs, using the T7 and SP6 priming sites available within the pGEM-T vector, and 18 full-length inserts were sequenced, which yielded at least one with the desired sequence. 338 BBs were produced by undergraduate students in the Build-A-Genome class, while the remaining 29 BBs were purchased from commercial vendors (GeneArt,

Page 8: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

8

Regensburg, Germany; Celtek Genes, Nashville TN; and Epoch Life Science, Missouri City, TX). Sequence Verification of BBs by CloneQC CloneQC software that performs quality control on the sequenced clones is available as a free webserver (http://cloneqc.org) and as BSD-licensed source code. This software allows analysis of user-specified DNA reference sequences. CloneQC was used internally as an integral component of the Build-A-Genome course to analyze the sequences of BBs (38). Assembly of 2-4 kb Minichunks Three different assembly methods were used to make the 127 minichunks needed for the construction of the synIII chromosome: 1) USER assembly (31 minichunks); 2) Isothermal assembly (57 minichunks); and 3) Yeast assembly (39 minichunks). A brief description of each method is given below. USER Assembly USER method was used to assemble 31 synIIIL minichunks both in vitro (using Phusion polymerase/Taq ligase (New England Biolabs, Beverley, MA)) and in vivo (using E. coli) (Fig. S4). A detailed protocol for USER fusion assembly reaction is described elsewhere (16). Gibson Isothermal Assembly The isothermal assembly technique with 40 bp overlap between adjoining BBs was used to generate several synIIIR 2-4 kb minichunks using a blend of three enzymes (T5 exonuclease (Epicentre, Madison, WI), Phusion DNA polymerase (New England Biolabs, Beverley, MA) and Taq DNA ligase (New England Biolabs) in a single step assembly reaction (Fig. S4) (17). The enzyme reagent mix (readily stored at -20°C) was combined with overlapping BBs and vector; the reaction was incubated at 50°C for 15 min. A detailed protocol for the “Gibson” isothermal assembly reaction is described in detail elsewhere (40). Yeast Assembly Alternatively, we used a yeast-based homologous recombination based DNA assembly (Fig. 2B). It can efficiently assemble 3 to 5 BBs and a shuttle vector (pJHU2) with 40 bp terminal overlaps in a single transformation event. This approach is fully compatible with fragments that have been made for Gibson assembly. A detailed protocol for the yeast assembly reaction is described in detail elsewhere (21, 41). Plasmid Isolation from Yeast Cells were harvested from 3 ml overnight culture in YPD and resuspended in 250 µl of buffer P1 (QIAprep miniprep kit). After addition of 100 µl of glass beads, cells were broken by vortexing for 5 minutes. Following this treatment, plasmids were isolated using the standard alkaline lysis and a Qiagen miniprep spin column to isolate the DNA. Aliquots of the shuttle plasmid were used to transform E. coli. See Muller et al. (2012) for full description of this protocol (21). Direct Replacement of Native Chromosome III with Synthetic Minichunks in Yeast All consecutive minichunks were designed to have overlap by one BB to enable further assembly and replacement of native S. cerevisiae DNA in vivo by homologous recombination. This

Page 9: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

9

iterative replacement strategy is likely to be limited to organisms with an efficient HR repair mechanism. Equimolar amounts (~ 70 fmol each) of four to twenty-seven overlapping minichunks were co-transformed into yeast, along with a linker composed of an auxotrophic marker (URA3 or LEU2) fused to the “right end” terminal minichunk (Fig. 2), as well as a sequence of about 1000 bp of the native chromosome sequences adjacent to the right end-most minichunk introduced (Fig. 2), using a modified version of the yeast LiOAc transformation protocol. The protocol was modified as follows to improve transformation efficiency: Following heat shock, cells were centrifuged at 4000 rpm for 5 min, washed in 5 mM CaCl2 and incubated at RT for 10 min. Cells were centrifuged at 4000 rpm for 5 min, then resuspended in water and plated on the appropriate selective medium. The penultimate transformation involved selection on SC–URA medium, and 5-FOA resistance selection was used in the final step yielding a final synthetic chromosome lacking a selectable marker. Complete set of PCRTags analyses of synIII and wild type strains. Upon completion of synIII, as well as at each of the intermediate construction steps, PCRTag analysis (Table S5) revealed the presence of synIII synthetic PCRTags and absence of native PCRTags, excepting a single PCRTag, YCR004c.1 (Fig. S5). As expected, PCRTag analysis of the wild type (BY4742), showed the presence of only wild type and no synthetic PCRTags (Fig. S6). We were able to subsequently incorporate the synthetic version of YCP4 (YCR004c) into synIII by first deleting the native gene from the otherwise synthetic chromosome and then incorporating the synthetic version of YCR004c (Fig. S7). Yeast Colony PCR for Rapid Screening of WT and SYN PCRTags Yeast cells from single colonies were resuspended in 5 µL of 20 mM NaOH and heated at 95°C for 5 min in a thermocycler prior to adding regular PCR mix and performing PCR cycles. A detailed protocol for yeast colony PCR for PCRTag screening can be found elsewhere (21). Yeast Genomic DNA Preparation for PCRTags Analysis Yeast cells were isolated from 100 μL of saturated overnight culture by spinning at 2000 rpm for 2 min in a centrifuge at RT. The yeast pellet was resuspended in 200 μL breaking buffer (50 mM Tris pH8, 100 mM NaCl, 1% SDS, 2% TX100, and 1 mM EDTA). (Alternatively, resuspended cells were scooped with a sterile stick directly from a plate, in a 1.5 mL microfuge tube containing 200 μL breaking buffer). An equal volume of glass beads (Sigma G8772) and 200 μL of Phenol-Chloroform-Isoamyl alcohol (PCI) (25:24:1) were added and vortexed for ~10 min at RT and then centrifuged at 15000 rpm for 10 min. 75 μL of the top, aqueous layer, was transferred to a labeled microfuge tube containing 1 mL 100% ethanol and then inverted 5 times, and centrifuged for 20 min at 4°C. The supernatant was discarded and the DNA pellet washed by adding 500 μL of 70% ethanol, centrifuged at RT for 5 min. The genomic DNA was air-dried at RT and then resuspended in 50 μL 10 mM Tris (pH 7.4) buffer, and stored at −20°C. For each 5 μL PCR reaction, 0.1 μL of genomic DNA was used as template. PCRTags Analysis Reaction Conditions Amplification of PCRTags was performed using GoTaq Hot Start Polymerase (Promega, Madison, WI), 400 nM each of forward and reverse primers, and either BY4741 or synIII genomic DNA in a 5 µL final reaction volume. Touchdown PCR was performed as follows: 95°C/3 min, 20 cycles of (95°C /30 sec, 64°C /20 sec/-0.3°C /cycle, 72°C /30 sec), followed by

Page 10: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

10

15 cycles of (95°C /30 sec, 58°C /20 sec, 72°C /30 sec) and a final extension of 72°C /5 min. Detection of PCRTags was performed by diluting samples to 25 µL in H2O and using a Caliper LabChip GXII (Perkin Elmer, Waltham, MA) and the HT DNA 5K LabChip Kit, Version 2. Virtual gel images were generated using LabChip GX software version 4.0.1418.0. Yeast Genomic DNA Preparation for DNA Sequencing Yeast cells were isolated from 2 mL overnight culture by spinning at 3000 rpm in a centrifuge. The yeast pellet was resuspended in 200 μL breaking buffer. An equal volume of glass beads (Sigma G8772) and 200 μL of PCI were added and then vortexed. 200 μL of TE pH 8 (10 mM Tris pH 8, 1 mM EDTA pH8), mixed thoroughly and then centrifuged at 15000 rpm at 4oC for 10 min. The aqueous layer was transferred to another microfuge tube and 4 μL of RNAse A (10 mg/mL) was added and incubated at 37˚C for 1 h. 400 μL PCI was added to the reaction mixture, vortexed for 1 min and then centrifuged at 15000 rpm at 4˚C for 10 min. The aqueous layer was transferred to another tube. The genomic DNA was precipitated by adding ~35 μL 3M NH4OAc and 1 mL ethanol (−20oC) and kept at −80˚C for 1 h. The DNA was pelleted by spinning at 15000 rpm at RT for 20 min. The precipitate was then washed with 500 μL 70% ethanol and dried at 50˚C for 5 min. The genomic DNA was then resuspended in 25 μL TE pH 8. RNA Isolation from Yeast for RNA Sequencing A single yeast colony was grown in a 10 mL culture in YPD until the OD600 was 0.8 to 1.2. The cells were pelleted by spinning at 2000 rpm at RT for 5 min. The pellet was resuspended in 0.5 mL of RNAse-free water (DEPC water) and transferred to a microfuge tube. The cells were pelleted again by spinning briefly and discarding the supernatant. The cells were resuspended in 300 µL RNA lysis buffer (0.5 M NaCl, 0.2 M Tris-HCl [pH 7.5], 10 mM EDTA). 200 µL glass beads and 300 µL PCI was then added to the cells and vortexed twice for 1 min. The cells were kept on ice for 1 min between vortexes. Centrifuge at 15000 rpm at RT for 1 min. The aqueous layer (~300 µL) was then transferred into another microfuge tube; an equal amount of PCI was added, mixed well and centrifuged at 15000 rpm at RT for 4 min. The aqueous layer was then extracted with an equal volume of chloroform. The RNA was precipitated by adding 600 µL of 100% ethanol and incubating the tube at −80˚C for 1 h or overnight. The RNA was pelleted by centrifuging at 15000 rpm at 4˚C for 15 min. The RNA pellet was then washed with 500 µL of 70% ethanol, air-dried and then resuspended in 20 µL DEPC water. Nucleotide Sequence Analysis of synIII Single-end whole genome sequencing of strain HMSY011 was performed using an Illumina HiSeq using TruSeq preparations kits; 195,598,768 raw reads were obtained and used for downstream analysis. A set of high-quality reads was created from the raw data by removing adapters using TRIMMOMATIC and then quality filtering; reads with average quality less than Phred score 15, containing “N”s were filtered out, reducing the initial set of reads by ~1%. Filtered reads were mapped using BOWTIE2 with default sensitivity settings; a reference genome was constructed starting with the sequence for strain BY4742, in which chromosome III had been replaced with the synthetic version. 97.83% of reads were mapable; 81.28% map uniquely to the genome whereas 16.55% mapped to > 1 region. The average fold coverage on chromosome III was 554X with a standard deviation of 55.3 (window size: 500 bp), a minimum

Page 11: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

11

of 372X and a maximum of 816X, characterized by a skewness of -0.348 and kurtosis of 0.888, resulting in a good fit with the expected normal coverage distribution. Base changes and short indels relative to the designed reference synIII chromosome sequence where detected using UNIFIEDGENOTYPER of the Genome Analysis Toolkit (GATK) using standard parameters; large deletions were detected by checking depth of coverage at each location. The final sequence has three synonymous changes, three frameshifts, two non-synonymous coding changes and one change not in a coding region, 277 bp from the YCR042C gene (Table S4); furthermore, a loxPsym site was lost at position 59583. RNA-Seq Analysis of synIII Single-end non-strand-specific RNA-seq of the synIII stain (HMSY011) and BY4742 were performed using Illumina MiSeq and standard TruSeq preparations kits. Total counts of 100 bp single-end reads were 84,859,272 for the wild type strain and 105,038,509 for the synIII strain. Adapters and low quality were trimmed using TRIMMOMATIC (42), reducing the read count by about 2.5%. Reads were mapped using TOPHAT (43) to the reference S. cerevisiae BY4742 genome. For each gene, read counts were computed using HTSEQ (44) and analyzed for differential expression using DESEQ (45), with standard parameters and following the no replicates scenario. For each gene, we obtained a raw p-value and adjusted p-value using the standard Benjamini–Hochberg procedure. Genes were assessed for statistical significance by rejecting the null hypothesis if the adjusted p-value was <0.01 and if the raw p-value fell below the threshold of the 5% Family Wise Error Rate (FWER) after Bonferroni correction (threshold=7.02eX10-06). We obtained two genes with a significant change in expression: HSP30 on the synIII chromosome (p-value=1.76X10-06, p-adjusted=0.00132, log2 fold change=-4.25) and PCL1 on chromosome XIV (p-value=4.63X10-06, p-adjusted=0.00313, log2 fold change=4.05). SCRaMbLE Yeast cells were transformed with the URA3-tagged plasmid pLM158 expressing the Cre-EBD fusion protein under the control of the SCW11 promoter (2, 46) into wild-type and synIII strains, and plated on SC–Ura to select for the plasmid. Isolated colonies were inoculated into 5 mL SC–Ura for overnight culture at 30°C. Cultures were diluted to an OD600 of 0.1 in 200 mL SC–Ura plus or minus estradiol to a final concentration of 1 µM (Sigma E2257). As ethanol is used as a solvent for the stock solution of estradiol (10 mM), the same volume of ethanol 100% (20 μL) was added to the control cultures minus estradiol. Samples were taken before induction (T0) and at various time points after induction, adjusted to an OD600 of 0.1, and then 5 µL of 10-fold serially diluted cultures were spotted onto SC–Ura or YPD plates. OD600 of cultures was recorded over 48h of induction. Cell Morphology Cells were grown to mid-log phase in synthetic complete medium with 2% dextrose at 30°C. DIC Images were collected using a Zeiss Microscope Axioskop 2 mot Plus (63X) with a Zeiss AxioCam HRc Camera.

Page 12: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

12

Pulsed Field Gels Chromosome-sized DNAs were prepared as described elsewhere (22) . Identity of the chromosomes was inferred from the known molecular karyotype of WT (BY4742) that was run on the same gel. Samples were run on a 1.0% agarose gel in 0.5x TBE (pH 8.0) for 24 h at 14°C on a CHEF apparatus. The voltage was 6 V/cm, at an angle of 120° and 60-120 s switch time ramped over 24 h. Southern Blot Probe Preparation Probes were prepared using the Prime-It II kit (Stratagene), and hybridized using Ultrahyb hybridization solution (Ambion) according to manufacturer’s instructions. SUP61S Integration SUP61S essential tRNA complementation was done in two steps: First, synIII/III heterozygous diploid strains (yLM108 to yLM117) with SUP61S in HIS3 vector pRS413 were constructed. Second, the colonies were screened for the loss of HIS3-plasmid (yLM098 to yLM107), and transformed with SUP61S flanked by 500-bp homologous HO genomic sequences to integrate the donor at the HO locus to generate NAY002 to NAY011 strains (Fig. S17). Synthetic YCP4S Integration into synIII strain PCRTags analysis revealed that the synthetic version of YCP4 (YCP4S) was not originally assimilated into the synIII strain HMSY011, which was confirmed by sequencing of synIII. However, we were able to subsequently incorporate YCP4S by first deleting native YCP4 and then incorporating YCP4S. This was done in two steps: First, we deleted YCP4 by integrating URA3 at the native YCP4 locus; Second, we removed URA3 by incorporating YCP4S at this locus (Strain - NAY001), using 5-FOA medium to screen for the loss of URA3 (Fig. S7). Serial dilution assay on various types of media Wild type (BY4742), synIIIL (yLM043), and synIII (yLM197) strains were grown overnight in rich medium (YPD) at 30°C with rotation. Cultures were serially diluted in 10-fold increments in water and plated onto each type of medium. All drugs (methyl methanosulfate (MMS; defective DNA repair) (Sigma, 129925), benomyl (Aldrich, 381586; microtubule inhibitor), camptothecin (Sigma, C9911; topoisomerase inhibitor), hydroxyurea (HU; defective DNA replication) (Sigma, H8627)) were mixed into YPD, except 6-azauracil (6-AU; Sigma, A1757; defective transcription elongation), which was mixed into synthetic complete (SC) medium containing 2% dextrose. YPGE (respiratory defects) was prepared with 2% glycercol and 2% ethanol. High and low pH plates (9.0 and 4.0; vacuole formation defects) were prepared using NaOH and HCl in YPD, respectively. Sorbitol plates (osmotic stress) were prepared by adding the appropriate quantity of sorbitol (Sigma, S1876) to YPD. For hydrogen peroxide (Fluka, 88597; oxidative stress) and cycloheximide (Sigma C7698; defective protein synthesis), overnight cultures were treated for 2 hours in drug, harvested by centrifugation and resuspended in water prior to plating the serial dilutions on YPD. Plates were incubated at 30°C, unless otherwise indicated in Fig. S11B, for 2 days (YPD, camptothecin, 6-azauracil, benomyl, pH4.0, pH9.0, cycloheximide, hydrogen peroxide) or 3 days (sorbitol, YPGE, HU, MMS). Subculture

Page 13: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

13

Six single synIII strain (yLM197) colonies were inoculated in 5 mL of YPD. After 24 hours, 5 µL of overnight culture was transferred to 5 mL of fresh YPD. This experiment was continued for 10 days to get 120 generations. Then cells were plated on YPD plates to get single colonies. Five single colonies were picked from each of six “mother clones” to inoculate 3 mL culture of YPD and next day gDNA prep was carried for all the 30 clones. PCRTag analysis (Table S8) was carried out to monitor the presence of 58 presumed non-essential segments (i.e. segments lacking known essential genes) flanked by loxPsym sites. All the 58 PCRTags amplified in each strain, indicating the presence of these segments. A-Like-Faker Assay Mating between MATα strains will occur when the MATα locus from either parental genotype is lost. Possible events include loss of the chromosome III, deletion, translocation or removal of the MATα locus. One mL of overnight culture of synIII strain and Tester α strain were mixed and kept at 30˚C for 4 hours (for mating). The cells were then washed twice with water by spinning at 2500 rpm for 2 minutes. The cells were resuspended in 500 µl of water and plated on SD plates. Overnight cultures were also plated on YPD plates to estimate the CFU. This experiment was carried out for ten independent synIII and BY4742 strains and the average loss rate of MATa calculated using the method of the median (47). The yeast strain, yLM197, was used for this experiment. SCRaMbLE Mating Type Assay Ten independent heterozygous diploid strians (NAY002 to NAY11) were transformed with HIS3 plasmid pLM006 expressing the Cre-EBD fusion protein under the control of the SCW11 promoter. We then inoculated isolated colonies into 5 mL YPD for overnight culture at 30°C. We then re-inoculated the overnight cultures into 5 mL YPD (1:10 ratio) medium with 1 µM estradiol (Sigma E2257). After 30 min incubation at 30°C, cells were plated in the absence of estradiol at varying number of cells (~20, ~200, and ~2000 cells, respectively) on solid YPD medium and the colonies were grown for two days at 30˚C. Mating assays were performed using mating type tester strain lawns with overnight mating at 30˚C and subsequently replica-plating onto SD medium. Loss of genomic segments containing the MATα region of synIII (i.e. deletion of synIII chromosome segments between two loxPsym sites that result in the loss of MATα) in these cells should lead to the development of a-type mating cells, detected by their ability to mate with a MATα tester strain lawn. Fourteen such clones were analyzed by 24 SYN PCRTags, each pair covering ~10 kb of the synIII chromosome, for the absence of SYN PCR products in the PCRTag reactions. These clones were similarly analyzed using all the MATα region-specific SYN PCRTags for the loss of MATα region on the synIII chromosome. Effect of Cre-EBD induction on synIII strain Subsequent to completion of synIII, we transformed a Cre-EBD plasmid into the haploid synIII strain to enable SCRaMbLEing of the chromosome (2, 3), which resulted in genome rearrangements of the synIII strain. Cre-EBD induction appears to greatly reduce the fitness of the synIII strain, but not the wild type (Fig. S16A). We also monitored growth curves of wild type and synIII strains throughout Cre-EBD induction time course, and as expected, synIII shows much decreased fitness as compared to the wild type under these SCRaMbLE-inducing conditions (Fig. 16B).

