+ All Categories
Home > Documents > Supporting Information - Royal Society of Chemistry · 2014. 9. 12. · Supporting Information...

Supporting Information - Royal Society of Chemistry · 2014. 9. 12. · Supporting Information...

Date post: 26-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
13
Supporting Information Palladium-heterogenized Porous Polyimides Materials as Effective and Recycable Catalysts for reactions in Pure Water E. Rangel Rangel, a E. M. Maya, a F. Sánchez, b J.G. de la Campa, a and M. Iglesias c Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2014
Transcript
  • Supporting Information

    Palladium-heterogenized Porous Polyimides Materials as Effective and Recycable Catalysts for reactions in Pure Water

    E. Rangel Rangel,a E. M. Maya, a F. Sánchez,b J.G. de la Campa,a and M. Iglesiasc

    Electronic Supplementary Material (ESI) for Green Chemistry.This journal is © The Royal Society of Chemistry 2014

  • 1.- CHARACTERIZATION OF PPI-n-MATERIALS

    Characterization techniques

    Elemental analysis (%C, %N and %H) were determined in a LECO CHNS-932 analyzer. ATR- FTIR spectra were recorded on a PerkinElmer Spectrum One spectrometer and are reported in terms of frequency of absorption (cm−1). 13C solid-state NMR measurement was recorded with a Bruker AV400 WB spectrometer (Larmor frequency of 100 MHz, using 4 mm MAS probes spinning at 10 kHz rate). Thermogravimetric analyses (TGA) were conducted in a TA-Q500 analyzer. The samples were heated under an air stream from 40 to 850oC with a heating rate of 10oC/min. WAXS (wide-angle X-ray scattering) was carried out with a Bruker D8 Advance diffractometer. Data were collected stepwise over the 1º≤2θ≤65º angular region, with steps of 0.5 s/step accumulation time and Vantec detector and CuKα (λ = 1.542 Å) radiation. Specific surface area measurement and porosity analysis were performed using N2 adsorption isotherms (Micromeritic, ASAP 2020 MICROPORE dry Analyzer) using the BET technique for surface area calculation and the BJH method for average pore size and pore volume calculations. Prior to measurement, the samples were degassed for 12 h at 100 ºC. Palladium contents were analyzed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) on a PerkinElmer OPTIMA 2100 DV. Scanning electron microscopy (SEM) micrographs were obtained with a Hitachi SU-8000 microscope operating at 0.5 kV. The samples were prepared directly by dispersing the powder onto a double-sided adhesive surface. The reaction was monitored by gas chromatography on an HP5890 II GC-MS chromatograph, cross-linked methyl silicone column (SPB): 25 m x 0.2 mm x 0.33 mm.

    Fig. S1a. Thermograms in air atmosphere of (a) PPI-1, PPI-1-NO2 and PPI-1-NH2; (b) PPI-2, PPI-2-NO2 and PPI-2-NH2

    200 400 600 8000

    20

    40

    60

    80

    100

    Wei

    ght (

    %)

    Temperature (ºC)

    PPI-2 PPI-2-NO2 PPI-2-NH2

    400 6000.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    5.0

    5.5

    Der

    iv. W

    eigh

    t (%

    /ºC)

    Temperature (ºC)

    200 400 600 8000

    20

    40

    60

    80

    100

    Wei

    ght (

    %)

    Temperature (ºC)

    PPI-1 PPI-1-NO2 PPI-1-NH2

    400 6000

    1

    2

    3

    4

    5

    6

    7

    8

    Der

    iv. W

    eigh

    t (%

    /ºC)

    Temperature (ºC)

  • Fig. S1b. Thermograms in nitrogen atmosphere of (a) PPI-1, PPI-1-NO2 and PPI-1-NH2; (b) PPI-2, PPI-2-NO2 and PPI-2-NH2

    100 200 300 400 500 600 700 80050

    60

    70

    80

    90

    100

    Wei

    ght (

    %)

    Temperature (ºC)

    PPI-1 PPI-1-NO2 PPI-1-NH2

    300 400 500 600 700 8000.0

    0.2

    0.4

    0.6

    0.8

    Der

    iv. W

    eigh

    t (%

    /ºC)

    Temperature (ºC)

    NO2

    100 200 300 400 500 600 700 80030

    40

    50

    60

    70

    80

    90

    100

    Wei

    ght (

    %)

    Temperature (ºC)

    PPI-2 PPI-2-NO2 PPI-2-NH2

    300 400 500 600 700 8000.0

    0.2

    0.4

    0.6

    0.8

    Der

    iv. W

    eigh

    t (%

    /ºC)

    Temperature (ºC)

    NO2

  • Fig. S2 Nitrogen sorption isotherm of PPI-1, PPI-2, PPI-1-NH2 and PPI-2-NH2.

