+ All Categories
Home > Documents > Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone...

Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone...

Date post: 23-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
25
1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus aureus Pedro N. Batalha a,b , Ana T. P. C. Gomes a , Luana S. M. Forezi b , Liliana Costa c , Maria Cecília B. V. de Souza b , Fernanda C. S. Boechat b* , Vitor F. Ferreira b , Adelaide Almeida c , Maria A. F. Faustino a , Maria G. P. M. S. Neves a* , José A. S. Cavaleiro a* a Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal b Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, 24010-141 Niterói, Rio de Janeiro, Brazil. c Department of Biology and CESAM, University of Aveiro 3810-193 Aveiro, Portugal Supporting Information Index Structural characterization:........................................................................................................... 3 1 H NMR spectrum of derivative 4a (CDCl 3 , 300 MHz). .................................................................. 6 13 C NMR spectrum of derivative 4a (CDCl 3 , 75 MHz). ................................................................... 7 Expansion of the 13 C NMR spectrum of derivative 4a (CDCl 3 , 75 MHz).........................................8 1 H NMR spectrum of derivative 4b (CDCl 3 , 300 MHz). .................................................................. 8 Expansion of the 1 H NMR spectrum of derivative 4b (CDCl 3 , 300 MHz). ......................................9 Expansion of the 1 H NMR spectrum of derivative 4b (CDCl 3 , 300 MHz). ......................................9 13 C NMR spectrum of derivative 4b (CDCl 3 , 125 MHz). ............................................................... 10 Expansion of the 13 C NMR spectrum of derivative 4b (CDCl 3 , 125 MHz). ...................................10 1 H NMR spectrum of derivative 4c (CDCl 3 , 300 MHz).................................................................. 11 Expansion of the 1 H NMR spectrum of derivative 4c (CDCl 3 , 300 MHz). .....................................11 Expansion of the 1 H NMR spectrum of derivative 4c (CDCl 3 , 300 MHz). .....................................12 13 C NMR spectrum of derivative 4c (CDCl 3 , 125 MHz)................................................................. 12 Expansion of the 13 C NMR spectrum of derivative 4c (CDCl 3 , 125 MHz). ....................................13 Expansion of the 13 C NMR spectrum of derivative 4c (CDCl 3 , 125 MHz). ....................................13 Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015
Transcript
Page 1: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

1

Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus aureus

Pedro N. Batalhaa,b, Ana T. P. C. Gomesa, Luana S. M. Forezib, Liliana Costac, Maria

Cecília B. V. de Souzab, Fernanda C. S. Boechatb*, Vitor F. Ferreirab, Adelaide

Almeidac, Maria A. F. Faustinoa, Maria G. P. M. S. Nevesa*, José A. S. Cavaleiroa*

a Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro,

Portugalb Programa de Pós-Graduação em Química, Instituto de Química, Universidade

Federal Fluminense, 24010-141 Niterói, Rio de Janeiro, Brazil.c Department of Biology and CESAM, University of Aveiro 3810-193 Aveiro, Portugal

Supporting Information

Index

Structural characterization:...........................................................................................................31H NMR spectrum of derivative 4a (CDCl3, 300 MHz). ..................................................................613C NMR spectrum of derivative 4a (CDCl3, 75 MHz). ...................................................................7

Expansion of the 13C NMR spectrum of derivative 4a (CDCl3, 75 MHz).........................................81H NMR spectrum of derivative 4b (CDCl3, 300 MHz). ..................................................................8

Expansion of the 1H NMR spectrum of derivative 4b (CDCl3, 300 MHz). ......................................9

Expansion of the 1H NMR spectrum of derivative 4b (CDCl3, 300 MHz). ......................................913C NMR spectrum of derivative 4b (CDCl3, 125 MHz). ...............................................................10

Expansion of the 13C NMR spectrum of derivative 4b (CDCl3, 125 MHz). ...................................101H NMR spectrum of derivative 4c (CDCl3, 300 MHz)..................................................................11

Expansion of the 1H NMR spectrum of derivative 4c (CDCl3, 300 MHz)......................................11

Expansion of the 1H NMR spectrum of derivative 4c (CDCl3, 300 MHz)......................................1213C NMR spectrum of derivative 4c (CDCl3, 125 MHz).................................................................12

Expansion of the 13C NMR spectrum of derivative 4c (CDCl3, 125 MHz). ....................................13

Expansion of the 13C NMR spectrum of derivative 4c (CDCl3, 125 MHz). ....................................13

Electronic Supplementary Material (ESI) for RSC Advances.This journal is © The Royal Society of Chemistry 2015

Page 2: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

2

1H NMR spectrum of derivative 6a (CDCl3, 300 MHz). ................................................................14

Expansion of the 1H NMR spectrum of derivative 6a (CDCl3, 300 MHz)......................................1413C NMR spectrum of derivative 6a (CDCl3, 125 MHz). ...............................................................15

Expansion of the 13C NMR spectrum of derivative 6a (CDCl3, 125 MHz).....................................151H NMR spectrum of derivative 6b (CDCl3, 300 MHz). ................................................................16

Expansion of the 1H NMR spectrum of derivative 6b (CDCl3, 300 MHz). ....................................1613C NMR spectrum of derivative 6b (CDCl3, 125 MHz). ...............................................................17

Expansion of the 13C NMR spectrum of derivative 6b (CDCl3, 125 MHz). ...................................171H NMR spectrum of derivative 6c (CDCl3/CD3OD, 300 MHz). ....................................................18