Page 14: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

14

ChIPseq Analysis BY4742 and synIII cells were grown to an A600 of 0.5, and nocodazole was added to a concentration of 15 µg/mL. After arrest for 2 h at 30˚C, ~50 OD cells were fixed in 1% formaldehyde at 25˚C for 2 h and quenched in 125 mM glycine at 25˚C for 10 min. Cells were pelleted and washed twice with 1X TBS buffer before freezing. The frozen pellet was resuspended in 0.45 ml ChIP lysis buffer (50 mM HEPES•KOH pH 7.5, 500 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% deoxycholate, 0.1% SDS, 1 mM PMSF, 10 µM leupeptin, 5 µM pepstatin A, and Roche protease inhibitor cocktail) and lysed by bead beating. Lysate from 50 OD of cells was split into two tubes each containing 280 µL lysate and sonicated for 20 cycles (30 sec on, 30 sec off, high output) using a Bioruptor (Diagenode, Denville, NJ). The supernatant of the sonicated lysate was pre-cleared. 50 µL lysate was saved as input. 1.5 µg Mcd1 antibody (the kind gift of Vincent Guacci and Doug Koshland) was used. After incubation overnight, 50 µl protein A Sepharose beads (GE Healthcare Life Sciences, Piscataway, NJ, 17-5280-01) resuspended in ChIP lysis buffer was added and incubated for 1.5 h at 4˚C. Beads were washed twice with ChIP lysis buffer, washed twice with ChIP lysis buffer containing 500 mM NaCl, twice with DOC buffer (10 mM Tris•Cl pH 8.0, 0.25 M LiCl, 0.5% deoxycholate, 0.5% NP-40, 1 mM EDTA) and twice with TE. 125 µL of TES buffer (TE, pH 8.0 with 1% SDS, 150 mM NaCl, and 5 mM dithiothreitol) was added to resuspend the beads. The supernatant was collected after incubation at 65°C for 10 min. A second round of elution was performed and the eluates were combined. Reverse crosslinking was performed by incubation for 6 h at 65°C. An equal volume of TE containing 1.25 mg/mL proteinase K and 0.4 mg/mL glycogen was added to the samples after reverseing the crosslinks and the samples were incubated for 2 h at 37°C. Samples were extracted twice with an equal volume of phenol and once with 25:1 chloroform:isoamyl alcohol. DNA was precipitated in 0.1 volume 3.0 M sodium acetate (pH 5.3) and 2.5 volume of 100% ice-cold ethanol at -20˚C overnight. Pellets were washed once with cold 70% ethanol and resuspended in 20 µL TE. Library construction and sequencing were performed following the Illumina protocol; DNA ends were repaired and A-tailed. Barcoded adaptors were ligated and the DNA was run on a 2% agarose gel. 150 - 300 bp DNA fragments were excised from the gel and used for PCR. PCR products were gel-extracted again and quantified on an Agilent Bioanalyzer. Sequencing was performed on an Illumina Miseq. Raw reads were mapped using BOWTIE (-5 3 -3 10 --best) to the reference genome (sacCer2) or the synIII genome (identical to sacCer2 except replacing chr03 with synIII sequence) and the peaks were visualized using the CISGENOME Browser. Determination of replication origins of synIII The protocol for mapping replication origins was adapted from Agier et al. (36) as follows. Strain yLM197 was inoculated in 500 mL YPD at OD600 = 0.15 and grown O/N for approx. 18 h. 8X1010 cells were harvested by centrifugation 5 min at 4000 rpm, washed in 100 mL 1xPBS buffer and resuspended in 50 mL l PBS buffer to enter a Beckman elutriation system (Avanti J26 XP centrifuge combined with a JE-5.0 elutriator rotor and a 40 mL elutriation chamber). From the original asynchronous culture, G1 cells were sorted by elutriation, and 109 G1 cells were resuspended in 500 ml of fresh YPD pre-warmed to 25˚C before beginning the time course experiment. Subsequent culture growth was carried out in a water bath at 25˚C with constant shaking. Aliquots of cells were harvested at T0 and then every 10 minutes after a lag phase of 2 h and 30 min to allow entry into S-phase. At every time point, 1 mL cells were fixed with 2.3 mL EtOH (100%) to monitor S-phase progression using flow cytometry, and 30 mL cells were fixed

Page 15: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

15

in 0.1% Na azide (final concentration) on ice, to be used for the replication origin determination. Cell morphology was also examined under the microscope, to check for bud formation. At the end of the time course, cells fixed in Na azide were washed twice with 20 mL of cold water (4˚C), and pellets were frozen at −80˚C until used for DNA extraction. After 12 h in EtOH at 4˚C, cell aliquots for FACS analysis were labeled with SYTOX® Green (Life Technologies) dye and analyzed with a MACSQuant® Analyzer. DNA extraction of the frozen pellets was performed using the Qiagen kit Genomic-tip 20/G, following manufacturer’s instructions. Each sample was then processed for Illumina sequencing using standard protocols and custom adapters, allowing multiplexing of the time points chosen for the experiment. All multiplexed time points were sequenced on a HiSEQ2000, with a single-end 50 base reads. For each time point, reads were mapped to the reference genome (BY4742 genome sequence with synIII instead of WT chromosome III) to determine replication origins, using the procedure described in Agier et al. (48).

Page 16: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

16  

(Next page for figure legend)

Page 17: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

17  

Figure S1: Map of synIII with common ORF names. Open reading frames (ORFs) - red, essential; dark blue, non-essential; purple, null mutation confers a slow growth phenotype; light blue, uncharacterized; white, dubious/pseudogene. Autonomously replicating sequences (ARSs), pale yellow. Loci marked with an “X” are present in the WT chromosome and are deleted in synIII. Green diamonds represent loxPsym sites embedded in the 3’ UTR of non-essential genes and at several other landmarks. Gray bars in ORFs symbolize PCRTag pairs. Fuchsia circles indicate synthetic stop codons (TAG recoded to TAA). Rare-cutting restriction enzyme sites bordering ~10 kb chunks are also shown.

Page 18: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

18  

Figure S2: Map of synIII with systematic ORF names. Open reading frames (ORFs) - red, essential; dark blue, non-essential; purple, null mutation confers a slow growth phenotype; light blue, uncharacterized; white, dubious/pseudogene. Autonomously replicating sequences (ARSs) pale yellow. Loci marked with an “X” are present in the WT chromosome and are deleted in synIII. Green diamonds represent loxPsym sites embedded in the 3’ UTR of non-essential genes and at several other landmarks. Gray bars in ORFs symbolize PCRTag pairs. Fuchsia circles indicate synthetic stop codons (TAG recoded to TAA). Rare-cutting restriction enzyme sites bordering ~10 kb chunks are also shown.

Page 19: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

19  

Figure S3: Hierarchy and nomenclature for synIII. A diagram of the hierarchy from oligonucleotide to intact chromosome is shown. See Supplementary Text for more details.

Page 20: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

20  

Figure S4: Schematic diagram of USER and Gibson isothermal assembly methods.

Page 21: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

21  

Figure S5: SynIII PCRTag analysis. The presence of synIII and absence of native chromosome III was verified by amplification of synthetic PCRTags (SYN) compared to wild-type PCRTags (WT). PCRTag analysis of synIII strain revealed the presence of SYN PCRTags and absence of WT PCRTags, with the exception of one single PCRTag, YCR004c.1 The synthetic version of YCR004c.1 (YCP4S) was subsequently incorporated by first deleting the native gene (YCP4) from the otherwise synthetic chromosome and then incorporating YCP4S (Fig. S6. Two SYN PCRTags (YCR067C.1 and YCR073W-A.1) did not yield amplicons under the PCR conditions used. Nucleotide sequence determination of synIII confirmed the presence of these two SYN PCRTags.

Page 22: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

22  

Figure S6: PCRTag analysis of wild-type gDNA (BY4742). PCRTags that are short pairs of recoded sequences, unique to either the wild-type or synthetic genome, were used to rapidly verify the introduction of designer synIII synthetic sequence and the removal of native wild-type yeast chromosome III sequence by PCR. PCRTag analysis of wild-type yeast (BY4742) gDNA showed the presence of only WT PCRTags, demonstrating the specificity of all PCRTag primers (Fig. S4). Two WT PCRTags, namely YCL061C.2 and YCL045C.2, did not yield any products under the PCR conditions that we employed for the PCRTag analysis. SYN, synthetic PCRTags; WT, wild-type PCRTags.

Page 23: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

23  

Figure S7: Incorporation of the synthetic version of YCP4 into synIII. PCRTags analysis revealed that YCP4 was not assimilated into the synIII strain, which was further confirmed by nucleotide sequence determination of synIII. However, we were able to subsequently incorporate the synthetic version of YCP4 (YCP4S) by first deleting the native gene and then incorporating the synthetic version. This was done in two steps: In the first step, we deleted the wild-type YCP4 by integrating URA3 at the YCP4 locus. In the second step, we removed URA3 by incorporating synthetic YCP4 S at this locus. Agarose gel profile of the PCRTag analysis around the region of YCP4 locus for synIII, YCP4∆::URA3 and YCP4S strains are shown: Lanes: 1, PCRTags for YCR003W.1; 2, YCR004C.1 (YCP4); and 3, YCR005C.1. SynIII strain shows the presence of the synthetic PCRTags for YCR003W.1 and YCR005C.1 loci and wild-type PCRTag for YCR004C.1 (YCP4). YCP4∆::URA3 strain has the wild-type PCRTag YCR004C.1 (YCP4) deleted. The YCP4S strain shows the presence of only synthetic PCRTags around the YCP4 region [synthetic sequence only for YCR003W.1, YCR004C.1 (YCP4) and YCR005C.1] and no wild-type PCRTags. YCP4S, synthetic version of YCP4.

Page 24: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

24  

Figure S8: Karyotypic analysis of synIII and intermediate assembly strains by pulsed-field gel electrophoresis revealed the size reduction of synIII compared to native III. Synthetic intermediate strains are denoted by the amount of synthetic DNA integrated (in kb) at each step. Yeast chromosome numbers are indicated on the right side. Native and synthetic versions of chromosome III are marked with closed circles. Karyotype abnormalities pre-existing in the starting strain (ΔYCL069W) and those that arose at the 5th integration step (93) are indicated with closed and open arrowheads, respectively. Backcrossing of the synIIIL intermediate to BY4742 eliminated chromosomal abnormalities (compare 97 to 97*) and yielded a strain of the opposite mating type (MATa versus MATα). SynIII (272,871 bp) and native chromosome VI (270,148 bp) co-migrate in the gel.

Page 25: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

25  

Figure S9: Validation of the left and right arm telomere ends of synIII. Southern blot analysis was used to verify and validate the left and right arm telomere ends of synIII (which had been specified by the UTC sequence) using arm-specific radiolabeled probes. (A) SynIII left arm telomere end has HML region deleted. Southern blot analysis of NotI/AlwNI digest of synIII swap strain yielded the expected 8.9 kb fragment as compared to 6.7 kb fragment for the wild type (BY4742) and ∆YCL069w strains confirming the deletion of HML from the left arm telomere end. (B) SynIII right arm telomere end has HMR region deleted. Southern blot analysis of BspEI digest of synIII swap strain yielded the expected 7 kb fragment as compared to the 28 kb fragment for the wild type strain (BY4742), confirming the deletion of the HMR from the right arm telomere end. The nucleotide sequence of the designer synIII chromosome further confirmed these results.

Page 26: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

26  

Figure S10: Growth curves for wild type (BY4742) and synIII strains in absence of estradiol induction (A) YPD and (B) SC−Ura. pRS, control plasmid without Cre; pCRE, plasmid with Cre.

Page 27: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

27  

(Next page for figure legend)

Page 28: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

28  

Figure S11: SynIII and synIIIL phenotyping on various types of media. Ten-fold serial dilutions of saturated cultures of wild type (BY4742), synIIIL and synIII strains were plated on the indicated media and incubated at noted temperatures (A). YPD, yeast extract peptone dextrose; SC, synthetic complete medium; SD, synthetic dextrose; YPGE, yeast extract peptone glycerol ethanol and MMS, methyl methanosulfate. Growth of wild type (BY4742), synIIIL intermediate and synIII strains have identical colony sizes at different temperatures and on various media types, with only one condition out of 21 (high sorbitol) showing a subtle fitness defect for synIII (B).

Page 29: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

29  

Figure S12: SynIII strain cell morphology. SynIII has a subtle morphological defect that arises as a specific integration intermediate that occurred on integration step synIII-219 kb. Arrowheads indicate cells with the morphological defect. Cells were grown to mid-log phase in SC medium at 30°C. DIC Images were collected using a Zeiss MicroscopeAxioskop 2 mot Plus (63X) with a Zeiss AxioCam HRc Camera.

Page 30: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

30  

Figure S13: Transcript profiling of wild-type (BY4742) and synIII strains. RNASeq analysis of synIII strain as compared to the wild type is shown in a volcano plot. Genes deleted from synIII are labeled in blue letters. Genes with significantly altered expression are shown in red. The dashed line identifies the Family Wise Error Rate (FWER) threshold at 5% (threshold=7.02e-6).

Page 31: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

31  

(Next page for figure legend)

Page 32: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

32  

Figure S14: ChIPseq map of cohesin binding sites on native chromosome and synIII. (A) Sequences were aligned to the native reference sequence (SacCer2) or to synIII (SYNIII). Red arrows and bars indicate tRNA genes. (B) The panel shows that the pattern of cohesin peaks is identical for chromosome VI in the synIII and wild-type strains. (C) The panel shows the chromosome III data from A, mapped to the synIII reference sequence rather than to the “Saccer2” reference sequence.

Page 33: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

33  

(Next page for figure legend)

Page 34: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

34  

Figure S15: Replication origins of synIII. Replication could be affected by the pervasive changes in underlying sequence. SynIII maintains 12 of 19 ARSs (autonomously replicating sequences) present in native III in completely unaltered form; six ARSs were deleted (they were associated with the subtelomere and HM loci) and three ARS sequences suffered very minor sequence changes not expected to affect ARS function (Table S9). Also, many tRNA genes, which can in principle affect the movement of replication forks, were deleted. We compared the replication dynamics of synIII and native III. The chromosomal extremities most likely to be affected by the synIII design are already known to bear late replicating origins that are not major contributors to global replication dynamics (14), and little change was observed in these regions. (A) FACS analysis of asynchronous cells before elutriation and all the time points of the replication origin experiment. Time points T1 to T9 were processed for Illumina sequencing. (B) Graph of relative DNA content (R) during the time course experiment, which varies between 1 and 2, is calculated using the following formula: R= (G1+2*G2) / (G1+G2). (C) Replication program of chromosome III from strain synIII (yLM197) (this study), S. cerevisiae from Muller et al. 2012 (36) and Raghuraman et al. 2001 (37) are shown. For each study, replication data were plotted along the chromosome, after normalization of replication times or the relative copy number ranging between 0 and 1. Replication origins were detected on normalized data, as described in Agier et al. 2013 (35) which are indicated as diamonds on top of the replication curves. To be able to make a comparison between the WT chromosome III and synIII, the alignment between both chromosomes were considered for the projection of the replication data. (D) Correlation between replication data among the three studies. For each chromosome, we performed all pairwise comparisons by calculating the Spearman correlation coefficient (Rho). Each vertex corresponds to a pairwise comparison. E) Replication program of all the chromosomes of S. cerevisiae from this study, Muller et al. 2012 (35) and Raghuraman et al. 2001 (37) including chromosome III (C), are shown.

