+ All Categories
Home > Documents > Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting...

Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting...

Date post: 20-Jan-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
22
Copper nanoparticles decorated polyaniline-zeolite nanocomposite for the nanomolar simultaneous detection of hydrazine and phenylhydrazine Balwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015
Transcript
Page 1: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

Copper nanoparticles decorated polyaniline-zeolite nanocomposite for the

nanomolar simultaneous detection of hydrazine and phenylhydrazine

Balwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati

Supporting Information

1

Electronic Supplementary Material (ESI) for Catalysis Science & Technology.This journal is © The Royal Society of Chemistry 2015

Page 2: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

Chronoamperometry study

Chronoamperometry was used to calculate the diffusion coefficient (D) and rate constant (k) for

the electro-catalytic reaction (Fig. S6-S7). Chronoamperograms were obtained at different

concentrations of analytes at a desired potential step (450 and 650 mV for PhZ and HZ,

respectively) (Fig. S6-S7). The plots of I verses t-1/2

exhibited straight lines for different

concentrations of analytes (Fig. S6-S7, inset a). Cottrell equation (Eq. 1) was used to calculate

the diffusion coefficient for various analytes investigated in this study.1

Ip = n F A D1/2

c/1/2

t1/2

(1)

Where Ip is the catalytic current of CuNPs(5%)-PANI-Nano-ZSM-5/GCE in the presence of

analyte, F is the Faraday constant (96485 C/mole), A is the geometric surface area of the

electrode (0.07 cm2), D is the diffusion coefficient (cm

2/s), c is the analyte concentration

(mol/cm3), and t is the time elapsed (s). The diffusion coefficients were found to be 8.4 × 10

−6

and 34.8 × 10−6

cm2/s for HZ and PhZ, respectively.

Chronoamperometry was also employed to calculate the rate constant (k) for electro-

catalytic reaction through Eq. 2. 2

IC/IL = 1/2

[1/2

erf (1/2

) + exp (-)/1/2

] (2) Where IC is the catalytic current of CuNPs(5%)-PANI-Nano-ZSM-5/GCE in the presence of

analyte, IL is the limiting current in the absence of analyte and = kC0t (C0 is the

bulk concentration of analyte) is the argument of the error function. In cases, where e

xceed 2, the error function is almost equal to 1 and the above equation can be reduced to:

IC/IL = 1/2

1/2

= 1/2

(kC0t)1/2

(3)

Where k, C0 and t are the catalytic rate constant (1/M s), analyte concentration (M), and time

elapsed (s), respectively. Eq. 3 can be used to calculate the rate constant of the catalytic process.

Based on the slope of IC/IL vs. t1/2

plot; k can be obtained for a given analyte concentration (Fig.

S6-S7, inset b). From the values of the slopes, an average value for k was obtained for the

2

Page 3: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

oxidation of analyte. The rate constant values for electro-catalytic oxidation of HZ and PhZ were

found as 9.8 × 104

and 1.1 × 104

1/s M, respectively.

FT-IR investigation of synthesized materials

Figure S1 shows the FT-IR spectrum of PANI, Nano-ZSM-5, and PANI-Nano-ZSM-5 samples.

FT-IR absorption peaks at 1578 and 1497 cm-1

in PANI sample are due to C=C stretching of

quinoid and benzenoid ring in PANI.3, 4

The bands at 1300 and 825 cm-1

can be assigned to N–H

bending mode and out of plane deformation of C–H (benzene ring) in the PANI sample. The

strong peak at 1128 cm-1

is due to the degree of electron delocalization in PANI and stretching of

N=Q=N in quinoid (Q) ring.5

The characteristic band at 1236 cm-1

can be assigned to C-N•+

stretching vibration in PANI. The peaks at 1387 cm-1

can be assigned to the stretching vibrations

of secondary aromatic C-N. Peaks at 1050 and 700 cm-1

(due to S=O and S-O) confirm the

incorporation of sulfonate groups attached to the aromatic rings in PANI structure. Nano-ZSM-5