    Fig. S3 Pore-size distribution of PPI-1, PPI-2, PPI-1-NH2 and PPI-2-NH2.

    20 30 40 500.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    dV(R

    )/ cm

    3 g-1

    Å-1

    half pore width R/ Å

    PPI-1 PPI-2 PPI-1-NH2 PPI-2-NH2

    0,0 0,2 0,4 0,6 0,8 1,0

    50

    100

    150

    200

    250

    300

    350V N

    2 /c

    m3 g

    -1 S

    TP

    Relative Pressure p/po

    PPI-1 PPI-2 PPI-1-NH2 PPI-2-NH2

  • Fig. S4 Scanning electron micrographs (SEM) of PPI-1, PPI-1-NO2, PPI-2 and PPI-2-NO2

  • Fig. S5. TGA and DTG (Vertically shifted) of (a) PPI-1-NH2, PPI-1-NPy and PPI-1-NPy-Pd (b) PPI-2-NH2, PPI-2-NPy and PPI-2-NPy-Pd.

    100 200 300 400 500 600 700 8000

    20

    40

    60

    80

    100

    Wei

    ght (

    %)

    Temperature (ºC)

    PPI-1-NH2 PPI-1-NPy PPI-1-NPy-Pd

    300 400 500 6000

    1

    2

    3

    4

    5

    6

    D

    eriv

    . Wei

    ght (

    %/ºC

    )

    Temperature (ºC)

    100 200 300 400 500 600 700 8000

    20

    40

    60

    80

    100

    Wei

    ght (

    %)

    Temperature (ºC)

    PPI-2-NH2 PPI-2-NPy PPI-2-NPy-Pd

    300 400 500 6000

    1

    2

    3

    4

    5

    6

    Der

    iv. W

    eigh

    t (%

    /ºC)

    Temperature (ºC)

  • Fig. S6 13C-NMR solid spectra of PPI-2-NH2, PPI-2-NPy and PPI-2-NPy-Pd.

    Table S1. Elemental analysis of starting, amino-functionalized porous polyimides

    % Calculated % Experimental

    Polyimide C H N C H N

    PPI-1-NH2 71.15 2.77 9.22 55.49 3.66 6.03

    PPI-1-NPy 72.17 2.83 9.91 58.80 3.67 6.66

    PPI-1-NPy-Pd 59.69 2.34 8.19 55.77 3.29 6.25

    PPI-2-NH2 73.24 2.97 8.76 56.76 3.73 6.25

    PPI-2-NPy 74.17 3.02 9.61 60.78 3.54 6.99

    PPI-2-NPy-Pd 66.14 2.69 8.57 55.25 3.43 6.42

    0102030405060708090100110120130140150160170180190200f1 (ppm)

    1

    2

    3

    C3v_PDMA_PdCl2.2.fid

    C3v_PDMA_NPy.2.fid

    emC3VPMDAc.1.fid

    165,9 141,7

    137,5

    126,9

    PPI-2

    PPI-2-NPy

    PPI-2-NPy-Pd

    -NH2

  • Fig. S7. 1H-NMR spectra of NPy and NPy-Pd

    Fig. S8. 13C-NMR spectra of NPy and NPy-Pd

    o

    o

    j

    j

    l

    lm

    m

    n

    na, b, c, g, h

    N N

    abc

    de

    g hi

    j kl m

    no

    f

    N N

    PdCl Cl

    abc

    de

    fg h

    ij k

    l mn

    o

    jk

    oi

    d

    fm

    c b

    l

    nlh

    e

    j k o i

    d

    f m

    g

    g

    c b

    a

    n

    a

    he

    N N

    abc

    de

    g hi

    j kl m

    no

    f

    N N

    PdCl Cl

    abc

    de

    g hi

    j kl m

    no

    f

  • Fig. S9. FT-IR spectra of NPy and NPy-Pd

    4000 3500 3000 2500 2000 1500 1000

    Wavenumber (cm-1)

    NPy

    NPy-Pd

    1632

    1595

  • 2.- CATALYTIC STUDIES

    Optimization of reaction conditions

    Table S2. Suzuki coupling reactions of iodobenzene with phenylboronic acid catalyzed by PPI-1-NPy-Pd.