Page 35: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

35  

A

B

Figure S16: Conditional genome instability (SCRaMbLE). (A) Induction of the SCRaMbLE system by Cre results in genome rearrangements of synIII. Cre induction greatly reduces the fitness of the synIII strain, but not the wild type (WT; BY4742). EST: estradiol; Hours: exposure to estradiol. Comparison of synIII + Cre between SC–Ura and YPD plates indicated a high frequency of loss of the URA3 plasmid in the induced synIII strain that prevents its growth on selective medium and not on rich medium. (B) Growth curves for wild type (BY4742) and synIII strains during Cre induction time course. Upon Cre induction, synIII shows much decreased fitness as compared to wild type. WT, wild-type (BY4742). The small decreased fitness effect visible on the uninduced synIII in this experiment compared to the WT might be explained by leakiness of the Cre plasmid.

Page 36: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

36  

Figure S17: SUP61 essential tRNA complementation by a synthetic tRNA gene. First, a heterozygous diploid strain with SUP61S in the HIS3 plasmid was constructed that was heterozygous for synIII. The colonies were then screened for the loss of the HIS3 plasmid, which were then transformed with synthetic SUP61S cassette flanked by 500-bp homologous HO genomic sequence to integrate the donor at the HO locus. SUP61S, synthetic version of SUP61.

Page 37: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

 

37  

Figure S18: SCRaMbLE leads to a gain of mating type a behavior in synIII heterozygous diploids. (A) Schematics of SCRaMbLE experiment behavior in synIII heterozygous diploids. Frequency of a-mater and α-mater colonies post-SCRaMbLE (induction with estradiol) in synIII/III and III/III strains. (B) Genotypic analysis of 12 gain of “a mater” synIII/III strains. Select synthetic PCRTags spanning synIII (~10 kb intervals) were used to assess the effects of SCRaMbLE. Red boxes indicate absence of PCRTags (presumed deletions); white boxes indicate presence of PCRTags. Clones 1 & 4, presumed deletion of right arm of synIII; Clones 2, 3, 5-10, & 12, presumed loss of entire synIII; and Clone 11, segment deletions within the right arm of synIII. Stars “*” indicate the position of loxPsym sites around these regions of the synIII chromosome.

Page 38: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

38

Table S1: SynIII minichunk plasmids

Minichunk Plasmids

SynIII minichunk synthetic coordinates

Start Stop pNA001 377 3360 pNA002 2604 5525 pNA003 4837 7822 pNA004 6991 9992 pNA005 9247 12190 pNA006 11448 14470 pNA007 13656 16704 #pNA008 15957 19975 #pNA009 19209 21034 pNA010 20272 23218 pNA011 22513 25491 pNA012 24688 27641 pNA013 26897 30022 pNA014 29219 32257 pNA015 31504 34450 pNA016 33703 36704 pNA017 35918 39144 pNA018 38130 41352 pNA019 40623 43599 pNA020 42851 45941 pNA021 45081 48168 pNA022 47407 50415 pNA023 49615 52303 #pNA024 51819 54436 pNA025 53759 56768 pNA026 56016 58624 pNA027 58251 60795 #pNA028 60142 63071 pNA029 62310 65291

Page 39: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

39

pNA030 64463 67422 pNA031 66774 69332 pNA032 68583 71593 #pNA033 70780 73348 pNA034 73072 75912 pNA035 75308 78094 pNA036 77338 80282 pNA037 79534 82556 pNA038 81802 84692 pNA039 84030 87021 pNA040 86271 88862 pNA041 88358 91081 pNA042 90335 93322 pNA043 92544 95550 #pNA044 94785 97386 pNA045 96965 100330 pNA046 99617 101869 pNA047 101114 103366 pNA048 102521 104851 pNA049 104099 106207 pNA051 105585 107676 pNA051 107077 109234 pNA052 108564 112198 pNA053 111451 115169 pNA054 114417 118160 pNA055 117337 121133 pNA056 120381 122627 pNA057 121873 124110 pNA058 123360 125432 pNA059 124847 126655 pNA060 126332 129580 pNA061 128849 132517 pNA062 131872 133987

Page 40: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

40

pNA063 133360 135600 pNA064 134713 136982 pNA065 136236 138468 pNA066 137710 141447 pNA067 140661 144345 pNA068 143666 147115 pNA069 146546 150079 pNA070 149331 151572 pNA071 150817 153206 pNA072 152457 156143 pNA073 155397 159091 pNA074 158343 162131 #pNA075 161901 165291 pNA076 164565 168240 pNA077 167496 171196 pNA078 170502 173840 pNA079 173106 176794 pNA080 176049 179720 #pNA081 178903 180524 *#pNA082 180019 182639 *pNA083 181876 184124 pNA084 183355 185579 pNA085 184832 187104 pNA086 186352 188602 pNA087 187846 190095 pNA088 189339 191568 pNA089 190781 194705 pNA090 193910 196318 pNA091 195480 197901 pNA092 197048 199408 pNA093 198616 201021 pNA094 200270 204163 pNA095 203398 207373

Page 41: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

41

pNA096 206516 208891 pNA097 208094 210551 pNA098 209670 212039 pNA099 211283 213535 pNA100 212769 215016 pNA101 214272 216498 pNA102 215767 219487 pNA103 218743 220974 *pNA104 220241 222455 #pNA105 221702 225023 pNA106 224652 228367 pNA107 227721 231390 pNA108 230579 234346 pNA109 233601 235849 pNA110 235097 237304 pNA111 236559 238842 pNA112 238077 240245 pNA113 239574 243307 pNA114 242549 246264 pNA115 245504 247802 pNA116 247013 249330 pNA117 248530 250868 pNA118 250052 252364 *pNA119 251576 255452 #pNA120 255142 258615 pNA121 257818 260126 pNA122 259337 261686 pNA123 260896 264829 pNA124 264031 267913 pNA125 267124 269429 pNA126 268674 270998 pNA127 270219 272499

Page 42: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

42

*Minichunks with pre-existing mutations: pNA082, 2324T deletion; pNA083, 467T deletion; pNA104, 1427T deletion; and pNA119, 825A deletion. The deletion numbers represent positions of mutations within the minichunks. #Minichunks that were digested with appropriate restriction enzymes to remove the mutated regions from overlapping BBs, but leaving sufficient overlap for HR.

Page 43: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

43

Table S2: Summary of eleven iterative one-step assemblies and replacements of native III with synthetic fragments needed to construct synIII

Replacement rounds

Starting strain Minichunks, Linker,

UTC fragment co-transformed

% of clones with right marker combination

PCR Tags Coordinate of last SYN

bp

^Clone kept

L1 BY4741

∆YCL069w [Ura–, Leu–]

1−4, Linker L1, Left end UTC

fragment 59% 1 [YCL064C1] − 2 [YCL063W1] 9246 clone 1: 9 kb-synIII

L2 9 kb-synIII [Ura–, Leu+]

4−13, Linker L2 10% 3 [YCL061C1] − 16 [YCL050C1] 30013 clone p1: 30 kb-synIII

L3 30 kb-synIII [Ura+, Leu–]

14−20, Linker L3 10.6% 17 [YCL049C1] − 28 [YCL039W1] 45934 clone p27: 46 kb-synIII

L4 46 kb-synIII [Ura–, Leu+]

21−26, Linker L4 1.3% 29 [YCL038C1] − 36 [YCL032W1] 58597 clone 3: 58 kb-synIII

*L5–A 58 kb-synIII [Ura+, Leu–]

27−42, Linker L5 1.2% 39 [YCL029C1] − 64 [YCL002C1] N/A clone L5-18

*L5–B clone L5-18 [Ura+, Leu+]

27−33, No Linker N/A 37 [YCL030C2] − 38 [YCL030C1] 92904 clone 16: 93 kb-synIII

L6 93 kb-synIII [Ura–, Leu+]

43−44, Linker L6 6.8% 65 [YCL001W1] 97411 clone 2: 97 kb-synIII

(Left arm)

R1 97 kb-synIII [Ura+, Leu–]

45−71, Linker R1 0.5% 66 [YCR002C1] − 67 [YCR003W1] 69 [YCR005C1] − 72 [YCR009C1] 76 [YCR011C3] − 98 [YCR030C1]

152497 clone 19: 152 kb-synIII

R2 152 kb-synIII [Ura–, Leu+]

71−78, 53−54, Linker R2

20% 99 [YCR032W4] − 113 [YCR037C2] 73 [YCR010C1] − 75 [YCR011C2]

172427 clone 26: 172 kb-synIII

R3 172 kb-synIII [Ura+, Leu–]

78−102, Linker R3 pRS413-SUP61

8.6% 114 [YCR037C1] − 148 [YCR072C2] 219791 clone 10: 219 kb-synIII

#R4 219 kb-synIII [Ura–, Leu+]

102−114, 46, 47, Linker R4

12% 149 [YCR073C4] − 165 [YCR088W2] 244011 clone 11: 244 kb-synIII

#R5 244 kb-synIII [Ura+, Leu–]

114−127, 46, 47, No Linker, Right end

UTC fragment N/A 166 [YCR088W1] −186 [YCR098C1] 272907 clone 28: 272 kb-synIII

L indicates synIII left arm; R indicates synIII right arm; *Round L5 was planned for replacement of PCRTags 37 to 64, using LEU2 as a selectable marker, but it was initially not possible to obtain a complete synthetic substitution. A clone in which PCRTags 37 and 38 amplified only the wild-type sequence and that was still [URA+] was selected for a second round of recombination with minichunks 27 to 33, using counter selection for URA3 by 5-FOA, allowing the next step to be carried out with a selection for [Ura+ Leu-] colonies. Transformations #R4 and #R5 also included minichunks 46 & 47 to encourage replacement of wild type YCP4 with synthetic YCP4S, but were not successful in this regard. ^For each clone, the amount of synthetic DNA (in kb) that was replaced in the native chromosome III is shown.

Page 44: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

44

Table S3: Yeast strains used in this study

Strain name Description Replacement

round Genotype

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0

BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0

BY4741 ∆YCL069w MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 YCL069W::kanMX

HMSY001 9 kb-synIII L1 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 SYN3-8876bp-LEU2

HMSY002 30 kb-synIII L2 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 SYN3-29626bp-URA3

HMSY003 46 kb-synIII L3 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 SYN3-45560bp-LEU2

HMSY004 58 kb-synIII L4 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 SYN3-58222bp-URA3

HMSY005 93 kb-synIII L5A, B MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 SYN3-92904bp-LEU2

HMSY006 97 kb-synIII L6 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0a SYN3-97002bp-URA3

yLM043 97 kb-synIII * MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 SYN3-97002bp-URA3

HMSY007 152 kb-synIII R1 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 SYN3-152088bp-LEU2

HMSY008 172 kb-synIII R2 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 SYN3-172018bp-URA3

HMSY009 219 kb-synIII R3 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 SYN3-219111bp-LEU2 pRS413 (HIS3)-synSUP61(tRNA)

HMSY010 244 kb-synIII R4 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 SYN3-243604bp-URA3 pRS413 (HIS3)-synSUP61(tRNA)

HMSY011 272 kb-synIII,

WT YCP4 tags R5 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 SYN3-272123bp pRS413 (HIS3)-synSUP61(tRNA)

NAY001 272 kb-synIII,

Synthetic YCP4 tags MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 SYN3-272123bp pRS413 (HIS3)syn-SUP61(tRNA)

yLM197

Strain NAY001

SUP61(tRNA)

integrated at HO

MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 SYN3-272123bp HO::synSUP61-URA3**

yLM422 yLM197−URA3 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 SYN3-272123bp HO::synSUP61**

Page 45: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

45

yLM108 to yLM117 synIIIxchr3 diploid MATa/α his3Δ1 leu2Δ0 lys2Δ0/LYS2 MET15/met15Δ0 ura3Δ0 (HIS3)-synSUP61(tRNA)

parents: HMSY011xBY4741

yLM098 to yLM107 synIIIxchr3 diploid MATa/α his3Δ1 leu2Δ0 lys2Δ0/LYS2 MET15/met15Δ0 ura3Δ0 parents: HMSY011xBY4741

NAY002 to NAY011 synIIIxchr3 diploid MATa/α his3Δ1 leu2Δ0 lys2Δ0/LYS2 MET15/met15Δ0 ura3Δ0 parents: HMSY011xBY4741

HO::synSUP61-URA3**

*Backcross to BY4742 was performed at this point.

**Essential tRNA cassette SUP61S integrated at the HO locus

Page 46: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

46

Table S4: Sequence variants in the synIII chromosome

Position in

SynIIIv.3_41

Reference

SynIIIv.3_41

Variant

SynIIIv.3_42

ORF Amino acid

Substitution

Closest ORF

*68618 G T YCL025C Synonymous -

71593.1 - C YCL024W Frameshift -

92548 C A YCL002C Q117H -

*176111 A G YCR038C Synonymous -

#182368 T - - - YCR042C (277 bp)

195513 G C YCR054C P462A -

#221701 T - YCR073C Frameshift -

243006 T C YCR088W Synonymous -

#252434 A - YCR091W Frameshift -

For each variant (single base substitution or indel variant), we report position relative to the designed sequence, the reference base(s) and the experimentally determined variants. Variants occurring inside ORFs are annotated with gene name and corresponding amino acid substitution. For variants outside coding regions, we report the closest gene with the distance to nearest ORF boundary. Since these variants arose during assembly step in yeast, it suggests an error rate in the assembly process of about 3.3 X 10-5. As explained in the text, one expected loxPsym site at position 59583 was also absent from the sequence. We believe that this probably arose through a recombinational mechanism.

*This variant corresponds to the native sequence and therefore probably arose by recombination. #This variant corresponds to a pre-existed mutation in the corresponding minichunk.

Page 47: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

47

Table S5: Wild type and synthetic PCRTags and the expected size of amplicons

PCR Tag #

ORF Pair WT or SYN

Forward Oligo Reverse Oligo ORF Size (bp)

Amplicon Size (bp)

Sequence identity (%)