exhibited several common IR peaks at 800 cm−1

, 970 cm−1

, 1100 cm−1

, and 1230 cm−1

(Figure

S1).6

The absorption peak at 800 cm−1

is due to Si−O−Si symmetric stretching. The absorption

peaks at 1100 cm−1

and 1230 cm−1

are assigned to asymmetric stretching of Si−O−Si whereas

peak at 970 cm-1

is due to the incorporation of Al in the MFI framework and assigned to an

asymmetric stretching mode of a [SiO4] unit bonded to a M4+

ion (O3Si–O–M). Nano-ZSM-5-Pr-

NH2 exhibited IR peaks at 2930 and 2842 cm-1

, which are characteristics of asymmetric and

symmetric –CH2 stretching vibrations in the propyl chain, respectively.7

The absorption bands at

1596 and 1410 cm-1

are assigned to the bending mode of the -NH2 group and to the scissor

vibration of -NH, respectively. The absorption band at 1470 cm−1

is due to –CH2 bending

(scissoring) vibration. The C-N stretching frequency for the aminopropyl moiety is observed at

1189 cm-1

. A strong peak at 800 cm-1

represents the Si-O-Si bond symmetrical stretching

vibration.7

These observations confirmed the incorporation of propylamine moiety on the surface

of Nano-ZSM-5. The FT-IR spectrum for PANI-Nano-ZSM-5 exhibited the IR peaks

corresponding to both Nano-ZSM-5 and PANI phases which confirms the presence of both

phases in the PANI-Nano-ZSM-5 nanocomposite material.

3

Page 4: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

PANI-Nano-ZSM-5

2800 2100 1400 700

Nano-ZSM-5-Pr-NH2 1088

2800 2100 1400 700

Nano-ZSM-5

1100

2800 2100 1400 700

PANI 1578

1497 1128

2800 2100 1400 700 Wavenumber (cm

-1)

Figure S1. FT-IR spectrum of different PANI/Nano-ZSM-5 materials investigated in the study.

4

70

0

149

7

15

78

14

70

97

0

800

1230

61

9

70

0 825

105

0

1236

13

00

13

87

1410

2842

800 1

189 159

6

2930

% T

ran

smit

tan

ce

(a.u

.)

130

12

30

0

Page 5: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

TGA investigation of synthesized materials

Figure S2 shows the TGA curves for PANI-Nano-ZSM-5, Nano-ZSM-5-Pr-NH2, Nano-ZSM-5,

and conventional PANI. The first weight loss below 473 K in the TGA curves for all the samples

indicates the loss of physically adsorbed water molecules. The TGA curve for Nano-ZSM-5

showed no appreciable weight loss after 473 K, confirming that chemical composition did not

change in this temperature range. In the TGA curve for conventional PANI, the second sharp

weight loss between 533-603 K may be attributed to the evaporation or decomposition of few

unstable oligoanilines/dopants and the third weight loss after 603 K is attributed to the

decomposition of PANI polymer chains. The total weight loss of PANI was 100 % and

combustion of PANI in air stream was completed at 913 K. In the TGA curve for Nano-ZSM-5-

Pr-NH2, the second weight loss between 525-875 K can be attributed to the decomposition of

organic propylamine moiety anchored on the surface of Nano-ZSM-5 and the residual weight

refers to the content of Nano-ZSM-5 in Nano-ZSM-5-Pr-NH2. TGA analysis confirmed that

Nano-ZSM-5-Pr-NH2 contains 11 wt % functionalized organic group (-Pr-NH2). In the TGA

curve for PANI-Nano-ZSM-5, the combustion of PANI in air stream was completed at 913 K

and the residual weight refers to the content of Nano-ZSM-5 in the nanocomposite. TGA

confirms that PANI-Nano-ZSM-5 nanocomposite contains 40.7 wt % Nano-ZSM-5 and 43.8 wt

% PANI. Nano-ZSM-5/PANI weight ratio was found to be 0.93, which was very close to their

initial weight ratio.