Expansion of the 1H NMR spectrum of derivative 6c (CDCl3/CD3OD, 300 MHz). ........................18

Expansion of the 1H NMR spectrum of derivative 6c (CDCl3/CD3OD, 300 MHz). ........................1913C NMR spectrum of derivative 6c (CDCl3/CD3OD, 125 MHz). ...................................................19

Expansion of the 13C NMR spectrum of derivative 6c (CDCl3/CD3OD, 125 MHz). .......................20

Expansion of the 13C NMR spectrum of derivative 6c (CDCl3/CD3OD, 125 MHz). .......................201H NMR spectrum of derivative 8a (CDCl3, 300 MHz). ................................................................21

Expansion of the 1H NMR spectrum of derivative 8a (CDCl3, 300 MHz)......................................2113C NMR spectrum of derivative 8a (CDCl3, 75 MHz). .................................................................22

Expansion of the 13C NMR spectrum of derivative 8a (CDCl3, 75 MHz).......................................221H NMR spectrum of derivative 8b (CDCl3, 500 MHz). ................................................................23

Expansion of the 1H NMR spectrum of derivative 8b (CDCl3, 500 MHz). ....................................2313C NMR spectrum of derivative 8b (CDCl3, 75 MHz). .................................................................24

Expansion of the 13C NMR spectrum of derivative 8b (CDCl3, 75 MHz). .....................................24

UV-Vis spectra of derivatives 4a, 6a and 8a in DMF:H2O (9:1) ………………………………………..25

Page 3: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

3

Structural characterization:

The structures of new derivatives 4a-c, 6a-c and 8a-b were confirmed and

assigned according to their 1H and 13C NMR spectra and their molecular

formulae were confirmed by HRMS. 2D NMR spectra (COSY, HSQC and

HMBC) were also used in order to unequivocally identify the proton and carbon

resonances.

The HRMS-ESI+ of the porphyrin/quinolone conjugates 4a and 4b show

protonated molecular ions [M+H]+ at m/z 929.27363 and 971.32075 confirming

the success of the Buchwald-Hartwig coupling between porphyrin 1 and the

bromo-quinolones 2a and 2b, respectively. The 1H NMR spectra of these

conjugates show similar patterns considering the resonances of the porphyrin and

quinolone protons.

In the 1H NMR spectrum of conjugate 4a, it was possible to identify three AB

systems at 8.70 and 8.68 ppm, 8.66 and 8.63 ppm and 8.59 and 8.55 ppm with the

same coupling constant (J = 4.7 Hz) that are related with the resonances of six β-

pyrrolic protons. The three singlets at 8.43, 8.35 and 6.48 ppm were assigned to

the resonances of H-2’, H-3 and NH, respectively. The meso-phenyl protons

appeared as three sets of multiplets at 8.02-7.94 ppm, due to the ortho protons of

5,10,15-Ph; at 7.90-7.80 ppm, due to the ortho protons of 20-Ph and at 7.74-7.60

ppm due to the meta and para protons of 5,10,15,20-Ph. The protons of

quinolone core were unequivocally assigned according with the signal

multiplicity and the correlations observed in the COSY spectrum. The resonance

of quinolone H-5’ appeared as a doublet at 7.74 ppm (J = 2.6 Hz) as confirmed

by the correlation with the double doublet at 7.55 ppm (J = 9.0 and 2.6 Hz),

assigned to the resonance of H-7’. The correlation observed between the

resonance of H-7’ and the doublet at 7.32 ppm (J = 9.0 Hz) allowed the

assignment of this signal to H-8’ proton.

A careful analysis of the HMBC spectrum of 4a allowed the unequivocal

assignment of the carbonyl carbon resonances at 166.3 and 173.9 ppm. The

resonance of H-2’ correlates with both carbonyl signals but the resonance of

protons H-5’ only correlates with the signal at 173.9 ppm allowing its assignment

to the C-4’ resonance; the other signal at 166.3 ppm was assigned to the ester

Page 4: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

4

carbonyl group. The correlation observed between the quartet at 4.43 ppm (J =

7.0 Hz) and the signal at 166.3 ppm confirms the assignment of this quartet to the

methylene protons resonance of the ester group and therefore the triplet at 1.45

ppm (J = 7.1 Hz) is assigned to the CH3 of the same group. The protons

resonance of the ethyl group attached to N-1 were identified as the quartet at 4.21

ppm (J = 7.1 Hz) due to CH2 protons and the triplet at 1.53 ppm (J = 7.1 Hz) due

to the CH3 protons.

Considering the 1H NMR of conjugate 4b, the main difference when compared

with the spectrum of 4a relies on the resonance of the aliphatic pentyl group

attached to N-1. COSY spectrum allowed to identify unequivocally the

correlation between the multiplet at 1.95-1.80 ppm due to the resonance of H-2’’

with the triplet at 4.12 ppm (J = 7.0 Hz) assigned to the two H-1’’ protons.

Additionally, the correlation of the multiplet at 1.95-1.80 ppm with the one at

1.42-1.32 ppm allowed to assign the resonances due to the four remaining

methylene protons (H-3’’ and H-4’’); the correlation of this last multiplet with

the triplet at 0.93 ppm (J = 7.0 Hz) allowed to identify the H-5’’protons.