1 YCL064C 1 WT GTCCTTTATAGTATTAGAGGAGCCGCCA TTCTCTAGGAACGGCCGTGATCTCTAAT

1082 271 50 SYN ATCTTTGATGGTGTTGCTGCTACCACCG CAGCTTGGGTACCGCTGTTATTAGCAAC

2 YCL063W 1 WT GTCTTCCTCGGATACGTATGAGTCTTTC ATTAGATGGCCTGAAGAATGAGGCGGAG

1271 280 59 SYN AAGCAGCAGCGACACCTACGAAAGCTTT GTTGCTAGGTCGAAAAAAGCTAGCGCTA

3

YCL061C

1 WT GGAGCTCAATAGTGGAACCCTTTTCTCA ACAGACTGCGCATGATGAGGATAAGACA

3290

421 47 SYN GCTAGATAGCAAAGGGACTCGCTTTTCG TCAAACCGCTCACGACGAAGACAAAACC

4 2 WT ATCATCGTCCTCATTTGAGGACGAATCG ACAGCGTATAGATAGCAGCGGTGCAACC

499 52 SYN GTCGTCATCTTCGTTGCTGCTGCTGTCA CCAACGAATCGACTCTTCTGGCGCTACT

5 3 WT TCTTTGCGTCTGCGTGAATGAAGAAGAG AGACAATCCGCCAGAGTTGACTGGGAAC

256 47 SYN TCGTTGGGTTTGGGTAAAGCTGCTGCTA CGATAACCCACCTGAACTAACCGGTAAT

6 YCL059C 1 WT ATCAACCTTTCTAGGCAATTGGGCAGGA ATTGGCGAGATCCGTTCCTTTCCCG

950 475 40 SYN GTCGACTTTTCGTGGTAGTTGAGCTGGT GCTAGCTCGAAGCGTCCCATTTCCA

7

YCL057W

1 WT TTGGTCGTTCACTCCCAGCGATATTAGT GGAGTTCACAGATGCGTCCCTAATTTCT

2138

223 48 SYN CTGGAGCTTTACCCCATCTGACATCTCT GCTATTAACGCTAGCATCTCGGATTTCC

8 2 WT ACTAGAGGCTACGATTACTGGTATGCTG AGATCCGGGGCCATTAAACCTCGATTCC

424 43 SYN TTTGGAAGCCACCATCACCGGCATGTTG GCTACCTGGACCGTTGAATCGGCTTTCT

9 YCL055W 1 WT TGCCACTACGCCATTTGGGTGTAAAATC TGGTACAGCACCATTAGTGGTGTCCTTC

1007 484 36 SYN CGCTACCACCCCTTTCGGTTGCAAGATT AGGAACGGCGCCGTTGGTAGTATCTTTG

10

YCL054W

1 WT TAGAAGGTCGGAAAGGGATGCCAAGTTT GGAGTCATCACTTGAACTCTCATCCGAA

2525

433 54 SYN CCGACGAAGCGAACGAGACGCTAAATTC GCTATCGTCAGAGCTAGATTCGTCGCTG

11 2 WT TGCATCCAAACTCTGTCCTGTCAACTCC TAATCTTGGGTCCAGCCTCTTTGGTGCC

448 43 SYN CGCTAGCAAGTTGTGCCCAGTTAATAGC CAATCGAGGATCCAATCGTTTAGGAGCT

12 3 WT GGCACATCAGTTAGCATTGGGTCAGAAA GTCTGAATCATCGTTAATCAAGCCCGCC

304 43 SYN AGCTCACCAATTGGCTCTAGGCCAAAAG ATCGCTGTCGTCATTGATTAGACCAGCT

13 YCL052C 1 WT CAGATATAGTGATGTCGTAGTCGTCGAG CTCAAATTCTTCGGATGTGCCGGAAAGG

1250 418 56 SYN CAAGTACAAGCTGGTGGTGGTGGTGCTA TAGCAACAGCAGCGACGTTCCAGAACGA

Page 48: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

48

14

YCL051W

1 WT CTCTGTGGTCAAATCCTGTACGCCTGAT ATTGCTTGTTGCTGCGCTGTTGCTCGCA

1751

283 52 SYN TAGCGTTGTTAAGAGCTGCACCCCAGAC GTTAGAGGTAGCAGCAGAATTAGAAGCG

15 2 WT CGATGCGTTGAAGACAAGGCCTAGGTCA TTTAGAAGGGGTATAGGCCAGGGAAGAA

496 54 SYN TGACGCTCTAAAAACCCGACCACGAAGC CTTGCTTGGAGTGTAAGCCAAGCTGCTT

16 YCL050C 1 WT ATCAGAAAAGGCCTTCGAGCGTGGAACG AGCCAGTGGTTCTTCATTGGACCACAAA

965 355 54 SYN GTCGCTGAAAGCTTTGCTTCGAGGGACA TGCTTCTGGCAGCAGCCTAGATCATAAG

17 YCL049C 1 WT AACATGGTAGTACCTGGACCAAGCGCTA CATCTCGGTGCCATATAATTGGACGTCA

938 304 46 SYN GACGTGATAATATCGGCTCCAGGCAGAG AATTAGCGTTCCTTACAACTGGACCAGC

18 YCL048W 1 WT GGATTTGAACAGCTTGAGGGCCATTGGT TGGAAGGTAGACCAATGATGTGTCCCTA

1391 475 54 SYN AGACCTAAATTCTCTACGAGCTATCGGC AGGCAAATAAACTAGGCTGGTATCTCGG

19 YCL047C 1 WT TCTTAGTTGCGATTCAGCACTGAGATGG AGTATCTGTCGGGTTGACTGTTTTCTCG

776 250 50 SYN TCGCAATTGGCTTTCGGCAGACAAGTGA TGTTAGCGTTGGTCTAACCGTCTTTAGC

20

YCL045C

1 WT CAACTGCGAATCGGATCCTGGCAATAGA CCCAGATGAGCGTTTGTCTAACTCAAGC

2282

361 59 SYN TAGTTGGCTGTCGCTACCAGGTAGCAAG TCCTGACGAACGACTAAGCAATAGCTCT

21 2 WT CCTTTCAGATAGGGGGGATCTTGATTTG TGCTGTATTGGACGTCTTCGATTCTAGG

463 54 SYN TCGTTCGCTCAATGGGCTTCGGCTCTTA CGCCGTTCTAGATGTTTTTGACAGCCGA

22 YCL044C 1 WT AAGGCCAGTAGAAGAAGACTGCGGATTG TGGCTCTTTGCTACTTTCTCAGTCACTG

1253 439 65 SYN CAAACCGGTGCTGCTGCTTTGTGGGTTA CGGTAGCCTATTGTTGAGCCAAAGCTTA

23

YCL043C

1 WT AGAGTCCAAGGATCTTGAACCTTGGTAC CTTGAAAGGTGATGCCTCCCCAATCGTG

1568

358 49 SYN GCTATCTAGGCTTCGGCTGCCTTGATAA TCTAAAGGGCGACGCTAGCCCTATTGTT

24 2 WT AAACGCCTCTTCAGAGAGTTGAGGCAAA CGAAAGCGGTTTGCCTTTGGGTTACTTA

247 45 SYN GAAAGCTTCTTCGCTCAATTGTGGTAGG TGAATCTGGCCTACCACTAGGCTATTTG

25

YCL040W

1 WT ACTGTCAACGAACCCGGGATTTCACTTG AGATCTCCTAGAAATCGCGCGCACC

1502

319 51 SYN GTTGAGCACCAATCCAGGTTTCCATCTA GCTTCGTCGGCTGATAGCTCGAACT

26 2 WT CCAGTTGTCATCCGAAGTGCTGTCGCAT GGCACCCAAGGGTGACAAGGCT

325 55 SYN TCAACTAAGCAGCGAAGTTTTGAGCCAC AGCGCCTAGTGGGCTTAGAGCC

27

YCL039W

1 WT GGATGATGACGCCTCTTTCTCCTCTCCA GTTTGCCGGCCTCGAGGAAGATGAT

2237

496 61 SYN AGACGACGATGCTAGCTTTAGCAGCCCT ATTAGCTGGTCGGCTGCTGCTGCTA

28 2 WT TAGCTCTCCGCTAAGGTCCGAATGGCTT AGAGGCGGAATTTGTGACTGGATGGAAG

247 52 SYN CTCTAGCCCATTGCGAAGCGAATGGTTG GCTAGCGCTGTTGGTAACAGGGTGAAAA

29 YCL038C 1 WT CGCGGACAGGCCACCTAGTGAT TTCTACAGCGGTTTTGTTCTCCAAGGCA 1586 298 53

Page 49: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

49

SYN AGCGCTCAAACCGCCCAAGCTC CAGCACCGCTGTCCTATTTAGCAAAGCT

30 2 WT GCTCCCCCAGAGATCTACTATCCCTGAA CGAACCATTTGTCGTTTCTGCGGTTTCA

268 48 SYN AGAACCCCACAAGTCAACGATACCGCTG TGAACCTTTCGTTGTCAGCGCTGTCAGC

31 YCL037C 1 WT GTTAGCATTACTCGACGATGTCGACGAT ATTGCCCACATCTTCCCCATGGAAACTT

1304 271 59 SYN ATTGGCGTTAGAGCTGCTGGTGCTGCTA TCTACCAACCAGCAGCCCTTGGAAGTTG

32

YCL036W

1 WT ACTAAGTAATGGGACGCTCTCTGTCAGA AGACAGCCGCTGTGATCTTTTGGACCTG

1700

439 56 SYN GTTGTCTAACGGTACCTTGAGCGTTCGA GCTCAATCGTTGGCTTCGCTTGCTTCGT

33 2 WT CATGGTGGAAGCACATTCACGCTCGAAT CTTAAGATCCCCGCTCACGTGATGACCA

421 45 SYN AATGGTTGAAGCTCACAGCCGAAGCAAC TTTCAAGTCACCAGAAACATGGTGGCCG

34 YCL034W 1 WT CAGCGATGCTCTCGCGTCTGCT TGAGGACTCGCTATCAATATACCTGCTG

1064 337 62 SYN TTCTGACGCCTTGGCTAGCGCC GCTGCTTTCAGAGTCGATGTATCGAGAA

35 YCL033C 1 WT ACACCTTGCACAACATATCTCCACCCTC TGAAAGGCCCAACACCGGTGCGTATTTA

506 214 40 SYN GCATCGAGCGCAGCAGATTTCAACTCGA CGAACGACCAAATACTGGCGCTTACTTG

36 YCL032W 1 WT ACCCAGTAGTGACGGTGTGTCTCTTTCA GTTCGCTGTTGAAACGGCAGATGGG

1040 208 57 SYN CCCATCTTCTGATGGCGTTAGCTTGAGC ATTAGCGGTGCTGACAGCGCTAGGA

37

YCL030C

1 WT AGAATACACCAACCCTAGACAACGCTCA CGGAGTTTCTTCTCTGTTCATTGCTAGC

2399

292 54 SYN GCTGTAAACTAGACCCAAGCATCGTTCG TGGTGTCAGCAGCTTGTTTATCGCCTCT

38 2 WT ATAAACGCCACGACCCAAATCGATGGCC GTCCTTGCCAAGTGGTAAATTCAGCGAT

394 47 SYN GTAGACACCTCGGCCTAGGTCAATAGCT AAGCCTACCTTCTGGCAAGTTTTCTGAC

39 YCL029C 1 WT AGCCTTTCTGTCTGATGACAGGATAGAG ATCGATATCGCAAACCTCGAGAAGAACG

1322 274 56 SYN GGCTTTTCGATCGCTGCTCAAAATGCTA TAGCATCAGCCAAACTAGCCGACGAACC

40 YCL028W 1 WT AGCACTGGCTTCTATGGCAAGCTCTTTT AGCCAAAGCTGAGAATGAACTGGAGTGG

1217 373 58 SYN TGCTTTGGCAAGCATGGCTTCTAGCTTC TCATAGCTCTAGCTTTAGCGCCCTAGCA

41

YCL027W

1 WT GGTGTCCATTTCAAATCCACCCATGTCA AGAACCCCTCAAGAACCATCGAGATAGT

1538

499 54 SYN CGTTAGCATCAGCAACCCTCCAATGAGC GCTGCCTCGTAGAAACCATCTGCTCAAA

42 2 WT CGATCTAATCACGGCAAGACCCCATTCA AGTAAGCGGCAATGGTTTAGAACGTGAC

226 52 SYN TGACTTGATTACCGCTCGACCACACAGC GGTCAATGGTAGAGGCTTGCTTCGGCTT

43 YCL026C-B 1 WT AGACTCAGGGATTTTGCTTGGCAAAGCA AAGGGATGAGGCCTTTGGTTCTGTAATC

581

232 50 SYN GCTTTCTGGAATCTTAGAAGGTAGGGCG TCGAGACGAAGCTTTCGGCAGCGTTATT

44 YCL026C-A 1 WT CAAATTAGCCCCCAATCCCAATAGTTCG TGCTGAAGCCAAGAAGAGACCAGAGTCT

208 43 SYN TAGGTTGGCACCTAGACCTAGCAATTCC CGCCGAAGCTAAAAAACGACCTGAAAGC

Page 50: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

50

45

YCL025C

1 WT GAAAAGCTGAGACAAACCAGAAATGGCC CTCCTCCTTCTACTCCAGTGCTCGTTTA

1901

214 54 SYN AAACAATTGGCTTAGGCCGCTGATAGCT TAGCAGCTTTTATAGCTCTGCCCGATTG

46 2 WT ACCCAATTCTCCAAGAGATCTCCCTTGG CGCCGTTATTCTACTTTCCGTGCTGTCC

331 47 SYN GCCTAGTTCACCCAAGCTTCGACCTTGA TGCTGTCATCTTGTTGAGCGTTTTGAGC

47

YCL024W

1 WT TGACTCGAACAACCATACTAGCGCCTCT AAAGGACGATCTCTTCCTGCTAGAAGAG

3113

355 64 SYN CGATAGCAATAATCACACCTCTGCTAGC GAAGCTGCTTCGTTTTCGAGAGCTGCTA

48 2 WT CAAACTGGACTCTGTAAGGGGATCGAAT AGAACTATCGGTAGGATTCGAGGACAGT

229 56 SYN TAAGTTGGATAGCGTTCGAGGTAGCAAC GCTAGAGTCAGTTGGGTTGCTGCTCAAC

49 3 WT GCTACTAAATGTTAGAGGGGGACTATCG CGCATACAAAGATAAGACTGAGCGCCGA

208 54 SYN CTTGTTGAACGTCCGAGGTGGTTTGAGC AGCGTATAGGCTCAAAACGCTTCGTCGG

50 YCL017C 1 WT ACCCGAGGATAATGCGATATCCCTTAGT GGGAATAGGTGCCATCTATGTAAGAAGG

1493 343 47 SYN GCCGCTGCTCAAAGCAATGTCTCGCAAA AGGTATCGGCGCTATTTACGTTCGACGA

51 YCL016C 1 WT TAGCGCAGAACATGGTGAGTTCTCAAGT GTCTGAAGTTGTACTGTGTTCGCACGAC

1142 340 52 SYN CAAAGCGCTGCAAGGGCTATTTTCCAAC AAGCGAAGTCGTTTTGTGCAGCCATGAT

52

YCL014W

1 WT AATATCGCAGAGGCATCCTAAGTCTCCA TGATGACGAATTCGTCGCCTTCCCAATT

4910

466 56 SYN GATCAGCCAACGACACCCAAAAAGCCCT GCTGCTGCTGTTGGTAGCTTTACCGATG

53 2 WT CGAATCCGTCGATATATCTTCCAACTCG CAACTGGCAACTACTAGCCAAATCTCCA

223 52 SYN TGAAAGCGTTGACATCAGCAGCAATAGC TAGTTGACAAGAAGAGGCTAGGTCACCG

54 3 WT TAGCAAACTTTCCGGTGCATCCGATTTC CACTCTTTGAACTGGTGAAGGCTTGCTC

340 50 SYN CTCTAAGTTGAGCGGCGCTAGCGACTTT AACTCGTTGGACAGGGCTTGGTTTAGAT

55 4 WT ACTCTCTCCACAAGCGAGTAAAGTGCTG CGAGTCATCTAGATGCGCCTTAGGCAAA

496 48 SYN GTTGAGCCCTCAAGCTTCTAAGGTTTTG GCTATCGTCCAAGTGAGCTTTTGGTAGG

56 5 WT TCCGGCCATTGAGAATTTGAGTCCAAGT TCCTGATGTAAAGAAGCGCTTCCCCAGA

238 45 SYN CCCAGCTATCGAAAACCTATCTCCTTCT ACCGCTGGTGAAAAATCGTTTACCCAAG

57 YCL011C 1 WT GACAGAACCGAATCCTCTTGAAAATCCG TGCCATATCGAAGTTTGATGGTGCCCTC

1283 265 48 SYN AACGCTGCCAAAACCTCGGCTGAAACCA CGCTATCAGCAAATTCGACGGCGCTTTG

58 YCL010C 1 WT TGCTAGGTTTGCCAAAGCCGTTGGCGAA CTCAGAGGTTGCCTATAAGCCCAGAAGG

779 388 48 SYN AGCCAAATTAGCTAGGGCGGTAGGGCTT TAGCGAAGTCGCTTACAAACCACGACGA

59 YCL009C 1 WT GGCAGAGATACGTGTGGGTTTTGCAGAC GATGGCCAGAATCTCTCTATTGGGTACT

929 286 46 SYN AGCGCTAATTCGGGTTGGTTTAGCGCTT TATGGCTCGAATTAGCTTGCTAGGCACC

60 YCL008C 1 WT CACATGCGAAGTTGAGCTAAACTGTTGG GTCTCCACACCTAAAACCGCCATTGCCT 1157 373 52

Page 51: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

51

SYN AACGTGGCTGGTGCTAGAGAATTGTTGA AAGCCCTCATTTGAAGCCACCTCTACCA

61 YCL005W 1 WT GTCGCTGAGCCGTTTAGTTGCACAAACA ACTAGTGGAAGCACGTTCAAGGACCGTA

770 232 45 SYN CAGCTTGTCTCGATTGGTCGCTCAAACC AGAGGTGCTGGCTCGTTCCAAAACGGTT

62

YCL004W

1 WT TCTACTTGATGGCCTTCGAGGAACAAGA GGCTCCCGAAAGAATGACCTCGTTATCA

1565

232 46 SYN CTTGTTGGACGGTTTGAGAGGTACCCGA AGCACCGCTCAAGATAACTTCATTGTCG