5

Page 6: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

PANI Nano-ZSM-5 Nano-ZSM-5-Pr-NH

2

PANI-Nano-ZSM-5

100

80

60

40

20

0

-20 400 600 800 1000 1200 1400

Temperature (K)

Figure S2. TGA thermograms of PANI, Nano-ZSM-5, PANI-Nano-ZSM-5-Pr-NH2, and PANI-

Nano-ZSM-5 materials at a heating rate of 10 K/min recorded in air stream.

6

Wei

gh

t (%

)

Page 7: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

(a) PANI (b) Nano-ZSM-5

2 µm 2 µm

(c) PANI-Nano-ZSM-5

2 µm

Figure S3. SEM images for PANI, Nano-ZSM-5, and PANI-Nano-ZSM-5 materials.

Page 8: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

7

Page 9: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

Nano-ZSM-5/GCE

100 PANI/GCE PANI-Nano-ZSM-5/GCE

CuNPs(5%)-PANI-Nano-ZSM-5/GCE

50

0 30 Bare G CE

15

-50 0

-15

-100 -30

0.0 0.4 0.8 1.2

Potential (V)

-0.3 0.0 0.3 0.6 0.9 1.2 1.5

Potential (V)

Figure S4. CV responses of various modified electrodes (CuNPs(5%)-PANI-Nano-ZSM-5/GCE,

PANI-Nano-ZSM-5/GCE, PANI/GCE, Nano-ZSM-5/GCE) and bare GCE (Inset) in 0.1 M KCl

solution containing 1 mM of [Fe(CN)6]3-/4-

at a scan rate of 10 mV/s.

Cu

rren

t (

A)

Cu

rr

en

t (A

)

Page 10: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

8

Page 11: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

50

40

40 30

20

30 10

0

0 5 10 15 20 25

20 Scan rate

1/2 (mV

1/2s

-1/2)

PhZ (a)

50

40

30

20

40

30

20

10

0

0 5 10 15 20 25 Scan rate

1/2 (mV

1/2s

-1/2)

HZ (b)

10 10

0 0

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Potential (V)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Potential (V)

1.8 1.6 PhZ HZ

1.6

1.4

1.4

1.2 1.2

1.0 (c)

1.0 1.5 1.8 2.1 2.4 2.7 3.0 1.8

log v

(d)

2.1

log2.4 2.7 3.0

Figure S5. CVs at CuNPs(5%)-PANI-Nano-ZSM-5/GCE containing (a) PhZ (10 µM), (b) HZ

(10 µM) in 0.1 M PBS (pH 8.5) at various scan rates (10-600 mV/s). Inset shows the plot of

oxidation peak currents vs. square root of scan rates. (c)-(d) Plot of log Ip and log scan rate (ν)

for the electrochemical oxidation of (c) PhZ, and (d) HZ at CuNPs(5%)-PANI-Nano-ZSM-

5/GCE.

9

Cu

rren

t (

A)

Cu

rren

t (

A)

Cu

rren

t (

A)

Cu

rren

t (

A)

log

Ip

log

Ip

v

Page 12: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

50

60 (a)

40 40

6

(b) 5

4

20

30 0

1.0 1.5 2.0 2.5 3.0

Time-1/2

(s-1/2

)

20

3

2

1 0.5 0.6 0.7 Time

1/2(s

1/2)

(iv)

10 (i)

0 0 10 20 30 40 50 60

Time (s)

Figure S6. Chronoamperograms obtained at CuNPs(5%)-PANI-Nano-ZSM-5/GCE (i) in the

absence and in the presence of (ii) 100 µM, (iii) 200 µM, and (iv) 300 µM of PhZ in 10 mL 0.1

M PBS (pH 8.5). Inset: (a) Dependence of current on the time-1/2

derived from the

chronoamperogram data. (b) Dependence of IC/IL on time1/2

derived from the data of

chronoamperograms.