In the case of the porphyrin/ribonucleoside conjugate 4c the expected m/z

value at 1345.36388 ([M+H]+) observed in the HRMS-ESI+ spectrum confirmed

its molecular formulae. The 1H NMR spectrum of this compound show a more

complex pattern due to the presence of the protected ribose unit, although the

resonances due to the protons of the porphyrinic core and quinolone unit show

similar features to the ones observed for conjugates 4a and 4b. In this case, the

2D NMR spectra were fundamental for the unequivocal assignment of all sugar

protons and of their protecting groups. The multiplets at 8.02-7.95 ppm and at

7.95-7.85 ppm assigned to the resonances of the ortho protons of 5,10,15-Ph and

20-Ph, respectively, also include the resonances of two ortho OBz protons each.

The remaining two ortho OBz protons appear as a multiplet at 8.77-8.05 ppm.

The most prominent difference observed for the quinolone proton resonances was

related to H-2’ which appeared as a singlet at lower field than in conjugates 4a

and 4b (8.92 ppm versus 8.43 ppm); this fact can be justified by the electron-

withdrawing character of the ribofuranosyl group attached to N-1’. The resonance

of quinolone protons H-5’, H-7’ and H-8’ maintained the same chemical shift

pattern observed for derivative 4a. The doublet at 7.77 ppm (J = 2.5 Hz) was

assigned to H-5’ resonance which correlates with the multiplet at 7.60-7.34 ppm

Page 5: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

5

due to the resonances of H-7’ and H-8’ along with the nine meta and para OBz

protons. The amino bridge proton (NH) was also identified as the singlet at 6.41

ppm. The COSY spectrum analysis was essential for the unequivocal assignments

of the ribose moiety protons (Figure 2). The low field doublet in the aliphatic

region at 6.48 ppm (J = 4.6 Hz) was attributed to the H-1’’. The correlation

between this signal with the triplet at 6.01 ppm (J = 4.6 Hz) allowed its

assignment to H-2’’. The H-3’’ resonance was identified as the triplet at 5.90

ppm (J = 4.6 Hz) due to the correlations observed with H-2’’ and with the

multiplet at 4.96-4.82 ppm, assigned to the resonances of H-4’’and H-5’’.

Based on heteronuclear (1H-13C) HSQC spectra it was possible to assign the

signals at 90.3, 74.4 and 70.8 to the sugar C-1’’, C-2’’ and C-3’’ resonances

respectively. The resonances of C-4’’ and C-5’’ were attributed to the signals at

80.8 and 63.5 ppm, although their differentiation was not possible. The HMBC

spectrum allowed the unequivocal identification of carbonyl C-4’ resonance at

173.8 ppm and of CO2Et at 165.0 ppm. The signals at 166.1, 165.1 and 164.7

ppm were assigned to the carbonyl resonances of the three benzoyl protecting

groups.

An important feature of the 1H NMR spectra of conjugates 6a and 6b is the

presence of a signal at around -2.60 ppm due to the resonances of the inner NH

protons, which confirms the success of the demetallation step. In the case of

porphyrin/quinolone 6c it is possible to note also the absence of the signals due to

the resonances of the benzoyl groups confirming the presence of deprotected

hydroxyl groups. The HRMS-ESI+ of the porphyrin/quinolone conjugates 6a-c

show the expected [M+H]+ molecular ions at the m/z values 873.35446,

915.40094 and 977.36557 respectively.

The molecular formulae of the intracyclized N-(6-quinolonil)quinolino[2,3,4-

af]porphyrins 8a and 8b were also unambiguously confirmed by HRMS-ESI+

showing the expected [M+H]+ molecular ions at m/z values 871.33852 and

913.38539 respectively.

The main difference between the 1H NMR spectra of conjugates 8a and 8b is

related with the protons’ signals of the aliphatic groups attached to N-1 being the

pattern similar to the one of the corresponding non-cyclized precursors.

Taking into account the spectrum of derivative 8a, the presence of two

doublets at 9.69 ppm (J = 4.7 Hz) and 9.66 ppm (J = 8.2 Hz), due to H-18 and H-

Page 6: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

6

5’ respectively, is consistent with an intracyclized porphyrinic core.38

Correlations observed on the COSY spectra allowed the identification of the

resonance of H-17 as the doublet at 8.83 ppm (J = 4.7 Hz) and of H-4’ which is

in the multiplet at 7.85-7.49 ppm (Figure 2). The resonances of H-3, H-2’, H-3’,

H-8’’ and of the meta and para protons of 5,10,15-Ph were also assigned to this

multiplet. The remaining β-pyrrole proton resonances appear as four doublets at

8.75 ppm, 8.69 ppm 8.65 ppm and 8.61 ppm with the coupling constant (J = 4.7

Hz). The quinolone proton H-5’’ was identified as the doublet at 9.12 ppm (J =

2.5 Hz) and its correlation with the double doublet at 8.10 ppm (J = 8.6 and 2.5

Hz) allowed the assignment of the latter to the H-7’’. The singlet at 8.67 ppm was

assigned to the quinolone proton H-2’’ resonance. The resonances of the six

ortho protons on 5,10,15-Ph appear as three broad multiplets at 8.32-8.22, 8.20-

8.14 and 8.14-8.04 ppm and the presence of the carboethoxy group was

confirmed by the presence of the expected quartet and triplet at 4.46 ppm and

1.44 ppm. Finally the two internal NH protons appeared as a singlet at -1,32 ppm.

4a - 1H.esp

18 16 14 12 10 8 6 4 2 0 -2 -4Chemical Shift (ppm)

3.2

3.2

2.0

2.0

0.9

1.0

1.1

11.4

1.1

3.1

6.0

0.9

1.0

1.0

5.0

8.69

8.67

8.42

8.36

8.00

7.85

7.69

7.67

7.66

7.65

7.25

6.48

4.47

4.44

4.42

4.40

4.22

4.20

1.55

1.53

1.51

1.47

1.45

1.43

0.00

1H NMR spectrum of derivative 4a (CDCl3, 300 MHz).

