+ All Categories
Home > Documents > SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers...

SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers...

Date post: 12-Jul-2020
Category:
Upload: others
View: 40 times
Download: 0 times
Share this document with a friend
317
' ** NASA CR-159563 -~* HRI-396 SURVEY OF INORGANIC POLYMERS ijfenoiöfiSb W/fTlöEBrA i |)üsteSS:>«ü«i Walton«** BY ARTHUR H. GERBER EUGENE F. MclNERNEY HORIZONS RESEARCH INCORPORATED 23800 Mercantile Road Cleveland, Ohio DEPARTMENT OF DEFENSE js»»-«mzr ARBADCOM, DOVER. M. i> PREPARED FOR NATIONAL AERONAUTICS AND SPACE ADMINISTRATION iiifcsa im NASA-LEWIS RESEARCH CENTER CO 19960228 002 ----- . . _ . J , 0) CONTRACT NAS3-21369 | KHC QUALITY JSSEBSJSsk I ' --' i J
Transcript
Page 1: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

' ** NASA CR-159563

-~*

HRI-396

SURVEY OF INORGANIC POLYMERS

ijfenoiöfiSb W/fTlöEBrA i |)üsteSS:>«ü«i Walton«**

BY

ARTHUR H. GERBER

EUGENE F. MclNERNEY

HORIZONS RESEARCH INCORPORATED 23800 Mercantile Road

Cleveland, Ohio

DEPARTMENT OF DEFENSE js»»-«m zr ARBADCOM, DOVER. M. i>

PREPARED FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

iiifcsa

im

NASA-LEWIS RESEARCH CENTER

CO

19960228 002 ----- . . _ . J

, 0)

CONTRACT NAS3-21369 |

KHC QUALITY JSSEBSJSsk I

' --' i J

Page 2: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

NASA CR-159563

HRI-396

SURVEY OF INORGANIC POLYMERS

BY

ARTHUR H. GERBER

EUGENE F. MclNERNEY

HORIZONS RESEARCH INCORPORATED 23800 Mercantile Road

Cleveland, Ohio

PREPARED FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA-LEWIS RESEARCH CENTER

CONTRACT NAS3-21369

Page 3: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

1. Report No.

NASA CR-159563

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

Survey of Inorganic Polymers

5. Report Date

June 1979 6. Performing Organization Code

7. Author(s)

Arthur H. Gerber 5 Eugene F. Mclnerney

8. Performing Organization Report No.

HRI-396

10. Work Unit No.

9. Performing Organization Name and Address

Horizons Research Incorporated 23800 Mercantile Road Cleveland, OH 44122

11. Contract or Grant No.

NAS3-21369

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Washington, D.C. 20546

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Project Manager, R. W. Lauver, Materials and Structures Division, NASA-Lewis Research Center, Cleveland, Ohio, 44135

16. Abstract

A literature search covering the period 1957-1978 was carried out in order to identify inorganic, metallo-organic, and hybrid inorganic-organic polymers that could serve as potential matrix resins for advanced composites. The five most promising candidates were critically reviewed and recommendations made for the achievement of their potential in terms of performance and cost. These generic

polymer classes comprise:

(1) Poly(arylsilsesquioxanes), (2) Poly(silylarylene-siloxanes), (3) Poly(silarylenes), (4) Poly(silicon-linked ferrocenes), and (5) Poly (organophosphazenes).

No single candidate currently possesses the necessary combination of physico- mechanical properties, thermal stability, processability, and favorable economics. The first three classes exhibit the best thermal performance. On the other hand, poly(organophosphazenes), the most extensively studied polymer class, exhibit the best combination of structure-property control, process- ability, and favorable economics.

17. Key Words (Suggested by Author(s))

See page ii

18. Distribution Statement

Unclassified-Unlimited

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified 21. No. of Pages

304

22. Price*

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-C-168 (Rev. 10-75)

Page 4: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

KEY WORDS

Boron polymers Carborane polymers Carborane-siloxane polymers Carbosilane polymers Chelate polymers Composites Coordination polymers Ferrocene polymers Heat resistant polymers (plastics, elastomers) Inorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic polymers Poly(organophosphazenes) Poly(silarylenes) Poly(siloxane-ferrocenes) Poly(silsesquioxanes) Poly(silylarylene-siloxanes) Silarylene-siloxane polymers Silarylene polymers Silicon polymers Siloxane polymers Structure-property relationships Thermally stable polymers (plastics, elastomers)

11

Page 5: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

ABSTRACT

A literature search covering the period 1957-1978 was carried out in order to identify inorganic, metallo- organic, and hybrid inorganic-organic polymers that could serve as potential matrix resins for advanced composites. The five most promising candidates were critically reviewed and recommendations made for the achievement of their potential in terms of performance and cost. These generic polymer classes comprise:

(1) Poly(arylsilsesquioxanes),

(2) Poly(silylarylene-siloxanes),

(3) Poly (silarylenes),

(4) Poly(silicon-linked ferrocenes), and

(5) Poly(organophosphazenes).

No single candidate currently possesses the necessary combina- tion of physico-mechanical properties, thermal stability, processability, and favorable economics. The first three classes exhibit the best thermal performance. On the other hand, poly (organophosphazenes), the most extensively studied polymer class, exhibit the best combination of structure- property control, processability, and favorable economics.

in

Page 6: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

TABLE OF CONTENTS

Section Page

ABSTRACT iii

1.0 PROGRAM OBJECTIVES

2.0 PROGRAM SUMMARY

3.0 PROGRAM ORGANIZATION

3.1 Literature Survey 3.1.1 Selection of Systems to be Surveyed ... 2 3.1.2 Generation of Computer and Hand

Searches 5

3.2 Critical Review 3.2.1 Introduction 6 3.2.2 Criteria for Critical Review 7 3.2.3 Discussion of Individual Criteria 9

4.0 INORGANIC POLYMERS LITERATURE SURVEY AND BIBLIOGRAPHY

4.1 Polymers with Non-Carbon Backbone 4.1.1 Non-Carbon Side Groups 11

(a) Polysilicates 11 (b) Polyborates 11 (c) Polyphosphates 12 (d) Miscellaneous 12

4.1.2 With Carbon Side Chains (a) Siloxanes 13 (b) Siloxanes Containing Non-Metal

in Backbone 14 (c) Metallo-Siloxanes 14 (d) Aluminum and Boron Polymers 15 (e) Poly(metal phosphinates) and

Poly(phosphonatolanes) 16 (f) Poly(organophosphazenes) and

Poly(organophosphazanes) 22

v

Page 7: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

TABLE OF CONTENTS (contd.)

Section Page

4.1.3 No Side Groups 27 (a) Silicon Nitride 27 (b) Boron Nitride 28 (c) Polysulfur Nitride 28

4.1.4 Bibliography 29

4.2 Polymers with Carbon and Metal Backbone 4.2.1 Non-Carbon Side Groups 38

(a) Coordination Polymers 38 (b) Miscellaneous 51

4.2.2 Polymers Containing Carbon & Metal in Backbone with Carbon Side Groups .. 52 (a) Metallocenes 52 (b) Coordination Polymers 63 (c) Organometallic Polymers without

Metallocene in Backbone 69 4.2.3 Bibliography 75

4.3 Polymers with Carbon and Non-Metal Backbone 4.3.1 Non-Carbon Side Groups 84 4.3.2 Carbon Side Groups 94

(a) Poly(carbosilanes) 94 (b) Poly(carbosiloxanes) 95 (c) Poly(carborane-siloxanes) 100 (d) Non-Siloxane Carborane Polymers

with Carbon Side Groups Ill (e) Miscellaneous B-, B-N-, B-P-,

Ge-, Si-Containing Polymers ... 112 4.3.3 Bibliography 120

5.0 CRITICAL REVIEW CANDIDATES

5.1 Poly(arylsilsesquioxanes) 5.1.1 Introduction !27 5.1.2 Method of Preparation 127 5.1.3 Properties 131

5.1.4 Summary and Recommendations 137 5.1.5 Bibliography 139

vi

Page 8: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

TABLE OF CONTENTS (contd.)

Section Page

5.2 Poly (silylarylene-siloxanes) 143 5.2.1 Introduction 144 5.2.2 Methods of Preparation 144 5.2.3 Properties 150 5.2.4 Summary and Recommendations 161 5.2.5 Bibliography 164

5.3 Poly(silarylenes) 5.3.1 Introduction 167 5.3.2 Methods of Preparation 167 5.3.3 Physical Properties 169 5.3.4 Summary and Recommendations 170 5.3.5 Bibliography 172

5.4 Poly(silicon linked ferrocenes) 174 5.4.1 Introduction 174 5.4.2 Methods of Preparation 17 6 5.4.3 Properties 184 5.4.4 Summary and Recommendations 189 5.4.5 Bibliography 195

5.5 Poly(organophosphazenes) 199 5.5.1 Introduction 199 5.5.2 Methods of Preparation 200 5.5.3 Properties 204 5.5.4 Summary and Recommendations 217 5.5.5 Bibliography 220

6.0 BIBLIOGRAPHY

6.1 General References 225 6.2 Author Bibliography 227

7.0 ACKNOWLEDGEMENTS 298

8.0 DISTRIBUTION LIST 301

vxx

Page 9: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Section/Table

3.0 I

4.1 I

II

III

IV

4.2 I

II

III

IV

4.3.1 I

4.3.2 I

II

III

IV

V

VI

VII

LIST OF TABLES

Page

2

Properties of Poly(metal phosphinates) ... 18

Properties of -fAl(X)O-P(0)(R)—0+^ 20

Properties of —fAl (OP (0) R2R3)0-P (O)R'-O^. 21

Cyclolinear and Cyclomatrix Poly (organo- 24

Chelate Groups Useful in the Prepara- 40

Polyferrocenes Containing C, H, N, 0, 54

Ferrocene Polymers Containing Other Metal or Non-Metal (B, P, S) Atoms 59

Non Iron-Containing Metallocene Polymers . 64

Polymers with Carbon and Non-Metal Atom 88

Properties of Polyesters of Diphenyl- 97

106 Physical Transition Temperatures of

Mechanical Properties of Uncured Poly- (carborane-siloxane) as a Function of

109

Mechanical Properties of Modified Carborane—Siloxane Vulcanizate 110

111 Carboranyl Polymers Linked by N, P, Ge

114

Miscellaneous Polymers with B, P, or Ge 119

ix

Page 10: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

LIST OF TABLES (contd.)

Section/Table Page

5.2 I Effect of Structure of Some Siloxane Modified Poly(silarylenes) upon Tg 152

II Effect of Structure of Some Other Siloxane Modified Poly(silarylenes) upon Tg 155

III Effect of Sequence Length of Silylarylene- Siloxane Block Copolymers upon Physical Properties 158

IV Effect of Increasing p_-Silphenylene Content in Block Copolymers upon Physical Properties 159

V Effect of Block Component upon Physical Properties of Poly(TMPS-DMS) Copolymers .. 160

5.4 I Hydrolytic Stability of Poly(ferrocenyl- siloxane) and Poly(silylarylene-siloxane). 185

II Properties of Polymers Prepared by Diol- Diaminosilane Polycondensation 186

III Thermal Parameters of Selected Oxysilane Polymers 187

IV Thermo-oxidative Stability of Poly- [ (silanyl-siloxanyl) ferrocene] 187

V Thermo-oxidative Stability of Some Poly- (silanyl)-and Poly(siloxanyl)-ferrocenes . 188

5.5 I Transition and Decomposition Temperatures for Various Poly (phosphazenes), [R2PN]n .. 205

II Effect of Heat Aging on PFAP Vulcanizate Properties 208

III Tensile Properties of Poly(fluoroalkoxy- phosphazene) Cast Films 211

IV Tensile Test of Poly [di (p_-chlorophenoxy) - phosphazene] films 211

x

Page 11: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

LIST OF TABLES (contd.)

Section/Table Page

5.5 V Mechanical Properties of PMR Polyimide and Polyphosphazene-Polyimide/-Glass Laminates 213

VI Isothermal Heat Aging in Air of Poly- (decaboranyl-phosphazenes) 214

XI

Page 12: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

LIST OF FIGURES

Section/Figure Page

4.3 1 Dynamic Thermogravimetric Analysis of Diphenylsilicic Acid 98

2 Effect of Heat Aging on Properties of Poly(decaboranyl-phosphorous linked) Composites 117

5.1 1 Stress Strain Plots for Organosilicon Ladder Polymers at T = 100°C 133

2 Temperature Dependence of Ultimate Elongation of Poly(phenylisobutyl- silsesquioxane) 134

3 Shrinkage Kinetics of Selected Poly- (silsesquioxanes) 135

4 E1 vs Temperature Plots of Selected Poly- (silsesquioxanes) 135

5 Tg 6 Temperature Plot for Organosilicon Ladder Polymers 136

5.2 1 Thermogravimetric Analysis of Poly- (arylene -siloxanes) 153

5.5 1 Change in Solution Viscosity of PFAP with Time 208

2 Retention of 50% Modulus for Reinforced PFAP Vulcanizates after Aging in Air (200°C) 208

3 Effect of Heat Aging on Flexural Strength of Poly (decaboranyl-phosphazene) Composites 215

4 Effect of Heat Aging on Flexural Modulus of Poly (decaboranyl-phosphazene) Composites 215

Xlll

Page 13: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

SURVEY OF INORGANIC POLYMERS

1.0 PROGRAM OBJECTIVES

The objectives of this program are (1) to survey the technical literature for the purpose of identifying inorganic polymer systems having potential application in preparing advanced fiber-reinforced composites, and (2) to select the five most promising candidates generated from the survey and subject them to critical review.

2.0 PROGRAM SUMMARY

Developments in inorganic polymer technology were exam- ined between 1957 and 1978, making use of both computer as well as hand searching techniques. Three major polymer classi- fications were identified and investigated leading to the selection of the following five candidate systems:

(1) Poly(arylsilsesquioxanes) (2) Poly(silylarylene-siloxanes) (3) Poly(silylarylenes) (4) Poly(silicon linked ferrocenes) (5) Poly(organophosphazenes)

Communications were conducted with experts in the field.

3.0 PROGRAM ORGANIZATION

The survey was organized and carried out according to the following format.

Task I - Literature Survey A. Selection of systems to be searched. B. Generation of computer and hand searches.

Task II - Critical Review A. Establishment of criteria for critical

review candidates. B. Selection and critique of five candidate

systems. C. Recommendations.

Page 14: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Task III - Preparation of bibliography and final report.

3.1 Literature Survey

3.1.1 Selection of Systems to be Surveyed

The scope of polymers examined includes linear, cyclic and 3-dimensional species which predominantly contain one or more of the following structural features in the polymer backbone:

a. Type -{M-L)-n as shown in Table I.

TABLE I

POLYMERS OF TYPE -(M-L*n

M L

Oxygen Nitrogen Phosphorus

From Group B

III X X X

Al X X From Group

Si IV

X X Sn X Pb X

From Group P

V X X

As X X Sb X X

From Group S

VI X X

Transition Metals Ti X X Zr X X

b. Significant amounts of both C-C and C-M bonds where M is selected from B, Si, Al, Ge, Sn, Pb and Sb.

Page 15: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

c. Polymers having three or more different elements, other than carbon, in the back- bone, such as poly(elementosiloxanes) [-(Si-O-M-)- where M may be B, Al, Zn, Ti, Zr, or other polyvalent metals, P, S], poly(metal phosphinates).

d. Coordination (chelate) and metallocene polymers where the metal is an integral component of the backbone. The metallocene may be either homoannularly or hetero- annularly incorporated into the main chain.

Certain inorganic polymer systems were excluded from con- sideration in this study. These include:

a. -(M-L>n polymers where M = L = Se, Te, Sb, Be or As.

b. Polymers that largely contain C-C, C-N or C-0 bonds in the main chain will be considered as organic polymers.

c. Polymers containing appreciable Ge-0 bonds in backbone.

d. Hetero-chain polymers containing Si-O-P, Si-O-As or Si-O-Sb bonding.

Selenium and tellurium are highly toxic and both homo-chain and hetero-chain polymers of Se and Te do not offer advantages over analogous sulfur polymers. Bond energies of the excluded -(M-L^ polymers are usually 50 kcal/mole or less and therefore stable polymers would not be anticipated. Polymers containing Ge-0 bonds are generally unstable to acids and bases and depolymerize reversibly to lower molecular weight materials. Polymers containing Si-O-P, Si-O-As, or Si-O-Sb bonds are hydrolytically unstable and chemically unstable to acids and bases.

With these exclusions accounted for, the inorganic polymer classes were then categorized in the following fashion prior to carrying out the literature search.

Page 16: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

- NON-CARBON BACKBONE

1. Non-Carbon Side Groups

(a) Polysilicates (including aluminosilicates and borosilicates)

(b) Polyborates (c) Polyphosphates (including alkali borophos-

phates, metal doped) (d) Miscellaneous

2. Carbon Side Groups

(a) Siloxanes (b) Siloxanes containing non-metal in backbone (c) Metallo-siloxanes (d) Aluminum and boron polymers (e) Poly(metal phosphinates) and poly(phospho-

natolanes) (f) Poly (organophosphazenes) and poly(organo-

phosphazanes)

3. No Side Groups

(a) Silicon nitride (b) Boron nitride (c) Polysulfur nitride

II - CARBON AND METAL IN BACKBONE

1. Non-Carbon Side Groups

(a) Coordination polymers (b) Miscellaneous

2. Carbon Side Groups

(a) Metallocenes (b) Coordination polymers (c) Organometallic polymers without metallocene

in backbone

Page 17: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Ill - CARBON AND NON-METAL BACKBONE

1. Non-Carbon Side Groups

2. Carbon-Side Groups

(a) Poly(carbosilanes) (b) Poly (carbosiloxanes) (c) Poly(carborane-siloxanes) (d) Non-siloxane carborane polymers with

carbon side groups

(e) Miscellaneous B-, B-N-, B-P-, Ge-, Si- containing polymers

3.1.2 Generation of Computer and Hand Searches

Chemical Abstracts was hand searched from 1967-78 using the following key words:

Coordination compounds Metallocenes Organometallic compounds Phosphonitrile compounds Phthalocyanine Polyester, preparation Polyphosphates, polymers Plastics manufacture and processing Polymers, analysis

preparation properties siloxanes, ladder

silarylene silphenyl

silarylene, siloxanes (silphenylene-siloxane) poly(arylene-siloxarylenes) poly(arylsilsesquioxanes), poly(phenyl-

silsesquioxanes) oxysilane polymers polysiloxanes silazanes ferrocenes uses and miscellaneous

Synthetic high polymers

The period between 1957-1966 was not searched in Chemical Abstracts because of the wealth of texts and review articles published during this interval.

Page 18: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Defense Documentation Center (DDC) computer searches, including current work and the period 1957-1978 coupled with an Ohio State University search (Chemical Abtractsi covering the period 1974-1978 was carried out using the follow- ing key words:

Aluminosilicate/polymers Boron-containing polymers Carborane/polymers Carborane-siloxane polymers Chelate polymers Coordination polymers Cyclosilazanes, cyclosiloxanes/polymers Inorganic composites Inorganic polymers Metal phosphinates/polymers Metallocenes/polymers Metal (zinc, zirconium) organo polymers Organosilane polymers Phthalocyanine/polymers Phosphonitrile (polyphosphazene) polymers Poly(aluminosiloxane) Poly(borates) Polyesters/metal-containing Poly(metal phosphinate) Poly (phosphates) Poly(silicates) Poly(stannoxane) Poly(titanoorganosiloxane) Siloxanes and silicones Structure-property relationships

3.2 Critical Review

3.2.1 Introduction

Before analyzing the major classifications of in- organic polymers, it would be appropriate to provide the reader with a general overview of polymer properties relevant to pro- gram objectives.

Two main transitions in polymers are glass transi- tion (Tg) and the crystalline melting point (Tm). Tg is an important basic property of an amorphous polymer because it determines what temperature the material will be an elastomer or hard solid. This in turn determines the use temperature

Page 19: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

range. Transition temperatures have been determined by differ- ential scanning calorimetry (DSC), thermomechanical analysis (TMA), and torsional braid analysis (TBA). Many times results are dependent on the time scale of the experiment.

Physico-mechanical properties, before and after exposure to severe environments (heat or chemicals),can usually be greatly improved by crosslinking. Several formulation param- eters which affect crosslinking optimization include concentra- tion and type of filler, crosslinking agent, stabilizer, resin- filler interaction, polymer structure, and polymer molecular weight.

Thermo-oxidative stability, deformation under load, hydrolytic stability at elevated temperature are also important properties to consider in the design of fiber reinforced resin composites. A major disadvantage of current reinforced epoxy composites is their loss of performance upon heating in the presence of moisture. Therefore, any readily hydrolyzed polymer would be of questionable value for consideration of high performance reinforced composites.

Several other factors must be considered with regard to preparation of a fiber filled resin composite for high temperature applications. These include proper wetting of resin with fiber, stability of cured resin to fiber, method of prepreging resin to fiber, cure conditions, and polymer plasticization if any. Ideally, one would desire a solvent- free resin that is mobile or readily softened and that can be cured to a thermosetting material at moderate temperature (^softening temperature) and pressure. Use of solvents are disadvantageous because inadequate removal creates voids which lower ultimate tensile and flexural moduli.

One sophisticated, efficient method to improve resin processability by plasticization is to use a reactive, nonvolatile, low molecular weight polymer analog. Such an additive enhances processability by lowering the effective softening point and subsequently is incorporated into the polymer structure during the curing or postcuring step.

3.2.2 Criteria for Critical Review

The polymers surveyed in Task I were reviewed to determine viable matrix resin candidates for use in advanced fiber reinforced composites. Candidate polymers were judged on the following critieria, presented in the order of decreas- ing priority:

Page 20: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

a. Mechanical properties over a range of temperatures.

b. Thermo-oxidative stability.

c. Potential for processing at moderate temperatures and pressures.

d. Potential for low cost synthesis.

e. Chemical resistance.

Those polymers which fulfilled the requirement imposed by criterion (a) were advanced successively through the remaining criteria. Those systems not eliminated by this process were then subjected to critical analysis in terms of:

a. Current status of the polymer system.

b. Range of properties attained to date.

c. Shortcomings in the chemistry of the system.

Several limitations were encountered in applying these criteria to all systems considered.

Firstly, there is a paucity of physico-mechanical data or even isothermal aging data at elevated temperatures. Secondly, comparisons of thermal stability and thermal decompo- sition temperatures from one investigator to another may not be valid because of differences in one or more of the follow- ing:

a. Method of instrumental analysis [thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), torsional braid analysis (TBA)].

b. Test atmosphere (air, nitrogen, argon, vacuo).

c. Heating rate, and

d. Exposure time.

TGA was most widely used to determine thermal stability and/or decomposition temperatures. This is often a good guide to determine direction in structure-property relationships but

Page 21: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

often bears little resemblance to long term isothermal aging at elevated temperatures. Extreme caution must be exercised with TGA data because significant property changes may occur without noticeable weight loss. A third major limitation in existing literature is that several well characterized polymer systems have been groomed primarily for the development of broad temperature serviceable elastomers as opposed to thermoplastic or thermosetting materials. Therefore, extrapolation of proper- ties to plastic polymeric counterparts may be tenuous. Widely studied polymers which have often been tailored for a combina- tion of low Tg with high thermal stability include poly (siloxanes), poly(arylene siloxanes), poly(carborane-siloxanes), and poly- (organophosphazenes).

3.2.3 Discussion of Individual Criteria

a. Mechanical Properties

Desirable candidate polymers should show high tensile strength, some minimal elongation, high flexural strength and modulus, and high retention of mechanical proper- ties after thermal aging in air at elevated temperatures (possibly up to 700°F). Desirable mechanical properties at ambient temperature of unfilled polymer are given below.

Tensile strength, psi 10,000-30,000 Elongation at break, % 3-12 Flexural strength, psi 10,000-30,000 Flexural modulus, psi 100,000-500,000

b. Thermo-oxidative Stability

Potential matrix resin candidates should show good thermo-oxidative stability. Isothermal aging in air at elevated temperatures was considered a more reliable index to stability than thermal gravimetric analysis (TGA) in air. Desirable levels of stability of unfilled resin will be considered as 90% weight retention after 500 hours at 600°F (315°C) in air. Retention of at least 70% of mechanical prop- erties after this aging would probably be a better barometer of thermo-oxidative stability.

c. Cost

Factors that were considered in determining potential cost included availability and cost of starting materials; efficiency (overall percent yield) of the monomer and polymer synthesis; polymerization conditions; and likeli- hood of more promising methods for the preparation of monomer(s) and/or polymer.

Page 22: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

d. Processing

Moderate processing conditions are defined as utilizing temperatures of 400°C or less and pressures of 1000 psi or less. Factors that were considered for determining processability under moderate conditions are polymer solu- bility, glass transition temperature (Tg), polymer melt or softening temperature, temperature to initiate crosslinking (if any), compatibility with glass and graphite fibers, and ease of injection and compression molding, and extruding.

e. Chemical Resistance

Criteria for judging good chemical resistance are given below:

Good stability (i.e. little weight change and high retention of mechani- cal properties) to water at elevated temperatures.

Little or no effect (swelling) to common organic solvents.

Little or no effect to oxidizing (e.g. 02, 03, Cl2, N2O4, peroxides, HNO3, and possibly chromic acid, perborates, perchlorates) and reducing agents.

Good resistance to acidic and alkaline agents.

Stable to light.

10

Page 23: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

4.0 INORGANIC POLYMERS LITERATURE SURVEY AND BIBLIOGRAPHY

4.1 Polymers with Non-Carbon Backbone

4.1.1 Non-Carbon Side Groups

Polymers in this classification have been divided into four groups.

(a) Polysilicates (including aluminosilicates and borosilicates).

(b) Polyborates

(c) Polyphosphates (including alkali boro- phosphates, metal doped).

(d) Miscellaneous

(a) Polysilicates

These materials are considered to fall under the designation of glasses and, although they possess exceptional thermal stability and chemical resistivity, they are not readily processable at moderate temperatures and pressures. Thus, although they represent excellent filler candidates, they are excluded from further consideration in this study.

The reader is referred to three excellent reviews of this type [1-3] as well as specific journal citations in the current literature [4-9].

(b) Polyborates

Inorqanic polyborates are best treated as a sub- class of polysilicates, i.e. borosilicates (see above). Organic polyborates are generally derived from the esterification of boric acid with diols, such as bisphenols, or polyols. However, a major shortcoming of B-0 linked polymer is their susceptibility to undergo hydrolysis as well as their tendency to undergo thermal rearrangement. The subject of boron polymers has been extensively reviewed [10-11].

11

Page 24: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

(c) Polyphosphates [12-14]

This class of materials is generally de- rived from the polycondensation of alkali metal dihydrogen phosphates as shown in Equation (1).

0 t

n HO—P—OH I ONa

■>. (n-l)H20 + H-

_ 0 _.

-0—P—

"" ONa -m

-OH (1)

= 1 10c

These glass-like, water soluble polymers may be linear, cyclic, or crosslinked in nature. Short chain or cyclic polyphosphates are of enormous importance as detergents. Crosslinked polyphos- phates (either through P-O-P or ionic crosslinking via polyvalent cations) are useful as ion exchange resins [15]. Other phosphorus- containing polymers are discussed in Sections 4.1.2, 4.3,2e, and 5.5. It should be noted that certain polyphosphates have been found to possess useful properties. For example, aromatic poly- phosphates (the phoryl resins) which are prepared from phosphoro- dichloridates with aromatic diols (Equation 2), give macromolecules of high transparency, hardness, adhesion and flame retardancy; however, these substances lack long term hydrolytic stability.

xRO-P^j + xHO-@-OH

OR

o-h- x +2xHCl (2)

For this reason polyphosphates are excluded from further consid- eration. The reader is referred to a general treatment of poly- meric phosphorous compounds for further details [16-17].

(d) Miscellaneous

The only materials in this category which merit attention are aminoboranes. Like most other boron polymers

12

Page 25: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

they are quite prone to hydrolysis. Recently, polymeric amino- borane (H2BNH2)n and aminodifluoroborane (F2BNH2)n were prepared and characterized [18]; and, although still hydrolytically un- stable, they possess good thermal stability. Boron-nitrogen- containing polymers with carbon side groups are treated in Section 4.3.2e.

4.1.2 With Carbon Side Chains

(a) Siloxanes

Polymers in which silicone-oxygen represent the repeating link in the backbone are generally referred to as silicones and can be best depicted by the general formula

R = alkyl and/or aryl

Designed primarily as insulating fluids/coatings and as elastomers these materials have been the subject of exhaustive investigation since their discovery and have been reviewed in depth (19-26) with more recent advances noted in references [27-32].

A major deficiency associated with silicones, as well as several other inorganic polymer systems (phosphorous-nitrogen, boron-nitrogen) involves the effect of ring-chain equilibria upon both their preparations and their thermal characteristics. Formation of the material is thermodynamically controlled which means that the same (or approximately similar) equilibrium mixture may often be achieved via different routes. Thus, small ring-linear chain equilibria is a major factor in determining both the possibility of preparing polymers from cyclic oligomers and the possibility that polymers will thermally degrade to cyclic oligomers. Steric requirements of substituents bonded to main chain atoms affect this equilibrium. Large bulky groups create more crowding in polymer relative to cyclic oligomers, thereby destabilizing the polymer at elevated temperatures. Thermal re- version or unzipping to cyclic specie can be decreased or prevented by use of smaller substituents, introduction of blocking groups into the backbone, and by changing the electronegativity prop- erties of substituent groups (see also Sections 4.1.2b, 4.3.2b, c, e, 5.1, 5.2, and 5.4.4).

13

Page 26: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Considerable effort has been spent in improving the thermal stability characteristics of silicones primarily via the use of chain terminating groups directly bonded to silicon (33). Of particular interest is the work which has been done with poly- (diphenylsiloxane) (35-41). Theoretically, this material and/or poly(methylphenylsiloxane) should prove to be an interesting candidate for advanced composites if high molecular weight and good thermal stability can be achieved.

(b) Siloxanes Containing Non-Metal in Backbone

Recently, organosiloxanes containing phosphorous and sulfur in the chain have been reported [42], but most of the work which has been carried out in this area has centered around silicon nitrogen polymers (silazanes).

Silazanes have been the subject of intense interest [43-58] because of the exceptional thermal stability exhibited by these materials. However, the silicon-nitrogen bond is quite sensitive to hydrolysis although silazanes derived from silicon tetrafluoride (e.g. [SiF2N(CH3)2]) are claimed to be resistant to alkaline hydrolysis and are stable up to 400°C [59]. Another deficiency associated with silazanes is their strong propensity to form rings rather than long chains during the course of their preparation. Heating of these small ring compounds has been found to yield thermally and hydrolytically stable materials which are infusible and insoluble. Continued heating leads to formation of silicon nitride.

(c) Metallo-Siloxanes [60-62]

Considerable effort has been spent in attempting to enhance the thermal stability of siloxanes via incorporation of metal atoms into the polymer backbone

R

—I—Si—0—M L 1 Jn R

or

R

-Si—0-

R Hr

Elements from Groups III (B, Al); IV .pe, Sn(+2), Sn(+4), Pb] ; V [P, As (+3),As(+4), Sb]; VI (S) ; as well as transition elements [Ti( + 4), V, Cr(+6), Fe(+3), Co, Ni, Zr(+4), Mg, Cu(+2), Zn, Hg(+2)] have been employed but in general the resulting poly(element siloxanes) exhibit thermal and hydrolytic stabilities which are inferior to the parent polysiloxane. As a consequence of the extensive work carried out in this area it is ascertained that

14

Page 27: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

introduction of metal-oxygen linkages results in increased polarization of the bond leading to a higher probability of nucleophilic attack upon the backbone. In spite of these defi- ciencies activity in this area remains high [63-72] if for no other reason than to gain insights into degradation mechanisms.