10

I C/I

L

Cu

rren

t (

A)

Cu

rren

t (

A)

Page 13: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

50 20 (a)

15

40 10

5

4

(b)

3

2

30 0

1.0 1.5 2.0 2.5 3.0

Time-1/2

(s-1/2

) 20

0.1 0.2 0.3 0.4 0.5

Time1/2

(s1/2

)

(iv)

10

(i)

0

0 10 20 30 40 50 60

Time (s)

Figure S7. Chronoamperograms obtained at CuNPs(5%)-PANI-Nano-ZSM-5/GCE (i) in the

absence and in the presence of (ii) 100 µM, (iii) 200 µM, and (iv) 300 µM of HZ in 10 mL 0.1 M

PBS (pH 8.5). Inset: (a) Dependence of current on the time-1/2

derived from the

chronoamperogram data. (b) Dependence of IC/IL on time1/2

derived from the data of

chronoamperograms.

11

I C/I

L

Cu

rren

t (

A)

Cu

rren

t (

A)

1

Page 14: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

1.2 PhZ

(a)

1.0

0.8

0.6

0.4

0.10 0.15 0.20 0.25 0.30 Potential (V)

1.4 (b) 1.2

1.0

0.8

0.6

0.35 0.40 0.45 0.50

Potential (V)

30

20

10

0

-0.4 -0.2

30

0.0 0.2 0.4 0.6 0.8

Potential (V)

20

10

0

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Potential (V)

Figure S8. CVs of CuNPs(5%)-PANI-Nano-ZSM-5/GCE in the presence of 10 µM (a) PhZ and

(b) HZ in 0.1 M PBS (pH 8.5) at a scan rate of 50 mV/s. Inset shows the tafel plot of CV of 10

µM (a) PhZ and (b) HZ at a scan rate of 50 mV/s.

12

1.4

log

I (

A)

Cu

rren

t (

A)

log I

(

A)

HZ

Cu

rren

t (

A)

Page 15: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

PhZ

HZ

12

9

6

3

0 2 4 6 8 10 12 14

pH

Figure S9. Influence of the pH on the oxidation peak currents of PhZ and HZ at CuNPs(5%)-

PANI-Nano-ZSM-5/GCE.

13

Cu

rren

t (

A)

Page 16: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

CuNPs(3%)-PANI-Nano-ZSM-5/GCE

CuNPs(5%)-PANI-Nano-ZSM-5/GCE

CuNPs(6%)-PANI-Nano-ZSM-5/GCE CuNPs(10%)-PANI-Nano-ZSM-5/GCE

PhZ HZ

20

16

12

8

4

0 0.2 0.4

Pote 0.6

al (V) 0.8 1.0

Figure S10. DPVs in the presence of 5 µM each of PhZ and HZ in 10 mL of 0.1 M PBS (pH 8.5)

at CuNPs(3%)-PANI-Nano-ZSM-5/GCE, CuNPs(5%)-PANI-Nano-ZSM-5/GCE, CuNPs(6%)-

PANI-Nano-ZSM-5/GCE, and CuNPs(10%)-PANI-Nano-ZSM-5/GCE. DPV parameters were

selected as: pulse amplitude: 50 mV, pulse width: 50 ms, scan rate: 20 mV/s.

14

Cu

rren

t (

A)

nti

Page 17: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

CuNPs(5%)-PANI-Nano-ZSM-5/GCE

CuNPs(5%)-Nano-ZSM-5/GCE

CuNPs(5%)-PANI/GCE PANI/GCE Nano-ZSM-5/GCE

Bare GCE

15

10

5

0

0.2 0.4 0.6 0.8 1.0

Potential (V)

Figure S11. Comparison of DPV of binary mixture containing 5 μM each of PhZ and HZ at

various modified electrodes (Cu(5%)-PANI-Nano-ZSM-5/GCE, Cu(5%)-Nano-ZSM-5/GCE,

Cu(5%)-PANI/GCE, PANI/GCE, Nano-ZSM-5/GCE) and bare GCE in 0.1 M PBS (pH 8.5).

DPV parameters were selected as: pulse amplitude: 50 mV, pulse width: 50 ms, scan rate: 20

mV/s.