63 2 WT TGGGTCAGAGAGAGTGGATTGCCGATTG CACGGCAGTAATCGGGAGGCTTTGTTTA

430 45 SYN CGGTAGCGAACGAGTTGACTGTAGACTA AACAGCGGTGATTGGCAAAGATTGCTTG

64 YCL002C 1 WT TGCATTGGTCGGTATTACCAGTCTACCT TTCATCTCTGGTGAGGGAACAACTGTCT

755 481 45 SYN AGCGTTAGTTGGGATAACCAATCGGCCC CAGCAGCTTGGTTCGAGAACAATTGAGC

65 YCL001W 1 WT TCACGCTAAGGAGAGGTGGGCTGTATTG CGACAACAAGAGGGAAATGACAGTGGCT

566 295 47 SYN ACATGCCAAAGAACGATGGGCCGTTCTA GCTTAGTAGCAAGCTGATAACGGTAGCT

66 YCR002C 1 WT GGCGTTGCTAGACATATGAGCTGAGGAA CTTCAGGGGAAGAAAAACTCGTTGGAGC

968 217 50 SYN AGCATTAGAGCTCATGTGGGCGCTGCTT TTTTCGAGGTCGAAAGACCCGATGGTCT

67 YCR003W 1 WT ACAACTGGGATCTATCCACCGTTGGTTG ATGGCCGCATGATGGGCACTTATTCAAA

551 214 43 SYN GCAATTGGGTAGCATTCATCGATGGCTA GTGACCACAGCTAGGACATTTGTTTAGG

68 YCR004C 1 WT CAATTCAAGTGGAGACGCAGTTCTTGAG TGCGGGGATATTCGTTAGTACTTCCAGT

743 226 50 SYN TAGTTCCAAAGGGCTAGCGGTTCGGCTA CGCTGGTATCTTTGTCTCTACCAGCTCT

69 YCR005C 1 WT GCCAGGTGCTACCTCGTATATTGATGAA CTCAGCACTATCATCACCTTATCTGTCC

1382 322 57 SYN ACCTGGAGCAACTTCATAGATGCTGCTG TAGCGCTTTGAGCAGCCCATACTTGAGC

70

YCR008W

1 WT ATCATCTAGGCAGGGAAAGGCCTCATCG AGAGTGCGATGGTGATGCCGACTGGTAA

1811

214 64 SYN AAGCAGCCGACAAGGTAAAGCTAGCAGC GCTATGGCTAGGGCTAGCGCTTTGATAG

71 2 WT CACAAACGTTCCATCGGCGTCTAAATCA CCTCCCACAAATAGGTGCACTTGTATTG

418 50 SYN TACCAATGTCCCTAGCGCTAGCAAGAGC TCGACCGCAGATTGGAGCAGAGGTGTTA

72 YCR009C 1 WT GCTCAATTCTTTTTCAGCCCTTGGCAGT CTTGGACTCATTGAGAGCTGTGACAGCA

797 358 47 SYN AGATAGTTCCTTTTCGGCTCGAGGCAAC TCTAGATAGCCTACGAGCCGTTACCGCT

73 YCR010C 1 WT AAACGTAAAGATGGCCCACCCCAACAAA AGGTCTTTCAGCCTTCGCGTTGACG

851 319 46 SYN GAAGGTGAAAATAGCCCAACCTAGTAGG GGGCTTGAGCGCTTTTGCTCTAACC

74

YCR011C

1 WT TAGTCCGCTAAACAGTAGTGAGCCCAAA ATTCACAGGTCTCAGCTCGTTCGCTCTG

3149

340 58 SYN CAAACCAGAGAACAACAAGCTACCTAGC CTTTACCGGCTTGTCTAGCTTTGCCTTG

75 2 WT TGGCAAACGAATGGGAGACTTTGAGGAA AGGGCCAGGAGATTTCAGCTGTGATTTA

322 50 SYN AGGTAGTCGGATTGGGCTTTTGCTGCTG GGGTCCTGGTGACTTTTCTTGCGACTTG

Page 52: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

52

76 3 WT GATATCTATAGACCCCTTAGCACCACAC GCCCCTCTGTGGCGGTCTATCA

472 47 SYN AATGTCGATGCTACCTTTGGCGCCGCAT GCCATTGTGCGGTGGCTTGAGC

77 YCR012W 1 WT CTTGGCTTCTCACTTGGGTAGACCAAAC ATCAGCCAAAGAGCTCAATTCGTGTCTG

1250 295 52 SYN TCTAGCCAGCCATCTAGGCCGACCTAAT GTCGGCTAGGCTAGATAGTTCATGTCGA

78

YCR014C

1 WT AATGTCACCACACTTGGAATAGCCCCTA CGGCATTGGGTCGGAAATTGCTAAACGC

1748

271 41 SYN GATATCGCCGCATTTGCTGTAACCTCGG TGGTATCGGTAGCGAAATCGCCAAGCGA

79 2 WT TGTCCAATCTGATACAAACTCCTCTGGG GCGACTCTTACAGGGGGATAAAGGAAGA

439 39 SYN GGTCCAGTCGCTAACGAATTCTTCAGGA AAGATTGTTGCAAGGTGACAAGGGTCGA

80 YCR015C 1 WT GACCTTATCAGAGCCTGTCAATAACCGA ATCACTGCCGTTGTTATCTTCAGGCGTA

953 442 52 SYN AACTTTGTCGCTACCGGTTAGCAATCGG AAGCTTGCCACTATTGAGCAGCGGTGTT

81 YCR016W 1 WT ATCCTCTACCAAAAAAGGGAAGCGTGTG AACACCAGACTCTGATGGCTCGTCTTTG

872 241 48 SYN GAGCAGCACTAAGAAGGGTAAACGAGTT GACGCCGCTTTCGCTAGGTTCATCCTTA

82

YCR017C

1 WT AAGTTCCCCAACTGGAGAGGGCAATAAA CCTGCTATCACTAACAGCTAGGTTCGTG

2861

382 50 SYN CAATTCACCGACAGGGCTTGGTAGCAAG TTTGTTGAGCTTGACCGCCCGATTTGTT

83 2 WT GCTAGTTAGATCCCTGTTCCCCATGGTA GATTGAGACGGTTCTTGCCTTTTCTTCC

373 48 SYN AGAGGTCAAGTCTCGATTACCCATAGTG AATCGAAACCGTCTTGGCTTTCAGCAGC

84 3 WT GAATAACAACGAGCCAAAACCAACAGCC GTTGATTTCTGTAGCTGTGGGAACTTCC

352 48 SYN AAACAATAGGCTACCGAAGCCGACGGCT ACTAATCAGCGTTGCCGTTGGTACCAGC

85 YCR018C 1 WT TTTTCCATAGGCGAGTCCACAGGGACTA AACTAGTCGGTCTGCCAGTATTACGAAG

665 202 47 SYN CTTACCGTAAGCCAAACCGCATGGAGAG TACCTCTCGAAGCGCTTCTATCACCAAA

86 YCR019W 1 WT GCTATGTTCTGGGTCTAGATGCTTAGAC AGAAACTGCAAAGCCGCCAAGGAACGAG

1091 454 54 SYN ATTGTGCAGCGGTAGCCGATGTTTGGAT GCTGACAGCGAAACCACCCAAAAAGCTA

87 YCR021C 1 WT GAATCCTCCTGTCAAAGATAGCCTTGGC TTCCGCCTTGGATATGGTACATTCGCTG

998 409 50 SYN AAAACCACCGGTTAGGCTCAATCGAGGT CAGCGCTCTAGACATGGTTCACAGCTTG

88

YCR023C

1 WT AGAAGACTGTGACTGCGAATTGTAGGCA TTCGAGTCCCTTGAGTTGTAGATCAGTC

1835

268 63 SYN GCTGCTTTGGCTTTGGCTGTTATAAGCG CAGCTCTCCACTATCTTGCCGAAGCGTT

89 2 WT ACTACCCTGTCCATGAAGCTCATTTTCG TGGCGCCACCATTAGTATTTCTGCCTCT

202 47 SYN AGAGCCTTGACCGTGCAATTCGTTTTCA CGGTGCTACTATCTCTATCAGCGCTAGC

90 YCR024C 1 WT GTACGAGGATGCAGTTGGCGACGTATTG ATCTAATGCTACCTGGCAAAGCACCCCT

1478 352 49 SYN ATAGCTGCTAGCGGTAGGGCTGGTGTTA CAGCAACGCCACTTGGCAATCTACTCCA

91 YCR026C 1 WT GCTGCTGCTGCTTCTTGATGATGGTGAT CCTTTTGTGTGATATTTGCGGTGTGGCA 2228 370 65

Page 53: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

53

SYN AGAAGAAGAAGATCGGCTGCTAGGGCTG TTTGCTATGCGACATCTGTGGCGTTGCT

92 2 WT GAGTGAAGGATGGAAACCGTCTAGTGAA CGCGAAAGATAGTAGGGATGGTTCTAAC

355 54 SYN CAAGCTTGGGTGAAAGCCATCCAAGCTG TGCTAAGGACTCTCGAGACGGCAGCAAT

93 YCR027C 1 WT AGCTAGTTTCTCTCCTTCAGCTTTCGTG ATCGTTGACGGGCGTACGAGGCATAATA

629 211 41 SYN GGCCAACTTTTCACCTTCGGCCTTGGTA GAGCCTAACCGGTGTTAGAGGTATCATC

94

YCR028C

1 WT TATGACGACCGAGACAATTCCGCTTGAT CTTTTCTGCACAGTATCTTGGAGGCGTA

1538

253 52 SYN GATAACAACGCTAACGATACCAGAGCTG TTTCAGCGCTCAATACTTGGGTGGTGTT

95 2 WT AGATGCGAAACCCAAGTTCTCACCTCCC TAGCGGTTTGGTGGGATCTATGTTCAGT

373 49 SYN GCTAGCAAAGCCTAGATTTTCGCCACCC CTCTGGCCTAGTTGGTAGCATGTTTTCT

96

YCR030C

1 WT GGGTGGAGAACTTTGTTGTGGCGTTGAA TCTTGCCTCTGCATCTTCCAGTCTCACT

2612

460 55 SYN TGGAGGGCTAGATTGTTGAGGGGTGCTT ATTGGCTAGCGCTAGCAGCTCTTTGACC

97 2 WT AGAGGAGTGCTGAAACAACGATTGACCA TGCCTCTCCCAGTATTTCACTTCCTACT

331 56 SYN GCTGCTATGTTGGAATAGGCTTTGGCCG AGCTAGCCCATCTATCAGCTTGCCAACC

98 3 WT TGATTGTGGCTGAAGTGGAGGTTGAGAA GTCGTCCCACACCCTAAGATCTAAAGTG

448 52 SYN GCTTTGAGGTTGCAAAGGTGGTTGGCTG AAGCAGCCATACTTTGCGAAGCAAGGTT

99

YCR032W

1 WT AGCGGGAAGGTCATTCAACGATTTGACC AGAGCTCCAGGCCCTTTCAAGCGAACTA

6503

361 56 SYN GGCTGGTCGAAGCTTTAATGACCTAACT GCTAGACCAAGCTCGTTCCAAGCTAGAG

100 2 WT TCCAAATTCGTCCTGCAAGTGGTCATCG CAAATCTCCAACTGGCTCCGACTCAAGA

232 54 SYN CCCTAACAGCAGCTGTAAATGGAGCAGC TAGGTCACCGACAGGTTCGCTTTCCAAG

101 3 WT GCATTCGGTTTCAGGTAACCTTGAGAAC GCTCCCTGCATGTTGAGATATTGCGACC

211 50 SYN ACACAGCGTCAGCGGCAATTTGGAAAAT AGAACCAGCGTGTTGGCTGATAGCAACT

102 4 WT TGTGTCCATTGATTCTATACGGCTTGCG GCCTGACGCCAGAGAACTTTGATCCTCA

358 50 SYN CGTTAGCATCGACAGCATCCGATTGGCT ACCGCTAGCCAAGCTAGATTGGTCTTCG

103 5 WT TGATGGGATGAAACGGAGGCTTTTGCCT AACCGTCATATCCCGTGATTCTTGCGAT

403 41 SYN CGACGGTATGAAGCGACGATTGCTACCA GACGGTCATGTCTCGGCTTTCTTGGCTA

104 6 WT TACCAAACGACCCTTTCTACTTCGGGAT GCTTGCCTTTCCTATTCCATTTCTTGCC

229 43 SYN CACTAAGAGACCATTCTTGTTGCGAGAC AGAAGCTTTACCGATACCGTTTCGAGCA

105 7 WT TTACCGGGACCTATCGAAACCTATGGGC TAAACGATCTGCAGGGCCAAAACTTCCG

232 41 SYN CTATCGAGATTTGAGCAAGCCAATGGGT CAATCGGTCAGCTGGACCGAAAGAACCA

106 YCR033W 1 WT GAGCTCAGTCAGTAGGCCTTCGTCATCA TGATAATGCCGAGGGAAAGTGGGTAACG

3680 247 65 SYN ATCTAGCGTTTCTCGACCAAGCAGCAGC GCTCAAAGCGCTTGGGAAATGAGTGACA

Page 54: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

54

107 2 WT GTCTGTAACTCCCAGTACTGCATCTGTA ATCCATTGATCGAGGTCTCCGAGAACTC

400 52 SYN AAGCGTTACCCCATCTACCGCTAGCGTT GTCCATGCTTCTTGGTCGTCGGCTAGAA

108 3 WT CCCAGATGTGGAAAGATCCTCTTCAACC CGTTCCAATGGATCTCCATTTGTTGCTC

352 47 SYN TCCTGACGTTGAACGAAGCAGCAGCACT GGTACCGATGCTTCGCCACTTATTAGAT

109 4 WT ACTTATACATCAGCAGGCTACCGGACTT CGAGGATGGATGCCGTAAGCTTTTTTCC

274 47 SYN GTTGATCCACCAACAAGCCACTGGTTTG GCTGCTAGGGTGTCGCAAAGACTTTTCT

110 YCR034W 1 WT ACCATTAAGCACTTTGCCCCCTGTGCTA GACCCAAGAAATAGATGTGGTGCCCATC

1043 418 47 SYN GCCTTTGTCTACCCTACCACCAGTTTTG AACCCAGCTGATGCTGGTAGTACCCATT

111 YCR035C 1 WT TGAAGGAGCAGCGAGGATGGAGATC GAGTCGCACTGGTCCAGTCTTCGATTTG

1184 403 48 SYN GCTTGGGGCGGCCAAAATGCTAATG ATCTCGAACCGGCCCTGTTTTTGACCTA

112

YCR037C

1 WT GCTACTCACAGATGAGCTGCGTGATTCA CAACATAGCTGCAGGAGAACCATCTTCA

2771

253 59 SYN AGAAGAAACGCTGCTAGATCGGCTTTCG TAATATCGCCGCTGGTGAACCTAGCAGC

113 2 WT ACCGCATGAGGCTAACAAGGCGCAA GGCAGTTTCATCTTCAGGCTTGTTGGTA

247 56 SYN GCCACAGCTAGCCAATAGAGCACAG AGCTGTCAGCAGCAGCGGTCTACTAGTT

114 3 WT TACGCAGACAAACGCTAACAACGAAGCA GGGCACTTTTGTCTCACATACTGTGTCA

268 48 SYN AACACAAACGAAAGCCAATAGGCTGGCT TGGTACCTTCGTTAGCCACACCGTTAGC

115

YCR038C

1 WT TGGATGTACGACGACTTTTAGGCGCTGA CGCTCTAAACGTATCTCCATGGTCACTT

1928

361 47 SYN AGGGTGAACAACAACCTTCAATCGTTGG TGCCTTGAATGTTAGCCCTTGGAGCTTG

116 2 WT GGAAATGGTGTGCGTTTGCTGCAAAGTT CGGTGCAACTGACCTCAGTGATTTACTT

268 43 SYN GCTGATAGTATGGGTTTGTTGTAGGGTG TGGCGCTACCGATTTGTCTGACTTGTTG

117

YCR042C

1 WT ATGGATCCTTATAGTCATCGAGCCCGTG GAGCACTTTTACCGGCAGTTCTAGGCCA

4223

487 50 SYN GTGAATTCGGATGGTCATGCTACCGGTA TTCTACCTTCACTGGTTCTAGCCGACCT

118 2 WT GTCCCCATCTTGTCTCAACTGAGAAGAA CGATGGTACTCCGTATGAGCATATTGTG

376 43 SYN ATCACCGTCTTGTCGTAGTTGGCTGCTG TGACGGCACCCCATACGAACACATCGTT

119 3 WT ACACACAATCACATCCCTCAAACTCGGA CAGTTCTGCATCATATTGGGTCCCATGT

391 48 SYN GCAAACGATAACGTCTCGTAGAGATGGG TTCTAGCGCTAGCTACTGGGTTCCTTGC

120 4 WT ATACGGGACGGATGACAAATGCACCATT ACCAAGGGAGAGAAGACTTGTGGCGAAG

331 45 SYN GTATGGAACGCTGCTTAGGTGAACCATA CCCTCGAGAACGACGATTGGTTGCTAAA

121 YCR044C 1 WT TGTGTACGACCAGTCAACATAGAGTCTC AAGCTCGGTCTTTCACTGTCGTGATTTG

1073 211 49 SYN GGTATAGCTCCAATCGACGTACAATCGT TTCTAGCGTTTTCCATTGCCGAGACCTA

122 YCR045C 1 WT CCTCTTCAATCGAATCTCACCAAGAGGT AGGCGTGGAAATTGAGTCGCTATCTCAT 1475 424 48

Page 55: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

55

SYN TCGTTTTAGTCTGATTTCGCCCAATGGC TGGTGTTGAAATCGAAAGCTTGAGCCAC

123 YCR046C 1 WT GATCAGCGGCGAAAACAATGGCACTCTA CCTCTCAGAAATAGAGTCTCTGGATCCC

509 256 48 SYN AATCAATGGGCTGAATAGAGGAACTCGG TTTGAGCGAAATCGAAAGCTTGGACCCA

124 YCR047C 1 WT CCTGTGTCTTCTTTTCCTCCCGGTGAAC GGGCTCGTTTGACGCGGCTATTAGTATC

827 499 45 SYN TCGATGTCGTCGCTTTCGACCAGTAAAT TGGTAGCTTCGATGCTGCCATCTCTATT

125

YCR048W

1 WT AGGTCCGGTGCTGGAGAAACAGCTCAAA CGACGCATAGTAATCTGTGCAGCACCTG