(d) Aluminum and Boron Polymers

Polymers of aluminum containing aluminum-oxygen or aluminum nitrogen linkages in the backbone have been shown to exhibit poor resistance to hydrolysis and have not therefore been the subject of intense interest. Aluminum-oxygen polymers [73] have found use as lubricants, fuel additives, etc. [74-80]. Efforts directed towards improving the hydrolytic stability of these materials have involved the use of coordination complexes [81-83].

Aluminum-nitrogen polymers [84-86], also known as polyalumazanes, have been shown to exhibit good thermal stability up to temperatures as high as 300°C but are sensitive to both moisture and oxygen. Aluminum-phosphorus polymers have also been investigated [86] but these materials are even less stable than the aluminum-nitrogen analogues.

An unusual class of materials incorporating aluminum- fluorine -aluminum linkages was found [87] to be exceptionally stable at high temperatures (400°C) .

As mentioned in Sections 4.1.1b, c, polymers of boron containing boron-oxygen and boron-nitrogen linkages are very sus- ceptible to hydrolytic attack. The introduction of carbon side groups does result in some improvement in the deficiency by virtue of steric protection and this factor is also responsible for partial suppression of cyclic rearrangement products (also see Section 4.3.2e). In spite of numerous efforts however there has been only marginal success [88,89] in the preparation of useful boron poly- mers. For example, extensive study has been made of boron-nitrogen polymers derived from borazine [11, 90-92] because of the high thermal stability exhibited by these materials. Polymers of the types

f

LR B NR J R'

and

^ R

R I

V

R'

where R and R' = alkyl , aryl

15

Page 28: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

have been prepared [93,94] and show no thermal degradation at temperatures of 400°C. Those polymers which have borazine- carbon linkages in the main chain are discussed in Section 4.3.2e,

Boron phosphorus polymers have been exhaustively studied by Burg [95-96] and Wagner [97-98]. Phosphino-borane polymers of the type

r- R H

I I R H -J R = alkyl

have been prepared [99] albeit in low molecular weight. A major deficiency with polymers of this class is the tendency to depoly- merize to trimeric and tetrameric materials as temperatures above 300°C.

(e) Poly(metal phosphinates) and Poly(phosphonatolanes)

Poly(metal phosphinates) are a unique class of coordina tion polymers having the general structure

Q <n \ /

JP \ ,/ \ o O

\ ! / / \

C o / \/

y \ Q QJ

Q = alkyl or aryl M = metals having a coordination number of 4 or 6

This class of materials has been extensively researched by Block and coworkers [100], and has been the subject of several reviews [101-103] .

The properties of poly(metal phosphinates) are determin by the coordination metal and ligand (e.g. H2O), the nature of the

16

Page 29: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

side groups on phosphorus, and the number of bridging sites per center. For example, polymeric beryllium, zinc, and cobalt salts of diphenyl, dimethyl, and phenylmethyl phosphinic acids have been shown to exhibit superior thermal stability up to 500°C with melting points above 200°C [104,105].

Some polymers in the class exhibit molecular weights as high as 150,000; others possess tensile strengths of several thousand psi; still others are soluble in organic solvents, can be cast as films, are fusible, etc. (see Table I). To date, how- ever, no one member of the class has successfully combined any three major properties required by the charter of this study (cf. Section 3.2.2).

17

Page 30: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

81

«6

— o V 2

o o o o o o o o "1

A A •c •c

la

§

3

■<* -*

M >r> 2a » <S — O 2

"l "*. "1 3 ©Oc4>n«riOO''!> ootf — <Nt^i-;3

m ? S

Ö Ö O

m * n i U O oo n A vo r- 2 ■» en A en <n ^

m \£> O ©

o ■i,

o o Ö Ö

^3 ö ö ö o o

o o o © «i o o <N O r- vn m x-i 3 ^ PI n ^t -»t 't ^T

o O O >n © ■«* m <s W -* ■* ■*

a vO

o o -* c-4

o 2 I I

I I o o o ON»

I i/-ii/l</-)<N0002J!f» cs — *ov-iooo*tr-.

A A A A

«s \ooooooov»o

A A A

o o

o o ■* -t

*1 «■«

X X u u

x ~r

a| 5o /—> -—■*

r- f- X X

o u

u X u

■o « X X u u

o X o «

X •o

u d

I I XX I iq

X u d X o

u u . X X UIUU

u u u u X .XXX u > u o o . o . - - o w vo >e «

■" « K X X £°-

o o o o X X X X u u u u

«O >o <0 «

X X X X JSuuu I uxdoojuu

^ o o

d2 qoo

X

o £" • X —

■o O

dq

X

•o

X y y

o c

9,^-> ^ -"• T* "ft <-t n -r *— -r """. T- '"I.- -J-. J- i

u u J- C <i

o2 O O i o o "-> -J u o aooaeU

X u u

2,2. o o UU

• u

O a- O

" ^ X XcdS

ou x UUU1

H*ü

o oo x d

* o

-2. •u u

"u:

O O '^2

5-U

UUÜUÜZH

1 ^, ,*o o o

_ X ÄÄ JH «6 »^ « yooo %%xx odyy PHPP

x « p. o

OO

CO CO

, O !5fiH H

X X

2 do. X X

?r ,f » O O

X

o

O ^5 "O

ß •H

CO 0) o

X x X y'yy 5T e« c« o22 ^ c c H N N

X X o u.

22 'e'e' N N

« ö. - xxx ^ y 00 y yo

£T E &. o o o N N 3

CO M CO

. cu u 00 ex 00 •H cd -H

cfl

CU &

Ü •H

'S

_ 0) in H

Ö •H • O T3 P. CU

4-1 oo cd

o o CU

•H CO o e*

cd

cu H

J3 CJ

•H-W

cd o

•HT3

CU CO •

CU

<fl -u

co •rl

c cu •

o in u <N 4-1 H

n) ö

c •H

CO 4J M cd 4-1 CO

CO CO o

M o H Ü O u <

o 4J n X! 00 43 •H 4J

CO u 4-> o u m cd

4-1 4-1 CO a

•H CO O CO P. O

i-H 00 ß 4-1

•H X 4J 00 rH •H

CU 01 8 >

cu H U

4J rß J3 ü 00-H

•H 42 CU 3

cj •H 43

cd

CO 43 •H CJ

•rl --N43 X! >

By H cd cd

•H >

T3 CU N

•H CJ

•H 4J CO cd

r-l eu

cu r-l

! cd • en

cu oo

■§ 4J •

cd

11 cu

4-1 H cd cu

•H

a

ß •H

co •H

1 u cd >

Page 31: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Closely related to poly(metal phosphinates) are a group of P-O-Al materials known as poly(phosphonatolanes) (I and II)

R I

-Al—0—P—0- I * X 0

(I) <">

X = halogen R and R' = alkyl or aryl

Derived from the reaction of etherated aluminum hydride or dialkyl or dialkoxy haloalane with phosphinic acids [106] or phosphinic esters [107] these materials, although initially showing low mol- ecular weight undergo polymer growth in solution (Table II) and exhibit good thermal stability (Tables II and III) [106]. The fluoro(phosphonato)alanes showed unusual resistance to hydrolysis.

19

Page 32: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

w rH"

3

I o

o ft I o

I o

ft •—• EH fe

a PH EH

>H

o ft

o CO w H EH

W ft O « ft

>i P •H rH •H xi (0 ■p en

EH U o

Pn a EH ~ H

• CD P P

o g

o

Cn c

■H > H o en co

•H TJ CD

rd >i c n o rd -H s t! M H ft O

CO

U o

Cn — C

■H -P rH

g

p c

-H o ft

CD g ft—

PM

EH

(0 CD rH O g

X

«

<u

rH 2 O ft

o

in

o o CN cr> VD LT)

in cn VD

o CN

o o CN 00

o m o • CN

o r« o . co oo CN

0 CO

H

O

o

CN

O ^ O 00 r- H

II

f& o H O CN 0 o i to m VD

H I O || o CN C in —

o CO

Ö

o ■>* VD H II I rH I

c

O H VD «D || CN

in

O VD o

I H || I CN

o O O o o o o VD VD 00

J '* in m CO CN •

o 4H I o VW o o o

C VD C "5T Ö ^r ** co H co H ^r H co co CN

00 o

o in rH VD

o o

o VD

o H

o

in co

m

o o

U Pn O

in

jrj a vD U U U

CN CO

Pn

in a

VD CJ

U Pn PM CM

a oo U

in

in r~ r- CM

a a CN 00 00 rH

VD

-p c 0) >

rH o cn

0) X! P

C -H -P cj <D

o Ü

>1 xt T) CD C

•H rd P XI o CD H d)

CO

c o

•H p

rH o CO

CO M

CD vD P g JH H

O cn ft c

•H -P rO CD

X!

fd

Cn Ö

•H CO

d

CD >H

CD A

CD P cd > H O CO

o •H P d

rH o CO

C 0

•H P t> cd CD u

u >1p rH -H cd G g

■H H ft

CD X! ■p

X! O

■H ftX! co > 0

P rd

CD M

CnP 0 rd

H d)

!• CD ■P

<D X! P

0 P

fd

Q) CO CD X! P

C 0 •H P M 0

Cn ft

XI C

•H H->

3

rd

g o ■H rH <X) MH

H 0

o Pu CO

CD rH n o u CO CD 3

T3 H -H CD

CO

d

CO p c CD >

3 Ü rd >

rd

P •H rH •H X) rd P co

P X! Cn

•rH CD

CD CQ

o

0 C rd co 0 g «w

— HO 0) CD X! X! EH EH

rd XI

0 P •

CD C rH rd XI Cn-H (D CO Xt 3

<4H

C

-a c rd

CO

o o o

o •-{

CD U CD &

CO

C 0

•H P CJ rd CD U

P C CD d

CD CO

CO

g 0 H m

co u (D g

H o ft

M-l

o • co in P ** x: Cn ll

■H CD C >~ U O rd o

rH in d - rj ^r (D rH

0 g

OZ

U T3

Page 33: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

J> rH

(0 >% U O H id co 3 H CO

0 O 3 -H CJ Tj

C v •a CJ CJ 4-> o o in 00 CM in o CJ

N ■H

e m

ol

and r

T C ro o o *}• rH ro ro i •rl >* in -* ro ro CN CM rH o 0 l l l 1 | 1 1 •rl rH ft o o o o o o o 4-1 43 ft o in m CM in CN CN ct)

rH o

44 3 O

CO -H —~ tn ^ ^r ro ro CN CN CM o ß > >> 4J — •H < CO cd cd ft

1 +J rH O

CO

■3 N •H

VJ rH 1 o rS * 3 -H S 43 E* O 4J • S*\ <4-4 cd ^>

m 13 H rH ro ft

CN ft

S | )-i o oo CJ > 44 CJ II

M rH ■+4 TJ ^->. U O cd 3 o O ft u v-' rH • • •> cu

a. 43 ft CJ /-s 44 O W 43 r^ M-I o 3 4-J H H

3 <; o

CN « H in in ■rt 3 f-»

<<

I r-

rH CN

33 CM

33 O iH • p. 4-1

CO -rl

II • CN

3 mo H ro ro 33 33 33 CN CN MH g

B o 3 s-' > 44

i—_i ft 33 EC CO 00 00 r-l H rH H U U u U CJ u t_> •H 60 O rH T3 1—1 W 4-1 M 00 CJ

H fH r— H 111 «I

B 43 o

CO || w rH Cd

• 3 CJ W tHo 3 Ö CO /-W-' J-l J iH «HO cd o o

< CM "—• - ° B

ft «tf O 3 O 43 CO

4J (-I CO 00 vH

ft ■>• EH O S>* CO g „ mu

CO in 43 H ft ft ro (N in rH 3 CO 60

ro ft ro

in 33 ro

rH 33

33 CN 33

H 33

>■> cd co 42 iH rH

4-1 3

3 ^^ cd MH •H 5 <U

o U >H 33 «XI 33 VD r-i ** r- TJ h Ü 44 O 44 J U U U U CJ U u HDD 43 O 43 M o 3 ft H 60 " 60 Cd ft -H _ 2 •H VO -H rH

5 es CJ vO CU 3 & r-{ & O

ft 43 O ft CJ o o m S3 M O H rH 13 0) Cd 44 Cd o

CO in

CN 33

CN 33

tu H UHU cu X a

rH rH S 3 T3 3 CJ CJ CJ CU

H O ro CN cj CJ U o CJ CO CU 43 EH ON in in rH 33 in in #1 • H cd H 4-1 ft ft ro 33 S3 33 CN 33 33 CO H H CO O CO o W 33 <£> ID VD H V£> <x> 4J X o S

•rl •> 4-1

al

E

incr

al

n T

HF

,

ft U O U u CJ U U o O X XI ft ft CJ 44 •H -H ft

H

CO 4-1 u 60 M Cd O Ö CU rH 45

44 44 44 3 •rl 43 -H -H 3 60 3

•H a a co •rl -H -rl 60 CD 4-1 ^ CJ CJ 3 e • 4J XI rH rH rH Cd CO E* CJ -H >i O 00 en o rH CN ro "* Q) O Cd e e H 55 rH rH t-\ rH r-i S ft O 0 Cd 43 CJ T3 Q) ft

21

Page 34: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

(f) poly (organophosphazenes) and Poly(organophosphazanes)

Three structural types of poly(organophosphazenes) have been studied, namely, linear (III), cyclolinear (IV) and crosslinked cyclomatrix (V).

xl-j. fe<> K> -K» fpV fV,

(in) (IV)

- / \ /R' R' N*-'P^N N* Nv

^WfN>V^

(V)

where R = alkyl, aryl, alkoxy, aryloxy, alkylamino, arylamino

Rl

R2

[ ]

-0-R2-0-, -NH-R2-NH-

alkylene, arylene

for IV and V indicates unit is repeated once or twice

The most widely studied poly(organophosphazenes) (III) are critically reviewed in Section 5.5 and will not be discussed further in this section. Phosphazene polymers (IV) and (V) have been briefly reviewed [108] and in general were produced in low molecular weight or crosslinked, have poor stability, or were not completely characterized.

Cyclotri(and tetra) phosphazenes are rigid structures. To prevent excessive rigidity and insolubility attempts have been made to link these rings with more flexible solubilizing units. Polymerizations have employed several well-known condensation reactions, specifically, transesterification, dehydrochlorination, and nitrogen-elimination (of azides). Representative examples are shown in Table IV.

22

Page 35: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Cyclomatrix poly(organophosphazenes) (V) are highly rigid, insoluble, high-melting resins produced by cross- linking cyclotri(or tetra)phosphazenes either by polymerization through ethylenic linkages, ligand rearrangement of spiro- phosphazenes, dehydrohalogenation with diols or diamines, or transesterification with polybasic acids (e.g. H2SO4, H0PO4, ArS03H, boric acid) or their esters.

Products of good stability resulted when prepolymers derived from chlorophosphazenes and aromatic di- or polyhydroxy compounds are crosslinked with formaldehyde or hexamethylene- tetramine [111,112]. These materials are stable for continuous use at 250°C and for intermittent use up to 540°C. In addition, they possess excellent chemical resistance and have high impact strength.

Cyclomatrix poly(organophosphazenes) (V) are most easily prepared by polymerization of cyclic phosphazenes contain- ing poly(ethylenic) sites as in structure (VI).

R—V^Kp-tt R = a) -OCH2CH = CH2, lXJ^lj2 b) -NH-CH2-CH = CH2

/ \ R R

(VI)

Polymerization of (vib) at 130-220°C in the presence of organic peroxides afforded hard cross-linked resins [113]. Ninety percent of polymer weight is retained to 400°C (TGA) and articles prepared from this resin and glass cloth resist thermal degradation in air above 260°C.

23

Page 36: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

> H

W

00 o

w w

A4 CO o 04 o

o :H hH1

o 04

X H

EH

o u u

04

w H rH-

o rH1

u & u

01

>H (0 E cu- rt

Cn C

•H

0 o Ü4 -H

1 +J u o CU (Ö

IS rH o 04

o •H -p

> •H u CU Q

M CU e rH o o<.

i • c_>

i-l o O O to m ß CM

cd CJ

4-1 o

o u ft ft

o 3 O M

ß •H

u •* •H «*(U

CU CV3 S pa ca 4JU M CO cd ii x)

W ai c3

ß o •H 4-1

cd 03 Ö (II Tj ß O

g I CM

g CO

CM |X4 u

CN

I O

+

o o \/

■n

« CM

04 * U CO CM

Pn (X4 U U c\ CM

g 1

cd u

i

II

prf

CM

cu > rH cd cd oog CO CU

rH X! O 4J

•H 0 TJ

r4

,ß 4J o

CJ o o CM CM

I m oo

• o

ß o •H 4J cd ß

■H H o

I-l rC

CJ o

Si a) P

2 rs- 0 <■

A U a) •

o cu H 73

o m CM

i o CM CM

\ ft ft r / ^rH

■©. u

«l

<4H • o o o

• o •u o 13 CM

A

2 ° 0 cu

CO H (-4 Cd

ie >. <u

rH ,0 O 4-1 ft

TJ O •H O rH O o •

CO VO

ß O

•H J-l cd ß

•H U o

rH X! ü o u Tj !>-.

J3

Ä

CJ I

•H i®l— cn —'S.

I H U

O SO o

o o O vO rH

I o

525_ft

/ vJ

CU

CM cn

24

Page 37: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

ö o o

> H

w CQ <: EH

r-—i

oo o

CO

W

W IS] <

ft CO

O

ft o

ü ff; o >H r} o ft

X H « EH

O

o u Q

<: w H

o rH o >H u

rd e CU-

PS

tn G

-rH

g

o I

ß (ü >icc;

o ft

o •H +J fd >

•H H <D D

M cy

>1 H 0 ft.

rH

w

c

■g ■u co (ü

ja cd

■u co

•rH u

T3 n cd

PC

cd c

•H M o

iH J3 a o u T) >>

.C CD a

A& • •» • #i • O -H oj co O

TJ O O r-H

i-i •rl O CT\ ,Q o rH « Cd • o o • 4J 01 U CO rH CO CO

o 1 JJ \^ ° w o S H <^N <* o o cd fA\l in o

H§ [\Jj co « X~X ii rH CO

•H o cu CO JC

a O • 4J • II CD CO c_>

X) Q) 4J CD >«o U H rH S rH O O < ^2 J-l O O

3 • •U O -3" X rH rH

CO 0

ß o

•H ■U cd

■H PC M 2 ■u •-' w tu co a cd u H

•H •> M O O

PC rH 4J

C O

•rl J-i cd (3 CU ÖO o M 4J •H C CU Q

O o O

PC PH vO o

1 PC o Ä 1 1

1-1 <! k 1

P-i O tn o 1

o SO

1 o PC iS. V

rl ^^•^

+ + 3 3 + ¥

rH PP PQ *\ CO U P) O O -*

tn / V ro PC / \ PC U S3 &—U

PC O O

tn

\/

%l 1 /*

'IN

PC CJ

II

»^ \ 3 3 PQ PC

25= P-, S5

^•Q. Pd

H O

in

25

Page 38: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

c o u

> H

9

00 ©

CO W

W NI

K ft CO O w ft o

« o

Hi o ft

X H a EH

O

U >n U

Q

W

H

O

O >H o

M

rd ß CD-

•H e u O

UA -H I +> M Ü (D (0 & <U

rH o

CM

0 •H -P (d >

•H H QJ Q

U a e >1

rH o ft.

d) H

rd X!

W

93

o o vO

CM

O

CO

s

c o

•rl

co ö (U 00 o rl

■u •H Ö Q) Q

■®L

X/ PH

CM 35

P-i

/\

O

VO

co • ■u « co Ö 4J -H 01 CO H > CU CO

rH .C .* o rH co O CO

+J u TJ cd rS Ö

rH •U CO o •rl Q, rH «

v-^ •rl CO ,0 T) • CO -H

rH •u o O CO CO CO u • • O H H O -rl W P< T3

Ö o

•H W CO c

•H M O

rH

-s O u

2

W CO sä' z Z <N

PC

wn /\ sT +

CO

CJ — z z—u /—S

\/ Z CS|

CA a

CTi oo o

a o

•H ■P CO a

•H rl O

rH .c

CJ o M

X! CU Q

ü

3 O

I r-\

>> a xi W airi

,TJ P< CO

•ca o

z &> /

«'

o 0> H

e •H

CU rl a) 4J

cu co o

r-f CJ CO

•rl •O

CO CU O Ö <D U CU

MH CU n

Page 39: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Other means of preparing cyclomatrix polymers (III) are shown below:

Reaction Path Substrate(s)

Ligand Rearrangement (300°C)

(R)2

I p.

(R).

(R)-

(R)2

/ P-CH2-CF2

\)CH2-fCF2)2

,CR, —N

CH,

Dehydrochlorination poly- condensation

(C12PN)3 + HX-Ar-XH (X = 0, NH)

O R

Polyphosphazanes, -f P-N +n where R1 = alkyl,

R^ phenyl and R" = phenyl, were prepared by self-condensation of

phosphonic diamides, R-P (NHR )2 [113a]. The polymers were obtained in very low molecular weight ("^3000) and were hydroly- tically unstable.

4.1.3 No Side Groups

The polymers discussed in this section have no utility as building composites and are therefore treated only peripherally. Because they are considered to be well established materials, only recent references are cited.

(a) Silicon Nitride [114-118]

Of the various nitrides of silicon reported in the literature (e.g. SiN, Si2N3, and SigN2) only one, SioN^ is stable and has industrial importance. It is a fully crosslinked, network polymer obtained by subjecting silane and ammonia to an electrical discharge. Silicon nitride is stable up to temperatures of 1900°C and is used as a refractory and as an abrasive.

27

Page 40: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

(b) Boron Nitride [119-122]

This material (BN) is prepared by heating borax (Na2B407) in the presence of ammonium chloride at 1000°C. It occur in two structural modifications; hexagonal (used as an insulator) and tetrahedral (used as an abrasive). It is stable at temperature up to 3000°C in oxidizing environments.

(c) Polysulfur Nitride [123-129]

Considerable attention has been focused upon this material because of its unusual electrical properties as a superconductor. Its application as a composite material is excluded on the basis of hydrolytic, thermal, and oxidative instability and cost of synthesis. Polysulfur nitride is prepared via the room temperature polymerization of disulfur dinitride (S2N2) followed by mild (75°C) heating. The highly explosive S2N2 is in turn prepared via the following reaction sequence.

S4N4 + 8Ag > 4Ag2S + 2N2

S4N4 + Ag2S ► 2S2N2

It should be noted that tetrasulfur tetranitride (prepared by the reaction of ammonia and disulfur dichloride) is itself both shock and temperature sensitive.

28

Page 41: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

4.1.4 Bibliography

1. Westman, A. E. R. and Murthy, M. K., "Silica and Silicates," Chapter in Encyc. of Polymer Sei. & Tech., 12, 441, Inter science (New York), 197 0.

2. Hutchins III, J. R. and Harrington, R. V., "Glass," Chapter in Encyc. of Chem. Tech., 10, 533, 2nd Ed., Interscience (New York), 1966.

3. Ray, N. H., Chem. and Ind., 1976 (3), 89.

4. Ray, N. H., J. Polymer Sei., Polymer Chem. Ed. 11, 2169 (1973). —

5. Eisenberg, A., "Viscoelastic and Thermal properties of Inorganic Polymers and Related Materials," Contracts Nonr-233(87), N00014-68-C-0237, 1963-1970, AD 717 364.

6. Signalov, I. N., Aleskovs, V. B., and Dushina, A. P., J. Appl. Chem. USSR, 48(10), 2210 (1975).

7. Farmer, V. C, Fräser, A. R., and Tait, J. M., J. Chem. Soc, Chem. Commun. , 1977 (13).

8. Ray, N. H. and Robinson, W. D., U. S. Pat. 3,935,018 (1976).

9. Ray, N. H. , Lewis, C. J. , Laycock, J. N. C, and Robinson, W. D., Glass Tech., 14_(2) , 50 (1973).

10. Steinberg, H., "Organoboron Chemistry," Wiley (New York) 1964. '

11. Teach, W. C. and Green, J., "Boron-Containing Polymers," Chapter in Encyc. of Polymer Sei. & Tech., 2, 581, Interscience (New York), 1965.

12. Callis, C. F., Van Wazer, J. R., and Arvan, P. G., Chem. Rev., 54, 777 (1954).

13. Van Wazer, J. R., "Phosphorus and Its Compounds ," Inter- science (New York), Vol. 1, 1958; Vol. 2, 1961.

14. Thilo, E., Advan. Inorg. Chem. Radiochem., 4, 1 (1962); Chem. Soc. (London), Spec. Publ. 15, 33 (1961). "Inorganic Polymers "; and subsequent papers, e.g. Angew. Chem. (Int. Ed.), 3, 232 (1964).

29

Page 42: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

15. R&D Polymers Ltd., Neth. Pat. Appl. 6,404,070 (1965).

16. Sander, M., "Phosporus-Containing Polymers," Chapter in Encyc. of Polymer Sei. STech., 10, 123, Interscience (New York), 1969.

17. Million, F., Lambing, L. L., and Teague, J., Interfacial Synth. 1977, 2, 309, Eds. Millich. F. and Carraher Jr., C. E., Dekker (New York).

18. Pusatcioglu, S. Y., Fricke, A. L., Hassler, J. C., and McGee, H. A., J. Appl. Polymer Sei., 2_1 (6) , 1561 (1977).

19. Lichtenwalner, H. K. and Sprung, M. , "Silicones," Chapter in Encyc. of Polymer Sei. & Tech., 12_, Interscience (New York),1970.

20. Roch, K. N., Rep. Prog. Appl. Chem., 1975 (Pub. 1976), 60, 34; Chem. Abstr., 88, 23645v (1978).

21. Ramanathan, V. and Balakrishnan, S., Chem. Petro-Chem. J. 1975, 6(4), 19; Chem. Abstr., 87, 136654v (1977).

22. Duebzer, B. and Kreuzer, F. H., Kunststoffe 1976, 66(10), 629; Chem. Abstr. 8_6, 17367y (1977).

23. Ranney, M. W., "Silicones," Vols. 1 and 2, Noyes Data Corp. (Park Ridge, N. J.), 1977.

24. Ruehlmann, K., Plaste Kautsch., 2_4 (8) , 535 (1977). Chem. Abstr., 87, 118484k (1977).

25,

28

29.

Smith, A. L., Chem. Anal. (N. Y.) 1974, 41, (Anal. Silicones)

26. Ingebrigtson, D. N. , Klimisch, H. M. , and Smith, R. C, Chem. Anal. (N.Y.) 1974, 41 (Anal. Silicones), 85.

27. Karlin, A. V., Lobkov, V. D., Andrianov, K. A., Petrova, I. M., Vasil'eva, N. A., and Trofilmov, V. M., USSR Pat. 413,836 (1978); Chem. Abstr., 88, 122452m (1978).

Stauffer Chemical Co., Japan. Pat. 76 20,543 (1976); Chem. Abstr., 85, 178784b (1976).

Antonen, R. C, Kookootsedes, G. J., and Field, A. J. , U. S. Pat. 3,703,562 (1972); Chem. Abstr., 78, 30845g (1973).

30

Page 43: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

30. Kim, Y. K., Pierce, 0. R., and Bourrie, D. B., J. Polymer Sei., Part A-l, 10(3), 947 (1972).

31. Thomas, T. H. and Kendrick, T. C, J. Polymer Sei., Part A-2, 8(10), 1823 (1970).

32. Eglin, S. B. and Landis, A. L., U. S. Pat. 3,287,285 (1966); Chem. Abstr., 6_6, 19577c (1967).

33. Korshak, V. V., "Heat Resistant Polymers," Halsted Press (New York), 1971, p. 350.

34. Green, J. and Mayes, N., J. Macromol. Sei., Al(l), 135 (1967) .

35. Bryk, M. T., Kardanov, V. K., Kompaniets, V. A., Pavlova, I. A., Sint. Fiz.-Khim. Polim. 1978, 22, 54; Chem. Abstr., 89, 60415m (1978).

36. Kardanov, V. K., Bryk, M. T., Ukr. Khim. Zh. (Russ. Ed.) 1978, 44(5), 543; Chem. Abstr., 89_, 75784e (1978).

37. Karavan, Yu. V., Kulinich, E. P., Shibistaya, Z. P., Fiz. Elektron. (Lvov) 1975, 10, 91?Chem. Abstr., 85, 160947X (1976).

38. Kardanov, V. K., Bryk, M. T., Fiz-khim. Mekh. i Liofil'nost' Dispersn. Sistem. Resp. Mezhved. Sb. 1975 (7)51; Chem. Abstr., 84, 180987t (1976).

39. Bryk, M. T., Kompaniets, V. A., Kardanov, V. K., Sin-Fiz- Khim. Polim. 1974. (13),135;Chem. Abstr. ,81, 136828f (1974).

40. Kiselev, B. A., Nikiforov, A. V., Plast. Massy 1973, (6), 29; Chem. Abstr., 7_9, 92913g (1973).

41. Gukalov, S. P., Karavan, Yu. V., Lesnichenko, A. Ya., Stasyuk, Z. V., Zh. Prikl. Khim. (Leningrad) 1972, 45(3), 688;Chem. Abstr.,7_7, 21137e (1972).

42. Lebedev, E. P., Baburina, V. A., Fridland, D. V., and Krikunenko, V. T., USSR Pat. 454,230 (1974); Chem. Abstr., 83, 80311d (1975).

43. Aylett, B. , Organometallic Chem. Rev., 3_, 151 (1968).

44. Fessenden, R. and Fessenden, J. S., Chem. Rev., 61, 361 (1961).

31

Page 44: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

45. Fink, W., Angew. Chem. Int. Ed., 5, 760 (1966).

46. Andrianov, K. A. and Khanananashvili, L. M., Organomet. Chem. Rev., 2, 141 (1967) .

47. Breed, L. W., Wiley, J. C, and Elliott, R. L., "New Synthetic Methods for Silicon-Nitrogen Polymers," AFML-TR-69-20-PT-4, Contract F33615-71-C-1235, November 1972, AD 908 905L.

48. Breed, L. W. , Wiley , J. C, and Elliott, R. L. , "New Synthetic Methods for Silicon-Nitrogen Polymers," AFML-TR-69-20-PT-3, Contract F33615-68-C-1371, August 1971, AD 887 752.

49. Breed, L. W. , Elliott, R. L. , and Wiley, J. C, "New Synthetic Methods for Silicon-Nitrogen Polymers," AFML-TR-69-20-PT-2, Contract F33615-68-C-1371 , November 1970, AD 882 634.

50. Birke, A. H. and Rosenberg, H., "Silicon-Nitrogen Polymers for High Temperature Protective Coatings," AFML-TR-69-94- PT-1, Air Force Materials Lab., October, 1969, AD 864-678.

51. Breed, L. W., Elliott, R. L., and Rosenberg, H., U. S. Pat. 3,702,317 (1972); Chem. Abstr., 7_8, 85595f (1973).

52. Byrd, J. D. and Curry, J. E., "Silazane Chemistry," NASA Accession No. N65-25990, Rept. No. NASA-TM-X-53197, 1965; Chem. Abstr. 6_7, 34044d (1967).

53. Krueger, C. R., and Rochow, E. G., J. Polymer Sei. Pt. A, 2(7), 3179 (1964).

54. Redl, G. and Rochow, E. G. , Angew, Chem., 76_(4) , 650 (1964).

55. Breed, L. W., Elliott, R. L., and Ferris, A. F., J. Org. Chem., 27, 1114 (1962).

56. Groszos, S. J. and Hall, J. A., U. S. Pat. 2,885,370 (1959); Chem. Abstr., 53, 16585i (1959).

57. Breed, L. W., Elliott, R. L., and Ferris, A. F., J. Polymer Sei., A2, 45 (1964).

58. Andrianov, K. A., Imailov, B. A., Kononov, A. M., and Kotrilev, G. V., J. Organomet. Chem., 3_, 129 (1965).

32

Page 45: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

59. Moedritzner, K., Organomet. Chem. Rev., 1, 1, 9 (1966).

60. Jones, J. I., "Polymetallosiloxanes. Part I. Introduc- tion and Synthesis of Metallosiloxanes," and "Part II. Polyorganometallosiloxanes and Polyorganosiloxymetalloxanes," in Developments in Inorganic Polymer Chemistry, Eds. Läppert, M. F. and Leigh, G. J., Elsevier (New York), 1962.