15

Cu

rren

t (

A)

Page 18: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

PANI-Nano-ZSM-5/GCE PANI-Nano-ZSM-5/GCE in Cu(II)

Nano-ZSM-5/GCE Nano-ZSM-5/GCE in Cu(II)

PANI/GCE PANI/GCE in Cu(II)

PhZ

HZ

15

10

5

0

0.0 0.2 0.4 0.6 0.8 1.0

Potential (V)

Figure S12. Comparison of DPV of binary mixture containing 5 μM each of PhZ and HZ at

various modified electrodes {in the presence of 50 μM CuCl2 in the electrochemical cell along

with PhZ and HZ (PANI-Nano-ZSM-5/GCE in Cu(II), Nano-ZSM-5/GCE in Cu(II), PANI/GCE

in Cu(II)) and in the absence of CuCl2 (PANI-Nano-ZSM-5/GCE, Nano-ZSM-5/GCE,

PANI/GCE)} in 0.1 M PBS (pH 8.5). DPV parameters were selected as: pulse amplitude: 50

mV, pulse width: 50 ms, scan rate: 20 mV/s.

16

Cu

rren

t (

A)

Page 19: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

12 PhZ Electrode 1

Electrode 2

Electrode 3

Electrode 4

Electrode 5

6

4

0.2 0.4 0.6 0.8 1.0

Potential (V)

HZ Electrode 1

Electrode 2

Electrode 3

Electrode 4 8 Electrode 5

6

4

0.4 0.8 1.2 1.6 Potential (V)

12

10

8

6

4

2

0 1 2 3 4 5

Electrode Number

12

10

8

6

4

2

0 1 2 3 4 5

Electrode Number

Figure S13. The current response at different freshly prepared Cu(5%)-PANI-Nano-ZSM-

5/GCEs (n=5) in the presence of 1 µM each of (a) PhZ and (b) HZ. Inset shows corresponding

DPV curves at 5 different Cu(5%)-PANI-Nano-ZSM-5/GCEs in the presence of 1 µM each of

PhZ and HZ.

17

Cu

rren

t (

A)

10

Cu

rren

t (

A)

8

(a)

Cu

rren

t (

A)

10

Cu

rren

t (

A)

(b)

Page 20: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

12 Measurment 1

Measurment 2 Measurment 3

Measurment 4

Measurment 5

6

3 0.2 0.4 0.6 0.8 1.0

Potential (V)

12 HZ Measurment 1

Measurment 2 Measurment 3

Measurment 4

8 Measurment 5

6

4

0.4 0.8 1.2 1.6 Potential (V)

12

9

6

3

0 1 2 3 4 5 6

Number of measurments 12

9

6

3

0 1 2 3 4 5 6

Number of measurments

Figure S14. The current response at five different measurements (20 days time period at the

interval of every 5 days) using same Cu(5%)-PANI-Nano-ZSM-5/GCE in the presence of 1 µM

each of (a) PhZ and (b) HZ. Inset shows corresponding DPV curves at 5 different measurements

using same Cu(5%)-PANI-Nano-ZSM-5/GCE in the presence of in the presence of 1 µM each of

PhZ and HZ for 20 days time period at the interval of every 5 days.

18

PhZ C

urren

t (

A)

9

Cu

rre

nt

(A

)

(a)

Cu

rren

t (

A)

10

Cu

rre

nt

(A

)

(b)

Page 21: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

Table S1. Comparison of Cu(5%)-PANI-Nano-ZSM-5/GCE with other electrodes reported in

the literature for HZ and PhZ detection.

S.No.

Electrode material

Analyte

Linear range (M)

Detection

limit (M)

Reference

1.

Co3O4 nanowires

HZ

20 µM – 700 µM

500 nM

8

2.

4-((2-hydroxy phenyl

imino)methyl)benzen

e-1,2-diol-multi wall

carbon nanotube

HZ

4 µM – 750.4 µM

1.1 µM

9

3.