N

N N

NNi

HN

N

O

O O

4a

5

10

15

20

2'5'

7'8'

Page 7: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

7

4a - 1H.esp

8.5 8.0 7.5 7.0 6.5Chemical Shift (ppm)

0.9

1.0

1.1

11.4

1.1

3.1

6.0

0.9

1.0

1.0

5.0

8.70

8.70

8.69

8.68

8.67

8.64

8.62

8.61

8.59

8.54

8.53

8.42

8.36

8.00

8.00

7.99

7.98

7.97

7.96

7.87

7.85

7.84

7.69

7.68

7.67

7.67

7.66

7.65

7.50

7.49

7.47

7.46

7.32

7.29

7.25

6.48

Expansion of the 1H NMR spectrum of derivative 4a (CDCl3, 300 MHz).

4a - 13C.esp

220 200 180 160 140 120 100 80 60 40 20 0 -20Chemical Shift (ppm)

173.

8516

6.32

147.

1814

2.75

139.

1713

3.63

133.

5313

2.24

132.

0812

8.59

127.

7512

7.68

127.

1112

6.88

118.

5711

6.88

113.

6010

9.47

60.9

2

48.9

7

14.7

114

.48

-0.0

2

13C NMR spectrum of derivative 4a (CDCl3, 75 MHz).

N

N N

NNi

HN

N

O

O O

4a

5

10

15

20

2'5'

7'8'

N

N N

NNi

HN

N

O

O O

4a

5

10

15

20

2'5'

7'8'

Page 8: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

8

4a - 13C.esp

145 140 135 130 125 120 115 110Chemical Shift (ppm)

147.

1814

5.20

143.

0714

2.89

142.

7514

2.59

142.

0814

1.58

141.

2114

0.93

140.

6314

0.58

140.

1513

9.17

133.

6313

3.60

133.

5313

2.85

132.

5513

2.24

132.

0813

1.93

131.

6113

1.54

128.

5912

7.75

127.

6812

7.65

127.

1112

6.88

120.

3912

0.06

118.

57

116.

8811

6.22

115.

81

113.

60

112.

27

109.

47

Expansion of the 13C NMR spectrum of derivative 4a (CDCl3, 75 MHz).

4b - 1H.esp

18 16 14 12 10 8 6 4 2 0 -2 -4Chemical Shift (ppm)

3.0

4.2

3.3

2.3

1.9

2.0

0.9

1.0

1.1

9.0

3.3

1.2

2.0

6.0

0.9

0.9

1.9

4.0

8.69

8.67

8.40

8.35

7.99

7.98

7.97

7.67

7.67

7.66

7.25

6.49

4.45

4.42

4.12

1.88

1.47

1.45

1.43

1.40

1.39

1.38

1.37

0.96

0.93

0.00

1H NMR spectrum of derivative 4b (CDCl3, 300 MHz).

N

N N

NNi

HN

N

O

O O

4a

5

10

15

20

2'5'

7'8'

N

N N

NNi

HN

N

O

O O

4b

5

10

15

20

2'5'

7'8'

1''

2''

3''

4''

5''

Page 9: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

9

4b - 1H.esp

9.0 8.5 8.0 7.5 7.0 6.5Chemical Shift (ppm)

0.9

1.0

1.1

9.0

3.3

1.2

2.0

6.0

0.9

0.9

1.9

4.0

8.70

8.70

8.69

8.68

8.67

8.66

8.64

8.60

8.59

8.58

8.40

8.35

8.02

8.00

8.00

7.99

7.98

7.97

7.97

7.94

7.73

7.72

7.67

7.67

7.66

7.65

7.54

7.53

7.33

7.30

7.25

6.49

Expansion of the 1H NMR spectrum of derivative 4b (CDCl3, 300 MHz).

4b - 1H.esp

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0Chemical Shift (ppm)

3.0

4.2

3.3

2.3

1.9

2.0

4.47

4.45

4.42

4.40

4.15

4.12

4.10

1.92

1.90

1.88

1.86

1.83

1.47

1.45

1.43

1.40

1.39

1.38

1.37

1.36

0.96

0.93

0.91

Expansion of the 1H NMR spectrum of derivative 4b (CDCl3, 300 MHz).

N

N N

NNi

HN

N

O

O O

4b

5

10

15

20

2'5'

7'8'

1''

2''

3''

4''

5''

N

N N

NNi

HN

N

O

O O

4b

5

10

15

20

2'5'

7'8'

1''

2''

3''

4''

5''

Page 10: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

10

4b - 13C.esp

220 200 180 160 140 120 100 80 60 40 20 0 -20Chemical Shift (ppm)

173.

7216

6.42

147.

8014

5.41

142.

97

133.

6813

3.59

132.

3613

1.65

128.

6512

7.79

127.

7312

7.13

126.

9411

6.99

113.

8511

2.19

60.8

8

54.1

9

28.7

522

.28

14.5

513

.93

13C NMR spectrum of derivative 4b (CDCl3, 125 MHz).

4b - 13C.esp

150 145 140 135 130 125 120 115 110Chemical Shift (ppm)

147.

80

145.

4114

3.16

142.

9714

2.81

142.

1414

1.63

141.

2714

1.01

140.

7014

0.65

140.

1413

9.31

133.

6813

3.59

132.

9113

2.36

132.

1313

1.97

131.