61. Bradley, D. C., "Polymeric Metal Alkoxides, Organo- metalloxanes, and Organometalloxanosiloxanes," in Inorganic Polymers, Eds. Stone, F. G. A. and Graham, W. A. G., Academic Press (New York), 1962.

62. Andrianov, K. A., "Metalorganic Polymers," Eng. transl., Interscience (New York), 1965; also Inorganic Polymers, Chemical Society (London), Special Publication No. 15 (1961); also Inorg. Macromol. Rev. 1(1), 33 (1970).

63. Krivonishchenko, V. V., Semerneva, G. A., and Suvorov, A. L., (USSR), Zh. Prikl. Spektrosk, 2j8(3) 475 (1978); Chem. Abstr., 8_8, 191740r (1978).

64. Il'ina, E. T., (USSR), Tezisy Dokl. - Resp. Konf. Vysokomolekul. Soedin., 3rd, 80 (1973), Ed. by Lipatov, Yu. S., "Naukova Dumda": Kiev, USSR; Chem. Abstr., 8_4 18282n (1976).

65. Malyarenko, A. V., Semerieva, G. A. and Suvoroy, A. L., USSR Pat. 413,849 (1976); Chem. Abstr., 8_4, 122569x (1976) .

66. Andrianov, K. A., Kurasheva, N. A., Kuteinikova, L. I., Lavrukhin, B. D. , and Gurvits, E. D., Vysokomolekul. Soedin., Ser. A, 16(5), 1082 (1974); Chem. Abstr. 8_3, 59343f (1975).

67. Andrianov, K. A., Kurasheva, N. A., Kuteinikova, L. I., and Lavrukhin, B. D., Vysokomolekul. Soedin.,Ser. A, 17_(5), 1049 (1975); Chem. Abstr., 8_3, 114991t (1975).

68. Gruber, V. N., Panchenko, B. I., Klebanskii, A. L., Kruglova, G. A., Matseyun, T. A., and Kuz'mina, E. V., USSR Pat. 235,310 (1974); Chem. Abstr., 8_2 (1975).

69. Bradley, D. C, Lorimer, J. W. , and Prevedorou-Demas, C, Can. J. Chem, 49(13), 2310 (1971).

70. Bradley, D. C. and Prevedorou-Demas, C, Chem. Ind. (London), 52, 1659 (1970).

33

Page 46: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

71. Roberts, C. B. and Toner, D. D., U. S. Pat. 3,413,242 (1968); Chem. Abstr. 7j0, 29701k (1969).

72. Bedford, J. A. and LeGrow, G. E., ü. S. Clearinghouse Fed. Sei. Tech. Inform., AD 645 722; Chem. Abstr., 68, 30344m (1968).

73. Andrianov, K. A., "Thermal Degradation of Polymers," SCI Monograph No. 13, (1961).

74. Brit. Pat. 772,480 (Farbwerke Hoechst A. G.) (1957); Chem. Abstr., 51, 12549 (1957).

75. Theobald, C. W., U. S. Pat. 2,744,074 (1956); Chem. Abstr., 50, 17492 (1956).

76. Rinse, J., Brit. Pat. 772,144 (1957); Chem. Abstr. 51, 12549 (1957).

77. Brit. Pat. 740,576 (Chemische Werke Albert) (1955); Chem. Abstr. 50, 10448 (1956).

78. Pande, K. C. and Mehrotra, R. C, Z. Anorg. Allgem. Cheme., 286, 291 (1956).

79. Lush, E. J., Brit. Pat. 573,083 (1945); Chem. Abstr., 43, 4894c (1949).

80. Rinse, J. , Ind. Eng. Chem., 5_6(5) , 42 (1964).

81. Kugler, V., J. Polymer Sei., 29, 637 (1958).

82. Patterson, T. R., Pavlick, F. J., Baldoni, A. A. and Frank, R. L., J. Am. Chem. Soc., 81, 4213 (1959).

83. Erich, W. J. , "Preparative Studies of Linear polymers Containing Aluminum,", NASA Doc. N63-14470 (1963); Chem, Abstr., 60, 9364c (1964).

84. Jones, J. I. and McDonald, W. S., Proc. Chem. Soc., 366 (1962).

85. Lang, R. F., Makromol. Chem., 83^, 274 (1965).

86. Cullingworth, A. R., Gosling, K., Smith, J. D., and Wharmby, D., "Aluminum-Nitrogen and Aluminum-Phosphorus Polymers," AFML-TR-67-69, June 1967, AD 655 807.

87. Flagg, E. E. and Schmidt, D. L., U. S. Pat. 3,508,886 (1970); Chem. Abstr., 73, 26082k (1970).

34

Page 47: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

88. Schroeder, H. A. and Trainor, J. T., "Fiber Reinforced Borane-based Resin Composites: A New Approach to Oxidative Thermal Stability," 12th National SAMPE Symposium, Oct. 1967; Science of Advanced Materials and Process Engineering, 12 (1967), AC-2.

89

98

99

Brit. Pat. 977,096 (U. S. Borax & Chemical Corp.) (1964); Chem. Abstr. 63, 4162c (1965).

90. McCloskey, A. L., "Boron Polymers," in Inorganic Polymers, Eds. Stone, F. G. A. and Graham, W. A. G., Academic Press, (New York), 1962.

91. Läppert, M. F., "Polymers Containing Boron and Nitrogen," in Developments in Inorganic Polymer Chemistry, Eds. Lappert, M. F. and Leigh, G. J., Elsevier (New York), 1962.

92. Sheldon, J. C. and Smith, B. C., Quart. Rev. (London), 14, 200 (1960) .

93. Gutmann, V., Miller, A., and Schlegel, R., Monatsh. Chem., 94, 1071 (1963).

Gutmann, V., Miller, A., and Schlegel, R., Monatsh. Chem. , 9_5, 314 (1964) .

Burg, A. B., "Types of Polymer Combination Among the Non-metallic Elements," in Inorganic Polymers, Chemical Society (London) Special Publication No. 15 (1961).

96. Burg, A. B., J. Inorg. Nucl. Chem., 11, 258 (1959).

97. Wagner, R. I. and Caserio Jr., F. F., J. Inorg. Nucl. Chem., 11, 259 (1959).

Wagner, R. I., Caserio Jr., F. F., and Freeman, L. D., WADC (Wright Air Development Center) Tech. Rept. 57-126, Pt. I (1957), Pt. II (1958), Pt. Ill (1959), and Pt. IV (1960).

Burg, A. B. and Wagner, R. I., Brit. Pat. 912,530 (1962); Chem. Abstr., 59, 4121e (1963).

Block, B. P., Gillman, H. D., and Nannelli, P., "The Synthesis and Characterization of the Poly(metal phospin- ates)," Office of Naval Research Final Report, Contract No. N-00014-69-C-0122, June 1977, and references therein, AD A041 511.

35

Page 48: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

101. Bailer Jr., J. C. , "Coordination of Inorganic Ions to Polymers," in Organometallic Polymers, Eds. Carraher Jr., C. E., Sheats, J. E. and Pittman Jr., C. U., Academic Press (New York), 1978, p. 316.

102. Cotter, R. J., and Matzner, M., "Ring Forming Polymeriza- tion: Part A. Carbocyclic and Metallorganic Rings," Academic Press (New York) 1969, p. 249.

103. Block, B. P., Inorg. Macromol. Rev. 1, 115 (1970).

104. Block, B. P., Rose, S. H., Schaumann, C. W., Roth, E. S., and Simkin, J. , J. Am. Chem. Soc. , 8_4, 3201 (1962).

105. Rose, S. H. and Block, B. P., J. Am. Chem. Soc, 87» 2076 (1965).

106. Schmidt, D. L. and Flagg, E. E., J. Polymer Sei., A-l, 6, 3235 (1968).

107. Monroe, R. F. and Schmidt, D. L., U. S. Pat. 3,497,464 (1970); Chem. Abstr., 72, 122177v (1970).

108. Allcock, H. R., "Phosphorus-Nitrogen Compounds," Academic Press (New York), 1972, p. 370, and references disclosed therein.

109. Kajiwara, M. and Saito, H., Polymer, 16, 671 (1975).

110. Deryabin, A. V., Zhivukhin, S. M., Kireev, V. V., and Kolesnikov, G. S., USSR Pat. 242,391 (1969); Chem. Abstr., 71, 82078J (1969).

111. Redfarn, C. A., U. S. Pat. 2,866,773 (1958).

112. Rice, R. G., Geib, B. H., and Kaplan, L. A., U. S. Pat. 3,121,703 (1964).

113. Allcock, H. R., Forgione, P. S., and Valan, K. J., J. Org. Chem., 30, 947 (1965).

113a. Shaw, R. A. and Ogawa, T., J. Polymer Sei., Pt. A, 3, 3865 (1965) and Pt. C, 16, 1479 (1967).

114. Komeya, K., Kogyo Reametaru, 57, 68 (1974); Chem. Abstr., 83, 47028u (1975).

115. Felton, R. P., Sprechsaal Keram., Glas, Baustoffe, 107(3), 92, 101 (1974); Chem. Abstr., 81, 16019w (1974).

116. Meissier, D. R. and Murphy, M. F., "Silicon Nitride for Structural Application," Army Material & Mechanics Research Center; U. S. Nat. Tech. Inform. Serv., AD 747 785 (1972); Chem. Abstr., 78, 47001b (1973).

36

Page 49: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

117. Lindop, T. W., Mater. Eng., 75(1), 28 (1972); Chem. Abstr., 76, 89402x (1972).

118. Feld, H., Sprechsaal Keram., Glas. Email. Silikate, 102(24), 1098, 1100 (1969); Chem. Abstr., 72, 82385c (1970).

119. Sleptsov, V. M., and Tsurui, M. F., Visn. Akad. Nauk. Ukr. RSR, 5, 53 (1976); Chem. Abstr., 85, 111918e (1976). —

120. Bakul, V. N., and Prikhna, A. I., Sin. Almazy, 3(1), 36 (1971); Chem. Abstr., 75, 15541z (1971).

121. Yamashita, M., Kagaku Kogyo, 22(7), 981 (1971); Chem. Abstr., 75, 112893y (1971).

122. Hauck, J. E., Materials in Design Engineering, 65(2), 70 (1967). —

123. Labes, M. M., Love, P., and Nichols, L. F., Chem. Rev., 79, 1 (1979) .

124a Street, G. B. and Green, R. L., IBM J. Res. Dev., 21, 99 (1977). —

124b Greene, R. L. and Street, G. B. in "Chemistry and Physics of One-Dimensional Metals," Ed. Keller, H. J., Plenum Press (New York) 1977, p. 167.

125. MacDiarmid, A. G., Mikulski, C. M., Saran, M. S., Russo, P. J., Cohen, M. J., Bright, A. A., Garito, A. F., and Heeger, A. J., Adv. Chem. Ser., No. 150, 63 (1976).

126. Baughman, R. H. in "Contemporary Topics in Polymer Science," Vol. 2, Eds. Pearce, E. M. and Schaefgen, J. R., Plenum Press (New York), 1977,p. 205.

127. Heeger, A. J., MacDiarmid, A. G., and Moran, M. , Amer. Chem. Soc. , Polymer Preprints, .19(2), 862 (1978).

128. Mikulski, C. M., Russo, P. J., Saran, M. S., MacDiarmid, A. G., Garito, A. F., and Heeger, A. J. , j. Am. Chem. Soc. 97, 6358 (1975).

129 Chiang, C. K., Cohen, M. J. Heeger, A. J., Klepping, J., and MacDiarmid, A. G. , J. Chem. Soc, Chem. Commun., 1977(13), 473 .

37

Page 50: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

4.2 Polymers with Carbon and Metal Backbone

4.2.1 Non-Carbon Side Groups

(a) Coordination Polymers (Classes II-l and II-2-b)

A coordination polymer will be defined as a polymer in which a metal is coordinated with organic ligand(s) to form a polymer containing a metal atom or ion for each monomer unit. A simple structural representation will not be given because of the extreme complexity and numerous possible polymer types. To diminish any further confusion, both polymer Classes II-l and II-2-b will be included in this section. Numerous chelate ligands and/or polymer structures will be cited.

General and specific information on coordination polymers appears in several general references [1-3]. The book by Cotter and Matzner [1] provides excellent coverage on this subject.

Coordination compounds can be prepared by several methods, namely (a) preformed metal complexes may be polymerized through a functional group, (b) a polymer containing a chelate group in the repeating unit can be treated with a suitable metal salt (such as the acetate or acetylacetonate), and (c) polymer formation via reaction of metal-donor atom coordi- nation.

Attempts to prepare stable tractable metal coordi- nated polymers which might simulate the outstanding thermal and/or chemical stability of model coordinated materials, such as copper phthalocyanine (I), copper ethylenediaminobis- acetylacetonate (II) [4], and cobalt tris(N-hydroxyethyl- ethylenediamine) (III) [5] have been dismal failures.

CHj

(I)

C\H'

HC Cu CH \ /\ / C=N N=C / / \ \

CH, CH2—CH, CHJ

(ID

Co"

Hi •N^CH,

I CH,

CHj

OH

(III)

3 +

38

Page 51: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Copper phthalocyanine is reported to be stable at 500°C, sublimable in vacuo at 580°C, and to resist molten potash and boiling hydrochloric acid [6]. Subsequent work showed (I) was unchanged after 1 hour at 800°C in vacuo [7, 8].

Major problems are largely attributable to one or more of the following: very low molecular weights (generally =^10,000), insolubility and intractability. Low molecular weights are often due to premature precipitation of product. Further compounding the problem is discouraging thermal stability, except in a few exceptional cases.

A great variety of chelate or metal coordinating groups have been employed in attempts to prepare thermally stable polymers. Usually bis(chelate)-type compounds are employed. Most of these are listed in Table I.

Only a representive number of examples of the many chelate types of polymer-forming materials will be discussed. This will suffice to illustrate the better materi- als prepared to date, their limitations, and to provide some insight into the possible structural variations.

1. Polymers from Bis(ß-diketones)

The poly[metal bis(3-diketonates)] have by far been most widely studied than other polymer chelate systems. Most 3-diketones are of two structural types.

/CH3 o-cN

CH-)-*Z / cso

CH3

CH2 CHo

\ V Z = -(CHz^o

o=c c=-=o CH3 CH3

or arylene

(IV) (V)

Bulk polymerization of bis(3-diketones) with metal acetyl- acetonates or metal acetates has been a common procedure for preparing polymers [27, 28, 29]. Basic beryllium acetate was often employed for preparation of beryllium-containing polymers,

39

Page 52: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

TABLE I

CHELATE GROUPS USEFUL IN THE PREPARATION OF METAL COORDINATED POLYMERS

Chelate Function

1. bis(ß-diketones)

General or Specific Representation

j:—h> o^H2

I R

Refs.*

2. bis(1,2-dioximes) HO-N—C ^^h-x_

3. bis(1,2-hydroxyketo)

Hc/^^

9, 10

4. bis (o-nitriles or 1,2-dinitriles)

N=0-C ^ 11, 12

5. bis(diamines) (generally heteroaromatic) «—iN r^j

6. bis(1,2-amino acids)

H

HO-X\ /»I

13, 14 15, 16,

17 0

/ W^2 , X = C or S

H2N

7. bis(o-aminophenols) HO.

HoN

♦Pertinent references not cited elsewhere in this section.

40

Page 53: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

TABLE I (Contd.)

Chelate Function General or Specific Representation

Refs.*

8. bis(hydroxy nitrogen heteroaromatic)

9. bis (o-hydroxy Schiff bases)

9, 18, 19

20, 21

10. bis(o-hydroxyazo)

OH

22

11. bis(imides) 9 o

HN TOT NH

6 ii 0

12. Metal carboxylates

13. bi s(a-hydroxyacids)

HO-C

HO-C o 23, 24

h (with and without adjacent -CO2H or

-CNH group)

I '0.

HO "%3*2 22, 23

HO' >

14. bis(thiopicolinamides)

SH

*Pertinent references not cited elsewhere in this section,

41

Page 54: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

TABLE I (Contd.)

Chelate Function General or Specific Representation

Refs.*

15. bis(thiooxamides) S S 11 Jl —N—C—C—N-

H H

16. bis(thiosemicarbazones) S H?N—C— N-N=€ ?2 Z H

25, 26

17. bis(dithiocarbamates) HS—C—N-

H

18. bis(xanthates) HS—C—0 * ~-fr>;

19. mercaptide R—SH

20. dimercaptan HS^/v,^- SH

RO^^-QR

21. cyclophosphazenes with chelating ligands

R, X R

N>

N. P—X

/ \ n " R X

R = 0, X = NH2; R = X = -NHCNH2

S

*Pertinent references not cited elsewhere in this section.

42

Page 55: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Soluble, very high molecular weight (126,000) polymers were produced from Be+2 and 4,4'-di(acetoacetyl)diphenyl ether (V) where Z = —©—0-®— [29] . Soluble high molecular weight polymers (intrinsic viscosities to 2.7) were also obtained with Be+2 and (V) where Z = -{CH2f6_io [30]. In this case a cyclic volatile monomer (or dimer) was obtained by heating an intermediate derivative. The cyclic material was thermally polymerized by maintaining the temperature near the melting point (110°-140°C). These polymers were flexible at room temperature, had high tensile molduli, and strengths. For example, (V) for Z = -(CH2*8' tne amorphous polymer had a Tg of 35°C, tensile modulus (25°C) of 122,000 psi, tensile strength of 2710 psi and melt index (190°C) of 0.1-2.0 dg/min. Polymers with aromatic Z radicals (particularly p_-disubstituted) tended to be crystalline. Unfortunately, these beryllium poly (chelates) had little practical utility because they gradually reequilibrate to monomer and dimer at temperatures near their formation. Polymers prepared from 3-substituted bis-(g-diketone)-beryllium complexes showed instability above 200°C [31].

Hexa-coordinating metal atoms can be incorpo- rated into bis(ß-diketone) polymers by exchanging a tetra- alkoxy titanate with a bis(ligand) [32], as shown in Equa- tion (1). Molecular weights were very low (^2000).

V, Z =

V

CH3

BuO—Ti—OBu /\ (1) 0 0-,

Melting points of metal bis(ß-diketonate) polymers are related to their thermal stability. TGA (argon) study of polymers derived from tetraacetylethane showed the following decreasing heat stability [33, 34]: Mg>Ni>Co>Cu>Zn>Cd. In all cases, including model chelate materials, decomposition occurs in the range 225° to 350°C.

43

Page 56: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

2. Polymers from Bis(1,2-dioximes)

Reaction, Equation (2), of nickel acetate with bis(1,2-dioximes) in methanol gave high yields of polymer. Some pyridine soluble fractions had molecular weights of 20,000 and showed Tm of >360°C [35, 36, 37].

HON NOH HON NOH II II II II

nCH3C—C—R—C—CCH3 + nNi(C2H302)2 *

•R— C— O-CH3

A

H30

-N N—0 Ni /\

-N N—0 II M -c—c

/

(2)

+ 2nCH3C02H

R = 1,4-C6H4-1,4-C6H4-, —1,4-0^4-0-1,4-06^—

4. Polymers from Bis(o-nitriles or 1,2-dinitriles)

Much of the earlier work on polymeric phthalo- cyanines has been reviewed [38].

Tetracyanoethylene (TCNE) forms metal-contain- ing polymers by heating in bulk or with solvents up to 300°C, with metals, metal salts, or metal chelates [39, 40, 41]. Black infusible products result. The copper derivative was partly crystalline, soluble in concentrated H2SO4, and showed a reduced viscosity of 0.8. Copolymers can be prepared by substitution of some TCNE by phthalonitrile.

Heating pyromellitonitrile or 3,3',4,4'-tetra- cyanodiphenyl ether and phthalonitrile with CUCI2 also afforded polymers [42, 43].

44

Page 57: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Another modification of the polymerization involves the generation of tetranitrile component in situ by heating a bis(1,2-dicarboxylic acid) (or corresponding dianhydride) in the presence of a nitrogen source such as urea. Polymeric metal phthalocyanines can be prepared by heat- ing such a mixture with a metal or metal derivative. Low molecular weight products result [44].

Poly(metal phthalocyanines) were generally reported to decompose in the 250-450°C range in air or in vacuo. One of the more stable such polymers was derived from 3,3',4,4'-tetracarboxybenzophenone which showed a weight decrease at 450°C (TGA) [45].

Polymers have also been prepared from phthalo- cyanine sandwich intermediates wherein the backbone alternates oxygen with a metal (e.g. Ti) [46] or a non-metal (e.g. Si) [47] and the phthalocyanine is independently bonded to the metal or non-metal.

Non-metal containing phthalocyanine sandwich polymers are discussed in Sections 4.3.1 and 4.3.2e.

5. Polymers from Bis(diamines)

Bis(imidazolato) metal polymers (VI)

o, (VI)

—i n

derived from imidazole and metal salts possessed high stabili- ties where M was Co+2 or Zn+2. Weight loss was detectable at 500-575°C in N2 [48, 49].These materials were intractable and insoluble. Pyrazine, N^)N, also reacts with metal salts to produce polymers [50].

45

Page 58: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

6. Polymers from Bis(amino acids)

One stimulus to work in this area was the fact that Co amino acid complexes exhibit excellent thermal and chemical resistance. However, high molecular weight polymers were not reported [51, 52] from either a bis(o-amino-sulfonic)- biphenyl or a,a'-diaminosebacic acid.

8. Polymers from Bis(hydroxy nitrogen Ik heteroaromatics)

8-Hydroxyquinoline is an excellent complexing ligand for many metal ions. Bifunctional ligands with this structural arrangement are shown below.

HO-/QVOH

HO

N(J)N

0>-*-(0

NON

HO \QVOH

N=N- R OH

R = covalent bond, ~@-(5)-N=]

OH

R = covalent bond, -CH2-

Polymerization of bis(8-hydroxy-5-quinolyl) derivatives with a variety of metal sources, even in hot highly polar solvents (refluxing dimethylformamide), usually leads to early precipi- tation of low molecular weight or infusible products [53, 54, 55].

46

Page 59: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

+ n M(AcAc)2 >

or n M(C2H302)2

R = covalent bond, -CH2,

AcAc = acetylacetonate

(3)

Tris(o-hydroxyphenyl)triazine, (VII),

(VII)

has also been used to prepare polymers [54, 56]. One patent describes the preparation of products from this monomer and boric acid which are thermally stable to 440°C [57]. Thermal stability (TGA, vacuo) of poly(metal 8-hydroxy-5-quinolyl derivatives) are as follows Mn>Ni>Cu<Zn [53, 58, 59]. Decomposition temperatures varied from 350° to 500°C in these studies.

9. Polymers from Bis(o-hydroxy Schiff bases)

The most direct route (Equation 4 for example) for polymerization of a dicarbonyl compound, a diamine, and a metal salt, led to insoluble products of low molecular weight [60, 61].

OH

CH2NH2 + n I 4- "MS1*

CH2NHi (4)

47

Page 60: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

A polymer prepared from a nicotinic acid deriva- tive was reported stable to 350°C and resistant to hot alkali [62] (Eq. 5).

-tor HJQ}—^ + 2n NH4OH

t 2n NH4C2H302

+ 2nHjO (^ )

The poly[copper+2-bis(Schiff base)] (VIII) was insoluble and had a reported molecular weight of 76,400 [63, 64, 65].

OVCH^^O)-°7Y—

R--fCH,-fc

CH=-N N - CH

V * (VIII)

Although monomeric analogs such as the Cu, Ni, and Co complexes of acetylacetone-ethylenediamine may be heated "almost to redness" without decomposition [51] , this class of chelate polymers generally decompose in the range 250-350°C [63, 66].

11. Polymers from Miscellaneous Bis(N:Q) Ligands

Chelation of pyromellitimide with metals gave polymers reported to be stable in boiling water and stable to 300°C in air after 3 hours [67],(Eq.6). The mercuric chelate decomposed at 510°C in air.

48

Page 61: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

"1Ä, CO \ NH + n MX2 / CO

(6)

^t>N: + InHX

Amine complexes of divalent metal tetra- carboxylic diimidate polymers have also been prepared [68, 69] Thermal stability of the complexes decreased in the order Zn>Cd>Ni>Cu>Co. Molecular weight of one material was >2 000. The complexes showed crystalline x-ray patterns and were insoluble in conventional solvents.

14. Polymers from Bis(thiopicolinamides)

(§X-0-N—Ar—N—C-@ Ar = ^-Z-@- SH SH

where Z = covalent bond,

3 9H3 (ix) -o-, — e-,-so2->—c—

CH3

Of the many coordination polymers investigated by J. C. Bailar, Jr. and his co-workers, the poly[metal bis(thiopicolinamides)] showed the best stability. A number of stable poly[metal bis(thiopicolinamides)] were prepared by heating divalent metal acetylacetonates or metal acetates with bis(thiopicolinamides) (IX) [70]. Molecular weights were roughly estimated to be about 15,000. The Zn+2 derivative showed the best thermal stability (via TGA). The zinc-containing polymer from (IX) for Z = -S02 did not melt below 300°C and could be heated 6 hours each at 300° and 360°C without appreciable loss in weight or change in infrared spectra. The Zn derivative from (IX), Z = covalent bond, was found to be stable at 400°C in the absence of air. Marvel et al [71] prepared poly[metal- bis (salicaldimines) ] and also found the Zn+2 derivative to be more thermally stable. A possible reason offered [70] for

49

Page 62: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

the superior stability of Zn+2 derivatives is that Zn+2

possesses only one oxidation state. Transition metals can be oxidized to higher states and this may catalyze thermal decomposition.

15. Polymers from Bis(thiooxamides)

The Ni+2 derivative (X) was crystalline,

(X)

slightly soluble in hot solvents, and showed a Tm of >400°C [72].

17. Polymers from Bis(dithiocarbamates)

High molecular weight poly[metal bis(dithio- carbamates) J , estimated at 60,000, obtained from Ni+^ and Zn4"2

derivates were prepared from the disodium salt of bis(dithio- carbamic acids) and appropriate metal acetates, (Eq. 7).

S s II

n NaSCNHRNHCSNa + n M(C2H302)2

»--©-©- -J—RNHC .M_ ^.CNH N' ± + 2n Na(C2H302)

(7)

The products were infusible. No mechanical properties were reported [73]. TGA on other similar polymers showed the Ni+^ derivative to be stablest [74]. Stability is enhanced when R = aryl but even then appreciable decomposition began at 200°-300°C in air or inert atmosphere.

50

Page 63: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

21. Polymers from Cyclophosphazenes with Chelating Ligands

Metal-containing polymers derived from the cyclic phosphazene [(0)(NH2)PN]4 (trans) showed thermal sta- bilities up to 450°C [75]. Copper salts were most readily incorporated into a polymer network, the most stable polymer was derived from C11SO4. Replacement of phenyl by CH3 or NH2 or replacement of NH2 by -NHCH3 or-OCoHs decreased stability to below 400°C.

Chelating polymers were prepared from hexakis- (thiocarbamate)cyclotriphosphazene, |j>

[(NH2CNH)2PN]3, using Cu, Ni, and Co ions [76]. The Cu polymer was stablest at 500°C retaining about 80% of its weight (TGA, air).

(b) Miscellaneous

One member in this class is poly (carboranyl mercury, -+CB10H10C—Hg*^. This polymer was prepared from dilithiocarborane and HgCl2 at 30 °C, did not melt to 300°C, and had a molecular weight of 10,000 [77].

51

Page 64: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

4.2.2 Polymers Containing Carbon & Metal in Backbone with Carbon Side Groups

(a) Metallocenes

Most metallocene polymers can be represented by structural formula (XI) or (XII).

—'n

Where M = Fe, Co , Ru, Ni

X

(XI)

covalent bond, divalent organic, inorganic or organic-inorganic groups, and combinations thereof.

Typical organic groups include alkylene,alkyleneoxy, arylene, heteroarylene,

0 0 0 II |l II

-C-, -C-0-, -CNH-, -CH=CH-,

-CH=N-; X may contain non- metal (Si, B, P, Sb ) or metal- (Sn, Tl, Zr, Hf, Hg) containing groups.

Y—M—Y—R-

—h

(XII)

Where M = Ti, Zr, Hf

Y = covalent bond, 0, S, NH

R = covalent bond, alkylene,

0 0 II II

arylene, -C-R'-C- ,

where R' = arylene, metallo- cene.

52

Page 65: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

A considerable number of publications exist on poly- mers derived from ir-cyclopentadienyl (transition metal) com- plexes. The overwhelming majority of these reports deals with ferrocene-based polymers. Excellent reviews on metallocene chemistry [78,79] and ferrocene polymers [80-83] have appeared since 1967. With the exception of some poly(silicon linked ferrocenes), which are critically reviewed in Section 5.4, metallocene polymers have been found deficient in three respects. First, failure to achieve high molecular weights. Polymers generally have molecular weights of ^10,000. Second, inadequate thermal stability. Metallocene polymers are not superior to analogous aromatics or heteroaromatics and thermo-oxidative and protolytic stability is poorer. Third, they are not easily amenable to processing. Many ferrocene-containing polymers have shown high conductivity and ultraviolet resistance.

For the most part, synthetic pathways posed to date have not resolved the tendency to form cyclic heterobridged systems and the tendency to give cleavage side reactions which afford branched and crosslinked structures. Polymerization processes employing electrophilic or free radical catalysts are prone to complications because of the polyfunctional behavior of commonly used metallocene substrates. Representative ferro- cene-containing polymers and their precursors are shown in Tables II and III.

Ferrocene-containing polyamides, polyhydrazides, polyurethanes, and polyesters have been prepared [78,79,84] from difunctional ferrocenes such as 1,1-dicarbomethoxyferrocene, l,l'-di(chlorocarbonyl) ferrocene, and 1,1'-bis (a-hydroxyalkyl)- ferrocenes by reaction with glycols, diamines, hydrazines and diisocyanates. These polymers are not obtained in very high molecular weights and offer no thermal or processing advantages over conventional nonferrocene condensation polymers. Modified poly(ethylene terephthalate) containing 1,1'-ferrocene dicar- boylic acid units gave fibers which had improved UV light re- sistance in comparison to the unmodified polyester [85]. Diepoxide derivatives of ferrocene were copolymerized with phthalic anhydride and o-dimethylolcarborane, with phthalic acid and bisphenol A, and with m- and p-carboranedicarboxylic acids [86]. The resultant polymers were not particularly stable and lost 4 wt. % at 300°C (TGA, air or inert atm.).

Several ferrocene containing polymers have been used in the preparation of composites. Ferrocene copolymerized with terephthaldehyde and 1,1'-ferrocene dicarboxaldehyde gave thermosetting polymers which were suitable for fabrication of glass fiber reinforced structural composites [87a,b]. The laminates contained 23-36% resin, were cured at 400-600°F (204-315°C) and 1000-4000 psi, and gave flexural strengths and moduli of 29,000-33,000 psi and 3 million psi, respectively.