1832

217 43 SYN GGGCCCAGTTTTGGAAAAGCAATTGAAG GCTAGCGTAATAGTCGGTACAACATCGA

126 2 WT GTCGCGCATCAGATGGAGGTATGTGTTG CGCCACGCAATTCAATAAAGCGTCCCAT

262 41 SYN CAGCCGAATTCGATGGCGATACGTTCTA AGCAACACAGTTTAGCAAGGCATCCCAG

127 YCR051W 1 WT CTCGTTCGTCGAGAACGGTGAAGATGGT TCTCTTGGAATCTGGTTCGTCCCCGGAA

668 340 39 SYN TAGCTTTGTTGAAAATGGCGAAGACGGC TCGTTTGCTGTCAGGTTCATCACCGCTG

128 YCR052W 1 WT AAGAAGGAGGCTGGATACGTCCATCAAT AAGGCTCAATGACGAATCGCGTTTCCTC

1451 310 57 SYN CCGACGACGATTGGACACCAGCATTAAC CAAAGATAGGCTGCTGTCTCGCTTTCGT

129

YCR053W

1 WT TTTCCGTTCTGATGAAGTCACCCCCTTG AGTACCGGTAACAGACAAAGTCTGGACG

1544

370 45 SYN CTTTCGAAGCGACGAAGTTACTCCACTA GGTGCCAGTGACGCTTAGGGTTTGAACA

130 2 WT CACTGGTTCTGCAGCCATCTACGGTTTA AACAGCACCGACGTTGTGTTTAGAGTTG

229 43 SYN TACCGGCAGCGCTGCTATTTATGGCTTG GACGGCGCCAACATTATGCTTGCTATTA

131 YCR054C 1 WT GTCTTTCTGGGGTGTATCATTATCCCTG GCCAGCGTCGTTAAATGAGAATAGCTCA

1691 427 48 SYN ATCCTTTTGTGGGGTGTCGTTGTCTCGA ACCTGCTAGCTTGAACGAAAACTCTAGC

132

YCR057C

1 WT CGATGATGAGAACATGACCTGACCCCTT TGGTTCCAGCAAACTGGGCCAATTACTA

2771

262 52 SYN GCTGCTGCTAAACATAACTTGGCCTCGC CGGCAGCTCTAAGTTGGGTCAATTGTTG

133 2 WT TATCGACCTCATAGCCGTCGAGAAGAGA TGTGGACGTCACCCCCCATTCTACTGTA

319 49 SYN GATGCTTCGCATGGCGGTGCTAAACAAG CGTTGATGTTACTCCACACAGCACCGTT

134 3 WT CACTACACGTGAACCATCCGGAGAGTAT GCTTTTAGCTGTCGGATTTACTAGTGGG

265 47 SYN AACAACTCGGCTGCCGTCTGGGCTATAA ATTGTTGGCCGTTGGTTTCACCTCTGGT

135 YCR059C 1 WT ATATGTTGCCGCAGAGCCATCCTGC CTCTGTTTTCCACCGCGGATCTGTCTGT

776 316 47 SYN GTAGGTAGCAGCGCTACCGTCTTGT TAGCGTCTTTCATCGAGGTAGCGTTTGC

136

YCR061W

1 WT TGGCACCACTTCTGTGCTACTTCTCGTT TGAAGAGAGCGAGAACAACGTGTCTCTG

1895

214 59 SYN CGGTACTACCAGCGTTTTGTTGTTGGTC GCTGCTCAAGCTAAATAGGGTATCTCGA

137 2 WT CCTTCCTATACTGCAATCGCCCTCGCTT CGATGCTAATGAGACGGGGACAGAAAGC

388 58 SYN TTTGCCAATCTTGCAAAGCCCAAGCTTG GCTAGCCAAGCTAACTGGAACGCTCAAA

Page 56: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

56

138

YCR065W

1 WT CTCACCGGATCACTCGTCCCCA ACCCTTACCATCGCAGGACTTTTCAGTC

1694

355 48 SYN GAGCCCAGACCATAGCAGCCCT GCCTTTGCCGTCACAGCTTTTTTCGGTT

139 2 WT TTCTCTACTCGACCCACTTCCGTATTCC GCTTATCAACCGCGATGGGGTTTTCTCT

205 56 SYN CAGCTTGTTGGATCCTTTGCCATACAGC AGAGATTAGTCGGCTAGGAGTCTTTTCC

140 YCR066W 1 WT ACCACTGAGTTCCAAACCATCCAAAAGG TGAGGTCTCACCACATGAGCTTTTGTCG

1463 295 54 SYN GCCTTTGTCTAGCAAGCCTAGCAAGCGA GCTAGTTTCGCCGCAGCTAGACTTATCA

141

YCR067C

1 WT AATAGAGTCCTGGGATGCTGATGTTGAC TTCGCTATCACACATGCCGTCTTCATCT

3197

490 66 SYN GATGCTATCTTGGCTAGCGCTGGTGCTT AAGCTTGAGCCATATGCCAAGCAGCAGC

142 2 WT TGTGCTTGACGCGCTCTCCACGGATAAA GGAGACGGCAACTAGCTCATTCTCAAAA

388 59 SYN GGTAGAGCTAGCAGATTCAACGCTCAAG TGAAACCGCTACCTCTAGCTTTAGCAAG

143 3 WT CGTGGATGCCGGTTTTGAGTTGTCTAGA ACCATCGCTTCCACTGAATTCAGAGTCG

367 56 SYN GGTGCTAGCTGGCTTGCTATTATCCAAG GCCTAGCTTGCCTTTGAACAGCGAAAGC

144

YCR068W

1 WT ATGCAACGGAGCTAGTTCAAGTTGCTCA CCTCGATGAGGATTCCCAGTCTCTGCTT

1562

259 57 SYN CTGTAATGGTGCCTCTAGCTCTTGTAGC TCGGCTGCTGCTTTCCCAATCTCGAGAA

145 2 WT CCCTGGAGAGCTACTACCTTCAAAAAGA ATTGCGGCCTACACAGGTAGATGAAGAG

469 52 SYN CCCAGGTGAATTGTTGCCAAGCAAGCGA GTTTCGACCAACGCAAGTGCTGCTGCTA

146 YCR069W 1 WT TCCCGTTTCGAAGTCGATGAAAGAGGCG GAATTCCGAGGTGTTAGAATCAGGTCCA

956 340 46 SYN CCCAGTCAGCAAAAGCATGAAGGAAGCT AAATTCGCTAGTATTGCTGTCTGGACCG

147

YCR072C

1 WT ACATGACACCAGTAGTCGGCAGTCCGAT TTTGAAGTCGCATGCGCACTGGGTTAAT

1547

442 49 SYN GCAGCTAACCAACAATCTACAATCGCTG CCTAAAAAGCCACGCTCATTGGGTCAAC

148 2 WT TGAGACAATATACCTACCATCAGGGCTG CCAAGGTCTATTGTATAGTGGCTCTCAC

394 52 SYN GCTAACGATGTATCGGCCGTCTGGAGAA TCAAGGCTTGCTATACTCTGGTAGCCAT

149

YCR073C

1 WT CACGCCAGATTGGTGCAAATATGCCAAA CCTACTATCGCTAGCATCCTCATTATCG

3995

406 59 SYN AACACCGCTTTGATGTAGGTAAGCTAGG TTTGTTGAGCTTGGCTAGCAGCTTGAGC

150 2 WT TAGTACAACTAGTGCACCCAATGAGCTC CATTCTAGTATCGAAAGGGGAGGATTCC

208 56 SYN CAAAACGACCAAAGCGCCTAGGCTAGAT TATCTTGGTTAGCAAGGGTGAAGACAGC

151 3 WT ATAGACGGGGAACGCCAGTAGTGATCTT CCGTTTCTCACCGATAAGTAGTTCGGAT

268 52 SYN GTAAACTGGAAAAGCCAACAAGCTTCGC TCGATTTAGCCCAATCTCTTCTAGCGAC

152 4 WT CAAACACCTTTCCAAGAAGGCTCTTCCC TTCAGGCTCGGCAGTTAAGGGAAAACTT

211 49 SYN TAGGCATCGTTCTAGAAAAGCTCGACCA CAGCGGTAGCGCTGTCAAAGGTAAGTTG

153 YCR073W-A 1 WT AGAGGCCTCTTGCAAAAGCACAGCATCT GAAGAGTGATGCGATATGACCATCGGGG 947 466 50

Page 57: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

57

SYN AGAAGCTAGCTGTAAGTCTACCGCTAGC AAACAAGCTAGCAATGTGGCCGTCTGGA

154 YCR075C 1 WT TGACGCCAGATCATGGCCTCGAGAT CGCATCACTGGCCATTTTTTCACTGCTA

782 397 51 SYN GCTAGCCAAGTCGTGACCTCTGCTT GGCTAGCTTGGCTATCTTCAGCTTGTTG

155 YCR076C 1 WT GCTACTTGGATTCCCCAGAGGATTGGGA GGGTTCAACATCGTTTCTCTCTGAGCTA

752 445 55 SYN AGAAGAAGGGTTACCCAATGGGTTTGGC AGGCAGCACCAGCTTCTTGAGCGAATTG

156

YCR077C

1 WT AGAGGAGGACCCTGAAGAGGCC TAGGGCGTATTTGGAACATTCTGGACAC

2390

337 60 SYN GCTGCTGCTACCGCTGCTAGCT CCGAGCTTACCTAGAACACAGCGGTCAT

157 2 WT ACCCGACGCAGGCTGCATTGGA TTTTGGAAATCCTCACAGCAGCGGCAGC

400 49 SYN GCCGCTAGCTGGTTGCATAGGG CTTCGGTAACCCACATTCTTCTGGTTCT

158 YCR079W 1 WT CTCGTGGATCATATCGCACTCTGGATTG CGACCTTTCAGATCGCGGCAAATGCAAG

1328 328 57 SYN TAGCTGGATTATCAGCCATAGCGGTCTA GCTTCGTTCGCTTCTTGGTAGGTGTAGA

159

YCR081W

1 WT GCATGAATTGAGTTCGTCTCACACTTCG TAGCAGGTGCATGGAAATGGCATCATCT

4283

226 50 SYN ACACGAACTATCTAGCAGCCATACCAGC CAACAAATGCATGCTGATAGCGTCGTCA

160 2 WT TTTTTCGGCCCAAAAGAGGGTGGTATCA GCTCAGAGGAGTTTTCGACAGTTGCAAA

364 50 SYN CTTCAGCGCTCAAAAACGAGTTGTTAGC AGACAATGGGGTCTTGCTCAATTGTAGG

161 3 WT GACATTACACGGGCCTGGTTTTCAGTTG CCCAGCAGCATTTGACCTCTTCTTTTTG

268 43 SYN CACCTTGCATGGTCCAGGCTTCCAACTA ACCGGCGGCGTTGCTTCGTTTTTTCTTA

162 4 WT CCAACGCATCATCGCTGATTTATCAGCT AACGAAAGAGGACACTTGGAATGGTGGT

250 41 SYN TCAACGAATTATTGCCGACTTGAGCGCC GACAAAGCTGCTAACTTGAAAAGGAGGC

163

YCR084C

1 WT GGATGATGGGGAAGACGAAGTGTTCAGG TTCTCTGGTGGCCCGTCTATCTGACGAT

2141

202 59 SYN GCTGCTAGGGCTGCTGCTGGTATTCAAA CAGCTTGGTTGCTCGATTGAGCGATGAC

164 2 WT GGAATCTAGATCCAAAAGGAAAGGTGGG TGGTTCGCCATCGGCCTTCCCA

478 53 SYN GCTGTCCAAGTCTAGCAAAAATGGAGGA CGGCAGCCCTAGCGCTTTTCCT

165

YCR088W

1 WT CGCCCCAAGCTTACCTTCTAGAAACTCG ATTGCTGGGGAAGAGACCTTTTGAGCCG

1778

343 56 SYN TGCTCCTTCTTTGCCAAGCCGAAATAGC GTTAGATGGAAACAAGCCCTTGCTACCA

166 2 WT TTCTGCGCCATTGAAGACAAGGGCC CTTAGAAACTGGAGCAGGGCTCTTGGAA

259 53 SYN CAGCGCTCCTCTAAAAACCCGAGCT TTTGCTGACAGGGGCTGGAGATTTGCTT

167

YCR089W

1 WT GTCAAGTTCCTCTTTAGCCTCCACCAAA AGAAGAAGGTAAAGAGTACCCCGAAGAG

4829

265 66 SYN CAGCTCTAGCAGCTTGGCTAGCACTAAG GCTGCTTGGCAAGCTATAACCGCTGCTA

168 2 WT CTCTGTCCCGTTATTACCATCATCTAGC AATAGACGACGAGACTGGCGATAACGAC

208 68 SYN TAGCGTTCCATTGTTGCCTAGCAGCTCT GATGCTGCTGCTAACAGGGCTCAAGCTT

Page 58: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

58

169 3 WT CTCTACCGTTACATTTGGATCGACCAGC CGTAGAGCTAGAGGTTGATAAAAGGGGG

439 63 SYN TAGCACTGTCACCTTCGGTAGCACTTCT GGTGCTAGAGCTAGTGCTCAACAATGGA

170 4 WT CATAGCGTCTTCTCTACCATTGTCCTCT CGAGTAACCATCACAGCTGCTAGATGTG

364 66 SYN TATCGCTAGCAGCTTGCCTCTAAGCAGC GCTATAGCCGTCGCAAGAAGAGCTGGTA

171 5 WT TTCATCCTCTTATTCGTATGTGCAGCCC AGAAAGGGTGGACGAGGCTTTCTCCGAT

226 63 SYN CAGCAGCAGCTACAGCTACGTTCAACCA GCTCAAAGTGCTGCTAGCCTTTTCGCTG

172

YCR091W

1 WT TTCGTTGTCCGCAAGCCCAAGCTCA CGGAGAAGAGCTACCTGAGATCTCATTA

2162

355 70 SYN CAGCCTAAGCGCTTCTCCTTCTAGC TGGGCTGCTAGAGCCGCTAATTTCGTTT

173 2 WT CGAGGCAAAAAGGCTTGGTTCCAAATCA ACTTCTATGTGAGCTGTTATGCCTTGGC

388 56 SYN TGAAGCTAAGCGATTGGGCAGCAAGAGC AGATCGGTGGCTAGAATTGTGTCGAGGT

174

YCR092C

1 WT GTTGCATGATGTGGCTGCTAACGACAAA TCAAAGGGAAAGCGAATCAGTACGGTCA

3143

379 52 SYN ATTACAGCTGGTAGCAGCCAAGCTTAGG CCAACGAGAATCTGAAAGCGTTCGAAGC

175 2 WT CTTAGAAACTAAGCGTATGAGAGACGGC GAAGCATGATCCAGGTGCCAGCAAATCA

469 52 SYN TTTGCTGACCAATCGGATCAAGCTTGGG AAAACACGACCCTGGCGCTTCTAAGAGC

176 3 WT CGGGAAAGAACAGTACGCAAACTGCCTA TCCACTCAAAGGCAGTGTTTCTTCCAAG

427 50 SYN TGGAAAGCTGCAATAAGCGAATTGTCGG CCCTTTGAAGGGTTCTGTCAGCAGCAAA

177

YCR093W

1 WT TCTTTCTTCTTCACCTGCAGAGGAGCTT CGACTGGGATGGCTGATTCAAACGGCTT

6326

484 61 SYN CTTGAGCAGCAGCCCAGCTGAAGAATTG GCTTTGGCTAGGTTGGTTTAGTCGAGAC

178 2 WT CATTATAGAGTCACTTGACCGCTCCTCT AGACCCAGGTGAAAGTATTTCGGACAGT

208 56 SYN TATCATCGAAAGCTTGGATCGAAGCAGC GCTACCTGGGCTCAAGATTTCGCTCAAC

179 3 WT CATCGCTATTGATGCTCTAGGATCGCTA CAGCTCCTGCCTAGTGCTGGAATCAGAT

259 54 SYN TATTGCCATCGACGCCTTGGGTAGCTTG CAATTCTTGTCGGGTAGAGCTGTCGCTG

180 4 WT TAGCCTTTTTGCCACTAGTGAGAGTCCT ATCTTCCGAAGAGGCCAAGTGTTCTAAG

349 50 SYN CTCTTTGTTCGCTACCTCTGAATCTCCA GTCTTCGCTGCTAGCTAGATGTTCCAAA

181 5 WT AAGGTTAAGAGATAGCGACTTGCCAAGG CAAAGCCGGAACATCTCTCAAGAGGTCC

325 48 SYN ACGATTGCGAGACTCTGATCTACCTCGA TAGGGCTGGGACGTCTCGTAGCAAATCT

182 6 WT ATTTGGCGGCGAGGGTTCAATTTCACAC TGCAGCCGTCTTCAACTTAGACTCATCA

241 48 SYN TTTCGGTGGTGAAGGCAGCATCAGCCAT AGCGGCGGTTTTTAGTTTGCTTTCGTCG

183 YCR094W 1 WT ACTGTCTCCTCAAAGTGTGCTTCCGTTG GGAATTAGCGATCAACCCACAGGGATAT

1175 472 47 SYN CTTGAGCCCACAATCTGTTTTGCCACTA GCTGTTGGCAATTAGACCGCATGGGTAG

184 YCR095C 1 WT CGAATGCGTCCTATTATTCTCAAGGGGC GGCAGTTCCGGTAAAAAGCTCTTCTGTA 1088 481 54

Page 59: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

59

SYN GCTGTGGGTTCGGTTGTTTTCCAATGGT TGCTGTCCCAGTTAAGTCTAGCAGCGTT

185

YCR098C

1 WT ACCACCGAAGGCTAGTGGCAAATTTGTC GTCGACTAGAGTTTCCAACGCAGCCCTA

1556

334 47 SYN GCCGCCAAAAGCCAAAGGTAGGTTGGTA TAGCACCCGAGTCAGCAATGCTGCTTTG

186 2 WT CTTACCAGTCCAGCCATTGGATACCAAA TATTAGTAGTGAAGCGTCAGCAACCGCT

274 43 SYN TTTGCCGGTCCAACCGTTGCTAACTAGG CATCTCTTCTGAAGCTAGCGCTACTGCC

The wild-type (WT) and synthetic (SYN) PCRTags that did not yield any product under the conditions that were employed for the PCR reaction, are shaded.