    Cat. mol. (%)b Solvent Base T (ºC) t (h) Yield (%)c TOF (h-1)d 1 1.4 Xylene K2CO3 130 48 14 - 2 1.4 H2O No base 90 48 2 - 3 1.4 H2O K2CO3 90 24 92 5.8 4 1.2 H2O NEt3 100 1 86 72 5 1.2 H2O (i-Pr)2NH 100 1 93 77 6 0.5 H2O (i-Pr)2NH 100 1 73 134 7 0.3 H2O (i-Pr)2NH 100 3 88 462 8 No catalyst H2O (i-Pr)2NH 100 24 - -

    aReaction conditions: iodobenzene (1.0 mmol), phenylboronic acid (1.5 mmol), base (2.0 mmol), solvent (1 ml). bBased on Pd; cYield determined by GC and GCMS analysis; dmmol subs./mmol cat. h

    Table S3. Suzuki coupling reactions of bromobenzene with various arylboronic acids catalyzed by PPI-1-NPy-Pd and NPy-Pd using water as solvent, DIPA as base at 100 ºC.

    X R Catalysts % mol Pd T (h) Conv. (%) Br OMe PPI-1-NPy-Pd 0.5 1

    2 3

    27 75 93

    Br COH PPI-1-NPy-Pd 0.4 0.5 1

    1.5

    14 43 85

    Br CN PPI-1-NPy-Pd 0.8 3 4 5

    2 48 93

    Br OMe NPy-Pd 0.5 0.5 1 2 3

    22 32 35 43

    Br COH NPy-Pd 0.4 0.5 1

    1.5 2

    5 43 48 49

    Br CN NPy-Pd 0.8 3 4 5

    2.5 4 4

  • Fig. S10. Kinetic profiles for the PPI-1-NPy-Pd-catalyzed Suzuki reactions between

    bromobenzene and arylboronic acids (0.4-0.8 mol% Pd).

    0 1 2 3 4 50

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    t [h]

    Con

    vers

    ion

    [%]

    OMe (cat. 0.5 mol%) NO2 (cat. 0.4 mol%) Me (cat. 0.4 mol%) CHO (cat. 0.4 mol%) CN (cat. 0.8 mol%)

    Fig. S11. Kinetic profile for the PPI-2-NPy-Pd-catalyzed Suzuki reactions between

    bromobenzene and arylboronic acids (0.5 mol% Pd).

    0 1 2 3 4 5 6 70

    20

    40

    60

    80

    100

    Con

    vers

    ion

    [%]

    t [h]

    OMe NO2 Me CHO CN

  • Catalyst recyclability experiments: For the recyclability experiment, after each catalytic experiment, the catalyst from the reaction pot was isolated by filtration, washed thoroughly and used for the next cycle of experiment under same reaction condition. Table S4. Recyclability of PPI-1-NPy-Pd for Suzuki coupling reaction

    Entry Run Conv. (%) (5 h) TON (5 h) TOF (h-1) 1 1 100 200 150 2 2 98 196 75 3 3 89 178 62 4 4 86 172 58 5 5 86 172 56 6 6 85 170 54 7 7 83 166 53

    TON = mmol substrate/mmol cat. TOF= mmol subst/mmol cat. h

    Fig. S12. Recycling experiments for Suzuki reaction between bromobenzene and 4-methoxyphenylboronic acid.

    1 2 3 40

    20

    40

    60

    80

    100

    Con

    vers

    ion

    [%]

    Run

    Table S5. Recyclability of PPI-2-NPy-Pd for Suzuki coupling reaction between bromobenzene and 4-methoxyphenylboronic acid.

    Entry Run Conv. (%) (5 h) TON TOF (h-1) 1 1 100 200 200 2 2 62 118 26 3 3 42 64 9 4 4 48 86 15 TON = mmol substrate/mmol cat. TOF= mmol subst/mmol cat. h.

  • Fig. S13. FT-IR spectra of PPI-n-NPy-Pd catalysts before and after recycling.

    Fig. S14. WAXS difractograms of PPI-n-NPy-Pd catalysts before and after recycling.

    4000 3500 3000 2500 2000 1500 1000

    Wavenumber (cm-1)

    PPI-1-NPy-Pd

    PPI-2-NPy-Pd

    PPI-2-NPy-Pd-recycled

    PPI-1-NPy-Pd-recycled

    10 20 30 40 50 60

    I (a.

    u)

    2 (º)

    10 20 30 40 50 60

    I (a.

    u)

    2 (º)

    PPI-1-NPy-Pd

    PPI-1-NPy-Pd-recycled

    PPI-2-NPy-Pd

    PPI-2-NPy-Pd-recycled


Recommended