53

Page 66: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

3

(0

oo

S3 W o o rH «c

a

u Ü

H

H

EH

O U w w 2 W U

w Ix. CH

o

CO

u

e CD

cu rJ 0 +J Ü d -P w

u a) e >i

iH O 0<

c o

•H

> ■H U 0) Q

<U S >i H O

Tj QJ

A! fl •H rH

CO CO O u CJ

X! 60

•H CO

u

+ CO

Tj - <u • ^i p. •H 0 r-l 01 •« • co • c_> O 4-1 o U |3 o o o

• CO >>rH I

rH O ° cu e o so m M S CM to o

X) c o

XI O «I

4-1 I C PÖ 0) u-

rH I «0 •> > CM

8B

o oo i-H

*t U CM o H O U o Ö CM N

#1 cd 0) CJ c CU n

o r o 4> u o u 3 cu to

4-t i rH u ^ v ■u <u »i

o 0) cd Ö

•H cu tJ o

1 o n

H u •* cu rH Fn

CO CU

rH

•9 rH o CO

rH &

■§ • rH rH

CO 0 a

•rH U o

!>>H rH 4J >, CO JH o <u a >

Ü u •H o 4J O eg o S CM O I M o cd m

+ rH

cu ö cu CJ o M M <U

4^ O

m i

4J X &. cd Ö

s-£©>

o rJ

4,0 o

r

CM C CM rH •H rH CJ (U u O M o O a) o X

M 4J #1 CU

CU Ö <U T3 c cu a Q) CU

<U O <U CO a CJ O Ü o <u O H o rH H M u u CJ >» H cu n CO C 0) u 4-i a) ■H <U

4-1 O O 4-( TJ O o •H 2 o

X! X S co u 4J 4J O CU M •H •H rJ O CU rH rH XI Ü M-l •H •rH -iH CU 1

1 Tj Tj

1 1 1-1 - CU rH

4-1 - "r-\ ^H ^H CU rH

A A #» u rH rH rH II

X)

ZU cd x

54

Page 67: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

ß o

H H

W

a

fd

er»

oo

S3 W o o rH-

W

u Ü S3 H S3 H < EH S3 O o cn w S3 W U o

w >H t-H" o PH

r-H

cd ß

d)

4J ü

4J C/J

ß

O 04

0 •H •P (0 >

•H M 0) Q

U 0) ß >i

rH O 04

0) rH

(0

w

b0 A ß

o • #* 1 • •H O CO •»• cd o 4-1 CU •* •* O >■> •u 4J o cd cu

•* >•» CN VO rH 1® • CO o cu u • 4-1 QJ a 0 #k X! MH

4-J -H m « > . rH ß O O 1 00 • * o • S rH O o -H o 0 cd o o -o-

•H O 4J M e n O ß rH o co • X> C0 O O o. 0 * cd *•

m M i-H 4-1 CO O ß

H cd co <f ei) o _ cu cd 4-1 U -H O 4-1 O Pu . u <S>5 3 rH • S CO 0 01 H 4-1 C0 H m • -3 ß CO TJ CU

cd Q) • o T cd O <->. (3 O 4-1 • CU M 5 H • M •~\ CO C_) o xi n 4-> "3 cd -H & rH rH O Cd 4-1 .>? e ß o Pn Ö0 • CU 4-1 O "3 M g S in •. o •H O I -H T) 0) •> 4J «3 • 0 co cu

es u Ö0 O J J ß CJ • Cd | 4-> rH TJ A! «(Dal 0 u 13 CN /i\ <° ß CO C CO -H o * H fi CU X! > T) O cd ö ., <©> • cd 4-J O « 4J 0 O CJ -H H *JTI ß O «Al ,—'U >, 4J S H H 0) rH Cd rH xi u cd oo *» 0 4-1 co 4J ». X> « co 3 T> cd 'S • • e o -H •H • a i 3 • >>x; co

i-l w o rH O rH "d O rH O. O O H CO rH Cd CN CO H O O CU u-i ß

rH cd H O • M CO -H CU O rJ « -H o CU -H U

U) ÖO M s--* W 0 tu A X> r< g CH rH -3 00 > & CJ

4,c o

o o m vO CN

I u-l st CN

00

I ü

cu a cu o o M U cu

O

VO

4.c

ö cu Ü o 1-1 M cu 4J

<4-l CO rH >> >, rH

XI cd 4-1 4J <y cd 0 o

& CJ O •H h T)

-a •H >% CJ

Pd cd

4? CN

rc CJ)

CN SO CJ

CJ PH

CJ

oo

PA—U I

o I

I a

cu c cu a o u u 0)

MH ^ rH rH !>> U « O Xi o CU ß •U O ß cd cu oo cu x: 0 H O 4J O 1 o cu Ö O U 1

•H m n o S H CU CN cd i4H rc

rH « rH ^ >^rH >. Xi O Ai rH ■w SO rH O 92 cd £3 0 +

•rH f? CU TJ CN O 4-1

1 .'-' U 3 ZU T) H " ö >. -H

a N a -a

CT\

SB

oi

ß •H cu S-i cu

X! 4-1

Tl CU cu CO ß 0 cu

rH rH o S>. cn ß

•H CU XI o

o co u CU rJ CJ CU ß M-l cu 1 M »• CU rH

4-4 #^ cu rH M

II T) ß CJ

<n! fxt

cd X!

55

Page 68: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

XI 4J Ö o cj

H

oo

53 w Ü o KH-

o

o o CO W

W o § w PH >H

O PA

CO

to e CD PS

X)

cu

-p Ü

U -P co

M cu e

rH o

PA

C O

•H •P

> -H H (D Q

U 0) g

rH O

PA

- u co o U C rH o • *v O • O 0) • rH CO CM *-~\

•H ^2 c_> 4J 1 C 4J o ?►> CJ m 73 O O CU O M 3 rH a 60 cd iH CO CU 13 Cd rJ

1) ,p CM > o CO cd U -H A #» r4 0) 0 •>

CO • »* • P. CO o <l <U 3 . o ■P CO m o

XJ <4-l +J O > • o •* H •rl P. O rH 1-f N»^

CO •> rH • • O 4J a • V rH u CO • cd •

cu 4-i • 4-J ü O o C 4-1 p. > & cj & CU • 0 O •rl & &-S CO

•H o X) P. O o cu 4-1 • O • • & CM X) 0) CO U •rl rH in r-H * 0 4J o A Ö > 1 U O (N O • U rH cd •rl in «

cu 0 i a H * 4J CM CJ

Pi O a > o o o o

u O CO rH rH fr CJ rH

cd rH

o T3 O

o Ö O o 01 CU O CU S 9 UH N hJ W co 0 > X) CO W cd m

CO

3 CO rH

H & r^ 3

4.ß phen

,2

-f

1* 33 •> <-\ CM

1 8 o J»i 0) H'

tu rH J3 cd p.

Ü Pu

Pi

CJ C

IS)

XI •H CJ cd

o co II •rl

Ed u 1» w CU rJ +

cu CJ e o <u o o t^ o rH rl 1 U o CU m

PK oo

o r-H

0 cd 3 55

•rl •a c o cu CO JZ

cu

I rH cd

§ o u

•rl Ö

I 3

cu T) •H C CU

•rl X> cd 4J Ö rH CU u P. CU O fn

rH O TJ ?►> a cj cd

CM

4,c

II 55 CJ —CJ

I

I cj- II

I o Pn

cu

t>>

cu XJ rH cd X o u cd Ü CM

cu

•rl I T3 4J

CU £> a o s s a & M -H Q) T)

to I I <r

rH +

CM

I3 EC CJ

*

o

rH +

CO

+C o—u r

CM PC CJ H' Ü

CJ *o

T3 VD •H in

C^Vl «V

•rl -H O rl P. cd a CJ -H

rH U P^ o CU P. o co 0 g

M p, cu t^

&4 rH 1 o U P.

4,c O—CJ

I a

Pn

rH M-l 5^ O c o

x> u cd Ü o u o

cu e o

cu cd CO 3 cu

Ö U Q) o o

o u u CU

CJ

0 in >4-i

•H I rH i3 m >,

1 CM C o

H »,P « CO rl

rH PH Cd pq u

o * u

cu cu o C C rH cu cu xs U CJ CJ o o ^^ rl rl O rl rl C CU CU Q

PH «4-1 0

+

m

CU u CU

rC 4J

XI • cu a) CO Ö o cu

rH rH o >, CO Ö

•H CU x) o

o

CJ a) e m CU 1 rl «- CU r-t

4-1 A

CU rH M

cd x>

56

Page 69: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

.-I H TJ •»OO B^ • * 73

ra cu CD 0 0 • 00 re <u <u 4J CJ cN •« pi 0

1 •- M CJ U X X MH . 0 s»> cu cd • ^ » 4J O 3 0 00 cu O ^ OUHH^ O H g O O » O Pi

T3 rH -H 3 K -H !*, p, CU O X! TJ CO O rH U (U C

NH ß J-< >-, cu co oo H IJ •» S 0 M

• 3 -H cd W CU to

ill - B +J Nl CO O -rl

4-1 •H X H r*

CU O O rH Cfl & Cd O O >, . > 0 X • 4-> 4-1 fn 3

V-I • 4-1 tJ iH rH O CO • - • rH CO CU tö 4-> CJ CU -H O 111 CM 4J <J rH O U »X g & 3 H X • CO 4J rH 3 [JO Q CO rH O 'P.

es •0 p. to in 3 CJ V O H 0 cd -H CU 1

• O W H •H 3 -H «w » 0 H • PJ H M (D 0) -O • 4-> >•. & CU U CU -H ^^* O P. >H TJ O P. CJ 4-1 U O rH cu m v^ M

fd e 3 H x C U • CO -H 0 TO P. 0 U rH O

H X X 3 O v«-* ^ • w cd W •H 4J'H 00

rH CJ 0 • 0 3 c a

4-1 -H O #> CO O 1 , ' ' • • *• ^ r^> • 3 M f^rH a Cn H (0 |J (U B) rH rH • • Cd H 4-1 O M cd r^» 0 s 4-1 x x O O 4-> 4J 4-> 4J O ß O HI ß >, *. C/3 vH CO 4-1 u CO CO > U CO CO C/l H P, > Cd X oo r-

•z 1^fc w XI o *—«• o CD

r4-H? rH u 3 iC

K -p 0 lG

z z 4? O5 H •—\ *■ d I W x^x O

4-1

o -p CO

0=0 O c_> II Z 1 "0 c o 53 ^ j^ M Ö 1 o >H >^

¥ <! ^-^

w g 1 1

Z Zte 3 H H

u >1 H O

CJ

Pn a fn Mr1 1 1 S

w P4 0 ü 0 rH

J3 pn | (j, p.

1 < H

EH 2 H <: EH J3 O

cu

•H A

U 2" U O H

cu •a

0 O

+ m co ^^* X XI CN • w C! O a) cu 1 3 2; 0 •a T) cu 3 O 'H

u -H i-H cu rH e CU rH cu +J O

N •H

Cfl -rj X §

O CN O CU Q (0 H 4J 0 cd U « X tf > cd O X -H u a> 4J

tf •M X N (-1 T3 cu 3

CD

4-1 cd cd «4-1 vH TJ • X P.

•H -a 0 0

•H -H r?3 OJ cu CO 3

X Q cu N-X T3 4-1 O N 0 cu rH r-l CO cd 3 3 rH rH

0 M cu •H ID e (U u u O !^

&4 CD g

4-1 X C O x x 0 co 3 0 a) u p, 0 0 ■H <U

+ ^ + u cd 0 3 cy> 13 O >i 0 /^^ 0 1 . X -rj CN

U B 1 O

H CU 00 CU cu y pj CO U

O PH

£ vi a s M cd cd 0 CU H CU vH cu u O -H 00 a cu

CJ « CJ TJ Cu 0 •rH t3 CN 3 u-i O CN O -H 1 r? 1

•T - 3 (U 1

U rH M N rH 0|

t-l - M U u s rH m cu 0) rH CU 3 cu cu *\ « "X m •> fn N Fn x rH + rH CO 4-> CU rH

r-l

CD II

T3 rH 3 O

i* vO i-v 00 cy> <! Pi

i-l H rH H /-N ^-\ td cd x X w ^-^

W

57

Page 70: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

T3 ■U ß O U

H H

w

rd

oo

53 W O O

O

53

u o 53

EH 53 O co- co w 53 W U

8 Pi W fa >H

o

u (0 e

-Q

CD

-P Ü

H -P CO

U (U e >i

rH O ft

o ■H -P (0 >

•H U CO Q

U CO £

rH O

CO

X! H

so ß

•rl 4-1 cd

ß M •rl ß

O «rH

o u co a) CN 4J « M-t

CO T3 CO fi o 3 H •>

O • N o II 4J O •

>, cd vo ß w a) u o

u o O O

cd ro I

+J vo •H CN

O -H 4-1

<i

BO u

\ 8=

o CN

•H I ß 4J Xcd

o o

cd a* U 4J 0 r-4 <ti Cfl . M ft cu >-i e^s co Ä X OO HI 4-1 W <4H CN M

rl «S

*Q a

Pn

o —cj it re c_>

•*-§ PC o

I a

i CJ

Pn

ß 1

CX-co-^o

<3

cu ß cu a o u u cu

M-l

CU u : CJ o n no CU rH Cfi

rH 1-1 CN O O ft M-l CU "»-' l-l CO ft -rl

= JO I

CO cu ß H N cd M

«T) H >,

•ß cd -H •rl X»

a) a o N cd u

60 PI

•rl 4J A! cd ß

•H u rH cu

CO a CO >, O rH u o a ft cu ß u > cu o

•rl 4-1 o CO rH o a O CN cu s 4J • X ß cd w •rl o

CU c cu o o rl M CU

MH + rH >-. CO Ö XI

ß O

•rl 4J

ß Cd O «H

•H a 4-1 O cd co N CO

•rl -H S-l T3 CU

rH cd

•rl >

•rl

I CO •rl

3 H i-3

rH CO CN 00

a T3 >. cu V4 H CO •H o cd cd ft cu ft o u H CJ c CJ ß o t^-H •rl O

>> 00 CJ ^3 Ö H •H ß T3 & O <U O H rl u 4J O 00 cd > o cd 4H •~* MH o

L f&

pi i o=u i o=o cu

I o=o

CN CTi CN 00

C_) o O O CN

I O CN

cu c

•H

•rl

o|

CO

CJ •rl

O rl

CU rl CU

J2 U

T5 CU CO cu o d

rH cu o H CO >,

•rl ß T) cu

Ü CO o CU rl Ü u C cu CU MH u -1 cu rH

>4H «V

cu rH M

3 cd ,n

58

Page 71: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

3

o

w —. g tn

W oo

En O

CO g O En <

EH CO Z o -

to - « m w -- g >H r} rl < O EH CM W g

W I 3 2 W O U Z O

• CJ

• A o o >> • « H • #> O 4J O ^ >> O •rl o 4-1 CN

W rH OSo •rl M •H • r- O rH O U (d

XI o I II m •H 4J 3 o O ro X)

i-H O to Pi cd 1-1 e O O r~- o 4-1 . •rl (U to en H «4-1 co CJ cd tf •H o

M U • CO >> U O a o cd CO 4J o o •H O <U 4-1 || -H O CN CM C 5 rH

«J vH ft V

rH !>> • XI >. • x> ri a rH M cd /-^ u a cd a> a) O O 4J CN 01 o> 4J > -a s <*H w ä > -o

CO 4-1 •H C 3

<D

3 r4- i

C/3 CO

+J ß -Qi O + U CO | ro 3 4?

00 IÖ - en

+> -H to fC —u-

CJ

Pi PC CO oo

-P no »5-c« —pj co u fa M •H CO i i 1 33 rl

o CJ II II ffi — CJ- PJ fe Pu o II a) •+- •+> Cfl PS

<&-s-

pi C CD O O

rH *£+. l<7 U 0

CM

i u fa

CM H

a) U C w tfl .

Q <u c CN « M a CJ 01 <-~«\ rH O 0) •rl c O 00 Pi s O Ö a) O

•H

M nj *^ 3 C •> 0) rl )H •rl S3 01 0) o 01 0> M + c o JS c o X! -P >4H C cd in a ai M 4J

fd ^ -H 0> 4J CJ — Pi O rl > •H O Ö •rl 1 H O 01 T3 • -r-| >-i 3 '—^ 01 4J CJ >. rl m 01 01 U

Sfl H o FX4 C rl ^"V CO 0 u ai cd o rH 1 J5 0) 01 rH O 01 Q) MHZ rl ^"S—pd

CO CJ »4-1 >> rH rH Q 0) VJ /—\ O /-N X! CJ t>% 0 M •> 0> <D O m rl rH 4-1 CO C JH O O CO MH •H W w rl >, 01 •H CU

ri O O T3 CN w M k

»a o O GO CN •H Cd + U o H C CO X! 4-1 N-^ 0» o CO u

>i ^•H (N 4-1 C 0) X! >, rl 0) rl i-i u X cd •rl (U T3 rl a oi 0

CM

v^ oi Ja rH CM -H O •H O ^ Ö >4H •H rH •H O U S rl J3 01 1 9 6* " Q H O EC T3 1 u ~ i e • 1 Ü rH O CNt>^ 55 0) H

O 00 »■ I^X! cd H X! "-s MH •> H cj . rH CJ Ü O a CJ i co 0) rH

01 •»o •H -H cN a -H M rH + w rH O P 13 + CO v^ ^3 II

X)

<D <j Ü4 t-i CM r—i , , cd xi m rH CN ro o ^-^ <^< X i—_J

w ^ 1 59

Page 72: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

c o o

H H H

W l-H-

PQ

EH

O

<(d EH— W r-. S cr>

r^ PS » W co

EH — O

CO

a a 2 o H EH

H

EH CO

O - CJ P<

en - PS CQ

£ rH1

o PH W s

w o u a o PS PS w

A; rl (0 e a)

PS

CU

+J Ü

H -P CO

U

e >t

rH O At

Ö o ■p (0 >

■H Vi a) Q

>H

a> ß >i H O a«

<L) iH

<u >. Ö ■u d) • •H

•H H rH T3 o •rl es a X

4-> cd a > 4-1 Q) O CO (X H o r-l I-l •« cd ü o B >-,<> CJ O a)

<f XI MH r-l 4J

°AI n <D 4-1 •rl 00 cd cd cd m > en cd tt> #» cu fi • H -rl 4-1 U M >

H CU 4-1

"4-1 PH->CO cd

*i

PH •*-\

II CN N O

CN e 33

IC o <+i u »i

tu — -■©• •*-! CN i ^—^ O c)

PM 0<-PM * o CN „

PH X

II

Ctt

CJ o \ /

tu 1 o

•& o r~- + rH

cu O ö CX) CU a »i

o CN u rH u u cu Ö

P"H M

4-1 00 £

•rl C CU 4J

<4H O CO

o

o • O

H fO 2 H S I

o 13 O O O

rH rH

ß 0)

•H p<v

•H CJ CJ Ö o

•rl O m

• *» CO CJ

4,c -ISL PQ

I O

I CQ —^

I a

+ cu a <u CJ o u O u CM cu «

MH o Ö

•H CU XI 43 4J 4-1 •H rH * •rl CN p H

1 O M

rH «. rH CN

>. >•>

I <n

rH CO M •• M

■-< + .

ft 4J cd ■3

3 XI

Ö o

H

cd u Ö u o •H

4-1 X cu •rl cn H TJ cd

0) X!

XI o o 00

T) CU & o X

CO

o o o

m A

cu

CU e X Ü

•rl X

o a. cu > cd Ö0

•~\

o^ n o

Ö •H vS m CU 1——1

U 1 CN CU j o\

X! t ̂ R \ 4J I o L -a Y

"%-l

CU cü o CD c i o o CU <£>

rH <-t >> 1 u >.x o CO a o

•rl cu CU o "Ö Ü

o PM m

CO u MH B cu u o Ü CU C CU

14H 1

4-1 Ö ^

JH ^>- cu •rl CU rH S H

<4-l «1 cu •H CU

II

Ü cd

rH ! X) p. CO Ö o CU < fe oi

cd x o

60

Page 73: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

« O

rn~ <(Ö En— W r-,

£ cr> r-

« - s~\ W co • a r- *Ö EH •—■ 4J o o en u O g ^* S O H H EH H 53 < H H

<:~ W EH CO hH 2 CO O - < O PA EH

m - « pq W — s :* KH

^ < o e-t Ot w

g W i £ 3 w o u s o rt « W h

10

to e

CD U

■P Ü

U -P CO

<U E >.

rH o

PA

o -H -p td >

tV Q

M 0) e

O

M •iH • cd o

o C O

•H CM St

U o i O >£> o en CN

O R« 4J y 01

01 4-1 rH rO • ca o u 01 CO T3

.c 4J • •H CO 1* 01

bü CO X) M •H 0) H s ,JO >N

rH C/l o CO D. O

55 01 • • Ö 01 l-i a O o u CO u CO 01

Pn 55

CM rH U

CN CO

CN a i a fn

I rH

P4

SO «o CN1Z3

SO

m

«3- fOs_- 5B A a voO |

CJ v-x I'U « aj i Hi

n

Pd

n

CN

CO 00 ON

d o • •* o

o o o vO

«O • m o •U CN -M £ • Cd 4-1

rH CJ U Q S 4-) frS

cd o & m o co H 0) CO -o c

» cd -H • u cd

H MW O 01 0)

CO -O J-l

, 1 1 1 1 1 O, vH P. U —H —CJ

1 o 1

55 II o— PS

i o UA

u— P=S II

55 | 1 1 ° 1

rH

Ö ed th

ere

in,

e.

01 01 co C •> co •H O 01

sc cd T3 rH rH O ,£3

1 cd 4-1

a >, co c

55 •> Ö •H 01 . II CN 01 13 cj

P5 —CJ rH a.1» o 1 u o co u

CJ >H rH #* 01 u fn H O CO CJ 01

PS —u ^ t>N B 0) 1 ii a. rJ -

55 O II II 0) rH 1 ^ MH •>

O ft 0) i-H w a #

And r

Fc

=

C~l

St /—N /—\ ON ON <d rO

>*• ^X

61

Page 74: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Incorporation of 10-2 0% 1,1'-bis (hydroxymethyl)- ferrocene into a phenolic matrix had little effect on mechanical properties of the resin but increased the char yield by 17% [95]. This suggests potential of the ferrocene modified matrix for use as an ablative, such as in heat shields.

Metallocenes containing metals other than iron have been prepared and are shown in Table IV.

Interest in ruthenocene is based on its greater thermodynamic stability compared to ferrocene [96]. However, the high cost of ruthenium and the reduced nucleophilicity of ruthenocene relative to ferrocene, necessitating more vigorous reaction conditions, have led to very modest efforts of study.

Cobalticenium salts, isolectronic with ferrocenium derivatives, possess high thermal stability and increased re- sistance to strong acids or bases or to oxidation [97]. Cobalti- cenium is appreciably more stable oxidatively than ferrocene, and polymers containing it are expected to show high thermo- oxidative (and probably radiation) stability, being quite superior in this respect to the ferrocene analogs [98]. These observa- tions have led to investigation of the cobalticenium structure in polyesters and polyamides [99-101] (See Table IV, Exs. 9-11). The hexafluorophosphate counterion is strongly preferred because high yields of polymers can be obtained. Other anions such as Br~, Cl~, and N02 "gave poor yields.

Two serious problems remain to be resolved with polymers containing cobalticenium in the main chain. First, preparation of polymers free from connecting ligands which pre- vent optimization of thermooxidative stability. Second, the high ionic content of such polymers may eventually afford very thermally stable polymers but at the expense of solubility and processability.

Carraher and coworkers have studied many organo- metallic condensation polymers (also see Section 4.2.2c), some of which contain metallocene units. Results of thermal analysis were reported [103]for metallocene polymers (XIII) as well as for other organometallic polymers (XIV; Section 4.2.2c). The data indicated that:

62

Page 75: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

- Ip - -X—M— X— R-

I Cp

(XIII)

Where Cp =

(b)

M = Ti, Zr, Hf

X = 0, NH

o o

(1) Degradation @ 300 to 500°C in air is usually identical to that in N2.

(2) Many Group IVA materials often lose a metal- containing fragment below 500°C whereas Group IVB, cobalticenium, uranyl, and some Group VA containing polymers retain the metal.

(3) Ferrocene containing polymers lose the ferro- cene moiety at 200-300°C.

(4) Most polymers exhibit medium to poor weight retention at 300-500°C.

(5) Oxidation usually begins at^=250oC.

Coordination Polymers

Coordination polymers with carbon side groups have been included in Section 4.2.1a.

63

Page 76: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

(0

CO

M U

e

H #\ T3 • cd •* o c ^ e ?- cfl C

o <U H m « 60

J3 CO o o M w a o cd CD o

■#> 0) in * . a) Cfl <

4J pH CO - O > o o H

o rH O ^ • 4J m

rH • sr • • O ri 4J o- •u S o s 4J Cfl &

•H CO CU 3 M (U M • O CU > t>« rH

iH p. •H in ** o 3 4J en u e

S>i CO Cd o u rH «O s CU S*> 0) o o o > r-l M CN vTJ rJ

CO fi o

•r) 4J a • CO a) M >

MH •H ■U • •H

r-l CO O c CO a) Ö CO

•H i ö

X) o ß •H cd 4J

Cfl • T3 rH •H O S<S

Crt O

00

W rH" CO < EH

a

O CM

w W u o

EH

0)

d -p ü

u -p en u

rH O

CM

c^-

EH IS O U

I z

o 53

c o

-rH

+J (0 >

■H !M (1) P

Q) e

rH o

CM

CM rH u c

CN

CN *~\

CO SB e_> O u

CN SB

01 c CU ü o c cu

•U 3

P5

-d •H CJ cd

CN CO T& u

•H pq 3: T3 •H s CU 25

hJ •M 3 + #. 4-1

o •H cd SB 4J 25 c_> CO St Pi X> SB

3 m + CO u

cu #1 4f ö u «. CN CU o s O 0\ CO H' C rH SB sj- CU 1 CJ SB J3° m 4-1 O II u 3 st cd

P5 r-l Pi 25

u <U ,0

T3 CU CO o

rH CJ CO

•rl

CO 0) CJ C cu n cu

>*H cu n

rH a.

CO

3

64

Page 77: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

1

CO a) >,

.3 4-1 U M 4J 60 cd O O *H

•H 3 O H ,3 •iH

S 1 - H (1,'H

• #» •H 3 3 •* cd • <-l 7 <U 3 4J to 4-1 <» ,-s •H TH CO

^v; > O •3 cd

rtj e cu

" 1 cd js o

r-4 O 0

1 1

<u -^ 1 ■3$ <@1-H-* p

ent

er c

lyti

« S • 4J 60 ,1 «> 1 ö o ' '

o a o rH £, u

O 60 ÜHfl <*-^ H a 3 4J 1 !>iO >i fd •H U P..C

[>> 4J M i-l r( w II

■ • cu cu a) m cyi > S > u N r^

CO

r-

CO on

CU

1

1 1 S n S ̂1 -, "H "> X ^ fc \| pc!—M —prf 1-1 4-> > /^ I o O O^CJ II 1 ^-\ P4 3 1 3 . S-( Pi 1

X) w -p 1 c 1 J, ' 4-1 3 S3

w u o i-q

CO n-r u 3

O 1

O o

cu g

OS

)1 % #f# < EH

>1

o 04 #f^> °^° t

I 1

03' o r < a • 1 i EH S3

H S3 H

EH

I—| 1 ii pi

^~\ K

2; •H 01 4-1

O O d

rH O cd -H

A5 CO

4-1 cd

3 >

3 •H 0)

1 0 rH cd cu rH J-i

S3 ■H cd x> o O cu O -p

(0 •H + -3 cd

o (-1

CO ^3 4J

H > a) h o CU •3 ■H "3 o 3 t) cu

S3 M •H rH •H CO

O S3

CU a

M CO O H H O

M-l •H CO M a)

M O

rH

0 rH a

.3 3 4J C XS CO

M U 0) ^^ cd Ü •H

Q) •H ,0 •H H •H T3

ß H

■3 Pu •H

CU -3 3 ne

d

xysi

■3

d) 3

. CO

CU

U

0 a) <4H cu o CU c P4 u o O Ai CJ cu

o O H O u 3 co co tt) 4J -Ö

3 cd cd -H §

CU

4J rH -H 4-1 X) 4-1 CU

•H nj o •H •H 3 u H co cd H + H N

T3

Q) rH Cu -tf m ^O

(0 X w

65

Page 78: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

ft)

r-

m

U cd g cu

„ & Q) « « Ö O > >> CO '*-' i rH

•rl 4J n o 4J vH 9J • u •*» •H H • e 4.1 TJ • C0

03 -rl >> o Et >> <U 0)

ß rß •u ÖO .0 rH <-H

<u cd •H •rl • rCl J3

03 -u H rH rH xi cd 0 CO •H ° 9 0 4-1 rH

u ,0 B O CO O •H rH 3 a -° s CO

CÖ cd rH •rl Ja 3 C

13 U O rH O •H •rl

CO O rH CO t>-> a <U !* 1 H TJ

cd & TJ Ü CO CO rH 5 4J (U u cd cd

■u 4J 6-5 cd >«% ü X! H •g o cu •-, -H • 60 -rl to e 00 4J rH

•H cd •H Äi a 1 >-. O hJ 4H iH VO rH CO

TJ 4J 0 O o

> H

w rl. PQ < EH

00

W S !H

o pH

w W O O

EH

O

H

H < EH

O O

I

s H

o 53

u

CU

-P

ü

M

CO

U CD

e >i

rH O

PH

o ■H -p rd >

•r) M <D a rl 0)

>H rH O ft

CD rH

X

n CO

st I

CN

B CO

@-r®

rH cd *

<U 53 TJ co •rl /—N rl m o PÖ

rH CM .0 U CJ •-•

•rl TJ •V

rH CU O Ö •H 0) ,c o 4J o •rl

S 4J

T)

•rl «1

H Ö

r+- -f •H

PS —CO - -PS X

/■—\

O •H

PS —co - -PS LO ^-^ u-i

PC co SS U-1 -rl m

U H - — O CO

1-4- 1 •rl

PS— CO ~ -PS IX

T* O •rl

pj — CO - -PS N-'

u •> CN

55 <-v copS ^-\ -— u>rl

W co <N 1«!

O ■—. ^ O

CM * /—s

CM PS /-v "—' PC -H CO co V 1—1 •rl O H CM

CM^-N CO

/-^ PS PC u-^~' u

Pä -H mco II

CJ rH s^ CJ PS

00 CN o

8

0

0=C->

CN

4." CM

BÖ O

PS

>> <u 0 4J o cd

^3 Ä M CU cd co o o

•H Ä TJ PL,

1 o - n rH O

« 3 rH rH

4H g cd 3 X

•rl CU

.s-* CJ CU

•rl X) 4-1 -rl rH rH U O

Cd O •rl rQ rH T3 O J3 u u +

CTI cn

t-i OJ

J3

TJ a) co o

rH CJ C0

•rl TJ

C0 aj u C OJ

cu 4-1 cu M

TJ

66

Page 79: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

ö o o

> H

w

EH

cd

oo

a

o

w W u o rH*

<

Ü a H S3 H

EH

O U

I

H

o

CO M M (0 e

-P ü

n -p CO

u e

rH o

o •H -p

> •H H 0) Q

H 0) g >i

rH o eu

"Ö dl CO

T3 b0 (3 • (U 1 Ö O +j

4-> X) -H O •H 00 o U ItlTJH 4J Ö Ö

U 1 O s •rl • 60- U rH

C cd ü rl Hid ft o O-fl » CO O H 0 H ^ M-l 13 1-1 - -0 u 1 0) ••> ••«i-l S iH S 4J i—■ >, n) 3 T) cd rH cd 00

•Hg» 4J -H -H co ■rl •« C O «4-1 -H "—• HO oi nl 03 4J •H O O 4-J T3 C0 O 03 O -H O •H C 0) O • 3 •> 4-1 -H & Cd Ofl

r-l O H rH . « ei) O 00 cd >> 4-1 CD 4J vO B

H S | C co i ja X O o o o cd 03 O O

M o o o3 4-1 3 • O <4-l O O VH ö rH i-l O M o * o n) o O O •> CD

PH CM 4-1 Ü

. 1 .

o c/> S n o.

, 1 Ö. 03. vö

1 1 PS — E-<*s 1 1

i O CJ o u 1 -d-

_ 1 1 03 C/3 1

/^"~1 rH T®. M PC I , \C^)\ f^ <! vo Oj NN+^J G »> I cj r

CD T <u

03 «3 § 1 CN

vo©' OH O CJ CJ Pn 0 •V V CD 03 •> 1 OH U

I H •H H T <

,^-v t/1

03 M

6\ i-l C

/7"YI o \>J—u 4 ̂

VO vo U U

1 . 1 \^J cd C/l 1 T, OH Pj 0H|

o=o ii II 1 II II 1 o OH a < H

M-1

CN

1

o 0

<!