Page 60: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

60

Table S6: SynIII restriction sites removed

ORF RestrictionEnzyme

Wildtype Synthetic Name Start Stop

YCL069W 5062 5064 AlwNI CAGAAGCTGCTCAGAAGCCGCT

YCL061C 10803 10805 AlwNI CAGAGTCTGATCAGAGTCACTT

YCL057W 15720 15722 AlwNI CAGATTCTGTGCGGATTCTGTG

YCL054W 22544 22546 MmeI TTATAATAAATTGATTTGGGTTTTCCTTATAATAAATTGATTTGGGTTTTTC

YCL054W 23486 23488 BlpI GCTAAGCAAGCTAAACAA

YCL054W 24245 24247 Bpu10I GCTAAGGCAGCTAAAGCA

YCL051W 27038 27040 MmeI AAAATGAATATTATGAGCAAAAGCTTAAAATGAATATTATGAGCAAAAGCTG

YCL051W 27173 27175 MmeI CAAAACGCCAATGCACGGAATTCCAACAAAACGCCAATGCACGGAATTCTAA

YCL050C 29038 29040 MmeI AAAGACCATGTGTCTCTTGTCGGATTAAAGACCATGTGTCTCTTATCGGATT

YCL049C 30613 30615 MmeI GACACTGAACCTCATTTTCCAACATTGACACTGAACCTCATTTTCTAACATT

YCL048W 33283 33285 MmeI TAACCTCTTTGGTTTCTGTTGAAATTTAACCTCTTTGGTTTCTGTTGAAATC

YCL048W 33535 33537 Bpu10I GCTAAGGAGGCTAAAGAG

YCL048W 33559 33561 BpuEI CACTTGAGCATTTGAG

YCL048W 33934 33936 MmeI TAAGAGTTCATCAAACGTGTTGGATTTAAGAGTTCATCAAACGTATTGGATT

YCL047C 34543 34545 BpuEI CTTGAGGACCTC

YCL047C 34876 34878 MmeI CACATCATTTCCAGACGAGTTGGAAACACATCATTTCCAGACGAGTTGGGAA

YCL047C 34891 34893 Bpu10I GCTTAGGCAGCTTGGGCA

YCL045C 36726 36728 Bpu10I ATCCTTAGCATCTTTAGC

YCL045C 37077 37079 BpuEI CTTGAGGCTTGGGG

YCL044C 37943 37945 BlpI GCTTAGCGAGCTTAGACT

YCL044C 38582 38584 MmeI TCCAACAGTGACTGTCTAACAGTGACTG

YCL044C 38723 38725 MmeI GTGGAGAAGCGGTTCAAAGTTGGAAAGTGGAGAAGCGGTTCAAAGTTGGGAA

Page 61: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

61

YCL043C 39428 39430 Bpu10I TTCCTCAGCTTCTTCAGC

YCL043C 39650 39652 MmeI TAGTTTAGCAATCAAAACGTCGGATGTAGTTTAGCAATCAAAACATCGGATG

YCL043C 39908 39910 MmeI TAGCCTTAGACTCCAACACGATCTTGTAGCCTTAGACTCCAATACGATCTTG

YCL040W 42087 42089 MmeI ACTCCGGGACATTGATCCGTTGGACCACTCCGGGACATTGATCAGGTGGACC

YCL040W 42123 42125 MmeI TTCCGCATCGCGGACACCGTCGGAAATTCCGCATCGCGGACACCGTCGGGAA

YCL040W 42165 42167 Bpu10I GCTCAGGGTGCTCAAGGT

YCL040W 42213 42215 MmeI GCATTAACCAACGACACCGTCGGAACGCATTAACCAACGACACCGTCGGGAC

YCL040W 42441 42443 BpuEI CTCAAGCTGAAG

YCL040W 42750 42752 MmeI TTACAGAGTCTCAGACTGCCCACCACTTACAGAGTCTCAGACTGCCCACCAC

YCL039W 44054 44056 BpuEI ACCTTGAGACTTTGAG

YCL039W 44822 44824 MmeI CGTGCGGGCTGGATGGTGGTTGGATCCGTGCGGGCTGGATGGTGGTTGGGTC

YCL038C 45767 45769 MmeI TTCACTTTCAGGTAAAACTTGACTGATTCACTTTCAGGTAAAACTTGACTGA

YCL038C 45923 45925 MmeI ATGCGTTTTATCGGTAAGCAGTCCAAATGCGTTTTATCGGTAAGCAGCCCAA

YCL036W 50309 50311 BglI GCCAAACTGGCGCGCCAAACTTGCGC

YCL034W 53041 53043 BglI GCCGTAGCGGCGGGGCGTAGCGGCGG

YCL030C 58304 58306 BlpI GCTTAGCATGTTTAGCAT

YCL028W 61758 61760 BglI GCCTCCATGGCGCATCCATGGC

YCL028W 61947 61949 BglI GCCTCCATGGCTCGCATCCATGGCTC

YCL027W 63010 63012 BlpI GCTCAGCCAGCTCAACCA

YCL026C-B 64637 64639 BglI GCCTCCAAGGCAAGCCTCCAATGCAA

YCL024W 73283 73285 BsmBI AAATGGAGACGGTAAATGGGGACGGT

YCL017C 74786 74788 BsmBI TCACAGAGACGAGTCACAGAGACCAG

YCL014W 77565 77567 BsmBI CTTTACTCTGAAACTTTACTCTGAAA

YCL011C 84516 84518 BsmBI GCCTCGGTCGCGTGCCTCGGTCCCTT

YCL010C 84972 84974 BsmBI CTTCCGTCTCTTT

Page 62: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

62

CTTCTGTCTCTTT

YCL005W 89993 89995 BlpI GCTAAGCTTGCTAAGTTA

YCL004W 90642 90644 BsmBI ATATTCATTGCGTATATTCATTGCAT

YCL004W 91503 91505 BsmBI CGTCTCATCAAATCGTCAGTTCAAAT

YCR030C 151701 151703 AarI GTGGTAAAGCAGGTGCGGTGGTAAAGCAGGCGCG

YCR030C 151956 151958 AarI AAGTTTGCGCAGGTGGTAAGTTTGCGCGGGTGGT

YCR045C 185380 185382 AarI CTGCAGACGCAGGTGAGCTGCAGACGCAGGACTG

YCR046C 187019 187021 AarI CACCTGCTACCTGC

YCR047C 187674 187676 AarI ACCGTCCAAATTCACCTACCGTCCAAATTTACCT

YCR048W 190046 190048 AarI TGGTTCCACCTGCTCTTTGGTTCCACCTTCTCTT

YCR057C 198374 198376 AarI GTCAATGTTGCCCACCTGTCAATGTTGCCTACCT

YCR057C 199931 199933 SgrAI CACCGGTGAGCACCGGACTG

Unique restriction sites were generated in synIII either by introduction of synonymous mutations in ORFs, or by removal of redundant sites by the same method to leave only one pre-existing instance of a given site in the synIII sequence.

Page 63: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

63

Table S7: SynIII restriction site “landmarks” added

ORF Restriction Enzyme Name Start Stop Pre-existing/ introduced (P/I) Sequence

(WT/Syn) 9247 9255 AlwNI P 19537 19543 BlpI P 26359 26364 MmeI P 30017 30022 BpuEI P 39138 39144 Bpu10I P

YCL038C 45935 45943 RsrII I GGGTCCCAG CGGTCCGAG

52293 52303 BglI P YCL030C 58619 58624 BsaI P YCL025C 68581 68595 SfiI I TAGTCCAGCTGGACC

TAGGCCAGCTGGGCCYCL016C 76594 76600 SanDI P

88857 88862 BsmBI P 97388 97393 SacII P

YCR008W 109229 109234 AvrII P YCR017C 126643 126655 SfiI I AGCAGATTTTGCTTG

GGCCGATTTGGCCTG 136238 136246 DraIII P 147109 147115 AarI P

YCR030C 152457 152469 SfiI I GGCACCAGTGGCAGAGGCCCCAGTGGCCGA

YCR033W 163089 163094 EciI P YCR037C 172389 172396 SgrAI P YCR042C 180399 180405 BstEII P

190789 190795 AarI P YCR059C 201009 201021 SfiI P YCR067C 211291 211296 BspMI P YCR072C 218743 218749 SanDI P

231384 231390 PasI P YCR088W 243974 243985 AscI I AGACGAGCAACT

CGGCGCGCCACT

Page 64: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

64

251576 251587 PpiI P YCR093W 259335 259349 SfiI I GAAGCTATTTTAGCC

GAGGCCATTTTGGCC 265584 265590 PasI P

Page 65: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

65

Table S8: PCRTags for non-essential segments analysis

Segments Primer Name Forward Primer Reverse Primer PCR Amplification

Region in synIII

1 Custom Primer 01 CAACAAACTGTAGAATGGAGATGCAG GACATCACAGAAGTGGCACAATTC 1431…1743 

2 Custom Primer 02 GGAGGAAACTAAGTACTCTTCGCAG CTACCGACAATGAGCATATTCATTG 3678…4070 

3 Custom Primer 03 TACAGACTTCAACACAATCAGAATC TACTAAGTACATTAATTAGTTAATTG 5502…5729 

4 YCL063W1 AAGCAGCAGCGACACCTACGAAAGCTTT GTTGCTAGGTCGAAAAAAGCTAGCGCTA 8347…8626

5 YCL055W1 CGCTACCACCCCTTTCGGTTGCAAGATT AGGAACGGCGCCGTTGGTAGTATCTTTG 18746…19229

6 YCL050C1 GTCGCTGAAAGCTTTGCTTCGAGGGACA TGCTTCTGGCAGCAGCCTAGATCATAAG 28651…29005

7 YCL047C1 TCGCAATTGGCTTTCGGCAGACAAGTGA TGTTAGCGTTGGTCTAACCGTCTTTAGC 34561…34810

8 YCL039W2 CTCTAGCCCATTGCGAAGCGAATGGTTG GCTAGCGCTGTTGGTAACAGGGTGAAAA 43672…43918

9 YCL038C1 AGCGCTCAAACCGCCCAAGCTC CAGCACCGCTGTCCTATTTAGCAAAGCT 46037…46334

10 YCL037C1 ATTGGCGTTAGAGCTGCTGGTGCTGCTA TCTACCAACCAGCAGCCCTTGGAAGTTG 49155…49425

11 YCL034W1 TTCTGACGCCTTGGCTAGCGCC GCTGCTTTCAGAGTCGATGTATCGAGAA 53199…53535

12 YCL033C1 GCATCGAGCGCAGCAGATTTCAACTCGA CGAACGACCAAATACTGGCGCTTACTTG 53809…54022

13 YCL030C2 GTAGACACCTCGGCCTAGGTCAATAGCT AAGCCTACCTTCTGGCAAGTTTTCTGAC 58766…59159

14 YCL027W1 CGTTAGCATCAGCAACCCTCCAATGAGC GCTGCCTCGTAGAAACCATCTGCTCAAA 63123…63621

15 YCL026C-B1 GCTTTCTGGAATCTTAGAAGGTAGGGCG TCGAGACGAAGCTTTCGGCAGCGTTATT 64553…64784

16 YCL026C-A1 TAGGTTGGCACCTAGACCTAGCAATTCC CGCCGAAGCTAAAAAACGACCTGAAAGC 65940…66147

17 YCL025C2 GCCTAGTTCACCCAAGCTTCGACCTTGA TGCTGTCATCTTGTTGAGCGTTTTGAGC 67486…67816

18 Custom Primer 04 CAAAGGTGAATGCTTTTGGATCAAT CTCAAATTGCTCCTCTGGGTTGTGC 82665…83040 

19 YCL011C1 AACGCTGCCAAAACCTCGGCTGAAACCA CGCTATCAGCAAATTCGACGGCGCTTTG 83871…84135

20 YCL010C1 AGCCAAATTAGCTAGGGCGGTAGGGCTT TAGCGAAGTCGCTTACAAACCACGACGA 84918…85305

21 YCL009C1 AGCGCTAATTCGGGTTGGTTTAGCGCTT TATGGCTCGAATTAGCTTGCTAGGCACC 86150…86435

22 Custom Primer 05 CTGTAGCAAAAACGACAGCGAAG CTGGCACATTTGTTAAAGTGGCG 94238…94541 

23 Custom Primer 06 GAGGACTCGTTGACGTAGAATTA GATAGAACGAGTACAACACCCGATC 96071…96449 

24 YCR004C1 TAGTTCCAAAGGGCTAGCGGTTCGGCTA CGCTGGTATCTTTGTCTCTACCAGCTCT 101171…101396

25 YCR005C1 ACCTGGAGCAACTTCATAGATGCTGCTG TAGCGCTTTGAGCAGCCCATACTTGAGC 102630…102951

26 Custom Primer 07 GTGTGGGTTTATTAAAATAGTTAG GTAACAGTGAAGAGCAGCATCTATATG 105829…106166 

27 YCR008W1 AAGCAGCCGACAAGGTAAAGCTAGCAGC GCTATGGCTAGGGCTAGCGCTTTGATAG 109111…109324

28 Custom Primer 08 GGCATTCGTATCTTATTCCTCGCTTC ACTATCTGCTCTATCTGACCAACCG 110946…111236 

Page 66: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

66

29 YCR014C1 GATATCGCCGCATTTGCTGTAACCTCGG TGGTATCGGTAGCGAAATCGCCAAGCGA 120506…120776

30 YCR016W1 GAGCAGCACTAAGAAGGGTAAACGAGTT GACGCCGCTTTCGCTAGGTTCATCCTTA 124155…124395

31 YCR017C1 CAATTCACCGACAGGGCTTGGTAGCAAG TTTGTTGAGCTTGACCGCCCGATTTGTT 125659…126040

32 YCR018C1 CTTACCGTAAGCCAAACCGCATGGAGAG TACCTCTCGAAGCGCTTCTATCACCAAA 128705…128906

33 YCR019W1 ATTGTGCAGCGGTAGCCGATGTTTGGAT GCTGACAGCGAAACCACCCAAAAAGCTA 131330…131783

34 Custom Primer 09 CCTGGGGCTCTAGGAGTATCACG GTTTGTACATCTATTTATCACAAG 132317…132680 

35 Custom Primer 10 GCTACAAAATATTGAATGTGAATC GTCTAATCGATAGTAGGCCATTTC 133780…134088 

36 YCR021C1 AAAACCACCGGTTAGGCTCAATCGAGGT CAGCGCTCTAGACATGGTTCACAGCTTG 134483…134891

37 Custom Primer 11 GATAATGGTAGCAATAATGGCAATAC AGCCTTCCGTGCTTGCCAGTATAT 141288…141686 

38 YCR026C1 AGAAGAAGAAGATCGGCTGCTAGGGCTG TTTGCTATGCGACATCTGTGGCGTTGCT 142572…142941

39 YCR027C1 GGCCAACTTTTCACCTTCGGCCTTGGTA GAGCCTAACCGGTGTTAGAGGTATCATC 145907…146117

40 Custom Primer 12 GAACTGCGTCAGGTCATCTCGTCCTC CCTGAGCAGGTGACTTAGGTGGAGGAGC 146800…147120 

41 YCR030C2 GCTGCTATGTTGGAATAGGCTTTGGCCG AGCTAGCCCATCTATCAGCTTGCCAACC 151458…151788

42 YCR032W4 CGTTAGCATCGACAGCATCCGATTGGCT ACCGCTAGCCAAGCTAGATTGGTCTTCG 157487…157844

43 YCR033W2 AAGCGTTACCCCATCTACCGCTAGCGTT GTCCATGCTTCTTGGTCGTCGGCTAGAA 163248…163647

44 YCR034W1 GCCTTTGTCTACCCTACCACCAGTTTTG AACCCAGCTGATGCTGGTAGTACCCATT 167406…167823

45 YCR059C1 GTAGGTAGCAGCGCTACCGTCTTGT TAGCGTCTTTCATCGAGGTAGCGTTTGC 200475…200790

46 YCR061W2 TTTGCCAATCTTGCAAAGCCCAAGCTTG GCTAGCCAAGCTAACTGGAACGCTCAAA 202623…203010

47 YCR066W1 GCCTTTGTCTAGCAAGCCTAGCAAGCGA GCTAGTTTCGCCGCAGCTAGACTTATCA 208837…209131

48 YCR067C2 GGTAGAGCTAGCAGATTCAACGCTCAAG TGAAACCGCTACCTCTAGCTTTAGCAAG 210492…210879

49 YCR069W1 CCCAGTCAGCAAAAGCATGAAGGAAGCT AAATTCGCTAGTATTGCTGTCTGGACCG 216191…216530

50 YCR073C4 TAGGCATCGTTCTAGAAAAGCTCGACCA CAGCGGTAGCGCTGTCAAAGGTAAGTTG 219780…219990

51 YCR075C1 GCTAGCCAAGTCGTGACCTCTGCTT GGCTAGCTTGGCTATCTTCAGCTTGTTG 225184…225580

52 Custom Primer 13 CGTGTACCAGTCTATTTAAACTGG GAATGTCGTCGTTGCTAATCC 236096…236412 

53 YCR088W2 CAGCGCTCCTCTAAAAACCCGAGCT TTTGCTGACAGGGGCTGGAGATTTGCTT 242674…242932

54 YCR089W5 CAGCAGCAGCTACAGCTACGTTCAACCA GCTCAAAGTGCTGCTAGCCTTTTCGCTG 244981…245206

55 YCR091W1 CAGCCTAAGCGCTTCTCCTTCTAGC TGGGCTGCTAGAGCCGCTAATTTCGTTT 251967…252321

56 YCR095C1 GCTGTGGGTTCGGTTGTTTTCCAATGGT TGCTGTCCCAGTTAAGTCTAGCAGCGTT 266075…266555

57 Custom Primer 14 CTTCTAAACACAGATATTATGAAAATG GTTTCACAATTCTAACATAGGATGG 268941…269249 

58 YCR098C2 TTTGCCGGTCCAACCGTTGCTAACTAGG CATCTCTTCTGAAGCTAGCGCTACTGCC 269931…270204

Page 67: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

67

Table S9: Replication origins in native chromosome III (from SGD) and synIII.