6513

1.57

130.

9212

9.40

128.

6512

7.79

127.

7312

7.69

127.

1312

6.94

120.

3212

0.12

118.

61

116.

9911

6.27

115.

85

113.

85

112.

19

109.

49

Expansion of the 13C NMR spectrum of derivative 4b (CDCl3, 125 MHz).

N

N N

NNi

HN

N

O

O O

4b

5

10

15

20

2'5'

7'8'

1''

2''

3''

4''

5''

N

N N

NNi

HN

N

O

O O

4b

5

10

15

20

2'5'

7'8'

1''

2''

3''

4''

5''

Page 11: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

11

4c - 1H.esp

18 16 14 12 10 8 6 4 2 0 -2 -4Chemical Shift (ppm)

3.3

2.0

3.0

0.9

0.8

0.8

0.8

11.4

11.4

1.1

1.2

4.0

7.7

1.9

0.8

1.7

3.7

0.8

8.69

8.60

8.00

7.99

7.98

7.68

7.68

7.66

7.42

7.39

7.26

6.41

5.90

4.93

4.89

4.86

4.22

4.16

1.32

1.29

1.27

1.26

1H NMR spectrum of derivative 4c (CDCl3, 300 MHz).

4c - 1H.esp

9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2Chemical Shift (ppm)

11.4

11.4

1.1

1.2

4.0

7.7

1.9

0.8

1.7

3.7

0.8

8.93

8.71

8.70

8.69

8.68

8.67

8.66

8.66

8.65

8.60

8.59

8.36

8.09

8.07

8.06

8.00

7.99

7.98

7.97

7.93

7.90

7.77

7.76

7.72

7.70

7.69

7.68

7.68

7.67

7.66

7.63

7.63

7.60

7.57

7.51

7.49

7.44

7.42

7.39

7.37

7.35

7.26

Expansion of the 1H NMR spectrum of derivative 4c (CDCl3, 300 MHz).

N

N N

NNi

HN

N

O

O O

4c

5

10

15

20

2'5'

7'8' O

O

O

O

O

O

O1'' 2''

3''4''

5''

N

N N

NNi

HN

N

O

O O

4c

5

10

15

20

2'5'

7'8' O

O

O

O

O

O

O1'' 2''

3''4''

5''

Page 12: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

12

4c - 1H.esp

6.5 6.0 5.5 5.0 4.5 4.0Chemical Shift (ppm)

2.0

3.0

0.9

0.8

0.8

0.8

6.49

6.47

6.41

6.03

6.01

6.00

5.92

5.90

5.88

4.94

4.93

4.92

4.91

4.89

4.88

4.86

4.85

4.28

4.25

4.24

4.22

4.19

4.18

4.16

4.13

4.12

4.11

4.10

Expansion of the 1H NMR spectrum of derivative 4c (CDCl3, 300 MHz).

4c -13C.esp

220 200 180 160 140 120 100 80 60 40 20 0 -20Chemical Shift (ppm)

173.

8216

6.10

165.

1116

4.96

142.

8114

0.64

133.

7313

3.68

133.

6012

9.90

129.

8312

8.67

128.

5912

6.94

126.

9212

0.07

118.

6411

3.32

90.3

2

80.8

374

.43

70.7

8

63.4

660

.72

14.3

4

0.02

13C NMR spectrum of derivative 4c (CDCl3, 125 MHz).

N

N N

NNi

HN

N

O

O O

4c

5

10

15

20

2'5'

7'8' O

O

O

O

O

O

O1'' 2''

3''4''

5''

N

N N

NNi

HN

N

O

O O

4c

5

10

15

20

2'5'

7'8' O

O

O

O

O

O

O1'' 2''

3''4''

5''

Page 13: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

13

4c -13C.esp

150 145 140 135 130 125 120 115 110Chemical Shift (ppm)

145.

0114

3.14

142.

9314

2.81

142.

4714

2.17

141.

6914

1.34

140.

9014

0.69

140.

6413

9.33

134.

1013

3.90

133.

7313

3.68

133.

6013

2.31

129.

9012

9.83

128.

7212

8.67

128.

6312

8.59

128.

5512

7.73

127.

1512

7.06

126.

94

120.

3112

0.07

118.

64

116.

4911

6.11

115.

89

113.

5611

3.32

110.

79

Expansion of the 13C NMR spectrum of derivative 4c (CDCl3, 125 MHz).

4c -13C.esp

90 85 80 75 70 65 60 55Chemical Shift (ppm)

90.3

2

80.8

3

74.4

3

70.7

8

63.4

6

60.7

2

Expansion of the 13C NMR spectrum of derivative 4c (CDCl3, 125 MHz).

N

N N

NNi

HN

N

O

O O

4c

5

10

15

20

2'5'

7'8' O

O

O

O

O

O

O1'' 2''

3''4''

5''

N

N N

NNi

HN

N

O

O O

4c

5

10

15

20

2'5'

7'8' O

O

O

O

O

O

O1'' 2''

3''4''

5''

Page 14: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

14

6a - 1H.esp

18 16 14 12 10 8 6 4 2 0 -2 -4Chemical Shift (ppm)

1.9

3.2

3.8

2.0

2.0

0.8

0.0

1.0

1.3

9.0

1.1

2.2

1.2

8.0

0.9

0.9

0.9

2.9

2.1

8.75

8.45

8.22

8.21

8.19

8.18

8.17

7.77

7.75

7.74

7.26

6.73

4.46

4.44

4.42

4.25

4.23

4.21

1.58

1.56

1.53

1.49

1.47

1.44

0.00

-2.6

0

1H NMR spectrum of derivative 6a (CDCl3, 300 MHz).