C •H CD

H 0)

CN U r-. 03 rH < COi-H 4-)

O 1 rH 1 s a cj o XI

CN CN 02 in CD

OH « w rH CO

+ + + o

CJ

CD CD CO

CM CM •rl

o O BC T3

1 CJ

1 CM

O CO

/4^ &■ L CJ (J> <L>

/^vl ° 1 «-"^ \ T < O

Ö cu u CU

<gh"H § i> h-'a- -6 §> \^^ *"»•■ -f «4-1 1 CJ

6 n o o X)

S3 ■3 •—i

1—I o •*-\

O CTi H O 03

H ON rH H Nw'

67

Page 80: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

u C o u

> H

w HH\ PQ < EH

rd

(TV

oo

to

w 0) s: M >H 3 l-H 4J o U eu 3

U w -P s to H u u o CU J &

o H

H <: EH

O CJ

I

H

O

CO

M U

g CD

>1 rH o

PL,

o •H -p rd >

•rH

CU Q

U CU

>. rH O P4

H

4-1 •H rH •H

■§ o to

)H o o

c -1

X

©7

u o

u 3 m

CO

0) c _ <u g O -H S C O CU U rH 6CU

CO

C-J

CU c/>

X

Ö •H CU M CU

4J

<u CO O

rH O CO

•H ■O

co OJ CJ c CU u cu m cu u

68

Page 81: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

(c) Organometallic Polymers Without Metallocene in Backbone

The polymers in this section are too diverse to be represented by a simple structural formula.

For the most part the polymers discussed in this section display many of the deficiencies shown by the coordina- tion polymers in Section 4.2.2a, namely, low molecular weight, poor solubility and processability, and poor to moderate thermal stability. These polymers have been prepared by condensation processes which have utilized esterification, displacement, and hydride addition reactions. Much of the earlier work in this area dealt with the preparation of tin-containing polymers.

One of the simplest methods for introduction of metal atoms into a polymer backbone consists in esterifying a metal compound containing two displaceable groups with a dicar- boxylic acid (or salt) as shown in Equation (8) [104].

0 OR-, II ii i

R2SnX2 + HOOC—R'—COOH > -4-0C—R' — C— C— Sit

or R2SnO (8)

where X = Cl, CH3COO R = alkyl, aryl

Other tin-containing polymers, poly(dialkyl-diaryltin oxides), were prepared from different organo tin compounds as shown in Equation (9) [105].

(R)2SnCl HoO

-HC1

R I

-Sn-

I R —< n

400°C

(R = 0)

-Sn(R)4

^(R)3Snj20 (9)

The polydialkyltin and polydiphenyltin oxides are crystalline, brittle, insoluble in polar solvents, high melting substances (285-400°C) which decompose at or slightly above their melting points.

69

Page 82: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Reaction of dibutyltin dibutoxide and dibutyltin diacetate gave benzene soluble, linear, low molecular weight (ca. 4,200) polymers with melting points of 96-100°C. The melt could be drawn into fibers and showed good glass adhesive properties [106].

Metallorganic polymers (XIV) containing carborane

_ CH3

-CB10H10C—Sn-

CHß-1

(XIV)

units were prepared by reaction of (CH3)2SnCl2 and/or (CH3)2GeCl2 with dialkali metal derivatives of m- and/or p-carborane at 0°C [107]. Molecular weights were low (<2000 to 9000). The meta carborane polymers were more soluble and lower melting (ca. 220-250°C) than their para analogs (m.p. 365 to>400°C). A composite with good thermal stability was prepared from the m-carborane polymer and spinning grade chrysotile asbestos. The composite exhibited its original tensile strength (1200 psi) after 100 hours air exposure at 800°F (427°C).

Similarly, metal and non-metal containing m-carboranes of structure (XV)

-f-CB1oHioCMR2"+" M = Si' Ge' Sn' Pb n R = CH3, 0

(XV)

were prepared from dilithio m-carborane and R2MC12 [108]. The polymers ranged in melting points from 65 to 250°c and in molecular weights (Mn) from 450 to 9500.

Carraher and coworkers have extensively studied linear organometallic polymers represented by the general formula (XVI)*.

* A number of these polymers contain non-metal atoms, e.g Si, Ge, As, Sb, and are discussed in Section 4.3.2e.

• i

70

Page 83: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

R I

X—M—X + HB—A—BH - I R

(Lewis Acid) (Lewis Base)

,- R

-M— B—A— B-^ I R

(XVI)

(10)

n

Where R = cyclopentadienyl, lower alkyl, phenyl

M = Sn, Pb, Pt, Mo02, Ti, Zr, Hf, U02, Si, Ge, As, Sb, Bi

B = 0, NH

A = nil, alkylene, arylene

Most of this work has been summarized recently [103, 109-111], particularly with respect to polymerization procedures, solu- bility parameters, and thermal analysis. A number of polymers contained cyclopentadienyl-metal units wherein the metal was titanium, zirconium, hafnium, or cobalticenium (also see Section 4.2.2a). Successfully employed monomer intermediates for the chemistry in Equation (10) are shown below in Table V.

TABLE V

COMPONENTS FOR THE PREPARATION OF CONDENSATION POLYMERS CONTAINING METAL, GROUP IVA,OR GROUP VA ATOMS [109b]

Dihydrazines Hydrazines Ureas Thioureas Diamines Dihydrazides

Lewis Bases

Diols Dithiols Diacids Diamidoximes Dioximes

Lewis Acids

RoSlXp R2GeX2 R2SnX2 R2PbX2 2 U02(H20)2

i\<2 FtXo R2AsX2

R3 SbX2

R3 BiX2

Mo02Cl2 R2TiX2 R2ZrX2 R2HfX2

71

Page 84: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

The method of polycondensation was found to be important in affecting polymer yield and molecular weight. Best results were usually obtained with the aqueous solution and normal interfacial systems for Group IVB containing systems and with the general nonaqueous systems for most of Group IVA systems. The latter system employs two immiscible organic solvents with the Lewis base component in the more polar solvent (e.g. nitrobenzene) and the Lewis acid component in the less polar solvent (e.g. hexane).

Several good candidates (XVI) were evolved which showed good thermal stability, but none coupled good physical properties or processability. The Pb (+4) polyester derived from diethyldichloride and tetrafluoroterephthalic acid retained 90% of its weight to 700°C (TGA, air) [112]. Isothermal aging at elevated temperatures was not reported.

Organometallic polymers have also been prepared by hydride addition reactions [113-116] typified in Equation (11).

(R)2MH2 cat.

H2PtCl6, Bz202 or no cat.

R'(CH = CH2)2 R I

-CH2CH2-M-CH2CH2-R'-

R Tl

(ID

R'(C=CH)2

R I

-CH=CH-M-CH=CH-R'- I R n

Where R = alkyl, phenyl M = Sn, Si, Ge

0

** = -®-. <CH2*2,5 ' £-C6H4-X-C6H4-

0 X = Ge, Sn, Sb

72

Page 85: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Products ranged from liquids to elastomers and low melting resins with reported molecular weights up to 100,000. In several cases the products were insoluble and infusible [115]. For a given series of polymers containing Sn the maximum amount of volatiles was released at 300-350°C, while those containing Si this maximum occurred at 500-520°C. The heat stability of polymers decreased in the series Si > Ge > Sn [115].

Organometallic polymers with structures and (XVIII) [117-118] have also been prepared.

(XVII)

-R'M(R2)X

(XVII)

Where R' = perfluorocarbon

M = transition metal

R = carbonyl

x * 1

n

. R R —, I I

—SnO-Si- I I

- R R

(XVIII)

R = alkyl, aryl or oxygen bond to another Si atom

^l-is (e.g.

A typical polymer (XVII)(M = Fe, R' = C.Fg, x = 4) was prepared by reacting Na2Fe(CO)4 with perfluoroadipoyl chloride in tetrahydrofuran [116]. This polymer was stable at 200°C. Polymers with repeating units of -Sn(R)^OSi(R)o~ (R =

hydrocarbon) were prepared by reaction of a disilanol [(0)2Si(OH)2] with a substituted tin oxide or organotin dihalide [117]. The products varied from thermally stable liquids to thermoplastic solids. Increasing amounts of tin increased hardness and vitreous properties. Poly(organotin siloxanes) (XVIII) were prepared by double decomposition of the sodium salts of alkyl or aryl silanetriols and SnCl4 [118]. Polymer proper- ties were largely dependent on Sn content.

Metal dimethylphosphonium bis(methylide) polymers (XIX) were reported recently [119].

73

Page 86: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

C^ /CH3

/Px .CH2

:M \

CR-.

CHr "V] •M'

CH2 CH2' S vv yK

M = metal (+2 valence)

CH-:

(XIX)

These polymers which were prepared from trimethylphosphorous methylide [(CH3)3P=CH2] and an organometallic (R2M) were hydrolytically unstable and decomposed at 180-200°C.

74

Page 87: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

4.2.3 Bibliography

1. Cotter, R. J. and Matzner, M.,"Ring-Forming Polymeri- zations, Part A - Carbocyclic and Metallorganic Rings,"Academic Press (N.Y.),1969.

2. Block, B. P.,"Coordination Polymers," Chapter in Encyclopedia of Polymer Sei. and Tech., 4_, Wiley (N.Y.),1966, pp. 150-165.

3. Bailar Jr., J. C., Inorganic Polymers, Special Publication No. 15, The Chemical Society, London, 51 (1961).

4. Morgan, G. T. and Smith, M. J., J. Chem. Soc., 912 (1926) .

5. Keller, R. N. and Edwards, L. J. , J. Am. Chem. Soc, 74, 215 (1952).

6. Dent, C. E. and Linstead, R. P., J. Chem. Soc, 1029 (1934).

7. Lawton, E. A., J. Phys. Chem., J52, 384 (1958).

8. Lawton, E. A. and McRitchie, D. D., WADC Tech. Rept. No. 57-642 (1957); Chem. Abstr., 55, 18166 (1961).

9. Kanda, S. and Yoshihiko, S. , Bull. Chem. Soc, Japan, 30, 192 (1957).

10. Korshak, V. V., Vinogradova, S. V., and Artemova, V. S., Vysokomolekul. Soedin.,2_, 492 (1960).

11. Berlin, A. A., Cherkashina, L. G., Frankevich, E. L., Balabanov, E. M., and Aseev, Yu. G., Vysokomolekul. Soedin., 6(5), 832 (1964).

12. Marvel, C. S. and Martin, M. M. , J. Am. Chem. Soc, 80, 6600 (1958).

13. Lever, A. B. P., Lewis, J., and Nyholm, R. S., Nature, 189, 58 (1961).

14. Musgrave, T. R. and Mattson, C. E. , Inorg. Chem., 1_{1) , 1433 (1968).

75

Page 88: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

15. Westcott, P. A., Diss. Abstr. Int. B, 32(3), 1497 (1971).

16. Libutti, B. L. , Diss. Abstr. Int. B, 3_2 (4) , 2057 (1971).

17. Gabe, J. and Leonta, D., Rev. Roum. Chim., 14(12), 1535 (1969).

18. Korshak, V. C., Vinogradova, S. V., and Artemova, V. S., Vysokomolekul. Soedin., 2, 498 (1960).

19. Horowitz, E., Advan. Chem. Ser., No. 85, 82 (1968).

20. Marvel, C. S. and Tarkoy, N. , J. Am. Chem. Soc, 79, 6000 (1957).

21. Goodwin, H. A. and Bailar Jr., J. C., J. Am. Chem. Soc., 83, 2467 (1961).

22. Hojo, N., Shirai, H., Fukatsu, K, and Suzuki, A., Kogyo Kagaku Zasshi, 73(11), 2539 (1970).

23. Tomic, E. A., J. Appl. Polymer Sei., 9(11), 3745 (1965) .

24. Hojo, N., Suzuki, A., Yagi, S., and Shirai, H., Makromol. Chem., 178(7), 1889 (1977).

25. Chakravarty, D. N. and Drinkard, W. C., J. Indian Chem. Soc, 37, 517 (1960).

26. Marcu, M. and Dima, M., Rev. Roum. Chim., 13 (3), 359 (1968).

27. Korshak, V. V., Krongauz, E. S., Sladkov, A. M., Sheina, V. E., and Luneva, L. K., Vysokomolekul. Soedin., 1, 1765 (1959).

28. Glukhov, N. A., Koton, M. M., and Mitin, Yu. V., Vysokomolekul. Soedin., 2, 791 (1960).

29. Korshak, V. V. and Vinogradova, S. V., Dikl. Akad. Nauk., SSSR, 13_8, 1353 (1961); Chem. Abstr., 5J5, 21646 (1961); Proc. Acad. Sei., USSR, Chem. Sect. (English Transl.), 138, 612 (1961).

76

Page 89: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

30. Kluiber, R. and Lewis, J., J. Am. Chem. Soc., 82, 5777 (1960).

31. Klein, R. M. and Bailar Jr., J. C., Inorg. Chem., 2(6), 1190 (1963).

32. Korshak, V. V., Sladkov, A. M., Luneva, L. K., and Bulgakova, I. A., Vysokomolekul. Soedin. , 5_, 1288 (1963); Polymer Sei. (USSR)(English Transl.), 5, 363 (1964).

33. Charles, R. G., J. Phys. Chem., 64, 1747 (1960); Resins, Rubbers, Plastics, 2385 (1961).

34. Charles, R. G., J. Polymer Sei., Al, 267 (1963); Resins, Rubbers, Plastics, 557 (1963).

35. Jones, M. E. B., Thornton, D. A., and Webb, R. F., Makromol. Chem., 49_, 62 (1961).

36. Jones, M. E. B., Thornton, D. A., and Webb, R. F., Makromol. Chem., _49, 69 (1961); Resins, Rubbers, Plastics, 1163 (1962).

37. Korshak, V. V., Mirkamilova, M. S., and Bekasova,N. Vysokomolekul. Soedin., Ser.,B9(10),748 (1967).

38. Berlin, A. A. and Sherle, A. I., Inorg. Macromol. Rev., 1(3), 235 (1971).

39. Berlin, A. A., J. Polymer Sei., 55, 621 (1961).

40. Berlin, A. A., Matveeva, N. G., Sherle, A. I., and Kostrova, N. D. , Vysokomolekul. Soedin., A_, 860 (1962); Polymer Sei. (USSR)(English Transl.), 4, 260 (1963); Resins, Rubbers, Plastics, 2095 (1962).

41. Kinoshita, Y., Matsubara, I., Hibuchi, T., and Saito, Y., Bull. Chem. Soc., Japan, 3_2, 1221 (1959) Chem. Abstr., 54, 16982 (1960).

42. Hanke, W., East German Pat. 51,432 (1966); Chem. Abstr., 66, 7196, 76488y (1967).

43. Tuemmler, W. B., U. S. Pat. 3,245,965 (1966).

44. Bailar Jr., J. C., Martin, K. V., Judd, M. L., and McLean Jr., J. A., WADC Tech. Rept. No. 57-391, Part I (1957).

77

Page 90: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

45. Korshak, V. V., Rogozhin, S. V., and Vinogradov, M. G., Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1473 (1962); Resins, Rubbers, Plastics, 2871 (1962).

46. Block, B. P., and Meloni, E. G., NASA Accession No. N65-13167, Rept. No. AD 449 580; Chem. Abstr., 63, 11708 (1965).

47. Owen, J. E., Joyner, R. D., and Kenney, M. E., Abstr. 139th Meeting Am. Chem. Soc, St. Louis, p. 17M (1961).

48. Brown, G. P. and Aftergut, S., J. Polymer Sei., A2, 1839 (1964).

49. Inoue, M., Kishita, M., and Kubo, M., Inorg. Chem., 4, 626 (1965).

50. Lever, A. B. P., Lewis, J., and Nyholm, R. S., Nature, 189, 58 (1961).

51. Bailar Jr., J. C., Martin, K. V., Judd, M. L., and McLean Jr., J. A., WADC Tech. Rept. No. 57-391, Part I (1957).

52. Bailar Jr., J. C., Martin, K. V., Judd, M. L., and McLean Jr., J. A., WADC Tech. Rept. No. 57-391, Part II (1958).

53. Horowitz, E. and Perros, T. P., J. Inorg. & Nucl. Chem. , 2_6, 139 (1964) .

54. Johns, I. B. and DiPietro, H. R. , J. Org. Chem., 27_, 592 (1962).

55. Tseng, H. M., Yu, S. W., and Hsu, J. H., K'o Hsueh Ch'u Pan She, 286 (1963); Chem. Abstr., 63, 14992 (1965).

56. Johns, I. B. and DiPietro, H. R., U. S. Pat. 3,211,698 (1965); Chem. Abstr., 64^ 6845 (1966).

57. Johns, I. B. and DiPietro, H. R., U. S. Pat. 3,169,943 (1965); Chem. Abstr., 62, 10620 (1965).

58. Horowitz, E. and Perros, T. P., J. Res. Natl. Bur. Std., A69, 53 (1965); Chem. Abstr., 62, 13252 (1965).

78

Page 91: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

59. Horowitz, E., Tryon, M., Christensen, R. G., and Perros, T. P., J. Appl. Polymer Sei., 9^ 2321 (1965).

60. Marvel, C. S. and Bonsignore, P. V., J. Am. Chem. Soc., 81, 2668 (1959).

61. Zelentsov, V. V., Pai, W. M., Savich, I. A., and Spitsyn, V. I., Vysokomolekul. Soedin. , _3, 1535 (1961); Chem. Abstr. , 56_, 10375 (1962).

62. Sacconi, L. , Gazz. Chim. Ital., 8_3, 894 (1953); Chem. Abstr., 48, 10471 (1954).

63. Rode, V. V., Nekrasov, L. I., Terent'ev, A. P., and Rukhadze, E. G. , Vysokomolekul. Soedin., 4_, 13 (1962); Chem. Abstr., 5J7, 1055 (1962).

64. Terent'ev, A. P., Rode, V. V., and Rukhadze, E. G., Vysokomolekul. Soedin., 2, 1557 (1960); Chem. Abstr., 55, 19303 (1961).

65. Terent'ev, A. P., Rode, V. V., Rukhadze, E. G., and Filatov, E. S., Proc. Acad. Sei., USSR, Chem. Sect. (English Transl.), 1_38, 620 (1961); Chem. Abstr., 56, 10927 (1962).

66. Terent'ev, A. P., Rode, V. V., and Rukhadze, E. G., Vysokomolekul. Soedin., 5, 1658 (1963); Chem. Abstr., 60, 15992 (1964).

67. Hojo, N., Shirai, H., and Suzuki, A., J. Chem. Soc. Japan, Ind. Chem. Sect., 6_9, 253 (1966); Chem. Abstr., 65, 7282 (1966).

68. Hojo, N., Shirai, H., and Suzuki, A., Kogyo Kagaku Zasshi, 73(7), 1438 (1970); Chem. Abstr., 73, 131428a (1970).

69. Hojo, N., Shirai, H., and Suzuki, A., Kogyo Kagaku Zasshi, 73.(11), 2425, 2539 (1970).

70. Martin, K. V., J. Am. Chem. Soc, 80> 233 (1958).

71. Marvel, C. S., Aspey, S. A., and Dudley, E. A., J. Am. Chem. Soc, 78, 4905 (1956).

79

Page 92: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

72. Xavier, J. and Ray, P., J. Indian Chem. Soc, 589 (1958); Chem. Abstr., 53, 16815 (1959).

73. Terent'ev, A. P., Rukhadze, E. G., and Rode, V. V., Vysokomolekul. Soedin., 4, 821 (1962); Chem. Abstr., 59, 771 (1963); Resins, Rubbers, Plastics, 565 (1963).

74. Terent'ev, A. P., Rode, V. V., and Rukhadze, E. G., Vysokomolekul. Soedin, 4, 1005 (1962); Chem. Abstr., 59, 772 (1963).

75. Murch, R. M. and Dighe, S. V., "Metal-Containing Phosphonitrile Polymers," Contract No. 8-033 3-019, November 1969, AD 865 129.

76. Kajiwara, M., Hashimoto, M., and Saito, H., Polymer, 14, 488 (1973).

77. Bresadola, S., Rosetto, F., and Tagliavini, G., Chim. Ind. (Milan), 50(4), 452 (1968); Chem. Abstr., 69, 3242r (1968).

78. Neuse, E. W. and Rosenberg, H., "Metallocene Polymers", Reviews in Macromolecular Chemistry, 5(1), Dekker, (New York); 1970.

79. Neuse, E. W. , "Metallocene Polymers", Chapter in Encyc. of Polymer Sei. & Tech., 8, Interscience (New York) 1968, pp. 667-692.

80. Pittman Jr., C. U., J. Paint Technol., 3_9, 58 5 (1967).

81. Lorkowski, H. J., Fortschr. Chem. Forsch., 9(2), 207 (1967).

82. Vishnyakova, T. P., Golubeva, I. A., and Sokolinskaya, T. A., Usp. Khim. 3_6 (12) , 2136 (1967); Chem. Abstr., 68, 59890x (1968).

83. Neuse, E. W., Advan. Macromol. Chem. 1, 1 (1968).

84. Okawara, M., Takemoto, Y., Kitaoka, H., Haruki, E., and Imoto, E., Kogyo Kagaku Zasshi, 6_5, 685 (1962); Chem. Abstr., 58, 577C (1963).

80

Page 93: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

85. Volozhin, A. I., Verhovodka, L. Y., Rozmyslova, A. A., and Paushkin, Y. M., Vysokomolekul. Soedin., Ser. B, 19(8), 593 (1977); Chem. Abstr., 87 1532354g (1977).

86. Sosin, S. L., Alekseeva, V. P., Litvianva, M. D., Korshak, V. V., and Zhigach, A. F., Vysokomolekul. Soedin., Ser. B, 18J9), 703 (1976); Chem. Abstr., £6, 173916 (1977).

87a. Bilow, N. and Rosenberg, H., J. Polymer Sei., Pt. A-l, 7, 2689 (1969).

87b. Bilow, N. and Rosenberg, H., U. S. Pat. 3,640,961 (1972) .

88. Kunitake, T., Nakashima, T., and Aso, C., Makromol. Chem., 146^7 9 (1971); Chem. Abstr., 75 110628s (1971).

89. Raubach, H., Falk, B., Stoffer, U., and Oehlert, H., Ger.(East) Pat. 110,890 (1975); Chem. Abstr., 84_, 5654k (1976).

90. Carraher Jr., C. E« and Burish, G. F., J. Macromol. Sei., Chem., A10(8), 1451 (1976).

91. Vodopyanova, A. E. , Losev, Y. D., Paushkin, Y. M. , and Chibrokova, R. V., Dokl. Akad. Nauk BSSR, 21^(7), 611 (1977); Chem. Abstr., 87, 68958v (1977).

92. Mulvaney, J. E., Bloomfield, J. J., and Marvel, C. S., J. Polymer Sei., 62, 59 (1962).

93 Losev, Y. P., Vodopyanova, A. E., and Paushkin, Y. M., Dokl. Akad. Nauk BSSR, 20(5), 431 (1976); Chem. Abstr., 85_, 63362v (1976).

94. Carraher Jr., C. E., Christensen, M. J. and Schroeder, J. A., J. Macromol. Sei.-Chem., All (11), 2021 (1977).

95. Neuse, E. W., J. Mater. Sei., 7, 708 (1972).

96. Lipincott, E. R. and Nelson, R. D., J. Am. Chem. Soc., 77, 4990 (1955) .

97. Sheats, J. E. & Rausch, M. D., J. Org. Chem.,35, 3245 (1970) .

81

Page 94: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

98. Neuse, E. W., private communication.

99. Sheats, J. E., in "Organometallic Polymers," Carraher Jr., C. E., Sheats, J. E., and Pittman Jr., C. U., Eds., Academic Press (New York), 1978, pp. 87-94.

100. Neuse, E. W., in "Organometallic Polymers," Carraher Jr., C. E., Sheats, J. E., and Pittman Jr., C. U., Eds., Academic Press (New York), 1978, pp. 95-100.

101. Pittman Jr., Cu., Ayers, 0. E., Suryanaranan, B., McManus, S. P., and Sheats, J. E., Makromol. Chem., 175, 1427 (1974).

102. Ungureansu, C. and Haiduc, I., Rev. Roum. Chim., 13(7), 957 (1968); Chem. Abstr. , 7_0, 48004b (1969).

103. Carraher Jr., C. E., Am. Chem. Soc., Preprints, Organic Ocoatings & Plastics Chem., 35_(2), 380 (1975).

104. Korshak, V. V., Rogozhin, S. V., and Makerova, T. H., Vysokomolekul. Soedin., 4, 1297 (1962); Chem. Abstr., 5_8, 14112e (1963).

105. Reichle, W. T. , J. Polymer Sei., 4_9, 521 (1961).

106. Zhibukhin, S. M., Dudikova, E. D., and Ter-Sarkisyan, E. M., Zhur. Obshch. Khim., 32, 3059 (1962); Chem. Abstr., 5_8, 10312b (1963).

107. Schroeder, H. A., U. S. Pat. 3,533,968 (1970).

108. Bresadola, S., Rossetto, F., and Tagliavini, G., Eur. Polymer Jr., 4(1), 75 (1968); Chem. Abstr., 68, 96185s (1968).

109a. Carraher Jr., C. E., "Organometallic Polymers," in "Interfacial Synthesis," Dekker (New York), (1977), pp. 367-416.

109b. Carraher Jr., C. E., Am. Chem. Soc, Polymer Preprints, 19(2), 100 (1978).

82

Page 95: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

110. Carraher Jr., C. E. "Solubility Properties of Organo- metallic Condensation Polymers," Chapter in "Structure- Solubility Relationship in Polymers," [Proc. Symp., 1976], eds. Harris, F. W. and Seymour, R. B., Academic Press (New York), 1977, pp. 215-224.

111. Carraher Jr., C. E. and Reese, C. D., J. Polymer Sei., Polymer Chem. Ed., 16, 491 (1978).

112. Carraher Jr., C. E. and Reese, C. D., Angew. Makromol. Chem., 6_5, 95 (1977).

113. Noltes, J. G. and Van der Kerk, G. J. M., Rec. Trav.. Chim., 8_0, 623 (1961).

114. Noltes, J. G. and Van der Kerk, G. J. M., Rec. Trav. Chim., 81, 41 (1962).

115. Luneva, L. K., Sladkov, A. M., and Korshak, V. V., Vysokomolekul.Soedin., 7(3), 427 (1965); Chem. Abstr., 63, 1879e (1965).

116. Rochow, E. G. and Stern, R. L., U.S. Pat. 3,291,783 (1966); Chem. Abstr., 66, 29428m (1967).

117. Foster, W. E. and Koenig, P. E., U. S. Pat. 2,998,440 (1956) and Brit. Pat. 880,910 (1961).

118. Asnovich, E. Z. and Andrianov, K. A., Vysokomolekul. Soedin., 4, 216, 256 (1962); Chem. Abstr., 5_6, 15664b (1962).

119. Schmidbam, H. and Eberlein, J., Z. Anorg. Allg. Chem., 434, 145 (1977).

83

Page 96: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

4.3 Polymers with Carbon and Non-Metal Backbone

4.3.1 Non-Carbon Side Groups

Many of the polymers in this section are structurally unrelated. Members include silicon carbide, polymers derived from phthalocyanine "sandwich" intermediates, carboranyl polymers linked through ester, formal, -S- or -P- groups, decaboranyl polymers, and polymers derived by condensation reactions of boron halides, boronic acids, or simple phosphorous compounds. Several of these polymers will be discussed in the text whereas other representative polymers and methods for their formation are presented in Table I.

Silicon carbide or carborundum (SiC) is unique. It is chemically inert, highly refractory, melts at 2600°C, and fibers have a tensile strength of 3 x 10b psi [1]. The very properties which make SiC unsuitable as a matrix resin for composites make it suitable as the reinforcing fiber. Fibers of SiC like boron nitride or graphite are light weight relative to steel and can serve as a reinforcement in composite materials at useful temperatures of 1100-2550°C. Traditional inorganic fibers such as glass and asbestos have excellent heat resistance to about 550°C but are degraded rapidly by continuous exposure to higher temperatures. Silicon carbide fibers, unlike graphite or boron fibers, offer excellent oxidation resistance.

Development of an economically attractive relatively flawless SiC fiber of sufficient length has been a problem. Recently, high tensile SiC fiber was prepared by heating a poly(carbosilane) precursor to 1300°C [2]. This method has promise for the mass production of continuous fiber. The requisite poly(carbosilane) was synthesized at atmospheric pressure by adding several weight percent of poly(borodiphenyl siloxane)

0- -f(0)2SiOB

/ 3-- to poly (dimethylsilane) . The [(CH3)2Si]n

polymer* was prepared by dechlorination of dimethlydichloro- silane with sodium.

Poly(metal phthalocyanines) have been discussed in Section 4.2.1. Metal-free polymers containing the planar divalent tetradentate phthalocyanine (Pc) ligand have also been investigated as potentially thermally stable substances [3-llb]. The absence of metal is probably desirable because many polyvalent metals catalyze thermal or oxidative degradation.

* See Section 4.3.2a for discussion of poly(carbosilanes).

84

Page 97: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Poly(phthalocyanines) lacking metal atoms are generally prepared by one of two routes, i.e., by use of a difunctional phthalocyanine monomer (I) or via a bis(phthalonitrile) intermediate (II) . In polymers from (I) the backbone alternates oxygen with a non-metal and the phthalocyanine "sandwich" is

NC OVA-^A-<O> )—' x

CN

>- CN

CN (II)

(I) where X = Si, Ge

Y = Cl, OH

0 II

Where A = -CNH-, perfluoroalkylene (R is nil), perfluoroalkylene ether (R is nil), -N=CH-

R = iCRA (A = -CONH-), arylene,

^°Xäjt 4 (A=-CONH-)

independently bonded to the non-metal.

Two members having the "sandwich" structure (I) were prepared as shown in Equation (1) [3-6a].

s

fO /.

CN SiCl/

^CN LOXQJ

-^ I, X=Si, Y=C1

(PcSiCl2) (1)

I, X=Si, Y=OH-£-

rPcSi(0H)2]

H2SO4, or NH3(aq)

H20

Germanium phthalocyanine dihydroxide was similarly prepared using GeCl4. PcSi(OH)2 was dehydrated at 360-410°C to give a poly (siloxane) , -EPcSiofn, which was stable at 520°C in vacuo for several hours and required temperatures in excess of 550°C for decomposition [6b]. -fPcSiOf is very chemically stable [7] It is unaffected by HF(aq.) at 1D0°C, refluxing aqueous

85

Page 98: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

2M NaOH, and H?S04 (room temperature). +PcGeOfn is less stable and only withstands the caustic treatment. The tin containing fPcSnOin polymer is least stable and resists none of the above chemicals [7] .

Metal-free poly(phthalocyanine-siloxanes) with organic groups bonded to silicon are discussed in Section 4.3.2e.

Polymers in which organic groups intervene between phthalocyanine and silicon have also been prepared [3,4,9]. Polymerization of PcSiCl2 with resorcinol gave low molecular weight polymer [3]. Polymerization of PcSi(OH)2 or its phthalocyanine silicon bis(pseudo halides) [(NCO)2 or (NCS)2] with bis(hydroxymethyl)m-carborane gave low molecular weight condensation copolymer intermediates stable to about 360°C in air [4].