ARS Name Location on Chromosome III Modification on synIII ARS300 838 − 1551 Deleted ARS301 11146 − 11401 ARS302 14575 − 14849 Deleted ARS303 14871 − 15213 Deleted ARS320 15214 − 16274 Partially deleted ARS304 30200 − 30657 ARS305 39159 − 39706 ARS306 74458 − 74677 ARS307 108780 − 109295 ARS308 114321 − 114939 Insertion of loxPsym site ARS309 131985 − 132328 ARS310 166503 − 167348 ARS313 194265 − 194513 Modification (PCRTag) ARS314 197378 − 197609 ARS315 224816 − 225061 ARS316 272852 − 273095 ARS317 292388 − 292921 Deleted ARS318 294404 − 295034 Deleted ARS319 315354 − 316239 Deleted

Page 68: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

References and Notes

1. A. Goffeau, B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin, S. G. Oliver, Life with 6000 genes. Science 274, 546–567 (1996). Medline doi:10.1126/science.274.5287.546

2. J. S. Dymond, S. M. Richardson, C. E. Coombes, T. Babatz, H. Muller, N. Annaluru, W. J. Blake, J. W. Schwerzmann, J. Dai, D. L. Lindstrom, A. C. Boeke, D. E. Gottschling, S. Chandrasegaran, J. S. Bader, J. D. Boeke, Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477, 471–476 (2011). Medline doi:10.1038/nature10403

3. J. Dymond, J. Boeke, The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng. Bugs 3, 168–171 (2012). Medline doi:10.4161/bbug.19543

4. J. Cello, A. V. Paul, E. Wimmer, Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science 297, 1016–1018 (2002). Medline doi:10.1126/science.1072266

5. L. Y. Chan, S. Kosuri, D. Endy, Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 0018 (2005). Medline doi:10.1038/msb4100025

6. G. Pósfai, G. Plunkett 3rd, T. Fehér, D. Frisch, G. M. Keil, K. Umenhoffer, V. Kolisnychenko, B. Stahl, S. S. Sharma, M. de Arruda, V. Burland, S. W. Harcum, F. R. Blattner, Emergent properties of reduced-genome Escherichia coli. Science 312, 1044–1046 (2006); 10.1126/science.1126439. Medline doi:10.1126/science.1126439

7. D. G. Gibson, G. A. Benders, C. Andrews-Pfannkoch, E. A. Denisova, H. Baden-Tillson, J. Zaveri, T. B. Stockwell, A. Brownley, D. W. Thomas, M. A. Algire, C. Merryman, L. Young, V. N. Noskov, J. I. Glass, J. C. Venter, C. A. Hutchison 3rd, H. O. Smith, Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008); 10.1126/science.1151721. Medline doi:10.1126/science.1151721

8. C. Lartigue, J. I. Glass, N. Alperovich, R. Pieper, P. P. Parmar, C. A. Hutchison 3rd, H. O. Smith, J. C. Venter, Genome transplantation in bacteria: Changing one species to another. Science 317, 632–638 (2007); 10.1126/science.1144622. Medline doi:10.1126/science.1144622

9. H. H. Wang, F. J. Isaacs, P. A. Carr, Z. Z. Sun, G. Xu, C. R. Forest, G. M. Church, Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009). Medline doi:10.1038/nature08187

10. D. G. Gibson, J. I. Glass, C. Lartigue, V. N. Noskov, R. Y. Chuang, M. A. Algire, G. A. Benders, M. G. Montague, L. Ma, M. M. Moodie, C. Merryman, S. Vashee, R. Krishnakumar, N. Assad-Garcia, C. Andrews-Pfannkoch, E. A. Denisova, L. Young, Z. Q. Qi, T. H. Segall-Shapiro, C. H. Calvey, P. P. Parmar, C. A. Hutchison 3rd, H. O. Smith, J. C. Venter, Creation of a bacterial cell controlled by

Page 69: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

a chemically synthesized genome. Science 329, 52–56 (2010); 10.1126/science.1190719. Medline doi:10.1126/science.1190719

11. F. J. Isaacs, P. A. Carr, H. H. Wang, M. J. Lajoie, B. Sterling, L. Kraal, A. C. Tolonen, T. A. Gianoulis, D. B. Goodman, N. B. Reppas, C. J. Emig, D. Bang, S. J. Hwang, M. C. Jewett, J. M. Jacobson, G. M. Church, Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333, 348–353 (2011). Medline doi:10.1126/science.1205822

12. S. G. Oliver, Q. J. M. van der Aart, M. L. Agostoni-Carbone, M. Aigle, L. Alberghina, D. Alexandraki, G. Antoine, R. Anwar, J. P. G. Ballesta, P. Benit, G. Berben, E. Bergantino, N. Biteau, P. A. Bolle, M. Bolotin-Fukuhara, A. Brown, A. J. P. Brown, J. M. Buhler, C. Carcano, G. Carignani, H. Cederberg, R. Chanet, R. Contreras, M. Crouzet, B. Daignan-Fornier, E. Defoor, M. Delgado, J. Demolder, C. Doira, E. Dubois, B. Dujon, A. Dusterhoft, D. Erdmann, M. Esteban, F. Fabre, C. Fairhead, G. Faye, H. Feldmann, W. Fiers, M. C. Francingues-Gaillard, L. Franco, L. Frontali, H. Fukuhara, L. J. Fuller, P. Galland, M. E. Gent, D. Gigot, V. Gilliquet, N. Glansdorff, A. Goffeau, M. Grenson, P. Grisanti, L. A. Grivell, M. de Haan, M. Haasemann, D. Hatat, J. Hoenicka, J. Hegemann, C. J. Herbert, F. Hilger, S. Hohmann, C. P. Hollenberg, K. Huse, F. Iborra, K. J. Indje, K. Isono, C. Jacq, M. Jacquet, C. M. James, J. C. Jauniaux, Y. Jia, A. Jimenez, A. Kelly, U. Kleinhans, P. Kreisl, G. Lanfranchi, C. Lewis, C. G. vanderLinden, G. Lucchini, K. Lutzenkirchen, M. J. Maat, L. Mallet, G. Mannhaupet, E. Martegani, A. Mathieu, C. T. C. Maurer, D. McConnell, R. A. McKee, F. Messenguy, H. W. Mewes, F. Molemans, M. A. Montague, M. Muzi Falconi, L. Navas, C. S. Newlon, D. Noone, C. Pallier, L. Panzeri, B. M. Pearson, J. Perea, P. Philippsen, A. Pierard, R. J. Planta, P. Plevani, B. Poetsch, F. Pohl, B. Purnelle, M. Ramezani Rad, S. W. Rasmussen, A. Raynal, M. Remacha, P. Richterich, A. B. Roberts, F. Rodriguez, E. Sanz, I. Schaaff-Gerstenschlager, B. Scherens, B. Schweitzer, Y. Shu, J. Skala, P. P. Slonimski, F. Sor, C. Soustelle, R. Spiegelberg, L. I. Stateva, H. Y. Steensma, S. Steiner, A. Thierry, G. Thireos, M. Tzermia, L. A. Urrestarazu, G. Valle, I. Vetter, J. C. van Vliet-Reedijk, M. Voet, G. Volckaert, P. Vreken, H. Wang, J. R. Warmington, D. von Wettstein, B. L. Wicksteed, C. Wilson, H. Wurst, G. Xu, A. Yoshikawa, F. K. Zimmermann, J. G. Sgouros, The complete DNA sequence of yeast chromosome III. Nature 357, 38–46 (1992). Medline doi:10.1038/357038a0

13. S. M. Richardson, S. J. Wheelan, R. M. Yarrington, J. D. Boeke, GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res. 16, 550–556 (2006). Medline doi:10.1101/gr.4431306

14. W. P. Stemmer, A. Crameri, K. D. Ha, T. M. Brennan, H. L. Heyneker, Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995). Medline doi:10.1016/0378-1119(95)00511-4

15. J. S. Dymond, L. Z. Scheifele, S. Richardson, P. Lee, S. Chandrasegaran, J. S. Bader, J. D. Boeke, Teaching synthetic biology, bioinformatics and engineering to

Page 70: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

undergraduates: The interdisciplinary Build-a-Genome course. Genetics 181, 13–21 (2009). Medline doi:10.1534/genetics.108.096784

16. N. Annaluru, H. Muller, S. Ramalingam, K. Kandavelou, V. London, S. M. Richardson, J. S. Dymond, E. M. Cooper, J. S. Bader, J. D. Boeke, S. Chandrasegaran, Assembling DNA fragments by USER fusion. Methods Mol. Biol. 852, 77–95 (2012). Medline doi:10.1007/978-1-61779-564-0_7

17. D. G. Gibson, L. Young, R. Y. Chuang, J. C. Venter, C. A. Hutchison 3rd, H. O. Smith, Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009). Medline doi:10.1038/nmeth.1318

18. H. Ma, S. Kunes, P. J. Schatz, D. Botstein, Plasmid construction by homologous recombination in yeast. Gene 58, 201–216 (1987). Medline doi:10.1016/0378-1119(87)90376-3

19. V. Larionov, N. Kouprina, J. Graves, X. N. Chen, J. R. Korenberg, M. A. Resnick, Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc. Natl. Acad. Sci. U.S.A. 93, 491–496 (1996). Medline doi:10.1073/pnas.93.1.491

20. D. G. Gibson, G. A. Benders, K. C. Axelrod, J. Zaveri, M. A. Algire, M. Moodie, M. G. Montague, J. C. Venter, H. O. Smith, C. A. Hutchison 3rd, One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc. Natl. Acad. Sci. U.S.A. 105, 20404–20409 (2008). Medline doi:10.1073/pnas.0811011106

21. H. Muller, N. Annaluru, J. W. Schwerzmann, S. M. Richardson, J. S. Dymond, E. M. Cooper, J. S. Bader, J. D. Boeke, S. Chandrasegaran, Assembling large DNA segments in yeast. Methods Mol. Biol. 852, 133–150 (2012). Medline doi:10.1007/978-1-61779-564-0_11

22. D. C. Schwartz, C. R. Cantor, Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37, 67–75 (1984). Medline doi:10.1016/0092-8674(84)90301-5

23. M. Lynch, W. Sung, K. Morris, N. Coffey, C. R. Landry, E. B. Dopman, W. J. Dickinson, K. Okamoto, S. Kulkarni, D. L. Hartl, W. K. Thomas, A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc. Natl. Acad. Sci. U.S.A. 105, 9272–9277 (2008). Medline doi:10.1073/pnas.0803466105

24. K. W. Yuen, C. D. Warren, O. Chen, T. Kwok, P. Hieter, F. A. Spencer, Systematic genome instability screens in yeast and their potential relevance to cancer. Proc. Natl. Acad. Sci. U.S.A. 104, 3925–3930 (2007). Medline doi:10.1073/pnas.0610642104

25. C. D’Ambrosio, C. K. Schmidt, Y. Katou, G. Kelly, T. Itoh, K. Shirahige, F. Uhlmann, Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev. 22, 2215–2227 (2008). Medline doi:10.1101/gad.1675708

26. A. Lengronne, Y. Katou, S. Mori, S. Yokobayashi, G. P. Kelly, T. Itoh, Y. Watanabe, K. Shirahige, F. Uhlmann, Cohesin relocation from sites of chromosomal loading

Page 71: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

to places of convergent transcription. Nature 430, 573–578 (2004). Medline doi:10.1038/nature02742

27. S. Harashima, Y. Nogi, Y. Oshima, The genetic system controlling homothallism in Saccharomyces yeasts. Genetics 77, 639–650 (1974). Medline

28. J. N. Strathern, L. C. Blair, I. Herskowitz, Healing of mat mutations and control of mating type interconversion by the mating type locus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 76, 3425–3429 (1979). Medline doi:10.1073/pnas.76.7.3425

29. K. A. Nasmyth, K. Tatchell, The structure of transposable yeast mating type loci. Cell 19, 753–764 (1980). Medline doi:10.1016/S0092-8674(80)80051-1

30. J. Abraham, K. A. Nasmyth, J. N. Strathern, A. J. Klar, J. B. Hicks, Regulation of mating-type information in yeast. Negative control requiring sequences both 5′ and 3′ to the regulated region. J. Mol. Biol. 176, 307–331 (1984). Medline doi:10.1016/0022-2836(84)90492-3

31. R. K. Mortimer, J. R. Johnston, Genealogy of principal strains of the yeast genetic stock center. Genetics 113, 35–43 (1986). Medline

32. M. C. Brandriss, L. Soll, D. Botstein, Recessive lethal amber suppressors in yeast. Genetics 79, 551–560 (1975). Medline

33. C. Baker Brachmann, A. Davies, G. J. Cost, E. Caputo, J. Li, P. Hieter, J. D. Boeke, Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998). Medline doi:10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2

34. A. J. Klar, J. N. Strathern, J. B. Hicks, D. Prudente, Efficient production of a ring derivative of chromosome III by the mating-type switching mechanism in Saccharomyces cerevisiae. Mol. Cell. Biol. 3, 803–810 (1983). Medline

35. F. S. Dietrich, S. Voegeli, S. Brachat, A. Lerch, K. Gates, S. Steiner, C. Mohr, R. Pöhlmann, P. Luedi, S. Choi, R. A. Wing, A. Flavier, T. D. Gaffney, P. Philippsen, The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304–307 (2004); 10.1126/science.1095781. Medline doi:10.1126/science.1095781

36. A. Wach, A. Brachat, C. Alberti-Segui, C. Rebischung, P. Philippsen, Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13, 1065–1075 (1997). Medline doi:10.1002/(SICI)1097-0061(19970915)13:11<1065::AID-YEA159>3.0.CO;2-K

37. C. A. Müller, C. A. Nieduszynski, Conservation of replication timing reveals global and local regulation of replication origin activity. Genome Res. 22, 1953–1962 (2012). Medline doi:10.1101/gr.139477.112

38. P. A. Lee, J. S. Dymond, L. Z. Scheifele, S. M. Richardson, K. J. Foelber, J. D. Boeke, J. S. Bader, CLONEQC: Lightweight sequence verification for synthetic

Page 72: Supplementary Materials for · *Corresponding authors (boekej01@nyumc.org; schandra@jhsph.edu) This includes: Materials and Methods References Figures S1 to S18 Tables S1 to S9 .

biology. Nucleic Acids Res. 38, 2617–2623 (2010). Medline doi:10.1093/nar/gkq093

39. E. M. Cooper, H. Müller, S. Chandrasegaran, J. S. Bader, J. D. Boeke, The Build-a-Genome course. Methods Mol. Biol. 852, 273–283 (2012). Medline doi:10.1007/978-1-61779-564-0_20

40. D. G. Gibson, Enzymatic assembly of overlapping DNA fragments. Methods Enzymol. 498, 349–361 (2011). Medline doi:10.1016/B978-0-12-385120-8.00015-2

41. D. G. Gibson, Gene and genome construction in yeast. Curr. Protoc. Mol. Biol. Chapter 3, Unit3.22 (2011).

42. M. Lohse, A. M. Bolger, A. Nagel, A. R. Fernie, J. E. Lunn, M. Stitt, B. Usadel, RobiNA: A user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 40, W622–W627 (2012). Medline doi:10.1093/nar/gks540

43. C. Trapnell, L. Pachter, S. L. Salzberg, TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009). Medline doi:10.1093/bioinformatics/btp120

44. S. Anders, HTSeq: Analysing high-throughput sequencing data with Python (2010).

45. S. Anders, W. Huber, Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010). Medline doi:10.1186/gb-2010-11-10-r106

46. D. L. Lindstrom, D. E. Gottschling, The mother enrichment program: A genetic system for facile replicative life span analysis in Saccharomyces cerevisiae. Genetics 183, 413–422 (2009). Medline doi:10.1534/genetics.109.106229

47. D. E. Lea, C. A. Coulson, The distribution of the numbers of mutants in bacterial populations. J. Genet. 49, 264–285 (1949). Medline doi:10.1007/BF02986080

48. N. Agier, O. M. Romano, F. Touzain, M. Cosentino Lagomarsino, G. Fischer, The spatiotemporal program of replication in the genome of Lachancea kluyveri. Genome Biol. Evol. 5, 370–388 (2013). Medline doi:10.1093/gbe/evt014


Recommended