6a - 1H.esp

8.5 8.0 7.5 7.0Chemical Shift (ppm)

0.8

0.0

1.0

1.3

9.0

1.1

2.2

1.2

8.0

0.9

0.9

0.9

2.9

2.1

8.84

8.83

8.80

8.79

8.77

8.75

8.62

8.60

8.45

8.36

8.22

8.22

8.21

8.20

8.19

8.18

8.17

8.16

7.99

7.88

7.85

7.83

7.81

7.80

7.77

7.75

7.74

7.74

7.73

7.67

7.41

7.38

7.26

6.73

Expansion of the 1H NMR spectrum of derivative 6a (CDCl3, 300 MHz).

N

NH N

HN

HN

N

O

O O

6a

5

10

15

20

2'5'

7'8'

N

NH N

HN

HN

N

O

O O

6a

5

10

15

20

2'5'

7'8'

Page 15: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

15

6a - 13C.esp

220 200 180 160 140 120 100 80 60 40 20 0 -20Chemical Shift (ppm)

173.

7616

6.38

147.

3214

2.19

141.

9713

4.56

134.

4113

2.98

129.

6112

8.74

127.

6912

6.89

126.

7612

6.66

120.

6811

6.87

114.

3210

9.82

60.9

1

48.9

3

14.7

414

.56

0.02

13C NMR spectrum of derivative 6a (CDCl3, 125 MHz).

6a - 13C.esp

145 140 135 130 125 120 115 110Chemical Shift (ppm)

147.

32

142.

7014

2.19

141.

9714

0.57

140.

3014

0.25

134.

5613

4.41

134.

2513

4.17

132.

9813

2.74

132.

6013

0.74

129.

6112

8.74

127.

7512

7.69

127.

4312

7.15

126.

8912

6.76

126.

66

121.

4812

0.68

119.

97

117.

9211

6.92

116.

8711

6.60

114.

32

110.

8610

9.82

Expansion of the 13C NMR spectrum of derivative 6a (CDCl3, 125 MHz).

N

NH N

HN

HN

N

O

O O

6a

5

10

15

20

2'5'

7'8'

N

NH N

HN

HN

N

O

O O

6a

5

10

15

20

2'5'

7'8'

Page 16: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

16

6b - 1H.esp

18 16 14 12 10 8 6 4 2 0 -2 -4Chemical Shift (ppm)

1.6

3.2

4.3

3.4

2.2

2.0

2.1

0.8

1.0

1.3

9.2

0.9

2.2

1.3

7.8

0.9

0.9

0.9

2.7

1.9

8.75

8.40

8.21

8.21

8.20

8.18

8.18

7.77

7.75

7.74

7.26

6.73

5.30

4.46

4.43

1.91

1.49

1.46

1.44

1.41

1.40

1.39

0.97

0.94

0.92

0.00

-2.6

1

1H NMR spectrum of derivative 6b (CDCl3, 300 MHz).

6b - 1H.esp

9.0 8.5 8.0 7.5 7.0 6.5Chemical Shift (ppm)

0.8

1.0

1.3

9.2

0.9

2.2

1.3

7.8

0.9

0.9

0.9

2.7

1.9

8.84

8.83

8.80

8.79

8.77

8.75

8.62

8.61

8.40

8.36

8.24

8.23

8.21

8.21

8.20

8.19

8.18

7.99

7.97

7.89

7.87

7.82

7.81

7.77

7.75

7.74

7.73

7.64

7.63

7.37

7.33

7.26

6.73

Expansion of the 1H NMR spectrum of derivative 6b (CDCl3, 300 MHz).

N

NH N

HN

HN

N

O

O O

6b

5

10

15

20

2'5'

7'8'

1''

2''

3''

4''

5''

N

NH N

HN

HN

N

O

O O

6b

5

10

15

20

2'5'

7'8'

1''

2''

3''

4''

5''

Page 17: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

17

6b - 13C.esp

220 200 180 160 140 120 100 80 60 40 20 0 -20Chemical Shift (ppm)

173.

82

166.

4114

7.85

142.

1914

1.97

134.

5613

4.42

133.

0012

9.63

128.

7512

7.69

126.

8912

6.76

126.

6611

9.97

116.

9911

4.29

109.

51

60.9

1

54.1

8

28.7

422

.28

14.5

513

.93

0.01

13C NMR spectrum of derivative 6b (CDCl3, 125 MHz).

6b - 13C.esp

150 145 140 135 130 125 120 115 110Chemical Shift (ppm)

147.

85

142.

6914

2.19

141.

9714

0.59

140.

3014

0.25

138.

0213

7.33

134.

5613

4.42

134.

2513

4.17

133.

7813

3.00

132.

60

129.

6312

8.75

127.

7512

7.69

127.

6612

7.15

126.

8912

6.76

126.

66

121.

4812

0.68

119.

97

117.

9211

6.99

116.

60

114.

29

110.

76

109.

51

Expansion of the 13C NMR spectrum of derivative 6b (CDCl3, 125 MHz).