Polymers derived from the bis(phthalonitrile) intermediates (II) can be prepared readily by heating with (£200°C) or without (250-300°C) the presence of a metal (e.g.,Cu or Sn+2 in catalytic or stoichiometric amount for metal phthalocyanine formation) [10-llb]. These polymers wxth little or no metal are considered classical organic polymers and will be discussed only because of their close kinship to the polymers derived from intermediates (I). Most of the bis(phthalonitriles) (II) melt at about or below 300°C and can be cast or molded, a property desirable for the fabrication of composites. One resin prepared from (II), wherein the organic bridging ligand was

0 0 If >i

—N C —(CHofö- CNH— , H z ü

easily processed neat and was used to prepare moisture resistant composites which showed good retention of properties to about 240°C [10a]. The limiting factor in thermal stability appears to be the presence of amide groups and not the phthalocyanine structure.

The poly(phthalocyanines) prepared from (II),

0 ° where A-R-A = - NH MD-f^Wo-foT}— CNH ■^K°toltT

86

Page 99: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

possessed good retention of weight and strength after heating at elevated temperatures [10b]. No weight loss was observed on heating in air to 215°C for 569 hours. Heating 125 hours at 275°C + ca. 145 hours at 325°C led to ^vl0% weight loss in the metal-free system. No significant reduction in strength was observed after 100 hours at 325°C. Studies of copper-containing resins indicated that the metal is detrimental to good performance.

87

Page 100: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

H

w l-H- PQ

W

o CQ

U < CQ

S o EH

< W CM D O

En W W a a

I H z o 2

CO

Z O

2 O CQ

s O

EH

U

O Z

Q Z

>H

o cu

(0

(0 e a;

n e >i

rH (U 0 5H

CM 3 ■P

<u o

.a M (0 +J

X3 CO o u

CM

o •H -p rtj >

■H rH Q) a n a) e

i-H o

CM

o o

Q) >> rH -U 42 -H •H H

Cfl vH.

m cd d 4->

■H CO

T3 CJ

Ö -H Cd 4-1

r*> • iH

rH O O U CO T3 0 £> M XI

d o

XI M ai

U X! o -u o

1r 9. 3

a •H cd

o X

i

ii

pq— t«

X

-a

§ M cd X

d r^ •rl CN

CO Q) O M 4-1

id •H H O CO •

CJ

CO O co in cd en

CO 3 O a CO

•H >

4-1 00 o •> 4J

00 <u a)

4-1 rH 4J X •H cd U 4-1 X CO

T3 d o X (-<

OJ

a* O 4-1 o

>4 4-1

G •H cd X o

m—>H

<D 1 d

Ä a) | H u Z >> PQ CM Ai 60

33 rH cd

+ CM C 0) LQ

rH a) d >^ U 00 <u b0 PQ O «H 2 tS

cd w PQ M 4J X cd O cd +

a) II II m x en

X! X Prf Pn « + PQ

CN cn

o cn cu

tH iH M CJJ X <i> 4-1 cd 4-1 cd 4-1 cd !* CO !»

«t ■d ft

cu 0) d c3

d CU <ii r-H • •

rH >MH u t>* d o o

Ai a) CO O rH X d 00 cd ti- •H m

II ll

Ptf erf

XI CN

33 CJ S-' z

PQ

I

Ü7

cn vf

d Ü •H 4-1 H

Cfl N '

cn • (ii 4J ft^ • > IS CN a

rH ON CO O * 0) CO • ofl u CO &

•rl 0 6-S •* T) n a\ u

C) c^ 0 r. 0) O • T) U-l o

4J o ^D

!* X 4J d X) • •H o d

rH & •H cfl n 4-1

R M d u CU OJ 0

P5 4J 4J o o Cfl cu o hJ s !-l ITI

o cn CN o X PQ o cn

CN X

8 + ^w^

!2 + 4.X fh X

o X o CJ

CN CN lOl 0

/-~> JU *<&> O

X u O NT s^ csl

Y #» y CM

1 PQ /-N

1 CN r O CM

psj « CN CM 1 CJ

PQ CN 4-) 8 JO) CMCÖ CO

/^ CJ OJ O O X 33 33

II s L s_x s-x -J- CÜ X

o- m

88

Page 101: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

W 2 o m X u < « a O CO B ft

«<-"\ < D • O T3 t-H* ft rj < Ü O EH O W W ^* a Q

1 H H 53 CO

O W S3 2 J O CQ §3 £

o 2 O O m s § Q U 52

rt! K &H H IS

CO ft w a >H J o ft

to

e CD ft

H CD 0 U

-P 0) Ü

•p CO

o ■H +> (0 >

•H M CU Q

U 0) g >i rH O ft

CU rH CU

IM

X! 4-1 •H • • S cd

a) u CJ rH CNIO T3 «H X 13 /—\ o CU rH cd cu Ä 00 H -H -o M O CO r-l CO H ß v^-' •H O -H P3 o MH S-l e H •©. 4-> O

CO CU 4-1 CO X cu XI U ß O 4-1 H cu cd u •H X

3 -H •u a 5 cd CO 4-1 O UH

•H M CD CO CO O iH CO CO cu cd 4J M O u u •H o CU 4J

cd M d a co 4J CU CU T3 >> cu cd ß 4-1 o rH XI CU -H cd u O CO

5C rH Ö a, PL, cd

cd •H >

X) 1 cu 1 ^i ß

•H

cu OH 4J cd u o X X >% C

t-H O

PM

CN

a o \—^ PQ ■Si u

o U O O o

m CO i

O o PQ o en CM

PC

+

m vo

u 0

1 O O o M

oo a H ß fi i

ß •H 0)

•H CU O TJ 00 4-1 XI 00 rH ß r-l 4-1 o cd

CU 4-1 6 X! B xi « o

ß CO X XJ CO 00 cd cu 00 ß I

•H <f -H H ß X! ß 3 O

II 0) m -H 4J <u

4-1 X 14-1 CO T3 & o

u co oo 3 s

• O CO rH 14-1 U II U CO • O -H a) u co a ß 4J

•H CO ß a cu ß

F^Ta -H |3 CO Cd r< tH £ CD O 0) r-t O O O 0)

r-1 rl P.«H PH D. M

^ CN

X

1 O 1 CM

iH N

w EC o /~N

rH o = U <d- M

"f 1 ß

/© 4? CM

o 1 = u

1 1 *

D •-s CN

B 1 1 CN ß «

N-' ß •*-* r-l O m !a N*^ II II

T 1

CM

w 1 ai >,

m o CM

CN H /—N PM 0) S-i ß - + o <u cd rH ß

-*n U T) o (U ■ HO o = U -H r-l rH

(On Ä X oca HU

1 o Pä cd

1 ■& >^\ PQ <U O" -o o ß T Ns T3 rH -H •*

1 « + ^ O

ii 8 + X ft BÖ OJ § rH

Pi 4,* CM

8 N-7 CM U A 53 K

vo r~-

/-N CO

E§r2 ß P. M >-, ^^ iH

CN O

r^. oo iH

M

= N

a,

R =

alk

y

89

Page 102: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

-P Ö O U

H

w

w. o CQ

< pq

g o w H PM

O rH PH

r< O EH W W £ Q I H 3 co O

O Q CQ

u o o

a

to

g

QJ e rH Q) o ri

CM 3

QJ U rH 3 X5 SH rd +J

.Q CO O U

rd

0 •H •P td >

-H rl CD P

0) e rH O

PM

i* rd X W

I Ö a)

MM o CO

■u •rl rJ

40

„ U iH o crt CO

e vD

n JJ MM CO r^ H M) O C

PM •H

4,c CN

53 CJ O

I O

T

CN 33 a o o i-t

33 o rH

PQ U CN

rc u CN

Pd

o

CM

5 I

CJ o rH

33 o rH©

PQ 33 CJ

33~ +

u a CN •■-s

33 O U CN O 33 33 CJ

co en

CO CU Ü C cd •u CO

s 42 o 3 u CO

MH o

TJ ■u • a) o too CO 0

ö T3 O cd •rl rH H 3 CO

CO •H UH u rH O <u 4-> CO e en 3 H OJ O >. o X! H CO ■U o •rl •H

PM > &

1 CJ

3 rl 4J CO

U 01 •u CO CU >s

rH o o.

r-i CO C o

■H ■u C3 CU • > cu Ö u o 3 o u

CU TJ

O •rl CN M

u rf O o CN H

33 J3 33 CJ CJ O O

CN O •a 33 rH •rl CJ tu Ü

1 o cfl u rH •rl o PQ T3 rH CJ

33 JCM M O 1 " O T-{ M

PQ /+> 13 CJ CN •H

1 CN 8 CJ

cd 33 H' •H CJ O T3 O 33 33

1—' +

o o /S O o cd <t o ^/

«rH ui n M

CD •—■ 1 cu u o CU • H & 0 -U CM r-{ >> & o

rH W a o • cd D-rH cu

O M c • 0) 0 Ö cd o C -H U o Ctt +J 4J o o S-t CO rH X> CN O CU CU M <fr

XI t3 0 cd A rl O o cd 0 ■—' 1 , • a /-N cx| ex 1, O cfl • 0| 4J v-' 00 0

ti rH > rl •H T) rH O O CO Cfl <tj H IH 3 ^2

4,C cd

/—N •rl

4,c r|.C o N—'

UM

3 u | 1 CO

1 u u o o o r-t rH rH H O

33 33 33 •H O O O Xi <-t rH rH ■u

PQ PQ PQ >> 1

o 1 1

rH O

CO I/) to P-

T T r co

u CO

I U -H OnJ rHU

33 O O rH rH33

pq O CJ rH

i pq

ürl U U

+ C_> ^N co I«!

I 3 U rH

OH rHQ)

33 rl O1^

pq 33 U O

1 m en 33 rH CN

O H rH CN

+ O CO

I CJ ^ OX

33 rH 04M rHCU

pq rl U •^

I co O rH CN CJ 33

>i C

SH 0 XI u fd u I 61

o

o l@ I

u o

X o H

CQ U

fd

90

Page 103: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

w z o m « u < m

s o co EH ft

•-N i< D

T3 rH «

ß < Ü o EH u W W

g Q 1 H

H 2 co O w 2 J3

rH- O m Q m

g 3 < u 55 o o m 2 <tj Q o s

rt! ffi EH H S

10 «

X rH

o ft

CO

u cd g CU

r4

e co

-P (U ü

■H 3 -Q ^

£2 CO O U ft

c o -p

> ■H u Q) Q

SH 0J a >i H O ft

o

CO •rl • CO CO (1) M X OJ •u ß & >>rH 03 o

ft u o CU

«4-1 rH

.Q 0) cd M 4-1 (1) CO 0 1 O 4J ß cd o <U 2 j=

eS

u o

EC

II

.. 00 OS

1 Ä R o u -o o ^-\ rH o

EC a o v^/ rH a

PQ sr o EC i vO rt U

1

II

OS

i-l CN rH CN

e TJ o e

•rl 0) cd ■w U •U ^ «rt cd - o CD •rl 0) CO T3 N M O T3 T3 •H rl

•rl c •H cu rH CU rl o cd O N o -u • 9J •u u cd >. co cd O S to rH !S ° !>> U ,Q • O cu o

rH o 3 rH rt rH >,0 o o co •rl T3 ^3 rQ CN ft o

o cu T3 >>

Ä cd 4J . O

<4H « A: o C0 O 4-1 o rH -H

A rH 4J *

CO ß CU

flj • 1 cu •iH • ß cu u"i CO CO H H c_> CU X) -rl rl 4J CO J3 Cd o 4J -rl 4J CO to rH Cd cd J«! o •H & cd cu rt CU r-i 4J rH o ,c cd cu o & S 60 CO

cu

•H rl

cd CN 3 UÄ

4« 1° o

4J •H e cu

rH U

4," fr ß cd

PL) u o ß u o o a r—i O r-i rH o CO CN ^3

EC EC PL, 3 V o O rH

O rH r O

EC ß PQ -H

PQ PQ JC Pi X, CJ C_> p< CN ft

t T

CN

CO

o X,

V CO EC O •—' xs

ft

rH

ß cd

oo rH rl rH c_> o O o X CU u u

cd + + o •rl •H SO äl • rJ rJ ■u EC ' rl U u cd CN •> -u o o cu PQ co rH rH .e ^3

EC EC + < o O + r-i rH CO 1

• PQ PQ CO EC o e u u /—\ P-i o. ̂ rH CU •H •H CN i ->EC X rJ rJ

v-^ K ̂M 0 ^-\ •"■s o O' ̂ O td rQ PH 1 rl ^-> N*^ <4H

cu ii rH

X u cd o rH H •H

EC cd i—i o > rQ r—i ■—t rH cd

CN « ro -tf <r m PQ ß rH cd rH CN rH CN CJ E3

00 l—J t—i CN cd ^Q 1

91

Page 104: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

•w ö o u

H

w CO

W

O PQ

U

PQ

g O CO

CL,

D O

«< O En W W g O I H

53 CO O

O Q PQ 53 «

u 53 O PQ

% U

ffi EH H S CO cd w g >H l-H o PU

o 53

O 53 <

to

n e <u

PK;

e 0) !H

■P 0) Ü

rH 3

«d +J XI CO O SH

On

G O

•H +J

> •rl H 0J Q

U CD e >i rH O

PM

CD rH

►.

H CO •H cd rl CO

g 0) 'rj •**

cd CD

0) U to XI o a) •u 4-1 P. -rl 0

4J X> XI . • 1H 00 rH CD CD

•H O 0 ■-I ,0 co 01 43

0 T3 cd ** •rl 4J 0) ^! CO • H • •> H TJ X> >^ CD 3 f>> CD

CO 4-1 H X H N 4J -H X rH >> U i-l •rl & Cd rH cd -H CO O e 2 rl XI 3 H

■u cd m QJ T) 0 4J 0 • X rS H CO H > 4-> XI

rf—+,e

to — to I I i 2

I f if

I I Z 2

I f 0°

I I

I z >~ « ex

U u I O'

3-i CM

z \ /

I m / \

rH CM

2- ^

i Bl ,

/ 1 1 -

HI —

>7E-0~ /

Z

\

12' 'ZI I I

12 21 rQ

I O

I

M O -J-

HI VO

O

II

X a) rl CD

X!

PQ •rl CN O

cd O

a •rl rl tu + o ■U

Xi cd CN1 o 4-1

pr] M <u ^*i t^ CJ 1 P. cd

!S CM M

33 O

rH CM rH CN

92

Page 105: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

ö o o

w 53 o m « u

g o co

< Ü EH

g Q I H 2 CO O

O Q m z « «2 <:

u 53 o o PQ 2

S tu EH

H

CO

>H hH- o

U

g

u <u g >1

O U

-P dl ü

H -P CO

Ö o

•H +>

> •H

0) Q

S-l 0) g r-l O

CM

rH

w

cm ß

•H •U n) • ti) <_> ,ß o

O ß tO o CN p 1 3 O

-tf CO IN <L) N 4-1

•rt d U o ■

p. o cfl rt > >

in W (N

w

CN ^-\ + (1)

ß U (N •H o

N O

^-^ t0 M dl

O CN

00 P. m •H

<1 u. u v—'

oo >JO H CN

• #> o CO 0

•H O CO o t^CN

O Al M 4J

T3 n) >-. .0 >.

H O & •U o

H 4J cn ß cd • 4J P CO B

•H o C0 o flJ u

PA T3

I

ß •H N n)

,0

C0 •H

CO >■>

O U

0\ VO H CN

1 o o o #. o iH « TJ • ß

. rH rt 4-1 O • £ CO O -H

CNrH ■ A Cß fl

rH CÜ .*! O rH ß iH B -O •H rt

rt « 4J ^ • m co .H er

tu S rt CN J-l o U -H H ß

rt CO -H II

• A • >> PS O P41-I

o S -o o O -H

u « ü (X O CN o> rt

PH rH 13 M

m 4-J es rt CN CU CJ

J3 #\ + ro

ns CN 0

u 11 « CN rt

Pn

O vO CN CN

93

Page 106: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

4.3.2 Carbon Side Groups

(a) Poly(carbosilanes)

This class of materials can be represented by the general formula

r- R I

-Si

R2 I c -

R3

x-

where R, R1, R2, and R3 = H, alkyl, aryl

X = alkylene, arylene, or covalent bond.

On the basis of relative bond energies (Si-C = 78 kcal/mol vs Si-0 = 106 kcal/mol) [27] one would expect poly(carbosilanes) to be less stable than the corresponding siloxane. However, linear silylmethylene polymers have been prepared [28-30] which exhibit superior thermal stability (Tm=340°C) to poly(dimethylsiloxanes). Poly(dimethylsilane), as hexamer or linear polymer, can be con- verted at 300-500°C to high molecular weight poly(carbosilane),

r- H ! Si I CH-

CH2r

which can then be spun into fiber [31]. These fibers in turn can be thermally oxidized to yield fibrous ß -silicon carbide Section 4.3.1).

94

Page 107: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

More recently [32] report has been made of linear copolymers, derived from the reaction (Na/K, THF) of phenyl- methyldichlorosilane and dimethyldichlorosilane, which are stable in air at 350°C and which do not undergo the "unzipping1

reaction. By varying the phenyl content of these polymers one is able to control crystallinity, solvent solubility, and melting point.

Polymers of the type

n i

-si-c.H^nt—. I R

[-fa*-]

o n

(R= C6H5, CH3, C2H5)

have been prepared [33-35] and these materials show no weight loss below 450-550°C, but the most interesting candidates in this class are the poly(silarylenes) which are critically reviewed in Section 5.3.

(b) Poly(carbosiloxanes)

This class of siloxane polymers can be represented by the general formula

R r Si O -R -0

R1 & R2 = alkyl or aryl = arylene or alkylene = covalent bond, R, or silylarylene

Considerable attention has focused upon the linear condensation products derived from the reaction of bis-phenols and dialkyl or diaryl dichlorosilanes [36] (Equation 1).

95

Page 108: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

,6 5

n:Cl—Si—Cl + nHO—Ar—OH

C6H5

-2tiHCl r '6"5 1 L_o—s i—0—Ar-—

C6H5

(1)

(--o-.-oo-o*o-> An alternate synthesis route involves the reaction of silyl- diamines with various bis-phenols [37-38] according to Equation (2).

C6H5 I nH2N—Si—NH2 + nHO—Ar—OH—

I C6

H5

r '6H5 1 —Si—0—Ar—0— +

L I Jn C6H5

2nNH3

(2)

* • -OX)" ~&®- "t£r' CH3

CH3

Polycondensation of diols and bis-(anilino)-diphenyl- silane also yields polyesters of diarylsilicic acids and correspond- ing diols, Equation (3) [39].

nC6H5NH—Si—NH—C6H5 + n.HO—R— 0H^2nC6H5NH2 + Si—0—R—0"

U

(3)

-Jn

96

Page 109: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

The polymers derived from this reaction possess high heat resis- tance (Table I and Figure 1) and are good fiber formers [37].

TABLE I

PROPERTIES OF POLYESTERS OF DIPHENYLSILICIC ACID [37]

Formula of Repeating Unit Tm, °C

C6H5

si—o—fy—o— C6H5

96H5 i-°-o- f6H5

Si—0—f \ f~\—0-

C6H5

*v> JK^'

<?6H5 <?6H5

C6H5 C6H5

C6H5

>300

•Si—0 r ]]—0— 240-245

4H5

>300

C6H5

-Si—0—f^V^T-O— 123-125 I C6H5

-Si-O—^— C—{^~ 0— 99-100

I ■Si—O—(CH2)4—O— 253-257

C6H5 97

Page 110: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

TABLE I (Contd.)

PROPERTIES OF POLYESTERS OF DIPHENYLSILICIC ACID [37]

Formula of Repeating Unit

C6H5 C6H5

-Si—0 (~% {3 °—Si_0 (CH2) 4—0- C6H5 CCH 6n5

Tnif °C

>300

C6H5

«^O-^-O-Q-C C^H 6n5

127-130

mo

so

eo

n

\ 60 o

1 50 O '

Z<7

10

C-tlv J*

r ^H, i

CsHi V"-'

WS 207 J50 *B9 Sit' 600 ISO SiO SO!)

Tempefi'uta, "C

Figure 1.

Dynamic Thermogravimetric Analysis of Polyesters of Diphenylsilicic Acid. Rate of Heating 4 degrees/minute, in Nitrogen Atmosphere [37].

98

Page 111: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Poly-(4,4'-bis-oxy-biphenylene)diphenylsilane

-t C6H5

0—Si—0—C6H4—C6H4-

C6H5

forms films which are cured by heating 3 hours at 298°C. Films aged 100 hours at 427 and 538°C lost 10 and 13% of their weight, respectively. Films with added aluminum can be held unaltered for 25 hours at 427, 478, and 538°C without losing their color or adhesive properties.

Activity in this field remains high as evidenced by the large number of recent publications [39-54]. Yet, in spite of excellent thermal stability characteristics, these materials, with the exception of the poly(silarylene-siloxanes) which are critically reviewed in Section 5.2, suffer from poor hydrolytic stability and are therefore excluded from further consideration.

Poly(carbosiloxanes) of the type

R' = alkyl, aryl R = arylene, carboranyl

were prepared by a bis(ureido)silane-diol (including disilanol) condensation [55-57a,b](also see Sections 4.3.2c and 5.2). Although this polycondensation has afforded very high molecular weight polymers it suffers from two drawbacks; first, the bis(ureido) reagent is easily decomposed; second, the polymeriza- tion has been found difficult to reproduce [55-56].

99

Page 112: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

(c) Poly (Carborane-siloxanes)

Poly(carborane-siloxanes) discussed in this section will be defined by the general formula (I) . othfro carborane containing polymers are discussed in Sections 4.3.zc, a.

r R R

-- Si —CB10H10 C —Si—0—^Sio4

*- R i

R -In

(I)

where R = CH3(67-100% of R's), C6H5 (up to 33% of R's) , CH2 = CH-, CF3CH2CH2-

X = 1-5

Poly(carborane-siloxanes) have been actively researched for at least the last 12 years and have been the subject of several reviews [58-601- The strong interest has been due primarily to the superior thermal stability of carborane-siloxanes compared to conventional silicones. The objective of most, if not all, of the efforts was to evolve a superior elastomer useful over a broad temperature range including 600°F (315°C).

The development of poly(carborane-siloxane) elastomers has clearly been a technical success, therefore this class will be discussed at length in this section. Poly(carborane- siloxanes) were considered seriously for critical review but were eventually abandoned from consideration for three reasons. First, they offer only about a 50°C gain in temperature serviceability over the better currently available poly(siloxanes). Second, the polymers would be extremely costly because of the high cost of dodecacarborane, estimated at about $200/lb. and $100/lb. at volume productions of 100,000 lbs. and 1 million lbs. per year, respectively. The polymer cost would approximate the decacarborane cost because of dilution with the less expensive siloxanyl moiety. Third, replacement of the carboranyl unit by selected arylene or heteroarylene groups should afford polymers of comparable stability and probably with higher physical transition temperatures.

100

Page 113: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Properties of carborane polymers, like conventional silicones, can be structurally modified via the appropriate pendant groups. Specifically, transition temperatures, stability, and solvent resistance can be tailored to a large degree. The polymer series (I) where x is 1 have received the greatest attention because of the optimum balance of elastomeric properties and thermal stability.

Poly(carborane-siloxanes) have found limited com- mercial utility. Currently, they are being used as the liquid phase for high temperature gas chromatography [61] • Carborane- siloxanes can be fabricated into O-rings, gaskets, and wire coverings which are capable of performing at temperatures above 300°C [62,63]. An improved electrical insulation material based on mica and poly(carborane-siloxane) has been reported [64]. Poly(carborane-siloxane) ("Dexsil 300") impregnated mica sheet after curing gave 0.07% weight loss after exposure to test cycle of 1250°F (677°C).

One of the better approaches to prepare high tempera- ture inorganic based elastomers has been the development of carborane-siloxane polymers. The marriage of carborane and siloxane backbones has significantly increased thermal stability [65]. Of several carborane families (CBnHn+2, CBnHn+4, C;/BnHn+2, etc.), the dicarbo-closo-dodecacarborane-12, C2BIQH12' has been studied intensively[65,66J. C2B10H12 has an icosahedral structure and exists as three interconvertible isomers as shown.

475-

600°C

630- -> y^w,

700°C ■-> M3V=3

^-Carborane m-Carbora.ne p-Carborane

• = CH O = BH

101

Page 114: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

The para isomer is the most stable, most difficult to obtain, and potentially the most expensive. All other things being equal, polymers derived from the para isomer afford the highest physical transition temperatures. Unless stated otherwise, the polymers in this section are derived from m-carborane.

Dicarbo-dodecacarborane has been prepared and converted to bifunctional polymer intermediates by reaction of the dialkali salt as shown in Equations (4)-(5):

HC= CH B10H14 2M_*. B10H12M2 * 2.-^10^12

-2M -H2

2BuLi m - C2B10H12M2 < 2"~C2B10H12 4

600°C (4)

(II) where M = Lewis base (e.g., Li, Na)

2(R)2SiCl2,

(ID

then HoO

C02

then H20

R R I I

X— Si— m-CB10H10C-Si—

R R

(III) a; X=C1 b; X=OH

HOOC- m-CB10HioC- COOH

(5)

CH 0, then H1 H0CH2— m —CB10H10C"- CH20H

102

Page 115: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Ideally, self condensation of (III b) or reaction of (III a) should afford high molecular weight poly (carborane-siloxane) . Polymer (I), x=0, R' = CH3 could not be prepared by polymeri- zation of the disilanol (III b) (R=CH3) [651- This relative inertness was attributed to the extremely electronegative carborane nucleus [67]. In general, functional groups attached directly to the carborane nucleus behave chemically as though bonded to an electron-withdrawing group with a large steric requirement and high stability. The desired polymer was prepared [65] as shown in Equation (6).

CH. CH, CH, CH,

f) Cl-Si— CB)0H10C-Si — Cl + n CH.jO-Sl-CD^oC-Si'OCR, (FeCI3)

CH, CH, CH, CH,

2r>- r F

-s-CB^C-Si-O-

CH3 CH3

+ 2nCH3Cl (6)

Crosslinked polymer (I), x=l, R=CHo [68,69] was similarly prepared [65] by reaction of (III b) with (CH3)2Si(Cl)2• Crosslinking catalyzed by FeClß was circumvented by reaction of (III b) (R=CH3) with silyldiamines, e.g. (CH3)2Si(NR2)2• How- ever, low molecular weights (N^ 18,000) were obtained because of dimethylamine induced cleavage of the carborane-silicon bond [55]. This problem was resolved by the use of silyl urea inter- mediates such as bis(N-phenyl-N-tetramethylene ureido)silanes (Equation 7). The by-product urea leaving group is essentially non-nucleophilic and leads to no Si-carborane cleavage. High molecular weight carborane-siloxane polymers, i.e. greater than one million, were prepared by this technique [55,56 ] .

R 1

R I

HO-Si-m-CB10H10C-Si-OH

CH 3

CH

C6H5C1 ^0°C

V

r 11 Si-N-C- -C-N-Si-N-C-IN

H c[ R" C H 56 6 5

(7)

R R

Si---CB10H10C-Si-O-Si-O-

L CH. R'

+ 2,

n

N-C-NHC6H5

103

Page 116: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

The ureido silane reactant was conveniently prepared [55,56] as shown in Equation (8).

R I /

Cl-Si— Cl+2LiN

R

R

"\ ' /"I 20NCO N-Si-N '

I R

0 R 0

II I II / - C-N-Si—N- C-N

I I I N 0 R 0

(8)

Polycondensation via the ureido intermediates have several dis- advantages; the bis(ureido)silane is costly relative to dichloro- silane and is extremely moisture sensitive. More importantly,the polymeri zation to very high molecular weight polymer has been irreproducible [56].

Block copolymers (IV) wherein the blocks consist of poly(carborane-siloxanes) ("soft" block) and polysulfone ("hard" block) have also been prepared using a ureidosilane-silanol poly- condensation reaction as shown in Equation (9) [56 ].

-&

/ Si

0 0

R

\'

C6H5C1

-10°C

n R

4U Si-0-<g)-C^Oy(-Poly3ulfo

C6H5 C6H5 R

ne

where R=CH,

-'13 C6H5 C6H5

(9)

104

R R I I

HO- Si- m- CBioHioC - Si- OH

I I R R \|/

R

C6H5CI

-10°C -5°C

R I

-^arboranesiloxane^-O-Si-^Poly^^0"6^-0^1 <> X I —13

C6H5 C6H5 J

(IV)

Page 117: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Similarly, the hydroxyl terminated polysulfone was condensed with a ureidosilane modified m-carboranedisilanol (V) to afford a random block copolymer.

0 R R

I! I I N— C —N— Si— 0 Si-

I I 0 0

m-C2B10H10 (V )

R

Lower molecular weight carborane-siloxanes (I) where x=2 were also prepared via conventional siloxane condensa- tion processes as shown in Equation (10).

R R R R

i i II X-Si-0-Si-CBinH10C-Si-0-Si— X

| II I R R R R

X=C1, H2O, ether

THF [68]

(I) X= 2 1

X=0H, H2S04

170-200°C [63]

(10)

where R = CH. X=C1, FeCl3,

(C2H50)2Si(R)2

[65]

-> (I),X= 3

Cohydrolysis was used to prepare carborane-siloxanes containing phenyl groups [68 ] bonded to silicon (Equation 11).

R

X - Si— 0 Si — CBinHinC- Si lO11^

R XR

•0 —

R

V Si-hX

R X

(X=C1,0H) +

0 0

X— Si -f- 0 —Si -j— I V I A

* (I)

Si -i— X y

CH3 CH3

(11)

y = zero to 2 105

Page 118: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Groups other than phenyl can also be incorporated by similar cohydrolysis reactions. Methyltrifluoropropylsiloxane groups improve solvent resistance [70J whereas methylvinylsiloxane sites facilitate vulcanization and optimization of physico- mechanical properties.

Physical transitions determined by Torsional Braid Analysis (TBA)[71,72] for some linear carborane-dimethyl siloxanes

i— R

Si-

L R

■CB10H10

—n

(R = CH3, x= 1-5)

show several trends

(1)

(2)

(3)

Both Tm (or Tcryst.) and Tg increase with decreasing n values.

Para carboranes give higher transition tempera- tures than meta carboranes (+33°C increase in Tg, +70°C increase in Tm for n=3).

Effect of greatly increasing molecular weight for n=3 was to eliminate Tm or TcrySt> but had essentially no effect on Tg.

Some selected transitions as determined by DSC [73] are shown in Table II.

TABLE II

PHYSICAL TRANSITION TEMPERATURES OF SELECTED POLY(CARBORANE-SILOXANES)[73]

Carborane

meta para meta meta

{ CH3 CH-

Si-CB10HinCSi- I I

CH3 CH3

R

CH3

CH3

C6H5

CH3

' 1- 0-Si-0-|—

R -'n

R'

CH3

CH3

C6H5

CfiH5

Tm(°C) Tg(°C)

68, 90 -50 220 Not determined

Absent 22 Absent -12

106

Page 119: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Generally, a linear relationship is obtained [71] for homologous series of carborane-siloxanes, by considering their structures to be an alternating copolymer of -CBTQH^OCSI (CH3) 2- and i Si(R)2~0+x linkages by plotting weight fraction of -CB10H10CSi(CH3)- vs 1/Tg.

The unique property of carborane-siloxane elastomers compared to conventional siloxanes such as poly(dimethylsiloxane) is their improved thermal stability. Undoubtedly, incorporation of the carborane moiety increases resistance towards reversion to cyclic siloxane oligomers at elevated temperatures (See also Section 4.1.2a). Most of the thermal studies have employed thermal gravimetric analysis (TGA) in an inert atmosphere and indicate

1. Weight retention to 800°C by TGA decreases linearly as length of Si(CH3)2

_0-chain is increased [71].

2. DTA and DSC showed no indication of reactions to 500- 550°C [65,71].

3. Addition of m-carborane to siloxane chain impedes siloxane chain depolymerization [74], Several polymers showed competing reactions, chain degradation leading to oligomers and rupture of Si-C and C-H bonds liberating hydrogen and methane and crosslinking [ 7 4] .

4. Substitution of methyl groups by phenyl leads to increased weight retention (up to 43%) at 800°C (via TGA) [68,71,74]. One study indicated phenyl groups lead to crosslinking; therefore, less weight loss on heating [74] . Temperature at which onset of weight loss occurs increases (45-50°C) with methylphenyl content.