Au/HDT/4α-

NiIITAPc-AuNPs

HZ

10 µM – 100 µM

50 nM

10

4.

ZnO nanonails

HZ

0.1 µM – 1.2 µM

200 nM

11

5.

ZnO

nanorod/SWCNT

HZ

0.5 µM – 50 µM

170 µM

12

6.

Ni(OH)2–MnO2

HZ

5 µM – 18 mM

120 nM

13

7.

Flower shape CuO

PhZ

5 µM – 10 mM

1.9 µM

14

8.

Ag-doped ZnO

PhZ

10

-8 M – 10

3 M

5 nM

15

9.

poly(o-anisidine)

PhZ

1.5 µM – 38 µM

900 µM

16

10.

(2,2′[1,2 butanediyl

bis(nitriloethylidyne)

]-bis-hydroquinone

and TiO2

PhZ

HZ

2 µM – 1000 µM

75 µM – 1000 µM

0.75 µM

9 µM

17

11.

Cu(5%)-PANI-Nano-

ZSM-5

PhZ

HZ

4 nM – 800 µM

4 nM – 800 µM

1 nM

1 nM

This work

19

Page 22: Supporting InformationBalwinder Kaur, Rajendra Srivastava*, and Biswarup Satpati Supporting Information 1 7KLV (OHFWURQLF6XSSOHPHQWDU\0DWHULDO (6, IRU&DWDO\VLV6FLHQFH 7HFKQRORJ\ MRXUQDOLV

References

1. M. Sharp, M. Petersson and K. Edström, J. Electroanal. Chem., 1979, 95, 123.

2. Z. Galus, G. Reynolds and S. Marcinkiewicz, Fundamentals of electrochemical analysis,

Ellis Horwood Chichester, 1976, 328.

3. M. Baibarac, I. Baltog, S. Lefrant, J. Y. Mevellec and O. Chauvet, Chem. Mater., 2003,

15, 4149.

4. Y.-G. Wang, W. Wu, L. Cheng, P. He, C.-X. Wang and Y.-Y. Xia, Adv. Mater., 2008,

20, 2166.

5. M. U. Anu Prathap, R. Srivastava and B. Satpati, Electrochim. Acta, 2013, 114, 285.

6. P. Ratnasamy, D. Srinivas and H. Knözinger, Adv. Catal., 2004, 48, 1.

7. D. Jung, C. Streb and M. Hartmann, Int. J. Mol. Sci., 2010, 11, 762.

8. J. Zhang, W. Gao, M. Dou, F. Wang, J. Liu, Z. Li and J. Ji, Analyst, 2015.

9. H. R. Zare, Z. Shekari, N. Nasirizadeh and A. A. Jafari, Catal. Sci. Tech., 2012, 2, 2492.

10. A. J. Jeevagan and S. A. John, RSC Adv., 2013, 3, 2256.

11. A. Umar, M. M. Rahman, S. H. Kim and Y.-B. Hahn, Chem. Commun., 2008, 166.

12. K. NamáHan, C. AiáLi, M.-P. NgocáBui and G. HunáSeong, Chem. Commun., 2011, 47,

938.

13. M. U. Anu Prathap, V. Anuraj, B. Satpati and R. Srivastava, J. Hazard. Mater., 2013,

262, 766.

14. S. B. Khan, M. Faisal, M. M. Rahman, I. Abdel-Latif, A. A. Ismail, K. Akhtar, A. Al-

Hajry, A. M. Asiri and K. A. Alamry, New J. Chem., 2013, 37, 1098.

15. A. A. Ibrahim, G. Dar, S. A. Zaidi, A. Umar, M. Abaker, H. Bouzid and S. Baskoutas,

Talanta, 2012, 93, 257.

16. R. Ojani, J.-B. Raoof and S. Zamani, Appl. Surf. Sci., 2013, 271, 98.

17. F. Gholamian, M. A. Sheikh-Mohseni and H. Naeimi, Mat. Sci. Eng. C, 2012, 32, 2344.

20


Recommended