N

NH N

HN

HN

N

O

O O

6b

5

10

15

20

2'5'

7'8'

1''

2''

3''

4''

5''

N

NH N

HN

HN

N

O

O O

6b

5

10

15

20

2'5'

7'8'

1''

2''

3''

4''

5''

Page 18: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

18

6c - 1H.esp

18 16 14 12 10 8 6 4 2 0 -2 -4Chemical Shift (ppm)

3.0

1.3

1.0

3.2

1.8

0.8

0.3

1.0

15.3

1.1

5.9

0.8

0.9

1.0

1.0

3.0

0.8

9.13

8.69

8.67

8.62

8.60

8.36

7.99

7.97

7.71

7.68

7.66

7.34

6.06

6.06

4.41

4.38

4.27

4.27

4.24

3.47

3.38

1.45

1.43

1.41

0.00

1H NMR spectrum of derivative 6c (CDCl3/CD3OD, 300 MHz).

6c - 1H.esp

9.0 8.5 8.0 7.5 7.0 6.5 6.0Chemical Shift (ppm)

0.8

0.3

1.0

15.3

1.1

5.9

0.8

0.9

1.0

1.0

3.0

0.8

9.13

8.71

8.69

8.67

8.66

8.63

8.62

8.60

8.58

8.51

8.49

8.36

7.99

7.97

7.90

7.88

7.81

7.78

7.76

7.71

7.68

7.66

7.64

7.62

7.59

7.38

7.36

7.34

6.49

6.06

6.06

Expansion of the 1H NMR spectrum of derivative 6c (CDCl3/CD3OD, 300 MHz).

N

NH N

HN

HN

N

O

O O

6c

5

10

15

20

2'5'

7'8' O

OH

OH

HO

1'' 2''

3''4''

5''

N

NH N

HN

HN

N

O

O O

6c

5

10

15

20

2'5'

7'8' O

OH

OH

HO

1'' 2''

3''4''

5''

Page 19: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

19

6c - 1H.esp

4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7Chemical Shift (ppm)

1.3

1.0

3.2

1.8

4.43

4.41

4.38

4.36

4.31

4.29

4.27

4.27

4.26

4.24

4.24

4.23

4.21

4.21

4.12

4.11

4.10

4.08

4.07

3.93

3.91

3.90

3.86

3.86

Expansion of the 1H NMR spectrum of derivative 6c (CDCl3/CD3OD, 300 MHz).

6c - 13C.esp

220 200 180 160 140 120 100 80 60 40 20 0 -20Chemical Shift (ppm)

174.

81

167.

44

143.

0014

0.70

133.

6113

2.95

132.

2313

2.05

131.

7412

8.53

127.

8812

7.26

126.

9912

0.18

115.

8111

1.91

108.

7692

.55

84.6

8

75.7

6

69.0

061

.44

60.3

5

14.2

2

0.00

13C NMR spectrum of derivative 6c (CDCl3/CD3OD, 125 MHz).

N

NH N

HN

HN

N

O

O O

6c

5

10

15

20

2'5'

7'8' O

OH

OH

HO

1'' 2''

3''4''

5''

N

NH N

HN

HN

N

O

O O

6c

5

10

15

20

2'5'

7'8' O

OH

OH

HO

1'' 2''

3''4''

5''

Page 20: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

20

6c - 13C.esp

145 140 135 130 125 120 115 110Chemical Shift (ppm)

144.

7114

3.20

143.

0014

2.89

142.

7114

2.60

142.

2614

1.78

141.

3914

0.91

140.

7014

0.67

139.

37

133.

7113

3.63

133.

6113

2.95

132.

3013

2.23

132.

0513

1.74

131.

7013

0.95

129.

1912

8.53

127.

8812

7.81

127.

2612

6.99

121.

31

120.

18

118.

76

117.

1511

6.49

115.

81

112.

9011

1.91

108.

76

Expansion of the 13C NMR spectrum of derivative 6c (CDCl3/CD3OD, 125 MHz).

6c - 13C.esp

95 90 85 80 75 70 65 60Chemical Shift (ppm)

92.5

5

84.6

8

75.7

6

69.0

0

61.4

4

60.3

5

Expansion of the 13C NMR spectrum of derivative 6c (CDCl3/CD3OD, 125 MHz).

N

NH N

HN

HN

N

O

O O

6c

5

10

15

20

2'5'

7'8' O

OH

OH

HO

1'' 2''

3''4''

5''

N

NH N

HN

HN

N

O

O O

6c

5

10

15

20

2'5'

7'8' O

OH

OH

HO

1'' 2''

3''4''

5''

Page 21: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

21

8a - 1H.esp

16 14 12 10 8 6 4 2 0 -2 -4Chemical Shift (ppm)

1.8

2.6

2.8

1.8

1.7

1.1

4.3

4.3

5.4

3.1

2.1

2.0

1.0

1.0

0.8

1.2

1.0

0.9

0.9

1.0

1.0

9.69

9.12

8.69

8.69

8.67

8.66

8.61

8.60

7.79

7.78

7.74

7.73

4.48

4.47

4.45

4.44

4.41

4.39

4.38

1.71

1.69

1.68

1.46

1.44

1.43

0.00

-1.3

3

1H NMR spectrum of derivative 8a (CDCl3, 300 MHz).

8a - 1H.esp

9.5 9.0 8.5 8.0 7.5Chemical Shift (ppm)

1.1

4.3

4.3

5.4

3.1

2.1

2.0

1.0

1.0

0.8

1.2

1.0

0.9

0.9

1.0

1.0

9.70

9.69

9.67

9.65

9.12

9.11

8.84

8.83

8.76

8.75

8.69

8.69

8.67

8.66

8.65

8.61

8.60

8.27

8.17

8.16

8.13

8.11

8.11

8.10

8.09

7.84

7.82

7.79

7.78

7.78

7.74

7.73

7.72

7.72

7.71

7.66

7.62

7.53

7.52

Expansion of the 1H NMR spectrum of derivative 8a (CDCl3, 300 MHz).