5. Substitution of methyl groups by trifluoropropyl increases weight loss and lowers the temperature at which onset of weight loss occurs [ 70,75] .

6. Onset of thermo-oxidation (by DSC) occurs at about 330°C in all m-carborane-dimethylsiloxane polymers [65].

7. Ultra-high molecular weight polymer (M^ = 2,230,000) showed a 4% weight gain up to 800°C (TGA, air) [56]. Apparently oxidative crosslinking more than compensates for degradative chain scission processes.

Of interest is the fact that pol^imethylsiloxan^) when compared to poly(carborane-dimethylsiloxane) appears to be more oxidatively stable by DTA and TBA and less stable by TGA studies,

107

Page 120: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Carborane-siloxanes can be compounded and crosslinked using conventional silicone technology [63,76]. Use of siliceous reinforcing fillers led to property improvement [62,63,77,78].

The dramatic effect of molecular weight on properties is quite pronounced as seen in Table III. An increase in polymer molecular weight (Mw) from 150,000 to 250,000 raised the elonga- tion at break from 14 to 550% for a 33% methylphenyl modified polymer and from 60 to 700% for a 33% diphenyl modified polymer [56,70],

Ferric oxide has proven to be an effective antioxidant stabilizer for carborane-siloxanes [56,74]. Some elastomeric properties of a phenyl-modified vulcanizate containing ferric oxide (prepared by in situ thermal decomposition of iron penta- carbonyl) were retained after 1,000 hours air aging at 315°C [56,74]. Without ferric oxide embrittlement occurred after 150 hours.

The effect of polymer structure on vulcanizate proper- ties is predictably as follows; lower siloxane content [79] and higher phenyl content [62] increase high-temperature potential.

Heat aging at 315°C (N2) results in a decrease in modulus, tensile, and elongation at break [74]. This was attri- buted to thermal breaking of crosslinks. The deterioration of properties in air at 315°C is believed to be due to a combination of cleavage of crosslinks and oxidative bond forming processes. Heat aging in air at higher temperatures results in greater property deterioration as shown in Table IV.

Heat aging poly (carborane-siloxane) [I, where X= 1, R=CH3(2/3), 0(1/3)] in nitrogen 24 hours at 340°C resulted in partial thermal crosslinking whereas at 370°C the stock is totally crosslinked. This is probably indicative of bond forming processes at these temperatures and leads to the important suggestion that the practical long-term temperature limit of these particular vulcanizates is about 315°C and the short term limit is 340°C [74,81].

Hydrolytic stability of poly (carborane-siloxane) [I, where X= l, R=CH3(2/3), 0(1/3)] is good [63]. Exposure of a vulcanizate to 91% humidity at 38°C for two weeks did not deteri- orate properties. Immersion in water for one week at ambient temperature and one day at 100°C showed no significant change in tensile strength or elongation. Resistance to common organic sol- vants has also been studied [63,76]. The data show small changes in mechanical properties but large volume changes (>100%) in certain solvents (toluene, xylene, carbon tetrachloride, ASTM Fuel B). These effects are similar to silicon rubber [63].

108

Page 121: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

W S3

Ö O rH H r—i

CO 1 rH

w • • r—i

2 CM vo

2 s— m

O ID

§ ffi EH vo a

< U o u H

11—■ •k w >H n s rH a o o « 0< ii <:

H « ►H

H Q 1—• D

H § u pa

W D 4C 1 co

rH rH O o

3 Z m s D a ■H a

EH O -to-u fa fa o o O o

rH S3 to a o w o H H H EH En a U « m u en 2 W X ■H a D fa u- -CO-U fa O i tf O n < fa ■H a

0H- -CO-U CO IJ i *U < o u H T a u

CM o o o O vO O CU CU rH o o oo o o CM 3 3 • o oo vO vO rH o O m n

vO rH rH

«1

m

CM 3 3

<t o O in O r» in a> CU vO o O <3\ in O rH 3 3 • o r» vO st CM o o co

o CO eg

CM

st 3 3

m o in CM o CO in cu cu U1 o CO in o ON CM 3 3 • o vD r^ CO rH o o csi

rH 00 vO

rH

CO 3 3

O o o o o o CO O O in o o in rH ON rH o> o>

• o rH r-^ st CM

)

rH rH #1

St st 1 st vO

co o O rH o CO o o o o\ o a\ in CO vO CO m o

• vO CM CM rH 1 rH o #1

00 St 1 CO

CO O O CM o cu cu o o in O O <J\ CM 3 3 m CT>

d H

vO st rH

CO

m rH O

3 O 3 c I

/^ S ü

/■^

pj •~\ *~\ &-« T3

IS!" *~\ •H ^^

^ •H CO /-*s ^■\

'W co & J*s •H 6-« cd P. s-x ca CO V^

>s XI ^^ cu ft •~\ 4.» •u X! n v^ 3 u •H X! 3 4J pq o o CD 00 00 X! •H ^^ >—•

O •H rH 3 4J 4J 4-1 u CJ CU 3 CU id OO cd o CU CO IS "3 U 3 60 v-^ u

•H O 4-1 3 CU 3 3 > M 53 00 o u o U rH

CtJ •H 4-1 rH o •H X) rH CO cu 4J en w rH «d <u 3 rH cd fa fa Ü CJ "oo •rl 00 T3 ■3 3 cu 3 co 3 rH rH 4J 4-1

•3 rH 3 3 o CU CU H rH cu O o cu H •H •H Ü JS r4 53 >< H w >H t* s s

u in CM

cd

CO rH a

4-1 •H

CO o CJ CO

•rl >

T3 cu o 3

"0 CU

u PH o rS

XI

X! 00

•H CU & 1-1 cd

rH 3 CJ CU

rH

109

Page 122: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

hH-

< EH

o CO

Elongation at

Break

(%)

o m in co CM oo o m "=f H rH r-\ rH

o o CN m CN

o m CN rH CN

Tensile Strength

(psi)

ro r» ro o m o rH CN 00 r- rH CO KS3 ■^r m H CM

O 00 "3< o r- m

O CTl *3* 00 r- co

Young's Modulus

(psi

)

533

1,117

1,813

730

1,170

1,820

O CN oo m

430

15,600

Aging Time/Testing Te

mp,

(hrs) (°

C)

inmin o o o CN CN CN O O O

oo ro ro

o o o o o o m in m in

rH rH

o G «jr in -H , „ v

343°C 0 25

Aging 16 25

in m CN CN

o -^

CJ Cn

.£_ rH -H N,

00 »< ^ HtJl ;

00 f<

OTT

Page 123: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

(d) Non-Siloxane Carborane Polymers with Carbon Side Groups

Several carboranyl polymers with carbon side groups have been reported which are not linked by siloxanyl or metal atoms. These polymers are linked by non-metal atoms such as nitrogen, phosphorus, and germanium as shown in Table V.

Table V

Carboranyl Polymers Linked by N, P, Ge and Containing Carbon in Side Groups

Ex. Polymer Derivation

1, LiCB10H9BrCLi + PCI3 + CH3OH [ 82] (brominated

m-carborane)

2. LiCB 0H1QCLi + (R)2 GeCl2

[59a]

Polymer Structure — ^r1

•fCBxoHgBrC—P_

-CB10H9Br-C-P *-

OCH7

■f CB10H10 C Ge(R)2 4

Remarks

No particularly interesting properties

n = 26 Also prepared co- polymer with (CH3)2SnCl2

3. [59a]

R R

I I CIGe— CBinHinC— Ge — Cl

R

3ioni(r

+ NH-:

R

I + Ge— CB10H10C— Ge— NH-4j

R

R I

Ge-

I R

n

Stability to £ 450°C m-carborane softened at ca. 95°C but p- carborane softened at 460-480°C, n = <M7

Carboranyl polymers linked by siloxanyl groups are discussed in Section 4.3.2c and carboranyl polymers without carbon side groups are discussed in Section 4.3.1.

Ill

Page 124: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

(e) Miscellaneous B-, B-N-, B-P-, Ge-, Si- containing Polymers

The polymers covered in this section include many boron-nitrogen containing polymers, decaboranyl polymers linked with P-O-P, P-N-P, N-C, and N-C-0 atoms, a silicon phthalocyanine-siloxane polymer, germanium-sulfur containing polymers, and poly(phosphinoboranes).

An immense effort has been made in the prepara- tion of boron-nitrogen containing polymers [83-88]. The impetus for this effort originated in the hope that boron-nitrogen polymers would provide high temperature polymers for aerospace application. This hope in turn was based on the high B-N bond energy (106.5 kcal/mol) and that the B-N bond is isoelectronic with the C-C bond. Several major problems have been associated with the development of high performance B-N polymers. First, many B-N or B-0 containing polymers display hydrolytic instability. Second, the preparation of several classes of B-N polymers (borazynes and borazenes) is hampered by the great propensity for cyclic oligomerization (See also Section 4.1.2). Third, Mast materials in this class exhibited poor thermal stability, low molecular weight, and are infusible. Attempts to circumvent the hydrolytic problem usually involved designing polymers with four coordinate instead of three coordinate boron atoms or by the introduction of bulky groups near the main chain. The cycliza- tion problem was largely resolved by introduction of other hetero- atoms and by linking of boron-nitrogen rings. As a general consideration there is no strong indication that boron-nitrogen polymers with carbon groups will be thermally superior to the best organic polymers.

Some of the more interesting representative B-N containing polymers are shown in Table VI. Other B-N polymers can be found in Sections 4.1.4 and 4.3.1.

Several attractive decaboranyl polymers joined through P-O-P or P-N-P linkages were developed and found useful as binders in asbestos(chrysotile)-reinforced composites [89].

i 0 0 0 0

'/"All ' p—(O)-P äN ~~P— B10H12 ~ P — N : =

0 0 0 $

e^i i)

[Same as (V) in Section 5.5.3e]

n

112

Page 125: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

,HV

where B „H,-

(decaboranyl)

/VK\ [ B!I HI» ] B i-i-

ir

Retention of composite physical properties after air aging at 800-900°F (427-482°C) for long periods (i.e. 1000 hours) was outstanding [89] (also see Section 5.5.3e).

Polymers(VI) and(VII) were prepared as shown in Equations (12) and (13) [90] .

-H«; H20 B10H14 + 2(C6H5)2PC1 =7B1QH12[P(C6H5)2C1]2 >B1QHi2 [P(C6H5)2OH]2

(12)

(VI X- +(C2H5)3N

0 0 /—\ NaNo | I 02 P—<O)-P02 [vm

BlOH12[p(0)2cll2 —-V N3-P-B10H12_P-N3 ^=^- ^ K"-L±' Refluxing 0H or CHCI3

(13)

Polymer (VI) had a molecular weight of about 27,000 and evolved hydrogen starting at 270° to give a crosslinked (via B-B links) polymer. Polymer (VTI) starts to soften at >340°C also accompanied by loss of hydrogen and crosslinking. Polymers (VI) and (VII) were compression molded to afford asbestos-reinforced composites which showed (Figure 2) very good retention of flexural strength and flexural modulus after isothermal aging at 800°F (427°C). Composites of (vil) containing 60% chrysotile retained 97.4% and 91.6% of original weight after 200 and 600 hours, respectively, at 850°F (454°C).

113

Page 126: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

w r3

3

00

ro 00

Cfl « w s r3 o CM

o 2

<: EH

o u z w o o (S EH

H S3

I Z O

O m

CO

fO

e

0) rl

■P U

rl -P en

SH

0) e rH 0

C o

•H -P

> •H (H CD Q

S-l CD e

O 04

CD cs O ß Z « •H

c_> CO ß o 4J "d

•H O 1-1 0) O ca N

. * t~- 4J >■>

CU A CO rH rH o X> CO CO U •H 4-1 CO X)

CO U O >> 3 cd rH Xi

M-l 4-1 ß CO • 4-1

•rl 4-J o CO S ß

« to • o u • »!

H r-t •iH o o cfl o • CO • o o ß 4J ß O CN H > •H m a

ro

\

pa Z— o

/

a- PQ

o N Cfl A rl m O o-

X> rH 4J >i cfl ß CU CO .0 a> ft X>

•H 3 rl 4J 4-1 | T) sal CU •

i rH CO i-H Cfl rl t^ CU X Xi CO 4J -* CU ß CN a •H ^^

•rl u rl 4J o 4J cfl O | (1) 00 ca X <r

T) CU N >-.

o rH 4J o

rl • T3 4J t>> S .0

m • #i o o /—S CN

ß ss UN" o vD 60 ÖÜ r-~ rl ß

cfl •rl co •*-^ rH a •H

•H u Ü cfl o X 4J O CD O ß

Ctf !J\ •rl

r ß -1 ^

pa Z

«L—P^

z- =-/!

L \

>. ß cu X p.

•H U u CO

1 cu ca ß

■rl M-l N o cfl

U ß o o x

•H rH 4-1 >> cfl ß CO cu ß XI cu p.

T3 •H ß M n 4J CJ 1,

z| J* H TJ 3 ß

pa Cfl

X •rl

CO s ß

•H

o o CO A

ro

I O

o<- Ä-S

i

rl O

+ cu

rH O N Cfl U o

pa

o i

ii

Pi

i o ^ • _ jU -H Cd o—to —o

o _ S-H HI

—CO —O I o

I

*0" ß

•rl CU M CU

CU CO o

rH CJ CO

•H 13

CO CU CJ ß cu u cu

iw CU rl

CD rH

CO

ro

114

Page 127: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

rd

U

e 0)

TJ . cu rH TJ N U a) • * o u >>rl IB •a > I»

W> mo -rl rH rH CO C rH Son ß U CO CO o cd o cd 00 cd

•H o a) CM •4 U ^ Ö > „ 4-1 O > U vO O TJ H •H rH oo a) rt rH O H 4-1 >, cd rH 3 a <u m O II II XI •H <4H •H -CO C a > cu 00 O CU 4-> «. cu

a> ed • rH •> G X CO cd xi O cd ■U X O -H 3 d ••> Ü c o 13 M ? cd CMrH r^ •H CO

d <u O 4J ffl -H X CU a c ^ •> -U cd d 14-1 • CO O X Cd -rl CN

<1> cd •H rH MX >. rH CO 55 a CO 1 CO o •* Ö rH o <U *—'

•H •« AS u a o •H >, XI 4-> •> 1-4 T-l U d rH 0) o rH XI •H CO O rH O •H >> a .«o •H p. TJ 00 ÖOo cd O rH X o 33 - O >> cd CU ö d o 4-> O CO 4-> 4-1 CN •° "3 M a •H -H O co m CO Q) CO II rH & •H 4J TI m >> O a cd TJ O 13 cd Cd rH u o M ■H H -- ° a co S rH o o u u u Ü T3 w Pi 4-1 a u g a

d o

H >

W rH-

a

00

00

C/3

P4 W a

o 04

o s H S3 H

12 O U

w CD

§ EH

r3

O

A)

■P o >-i -P en

0) e H o 04

ß o

•rH

-P

> -H

<U Q

>H

a) ß >i

rH O

P4

a) rH

rd X w

r d

SB Z

CN

co to —:

z —m L

d o u o X •H TJ y—\ o d

•H

rH

4J

8 •H TJ

CO •H

cd M 4-J S3 CU H +

ro

I d I—| 1

Pi—pq —cd

en

PQ

+

>4-l CU rJ

CU d cu

rH

f*i

t>< m

©

d

FQ —TSL

CN

o cd PQ cu ^s. XI

CO

ad a

Pi

vO

d ■H a)

cu X 4-1

TJ CU CO

o rH Ü CO

•H TJ

CO CU Ü

d cu u a) m cu u

TJ d

115

Page 128: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

U Ö O

H > w rH1

9

fd

oo

m oo

CO PJ w a

o

u H S3 H

EH S3 O u S3 W O O Pi EH H S3

I S3

§ O

SH

e 0)

0)

p Ü

rH -p CO

SH <1) g >1

rH o

o ■H -P (0 >

•H H (U Q

M 0) e >i rH O

CM

(D rH

e to

w

M cd 0) &

CO 00

O-U „ 1 „U-U

I u

S3 O

8-8 CN

S3 U

T z I

S3 u CM

I S3

CM S3

CO

us I o

S3

00 o

rH cd c nl

TJ cu 4J cd

rH >•,

XI 4-1 cu e c o Ö

cd

u o

«w , CO

Ö •H •

CU X U w CU

XI n

V H

•rt CU cu rH en rO o cd H H a en #1

•H rH •o •

CO tn • fi) »* ü Ö a CU o H •H cu 4J

<4H Ü CU cu M C/D

T5 CU

3 CU C/3

Cd .O

116

Page 129: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

20

15

10

J_ _L 50 ICO 150

HO'JKS AT800°F

2Q0

o i

2.5

2.0

1.5 ce <~

o o

0.5 _L X J 50 100 IM 200

HOURS AT 800°F

Figure 2. Effect of Heat Aging on Properties of Poly(decaboranyl- phosphorus linked) Composites [89].

The composites derived from polymers (VI) and (VII), despite some very attractive properties, had several major limitations (see Section 5.5.3e) and did not merit continued investigation.

A poly(phthalocyanine-siloxane) has been discussed in Section 4.3.1. This polymer had no carbon side groups or flexibilizing links to impart desirable solubility or processing properties. An attempt to overcome these deficiencies was made recently [41]. Polymer (VIII) was prepared by the bis(ureido)silane (or siloxane)-silanol condensation (see Sections 4.3.2c and 5.2.2) as shown in Equations (14),(15).

CHo CH3

-4— SiO—Si—0—

CH3 0

CH3 CHo I I

(Pc) Si—0—Si—OSi—

0 CH-:

0— Pv-J— Jn

(VIII)

117

Page 130: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

CH3 CH3

(CH3)(0)SiCl2 I H20 | PcSi(OH)2 ~ > PcSi(OSi-Cl)2 -^>PcSi(OSiOH)2

0 0 *N (IXa) (14)

CHo CH3 | I (CH3)2SiCl2

Pc=phthalocyanine PcSi(OSi-OSi-OH)2 <; —

(IXb) ,0 CH3 N » then H2°

+ N-C-N-R-N-t-N $■ (VIII) (IXa)

or (IXb) V (0 (15)

CH CH3 ^H3 -* I I

R = -Si- - Si-foSil"! .

CH3 CH3 CH3

The phthalocyanine-siloxane polymers (VIII) have the potential for processing. They were soluble in organic solvents, had relatively low melting or softening points (65-100°C), and approximate molecular weights of 10,000 (degree of polymerization = 11-14) [41] Thermal stability was not reported. However, initial DTA and TGA studies indicate they are at least as good as the poly(siloxanes) [91]. The solubility of polymer (VIII) is in contrast to the polymers synthesized from diols and dicarboxylic acids and PcSiCl2 or PcSi(OH)2 [92] .

Other polymers in this section are shown in Table VII.

118

Page 131: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

u •H

• CD CO 4J sf rH >, CO

1 r-i X> rt cd O O -tfcd T3 r-i T)

l-i r-- •> ^ 4J ft -H « O H vO CN CO rH O • d

O MH II K cd es U - U PC

cu H c o H O -rt o u o, • N' >, CU 43 CO rH

»0 . 4J CO > O cu d mo0S II CO CD 4-1 C i-H CU • CO

to rH CT\ cd to CU O d rH d A? 1 H •• • - rH 4J 1 H CO CU CO O U O • rH «MUß

o 3 1 >> rH CJ

(0 O 4J to o Ai •> t>> « CO rH CO M O -H e m td M g « •» 14—t 4-J

,0 ^ cu to cd -* cd vo > a) • (11 4-1 rH U -H P5

1. wt

stabl

veral

2°C

a

r R =

fusib

300°

d re

s II 11 II II

Pd c Pi d

W O d <D r~~ o c 4J a o o s S 3 to H fn -H cd cd fn fn o m « u <:

53 <D , 1 1 f 1 »

CN H

PC 0) o JH

+J o ,—1 1 c. u

1 f M 1

O

1 1 • CO

1 r 1 > 0 -P CN 1 CO 1 pci

kt

w PC M

1 8-8 1 C/3

cu co i n

8-A-8 1 CO I CO PC 1 PC u —z — G

1 cu

1»— o — ■©. ^

rH 1 1 1

Prf — PM 1 1 ' H CQ 1 ' 4^ CN rH 1 H 1

> EH

0 CM

PC o W H PC iJ s CO I CO

< g 8-1-8 I

EH CO I w 8-8 s >H

o

o 1 CM

8 CM

C r^Ri w 0 LOJ D ■H + ^r o •P 1 w (0 0) cu o § > s d

CU sf r<Ki

KH rj CD

o CO rH

PC !>■> rH

PC o *~9 W Q o rH Cd rH X 1

U CO H s

u d •r( PC r) •>

« CU CN Ü PC

0)

1, X! P. CO

CL, id (u u i d o

•> cu o +

CN

CN U --s 1

O Pi rH rH CN ^\ x-/ « ß H Xi 1 t^ >>CN CO u-ICU

0 CM

CO. PA AS AS 8 + /+N 00 t-T z S rH rH O CN O >. CO S Cd Cd 4-> N^ PC PC rH Xi '-> • z co u id •u m M ii ii 4J o**u L N>rG cu PC n cd 1 Pä S CN PC ' - CU CO 1 II II •5 u Pi tf PC 8 to

PS P3 X!

Q) H

£ ,—, 1—1 (—1 i—i

i-H CO CN <f CO LO *3" vo (0 CT\ c^ ON CT\ X

1—' i—i U—1

w 119

Page 132: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

4.3.3 Bibliography

1. Ardedter, H. F., "Fibers , Inorganic," Chapter in Encyc. of Polymer Sei. & Tech., 6, Interscience (New York), 1967, pp. 610-671.

2. Yajima, S., Hasegawa, Y., Okamura, K., and Matsuzawa, T., Nature, 273, 525 (1978).

3. Luloff, J. and Vogel, C, "High Temperature Resistant Polymers," U. S. Govt. Res. Develop. Rept., 40(1), 19 (1965), AD 608 263; Chem. Abstr., «, 740b (1965).

4. Jaffe, P., "High-Temperature Resistant Phthalocyanine Polymers," U. S. Govt. Res. Develop. Rept., 41(4), 75 (1966), AD 625 680; Chem. Abstr., 67, 22235r (1967).

5. Joyner, R. D., Linck, R. G., Cekada, J., and Kenney, M. E., J. Inorg. Nucl. Chem., 15, 387 (1960).

6a. Joyner, R. D. and Kenney, M. E., Inorg. Chem., 1, 236 (1962) .

6b. Joyner, R. D. and Kenney, M. E., Inorg. Chem., 1, 717 (1962).

7. Kroenke, W. J. Sulton, L. E., Joyner, R. D., and Kenney, M. E., Inorg. Chem., 2, 1064 (1963).

8. Linsky, J. P., "Organosilicon Sheet Polymers and Phthalocyanine Polymers," Diss. Abstr. Int. B, January 1970, 31(6), 3242.

9. Davison, J. B. and Wynne, K. J., Macromolecules, 11_, 186 (1978).

10a. Griffith, J. R. and Walton, T. R., Am. Chem. Soc., Polymer Preprints, 15(1), 787 (1974).

10b. Walton, T. R., Griffith, J. R., and O'Rear, J. G., Am. Chem. Soc. Preprints, Organic Coatings and Plastics Chemistry, 34(2), 446 (1974).

11a. Walton, T. R., Griffith, J. R., O'Rear, J. G., and Reardon, J. P., Am. Chem. Soc. Preprints, Organic Coatings and Plastics Chemistry, 37_(2), 180 (1977).

120

Page 133: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

lib. Keller, T. M. and Griffith, J. R., Am. Chem. Soc. Preprints, Organic Coatings and Plastics Chemistry, 39(2), 546 (1978).

12. Gerrard, W., Goldstein, M., Marsh, C. H., and Mooney, E. F., J. Appl. Chem. (London), 13_, 239 (1963).

13. Pearce, C. A., Brit. Pat. 858,817 (1961); Chem. Abstr., 5_5, 14975h (1961) .

14. Goldschmidt, H. R., Br. Pat. 866,558 (1961); Chem. Abstr., 55, 26524g (1961).

15. Teach, W. C. and Green, J., "Boron-Containing Polymers » Chapter in Encyc. of Polymer Sei. & Tech., 2, Inter- science (New York), 1965 , pp. 581-604.

16. Johns, I. R. and DiPietro, H. R., U. S. Pat. 3,169,943 (1965); Chem. Abstr., 62, 10620g (1965).

17. Green, J. Fein, M. M., Mayes, N., Donovan, G., Israel, M., and Cohen, M. S., J. Polymer Sei., B2, 987 (1964).

18. Dawes, J. W., U. S. Pat. 3,189,580 (1965); Chem. Abstr., 63^ 5852d (1965) .

19. Green, J., Mayes, N., Kotloby, A. P., and Cohen, M. S., J. Polymer Sei., Pt. A2, 3135 (1964).

20. Green, J., Mayes, N., and Cohen, M. S., J. Polymer Sei., Pt. A2, 3113 (1964).

21. Semenuk, N. S., Papetti, S., and Schroeder, H. A., Angew. Chem., 7_9, 1017 (1967).

22. Gerasimov, B. G., Maslyukov, A. P., Berlin, A. A., Kalinin, V. N., and Zakharkin, L. I., USSR Pat. 537,599 (1977); Chem. Abstr., 88^, 153224t (1978).

23a. Reiner, J. R., Alexander, R. P., and Schroeder, H. A., Inorg. Chem., 5, 1460 (1966).

23b. Alexander, R. P. and Schroeder, H. A., Inorg. Chem., 5, 493 (1968).

24. Parvin, K., Plast. Inst., Trans. J., 31(95), 132 (1963).

25. Gamble, E. L. and Gilmont, P., J. Am. Chem. Soc, 62, 717 (1940). —'

121

Page 134: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

26. Atkinson, I. B. and Currell, B. R., Inorg. Macromol. Rev., 1, 203 (1971), and references disclosed therein.

27. Cottrell, T. C, 'The Strengths of Chemical Bonds," 2nd Ed., Butterworths (London), 1967.

28. Nametkin, N. S., Vdovin, V. M., and Zav'yalov, V. I., Vysokomolekul. Soedin., 7_, 757 (1965).

29. Nametkin, N. S., Vdovin, V. M., and Zav'yalov, V. I., DAN SSSR, 169, 824 (1965).

3_0 . Wesson, J. P. and Williams, T. C, "Organosilane Polymers. I. Poly(dimethylsilylene),» Technical Rept. Contract N00014-75-C-1024, December 1977; AD A050 337/5ST.

31. Yajima, S., Hasegawa, Y., Okamura, K., and Matsuzawa, T. See Ref. 2.

32. West, R., David, L. D., and Mazdiyasni, K. S., Am. Chem. Soc., Polymer Preprints, 19 (2), 855 (1978).

33. Luneva, L. K., Sladkov, A. M., and Korshak, V. V., Vysokomolekul. Soedin., 7_, 427 (1965).

34. Korshak, V. V., Sladkov, A. M. and Luneva, L. K., Itzvestiya AN SSSR, OKhN, 728, 1962.

35. Luneva, L. K., Sladkov, A. M., and Korshak, V. V., Vysokomolekul. Soedin., 9, 910 (1967).

3.6. Jabovic, M. , Z. Anorg. Allgem Chem., 288, 324 (1956).

37. Curry, J. E. and Bird, J. D., J. Appl. Polymer Sei., 9, 295 (1965).

38. Dunnavant, W. R., Markle, R. A., Sinclair, R. G., Stickney, P. B., Curry, J. E., and Bird, J. D., Macromolecules, 1, 249 (1968).

39. Kim, Y. K., Bourrie, D. B., and Pierce, 0. R., J. Polymer Sei., Polymer Chem. Ed., .16, 483 (1978).

.40. Andrianov, K. A., Misina, V. P., Makarova, L. I., Slonimskii, G. L., Lyubavskaya, E. A., Bokareva, 0. I., Levin, V. Yu., Savin, V. A., and Raigorodskii, I. M., Vysokomolekul. Soedin., Ser. B, 20^(6), 471 (1978); Chem. Abstr., 89, 147259n (1978).

122

Page 135: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

41. Davison, J. B. and Wynne, K. J. See Ref. 9.

42. Nekhaenko, E. A., Rogovina, L. Z., and Stonimskii, G. L., Kolloidn. Zh., 38J5) , 992 (1976); Chem. Abstr. , 8_5, 193267d (1976) .

43. Lavygin, I. A., Leitan, 0. V., Lysenko, L. S., and Uklonskii, D. A., Teizisy Dokl. Soobshch. - Vses. Simp. Fiz.-Khim. Osn. Primen. Napravlennogo Sint. Poverkhn.-Akt. Veschestu, 49 (1974) ; Chem. Abstr. 8_5, 73742t (1976).

44. Osipchik, V. V., Andrianov, K. A., Akutin, M. S., Kotrelev, G. V., Klabukova, L. F., and Lekishvili, N. G., USSR Pat. 518,507 (1976); Chem. Abstr., 85, 95314x (1976).

45. Luce, J. B. and Vaughn Jr., H. A., Ger. Pat. 2,446,423 (1975); Chem. Abstr., 83, 29217a (1975).

.46. Noshay, A., Matzner, M. , and Williams, T. C. , Ind. Eng. Chem., Prod. Res. Develop., 12(4), 268 (1973).

47. Kantor, S. W. and Juliano, P. C, Ger. Pat. 2,257,206 (1973); Chem. Abstr., 7_9, 67278w (1973).

48. Buechner, W., Noll, W., and Bressel, B., Ger. Pat. 2,162,418 (1973); Chem. Abstr., 7_9, 92984f (1973).

49. Krantz, K. W., U. S. Pat. 3,668,273 (1972); Chem. Abstr., 77_, 76029b (1972) .

50. Noshay, A., Matzner, M., and Merriam, C. N., J. Polymer Sei., Part A-I, 9(11), 3147 (1971); Chem. Abstr., 16_, 100111z (1972).

51. Nogaideli, A. I., Tkeshelashvili, R. Sh., Dzhashiashvili, T. K. and Koyava, N. A., Soobshch. Akad. Nauk Gruz. SSR, 64 (3), 585 (1971); Chem. Abstr., 7_6, 127497s (1972).

52. Arsen'eva, E. D., Aulova, N. V., Fromberg, M. B., Gashnikova, N. P., and Grozdov, A. G., Vysokomolekul. Soedin., Ser. A., 14(1), 212 (1972); Chem. Abstr., 76, 127589y (1972).

53. Severnyi, V. V., Nanush'yan, S. R., Fromberg, M. B., Chernichkina, A. S., Bebchuk, T. S., Pashintseva, G. I., and Andrianov, K. A., Vysokomolekul. Soedin., Ser. B, 12(7), 512 (1970).; Chem. Abstr., 73. 88555a (1970). —

123

Page 136: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

54. Bartholin, M. and Guyot, A., C.R. Acad. Sei., Paris, Ser. C, 2j64 (21) , 1694 (1967); Chem. Abstr., 67, 74076J (1967).

55. Hedaya, E., Kawakami, H. H., Kopf, P. W., Kwiatkowsi, G.T., McNeil, D.W., Owen, D. A., Peters, E. N. and Tulis, R. W., J. Polymer Sei., Polym. Chem. Ed., 15, 2229 (1977).

56. Barker, K. A., Beard, C. D., Bohan, J. J., Dunks, G. B., Hedaya, E., Joesten, B. L., Kawakami, J. H., Kopf, P. W., Kwiatkowski, G. T., McNeil, D. W., Moffitt, R. B., Owen, D. A., Peters, E. N., Poutsma, M. L., Stewart, D. D., and Tulis, R. W., "The Preparation and Properties of D2~m- Carboranesiloxane Polymers," Final Report to Office of Naval Research, Contract No. N00014-72-C-0277, July 1978.