N

NH N

HN

8a

5

10

15

20N

N

O O

1'2'

3'4'

5'

2''

5''

7''8''

N

NH N

HN

8a

5

10

15

20N

N

O O

1'2'

3'4'

5'

2''

5''

7''8''

Page 22: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

22

8a - 13C.esp

220 200 180 160 140 120 100 80 60 40 20 0 -20Chemical Shift (ppm)

173.

64

165.

78

142.

3713

8.99

136.

2413

4.70

134.

4712

7.76

127.

4012

7.21

126.

8512

6.76

123.

3212

2.25

118.

7211

1.94

110.

2810

1.34

61.2

0

49.2

5

14.6

614

.45

13C NMR spectrum of derivative 8a (CDCl3, 75 MHz).

8a - 13C.esp

150 145 140 135 130 125 120 115 110 105 100Chemical Shift (ppm)

149.

07

145.

8114

2.43

142.

3714

2.19

138.

99

136.

2413

5.26

134.

7013

4.63

134.

4713

4.05

132.

5112

9.35

128.

6012

8.54

127.

7612

7.40

127.

2112

6.85

126.

7612

6.71

126.

5512

4.18

123.

3212

2.25

122.

1412

2.12

118.

7211

7.28

116.

7711

6.75

115.

17

111.

94

110.

28

101.

34

Expansion of the 13C NMR spectrum of derivative 8a (CDCl3, 75 MHz).

N

NH N

HN

8a

5

10

15

20N

N

O O

1'2'

3'4'

5'

2''

5''

7''8''

N

NH N

HN

8a

5

10

15

20N

N

O O

1'2'

3'4'

5'

2''

5''

7''8''

Page 23: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

23

8b - 1H.esp

16 14 12 10 8 6 4 2 0 -2 -4Chemical Shift (ppm)

1.7

2.7

6.8

1.9

1.8

1.6

14.4

2.7

1.9

1.9

1.7

1.0

0.9

0.8

0.8

0.8

0.8

0.9

9.70

9.12

8.76

8.70

8.70

8.67

8.62

8.61

7.79

7.79

7.73

7.72

7.26

4.49

4.48

4.46

4.45

2.04

1.59

1.49

1.48

1.47

1.46

1.44

1.02

1.01

1.00

-1.3

1

1H NMR spectrum of derivative 8b (CDCl3, 500 MHz).

8b - 1H.esp

9.5 9.0 8.5 8.0 7.5Chemical Shift (ppm)

14.4

2.7

1.9

1.9

1.7

1.0

0.9

0.8

0.8

0.8

0.8

0.9

9.71

9.70

9.68

9.66

9.12

9.11

8.85

8.84

8.77

8.76

8.70

8.70

8.67

8.66

8.64

8.62

8.61

8.28

8.18

8.17

8.14

8.13

8.12

8.12

8.10

8.10

7.82

7.80

7.79

7.79

7.78

7.74

7.73

7.73

7.73

7.72

7.67

7.63

7.55

Expansion of the 1H NMR spectrum of derivative 8b (CDCl3, 500 MHz).

N

NH N

HN

8b

5

10

15

20N

N

O O

1'2'

3'4'

5'

2''

5''

7''8''

1'''2'''

3'''

4'''5'''

N

NH N

HN

8b

5

10

15

20N

N

O O

1'2'

3'4'

5'

2''

5''

7''8''

1'''2'''

3'''

4'''5'''

Page 24: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

24

8b - 13C.esp

220 200 180 160 140 120 100 80 60 40 20 0 -20Chemical Shift (ppm)

173.

6216

5.82

149.

56

142.

3713

9.12

136.

2113

4.71

134.

4812

9.29

128.

5412

7.40

127.

2212

6.85

126.

7112

3.32

118.

8311

1.64

101.

36

61.1

9

54.4

8

28.7

722

.31

14.4

613

.95

13C NMR spectrum of derivative 8b (CDCl3, 75 MHz).

8b - 13C.esp

150 145 140 135 130 125 120 115 110 105 100Chemical Shift (ppm)

149.

56

145.

8114

2.42

142.

3714

2.19

139.

1213

8.02

136.

2113

5.24

134.

7113

4.63

134.

4813

4.06

133.

5513

1.42

129.

2912

8.54

127.

7612

7.40

127.

2212

6.85

126.

7612

6.71

126.

5612

4.17

123.

3212

2.24

122.

1211

8.83

117.

2711

6.75

115.

17

111.

6411

0.29

101.

36

Expansion of the 13C NMR spectrum of derivative 8b (CDCl3, 75 MHz).

N

NH N

HN

8b

5

10

15

20N

N

O O

1'2'

3'4'

5'

2''

5''

7''8''

1'''2'''

3'''

4'''5'''

N

NH N

HN

8b

5

10

15

20N

N

O O

1'2'

3'4'

5'

2''

5''

7''8''

1'''2'''

3'''

4'''5'''

Page 25: Supporting Information - Royal Society of Chemistry · 1 Synthesis of new porphyrin/4-quinolone conjugates and evaluation of their efficiency in the photoinactivation of Staphylococcus

25

350 400 450 500 550 600 650 7000.0

0.2

0.4

0.6

0.8

1.0

8a6a4a

wavelenght /nm

Abs

orba

nce

Normalized UV-Vis spectra of derivatives 4a, 6a and 8a in DMF:H2O (9:1)


Recommended