57(a) Lenz, R. W. and Dvornic, P. R. , Am. Chem. Soc, Polymer Preprints, 19(2), 857 (1978).

57(b) Lenz, R. W. and Dvornic, P. R., "Preparation and Evaluation of Exactly Alternating Silarylene-Siloxane Elastomers," Office of Naval Research Report, Contract No. N00014-76-C-700, August 197 8.

58. Peters, E. N. , "Poly (dodecacarborane-siloxanes), " in press, Macromol. Sei., Rev. in Macromol. Chem., 1979.

59(a) Schroeder, H. A., Inorg. Macromol. Rev.,1, 45(1970).

59(b) Schroeder, H. A., "Carborane Polymers, A Summary", Contract No. N00014-71-C-0003, April 1972, AD 742444.

59(c) Schroeder, H. A., Rubber Age, 101, 58 (1969).

60. Stumpf, von W. , Chem. Zeitung, 99_, 416 (1975).

61. Yancey, J. A. and Lynn, T. R., Analabs. Inc. Research Notes, L4 (1) (April 1974).

62. Peters, E. N., Stewart, D. D., Bohan, J. J., Kwiatkowski, G. T., Beard, C. D., Moffitt, R., and Hedaya, E., J. Elastomers & Plast., 9, 177 (1977).

63. Schroeder, H., Schaffung, 0. G., Larchar, T. B., Frulla, F. F., and Heying, T. L. , Rubber Chem. Technol., 3_9, 1184 (1966) .

64. Bayles, F. D. and Dudley, M. A., U. S. Pat. 3,989,875 (1976); Chem. Abstr., 86, 30705b (1977).

124

Page 137: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

65. Papetti, S., Schaeffer, B. B., Gray, A. P., and Heying, T. L., J. Polym. Sei., A-l, 4, 1623 (1966).

66. Williams, R. E., Pure Appl. Chem., 29, 569 (1972).

67. Hawthorne, M. F., Berry, T. E., and Wegner, P. A., J. Am. Chem. Soc, 87, 4746 (1965).

68. Knollmueller, K. O., Scott, R. N., Kwasnik, H., and Sieckhaus, J. F., J. Polymer Sei., A-l, 9, 1071 (1971).

•6.9. Dietrich, H. J., Alexander, R. P., Heying, T. L. , Kwasnik, H., Obenland, C. 0., and Schroeder, H. A.,Makromol. Chem., 175, 425 (1974).

70. Peters, E.N., Stewart, D. D., Bohan, J. J., Moffitt, R., and Beard, C. D. , J. Polymer Sei., Polym. Chem. Ed., 15_, 973 (1977).

71. Roller, M. B., and Gillham, J. K., J. Appl. Polymer Sei., Y]_, 2141 (1973).

72. Roller, M. B. and Gillham, J. K. , Polym. Eng. Sei., 8_, 567 (1974) .

73. Peters, E. N., Kawakami, J. H., Kwiatkowski, G. T., McNeil, D. W., and Hedaya, E., J. Polymer Sei., Polym. Phys. Ed., 15, 723 (1977).

74. Peters, E. N., Stewart, D. D., Bohan, J. J. and McNeil, D. W., J. Elastomers & Plast., 10_, 29 (1978).

75. Scott, R. N., Knollmueller, K. O., Hooks Jr., H., and Sieckhaus, J. F., J. Polymer Sei., A-l, 10, 2303 (1972).

76. Peters, E. N., Hedaya, E., Kawakami, J. H., Kwiatkowsi, G. T., McNeil, D. W. , Tulis, R. W. , Rubber Chem. Technol., 48_, 14 (1975) .

77. Boonstra, B. B., Cockrane, H., and Dannenberg, E. M., Rubber Chem. Technol., 48, 558 (1975).

78. Bachmann, J. J., Sellers, J. W., Wagner, M. P., and Wolf, R.E., Rubber Chem. Technol., 32, 1286 (1959).

79. Mininni, R. M. and Tobolsky, A. V., J. Appl. Polym. Sei., 16, 2555 (1972).

125

Page 138: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

80. Peters, E. N. , Bohan, J. J., Hedaya, E., Kawakami, J. H. and Kwiatkowski, G. T., U. S. N. T. I. S. AD/A Rept., No. 003544/4GA (1974).

81. Sperling, L. H., Cooper, S. L., and Tobolsky, A. V., J. Appl. Polym. Sei., 10, 1725 (1966).

82. Alexander, R. P., and Schroeder, H. A. See Ref. 23 b.

83. Atkinson, I. B. and Currell, B. R. See Ref. 26.

84. Läppert, M. F., "Polymers Containing Boron and Nitrogen," Chapter on "Developments in Inorganic Polymer Chemistry", Elsevier (Amsterdam), 1962.

85. Mangold, D. J., Appl. Polymer Symp., 11, 157 (1969).

86. Korshak, V. V., "Heat-Resistant Polymers", Halsted Press (New York)(1971, pp. 337-349.

87. Baijal, S. K., J. Scientific & Ind. Res., 33(7), 328 (1974).

88. Spitsyn, V. I., Sevastja, T. G., Kolli, I. D., and sadykova, E. M., Z. Chem., 14(12), 459 (1974).

89. Schroeder, H. A. and Trainor, J. T., "Fiber Reinforced Borane-Based Resin Composites", presented at the 12th National SAMPE Symposium, October 1967; Science of Advanced Materials and Process Engg. , 12_ (1967) AC-2.

00. Schroeder, H. A., Reiner, J. R., and Knowles, T. A., Inorg. Chem., 2, 393 (1963).

91. Wynne, K. J. , private communication.

92. Meyer, G. and Wohrle, D., Makromol. Chem., 175, 714 (1974).

93. Wagner, R. I., and Caserio, Jr. F. F., J. Inorg. Nucl. Chem., 11, 259 (1959).

94. Hofmann, E., Brit. Pat. 941,556 (1963); Chem. Abstr., 60, 4305g (1964).

95. Green, J., Fein, M. M., Mayes, N., Donovan, G., Israel, M., and Cohen, M. S., See Ref. 17.

96. Henry, M. C. and Davidson, W. E., Annals of N.Y. Acad. of Sei., 125, 172 (1965) .

126

Page 139: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.0 CRITICAL REVIEW CANDIDATES

5.1 Poly (arylsilsesquioxanes)

5.1.1 Introduction

This class of polymers, having the empirical formula [(ArSiO-^ 5)2nr Ar = aryl] are thought to be best represented by structure (I).

(I)

Poly (arylsilsesquioxanes), or ladder siloxanes, have been the subject of intense interest since their discovery in 1960 and form the basis of two excellent reviews [1,2]. Recent reviews [3, 4] deal more intimately with the physical properties of these materials, as they relate to application as matrix resins for the fabrication of composites.

Those factors which make poly(arylsilsesquioxanes) attractive as a candidate system for this study include high molecular weight, excellent oxidative stability, resistance to hydrolysis (acidic or neutral conditons) and reasonable cost of synthesis.

5.1.2 Method of Preparation

Hydrolysis of alkyl or aryl substituted trialkoxy silanes was shown to yield low molecular weight oligomers (II) similar to those obtained from the hydrolytic condensation of alkyl substituted trichlorosilanes [5, 6]. Further investiga- tion demonstrated that these oligomers possess a cage-like structure [7, 8] as shown in Equation (1).

127

Page 140: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

n RSiClj + 3n H20 lS'C . -0-SI—O-

OH

i— + 3n HCI

.6-8

R - Ar and alkyl

R—SI—O ,SI—R

/I /■ R_Si__£o Sl-Rl

ai—

/I

l/° 1/°, R—SI O SI—R

(1)

(ID

Hydrolysis of phenyltriethoxy silane in the presence of a quaternary base using methyl isobutyl ketone as the solvent system resulted in formation of a polymer claimed to possess the ladder structure (III) in Equation (2)[9].

An C6HsSi(OC2Hs)3

HiO

OH"

(2)

(III)

128

Page 141: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Optimization of reaction conditions for the base catalyzed equilibration of the hydrolysate obtained from either phenyltrichlorosilane or phenyltriethoxysilane (high concentration/250°C-Dowtherm) led to the isolation of soluble ladder polymers of molecular weights of the order of 106 [10- 13a] .

The same reaction carried out in dilute solution resulted in formation of cage-like structures, (IV), (V), (VI), (VII), and (VIII).which are thought to be readily converted to ladder polymers (Equation 3) Ll3b-17j via prepolymer (X)

it

(IV) (V) (VI)

M_K &

(VIII)

(VII)

N.B. The eight-membered ring segments are depicted by squares, but the presence of oxygen between each pair of silicon atoms is to be assumed, as is an alkyl or aryl substituent at each corner silicon atom (as suggested by the CH3-Si in the first structure) [13a].

129

Page 142: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

KOH

(3)

(X)

Considerable effort has been put forward in support of the ladder type structure [18, 19, 20], but the matter is still not fully resolved. Arguments in support of the ladder configura- tion based upon equilibrium effects at high concentration can also be interpreted in terms of a random array of polycyclic cages (XI) [21, 22] :

(XI)

The fact that no silanol functionality is detected,coupled with the physical properties exhibited by this material, leads to the inference that cyclization of chain ends has occurred. This can interpreted as a doubling back of chain ends to effect a type of internal recyclization that results in a disordered structure.

Regardless of their true structure, poly(arylsil- sesquioxanes) possess unique and potentially useful characteris- tics [23] and considerable attention has centered around their use as heat and corrosive-resistant laminates for use in electrical insulation, coating exhaust pipes and ovens [24, 25], and as molding compositions for prepreg carbon filled plastics [26].

130

Page 143: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Hydroxy terminated poly (phenylsilsesquioxanes) (XII)

R R 1

HO—SI- -0—Si

HjO > 1 0

| 1

O | 2n RSICI3

0«C

HO—Sl- -O—Si

R-C6H5,CtH,j 1 R

1 R

--OH

OH (4)

(XII)

prepared by the low temperature hydrolysis of trichlorosilanes [21,28] (Equation 4) will copolymerize with difunctional silane monomers to yield copolymers possessing intrinsic viscosities of 0.17-0.29 dl/g [28-30]. In addition, (XII)(n = 280) can undergo further self-condensation to yield higher molecular weight analogs exhibiting intrinsic viscosities of 0.56 dl/g [25]. Extremely high molecular weight (intrinsic viscosity = 3.1) block copolymers can be prepared directly from low molecular weight organopolysiloxanes via reaction with either trifunctional arylsilane hydrolyzate or arylsilsesquioxane polymers under alkaline rearrangement/condensation conditions [27].

For a treatment of those conditions of synthesis which have been shown to affect the resulting structure of poly(silsesquioxanes), the reader is advised to consult the references indicated [31-36].

5.1.3 Properties

Poly(phenylsilsesquioxanes),prepared by elevated temperature equilibration (250°C) of a concentrated solution of phenylsilsesquioxane prepolymers, were more resistant to hydrolysis than corresponding poly (phenylsiloxanes) [18]. Thermal aging in steam is comparable to that observed in air and tensile strengths almost twice those recorded for analogous siloxanes have been observed.

131

Page 144: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Analysis of the TGA (air) curve for poly(phenylsil- sesquioxane) indicates a break at 525°C. Thin film strips were unaffected by exposure for short periods at temperatures of 650°C or instantaneous exposure to red heat [18]. Heating to 900°C did not cause degradation of the polymer backbone but weight loss did occur due to oxidation of the phenyl groups [28].

we Th

As already indicated, polymers of very high molecular ights can be prepared while maintaining good solvent solubility, is allows for the casting of tough transparent films exhibiting

Tg values of the order of 300°C [12] value of 400°C was observed [37]

In one instance a Tg

Additional thermal stability is claimed via the inclu- sion of stabilizers such as CuSi03 [38], although the effect appears to be most pronounced with poly (alkylsilsesquioxanes) (XII). Similar results were obtained when salts of Al, Ti, and Sn were reacted with poly(alkyl or aryl sesquioxanes), leading to incorporation of the metal as shown in (XHIa and b) [39,40,41].

R R

Si SI \

< ) Si Si.

/|V| ° R R

R R

Si Si

4 \>

—M—

\ 0

R R

-JA]. Si SI —

4 \ \ / Si Si ivrJ

R R-

/ —M

SI SI—

R R

_ n . '' — m *- (R=CH3 or 0) (M=Al,Ti',Sn; R=CH3 or 0)

(XHIa) (XHIb)

It is theorized [42] that introduction of the metal leads to an increase in the polarity of the Si-R bond. If thermal degradation indeed proceeds via nucleophilic attack of oxygen on either the Si-R or Si-0 bond, thermal stability is expected to increase when R = alkyl and to decrease when R - aryl, which corresponds to the observed facts.

Further investigation into the mechanism of thermal degradation of these materials has shown [4 3,44,45] that the oxidation rate is dependent upon the oxidative susceptibility

132

Page 145: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

of the organic substituents and the tendency of the siloxane skeleton to undergo rearrangement. In addition, the relative frequency of depolymerization increases as the alkyl to phenyl ratio increases. Degradation rate was also found to depend upon the presence of ionic centers, defects, and struc- ture regularity [44].

Several peculiar features of this polymer have been established and have been related to chemical structure [46,47]. The stress-strain curves (Figure 1) provide an estimate of strength of system under study.

400

100

Figure 1. Stress-strain plots for organosilicon ladder polymers at T= 100X. (1) poly- plicnylsilscsquioxancD;] = 2.8;(2)polyphcnylisobuty!silscsquioxanc[i;] = 1.9,66% phenyl groups; (3) polvphenylisoamylsilscsquioxanc [>/] =» 2.2, 75% phenyl groups; (4) poly- phcnylisobutylsiiscsquioxanc [>;] = 1.9, 75% phenyl groups; (5) polyphenylisobutylsilscs- quioxanc [i;] = 2.5, 75% phenyl groups. [46]

As another example (Figure 2), a study was made of the relative ultimate elongation for poly(phenylisobutylsilsesquioxane).

133

Page 146: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Figure 2. Temperature dependence silscsquioxanc) [46]

of ultimate elongation of pol^hcnylisobutyl-

This curve can be arbitrarily divided into three regions characterized by various degrees of tensile deformation. At temperatures ranging from -100 to -2 0°C, deformation is equal to 3-5% and is completely reversible, i.e. elastic. Within the temperature range between -20 and +60°C the deformation limit amounts to 2 0%; with the load removed, this deformation is completely or partially (not less than by half) reversible. The third temperature range (over 60°C) is characterized by a sharply increased deformation limit (up to 100%) which is also, to a great extent, reversible. A one-hour annealing of samples at 140°C contributes to a greater percentage of reversible deformation; after annealing, the total reversible deformation is about 75% of the initial deformation. The observed effects may be illustrated by measuring the shrinkage of preoriented films of organo-silicon ladder polymers upon subsequent heating (Figure 3).

134

Page 147: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

T'C

20 U

Figure 3. The shrinkage kinetics of prc-oriented films of (1) pol)(phcnylsiIscsquioxane)and (2) pol)(phenylisobutylsilscsquioxane)upon heating. [47]

The dynamic Young's modulus (E') and the tangent of the mechanical loss angle (tg o) were measured over a wide temperature range. The temperature dependences of E1 for various polymers are presented in Figure 4. As can be seen,

60 r

300

Figure h. E'vs temperature plots for (1) poly^henylsilscsquioxanc) (2) pol](phcnyliso. silsesquioxane} (3) poltfhenylisoamylsilsesquioxan^ (4) and pol^hcnyl-n-hexylsilscs.

quioxanc)\vith the phenyl-alkyl group ratio 3:1. [ 4 JJ

135

Page 148: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

with the temperature rise from -150 to +300°C, the E'-value goes from 3-5-1010 down to 5-1Q9 dynes cm"2. It is noteworthy that the absolute E'-values and the temperature coefficients of their variations over the temperature range from -150 to 0°C are comparable with those for several organic polymer systems, e.g., polystyrene or polyethylene terephthalate. An investiga- tion of the temperature dependence of tg a has revealed that the two regions of decreasing E»-values correspond to the two wide regions of relaxation processes which [37] have arbitrarily called the regions of low- and high-temperature transitions. A typical averaged temperature dependence of tg 6 is shown in Figure 5.

tg«)

Ö.1-

0!08'

0.06

0.04

-160 -80 ■80 160 240

T'C

320

Figure 5 .Typical averaged lg (5-tcmpcraturc plot for organosilicon ladder polymers. [47]

An analysis of this plot shows several relaxation maxima in the low-temperature region (-145, -100, -70, and -30°C). Here the tg 6 values are at maximum within 0.06-0.1 and just correspond to those typically observed on secondary transitions in organic polymers. Neither the position of the relaxation maxima on the temperature scale nor their intensity is dependent on the type and relationship of the organic radicals around the main chain. The fact that the character of the low-temperature transitions is independent of the chemical structure of organo- silicon ladder polymers, each of which contains a particular number of phenyl groups, suggests that they are related, directly or indirectly, to the appearance of new degrees of phenyl group motion at elevated temperatures. Torsional vibrations of side phenyl groups are known to develop in some polymers over tempera- tures from -2 00 to -100°C. One can assume by analogy that over

136

Page 149: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

this temperature range the phenyl groups in organo-silicon ladder polymers acquire an additional freedom of torsional vibration due to weaker interaction therein upon heating. This, in turn, may initiate local motions of the main chain which,rigid as it is, is in principle capable of slight torsion around its longitudinal axis.

Tensile strengths for poly(phenylsilsesquioxane) were measured and found to be 3400-6000 psi [18,9,15] with elongations ranging from 3-16%. At 250°C, the polymer possess- ed a tensile strength of 1090 psi and an elongation of 12%, indicating a Tg >250°C.

5.1.4 Summary and Recommendations

On the basis of the published data, poly(aryl- silsesquioxanes) would appear to be ideal candidates for preparing advanced composite materials. Molecular weights in excess of one million have been achieved while maintaining good solvent solubility and processability, and thermal and chemical resistance is claimed to be excellent. The logical question is then — if these materials are truly superior, why haven't they been commercialized?

Part of the answer is to be found in the controversy surrounding the nature of the polymer structure. There is indeed serious doubt regarding the proposed ladder structure, and many of the extrapolated claims which were based upon this unique configuration have been substantially modified. Another part of the answer lies in the inability to prepare polymers possessing consistent physical and chemical properties. This difficulty stems from variables associated with the synthesis of these materials.

The preparation of poly(arylsilsesquioxanes) involves a three step reaction:

(1) Generation and isolation of the aryl- trihalosilane hydrolysate.

(2) Thermal conversion of the hydrolysate to prepolymer (not isolated).

(3) High temperature (250°C) conversion of prepolymer to polymer.

137

Page 150: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

The first stage is rather straight forward and proceeds with an efficiency of approximately 50%. Thermal conversion to prepolymer is a complex reaction and leads to a diverse mixture of products (cage monomers, cage and linear polymers). The distribution of these products is controlled by reaction temperature, solvent, and catalyst and significantly affects the nature of the polymer formed during the high temperature conversion step. Equally important in achieving a good yield (70%) of polymer is the concentration at which the conversion is carried out. Concentrations just below the gel point (80- 90%) have been found best but gel formation is difficult to avoid. An excellent treatment of the effect of reaction condi- tion upon polymer structure has been prepared [3].

It would therefore appear that continued optimiza- tion of reaction conditions must be carried out before a meaning- ful candidate can be selected. Improved control of prepolymer product distribution may lead to interesting block copolymer systems. The per pound cost of polymer derived from phenyltri- chlorosilane ($2.36/lb) is estimated to be approximately $25. This is based on achieving a 40% overall conversion to polymer.

138

Page 151: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.1.5 Bibliography

1. Cotter, R. J. and Matzner, M., "Ring-Forming Polymerizations, Part A - Carbocyclic and Metall- organic Rings," Academic Press (N.Y.), 1969.

2. Andrianov, K. A., "Metalorganic Polymers," Eng. transl., Interscience (New York) 1965.

3. Tverdokhlebova, I. I. and Larina, T. A., Uspekhi Khimi., 44, 367 (1975); Chem. Abstr., 82, 156774z (1975) .

4. Andrianov, K. A., Zhdanov, A. A., and Levin, V. Yu., Ann. Rev. Mater. Sei., 8, 313 (1978).

5. Sprung, M. H. and Guenther, F. 0., J. Am. Chem. Soc, 77, 3990, 3996, 4173, and 6045 (1955).

6. Sprung, M. H. and Guenther, F. 0., J. Polymer Sei., 28, 17 (1958).

7. Andrianov, K. A., Dokl. Akad. Nauk. SSR, 140, 1310 (1961); Chem. Abstr., 56, 8737c (1962).

8. Sprung, M. H. and Guenther, F. 0., U. S. Pat. 3.017.385 (1962); Chem. Abstr., 56, 10190h (1962).

9. Brown Jr., J. F. and Vogt Jr., L. H., U. S. Pat. 3.017.386 (1962) Chem. Abstr., 57, 13993h (1962).

10. Brown Jr., J. F., Vogt Jr., L. H., Katchman, A., Eustance, J. W., Kiser, K. M., and Krantz, K. W., J. Am. Chem. Soc, 8_2, 6194 (1960).

11. Brown Jr., J. F., Vogt Jr., L. H., and Prescott, P. I., J. Am. Chem. Soc, 86_, 1120 (1964).

12. Pavlova, S. A., Pakhomov, V. I.,and Tverdokhlebova, I. I., Vsysokomolekul. Soeden, 6, 1275 (1964); Chem. Abstr., 6_2, 1751 (1965).

13a. Lichtenwalner, H. K. and Sprung, M. N., "Silicones," in Encyc. of Polymer Sei. & Tech., 12, 501, Interscience (New York) 1970.

13b. Andrianov, K. A., Kurakov, G. A., Shushentsova, F. F., Mgagkov, V. A., and Avilov, V. A., Polymer Sic (USSR) English Translation), 7, 1637 (1965).

13c Andrianov, K. A., Kurakov, G. A., Shushentsova, F. F., Magagkov, V. A., and Avilov, V. A., Proc

139

Page 152: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Acad. Sei. (USSR) Chem. Sec. (English Translation), 166, 151 (1966).

14. Guyot, A. and Cuidard, R. , Compt. Rend., C 264, 1585 (1967); Chem. Abstr., 67, 73891J (1967).

15. Katchman, A., U. S. Pat. 3,162,614 (1964); Chem. Abstr., 62, 10554f (1965).

16. Brown Jr., J. F., ü. S. Pat. 3,000,858 (1961); Chem. Abstr., 56, 6001c (1962).

17. Frye, C. L. and Collins, W. T. , J. Am. Chem. Soc. , 9_2, 5586 (1970).

18. Brown Jr., J. F., J. Polymer Sei., C, 83 (1963).

19. Helminiak, T. E., Benner, C. L., and Gibbs, W. E., Am. Chem. Soc, Polymer Preprints, 8_, 284 (1967).

20. Brown Jr., J. F. and Slusarczak, G. M. J. , Am. Chem. Soc, Polymer Preprints, 8_, 157 (1967).

21. Frye, C. L. and Klosowski, J. M. , J. Am. Chem. Soc, 9_3, 4599 (1971).

22. Andrianov, K. A., Slonimskii, G. L, Zhdanov, A. A., Tsvankin, D. Ya., Levin, V. Yu., Papkov, V. S., Kvachev, Yu. P., and Belavtseva, E. M., J. Polymer Sei., Polymer Chem. Ed., 14(5), 1205 (1976);Chem. Abstr., 85, 22183u (1976).

23. Frye, C. L., private communication.

24. Krantz, K. W., French Pat. 1,484,327 (1967); Chem. Abstr., 68^, 3505h (1968).

25. Krantz, K. W., U. S. Pat. 3,294,717 (1966); Chem. Abstr., 66, 38436x (1967).

26. Vargina, R. A., Sosedov, V. P., Andrianov, K. A., Kolesnikov, S. A., Krotov, A. I, Kaverov, A. T., Gunyaev, G. M., Khananashvili, L. M., Matytsyn, V. S., and Kokolevskii, I. A., Russian Pat. 532,616 (1976); Chem. Abstr., 86, 17751u (1977).

27. Brown Jr., J. F., French Pat. 1,437,889 (1966); Chem. Abstr., 66, 31662 (1967).

28. Krantz, K. W., French Pat. 1,423,143 (1966); Chem. Abstr., 65, 12361c (1966).

140

Page 153: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

29. Krantz, K. W., U. S. Pat. 3,294,737 (1966); Chem. Abstr., 66, 46908t (1967).

30. Krantz, K. W., U. S. Pat. 3,318,844 (1967).

31. Andrianov, K. A., Tverdokhlebova, I. I., Makarova, N. N., Mamaeva, I. I, Chekalov, A. K., Men'shov, V. M., and Pavlova, S. A., Vysokomolekul. Soedin., Ser. A, 20(2), 377 (1978); Chem. Abstr., ^8, 137273c (1978).

32. Andrianov, K. A., Zavin, B. G., and Rabkina, A. Yu., Russian Pat. 602,511 (1978); Chem. Abstr., 88, 192062h (1978).

33. Papkov, V. S., Il'ina, M. N., Pertsova, N. V., Makarova, N. N., Zhdanov, A. A., Andrianov, K. A., and Slonimskii, G. L., Vysokomolekul. Soedin., Ser. A.,19(11), 2551 (1977); Chem. Abstr., 88, 51413m (1978).

34. Andrianov, K. A., Tverdokhlebova, I. I., Pavlova, S. A., Mamaeva, I. I., Rabkina, A. Yu., and Larina, T. A., Vysokomolekul. Soedin., Ser. A, 19^(6), 406 (1977); Chem. Abstr., 8_7, 68990z (1977).

35. Tverdokhlebova, I. I. and Larina, T. A., Usp. Khim., 4_4(2), 367 (1975); Chem. Abstr., 82, 156744z (1975).

36. Andrianov, K. A. and Makarova, N. N., Vysokomolekul. Soedin., Ser. A, 12(3), 663 (1970); Chem. Abstr., 73, 4466m (1970).

37. Andrianov, K. A., Kurakov, G. A., Shushentsova, F. F., Myagkov, V. A., and Avilov, V. A., Dokl. Akad. Nauk. SSSR, 166, 855 (1966) (English Translation); Chem. Abstr., 6_4, 14288 (1966).

38. Blyumenfel'd, A. B., Fomina, N. I., Kovarskaya, B. M., Pakhomov, V. I. Gel'perina, V. M., Mukhina, D. N., and Korol'kov, Yu. A., Plast. Massy, (11), 46 (1977); Chem. Abstr., 88, 7865m (1978).

39. Andrianov, K. A., Zhdanov, A. A. and Asnovich, E. Z., Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, p. 1760 (1959); Resins, Rubbers, Plastics, p. 227 (1960).

40. Andrianov, K. A., J. Polymer Sei., 52, 257 (1961).

141

Page 154: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

41. Andrianov, K. A., Petrashko, A. I., Bebchuk, T. S., Pashintseva, G. I., and Golubkov, G. E., Vysokomolekul. Soedin., Ser. A, 9(9), 2025 (1967); Chem. Abstr., 61, 117614c (1967).

42. Andrianov, K. A., Slonimskii, G. L, Zhdanov, A. A., and Levin, V. Yu., J. Macromol. Sei., Chem., 2(5), 959 (1968); Chem. Abstr., 69_, 97376n (1968).

43. Blyumenfel'd, A. B., Fomina, N. I., Kovarskaya, B. M., Pakhomov, V. I., Gel'perina, V. M., and Mukhina, D. N., Plast. Massy, (2), 45 (1976); Chem. Abstr., 84, 165474e (1976).

44. Papkov, V. S., Il'ina, M. N., Kvachev, Yu. P., Makarova, N. N., Zhdanov, A. A., Slonimskii, G. L., and Andrianov, K. A., Vysokomolekul. Soedin., Ser. A, 17(9), 2050 (1975); Chem- Aöstr., 83, 193939h (1975).

45. Volkova, R. V., Skorokhodov, I. I, Ivanova, N. A., and Ditsent, V. E., Plast. Massy, (3), 56 (1974); Chem. Abstr., 81, 26145y (1974).

46. Andrianov, K. A., Slonimskii, G. L., Levin, V. Yu., Kvachev, Yu. P., Makarova, N. N., and Kozlova, G. N., Vysokomolekul. Soedin., B12, 875 (19 70).

47. Andrianov, K. A., Slonimskii, G. L., Kvachev. Yu. P., Perspechko, I. I., Papkov, V. S., and Levin, V. Yu., Meckhanika Polym., 5, 804 (1973).

142

Page 155: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.2 Poly(silylarylene-siloxanes)

This class of polymers was recently the subject of an excellent review [1]. The materials can be classified into three groups:

Alternating poly(silylarylene-siloxanes)

r- R R

■Si—Ar—Si—0-

*- R I R

n

(I)

R = alkyl or aryl Ar = arylene

Siloxane modified poly(silylarylenes)

R R

Si—A^-f-Si—0-4— L^ TA 7H n

(ID

Silylarylene-siloxane block polymers

<

R I

•Si- I R

R R

-Si—A,.—Si—0- I r I R R -■ n

(III)

143

Page 156: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.2.1 Introduction

Conventional poly(siloxanes) suffer from two major deficiencies with regard to their use as composite materials; hydrolytic instability and thermal depolymeriza- tion at high temperature (>300°C). Introduction of the silylarylene moiety onto the siloxane backbone does much to offset these shortcomings. The Si-C bond, although of lower bond energy than the Si-0 bond [2] is much more resistant to cleavage under hydrolysis [3]. Moreover, the aromatic character of the silylarylene unit serves to prevent thermal unzipping to low molecular weight cyclic products [4]. This can be readily seen by comparing the thermal degradation temperature of poly(dimethylsiloxane) (350°C) with that of poly(tetramethyl-p-silylphenylene siloxane) (450°C) [5].

5.2.2 Methods of Preparation

Alternating poly(silylarylene-siloxanes)

The most direct method of preparing this class of polymers involves the self condensation of p_-bis (dialkyl or diaryl)hydroxysilylarylenes (Equation 1).

R R R R ii r' '

HO—Si—Ar—Si—OH -H?0» Si—Ar—Si—0-4— I I _ I I Jn I R R R

(1)

This reaction is carried out under inert atmosphere and is catalyzed by the presence of alkali metal hydroxides [6]. Lower reaction temperatures can be realized by the use of the appropriate catalyst such as n-hexylamine-2- ethylhexanoate [7] or trimethylsilylacetate [8] .

A somewhat more elaborate condensation makes use of the appropriate silane and hydroxysilylarylene (Equa- tion 2) [9] .

144

Page 157: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

CH3

Cl-Si-@-Si-Cl

CH3

CÜ-, CH3

(A) + (B)

CH. CH,

CH3 CHo

MMS^ H-Si-®-Sl-H

CH3 (A) CH3

CH-:

HO-

CH o

1-Si—(Qy- Si—OH I CHo . x CH3 3 (B) J

4-SiHg>-Si-o4- CHo CHo Jn

(2)

The above reaction makes use of the most common means of pre- paring £-bis-dialkyl or diaryl hydroxysilarylenes; i.e. the hydrolysis of the corresponding dihalosilane. This intermedi- ate in turn is prepared via use of organometallic reagents as outlined in Equation (3) [10, 11].

XMg—/^—MgX + 2(CH3)2SiCl2

CH- CH-

Cl—Si—^\—Si—Cl

CH3 CH3

(3)

Siloxane-modified poly(silylarylenes)

a. Self-condensation [12]

CH: CHr CH-

Ho-si-^-si-H^H-f i-OH K0H > CH3 CH3 CH3

H20

CH- CH 3 I r- CH3

-?i-®-"-@f-° CH3 CH- CH- n

(4)

145

Page 158: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

b. Condensation with dihalosilanes (Equation 5) 113] and Equation 6) 114].

CHT I

en-

02SiCl2 + HO-Si-igy-Si-OH Cg5N >

CH3 CH3 (5)

CH- CHo I

0 1

-0—Si—/FSV-Si—0—Si

CH3 CH3 0 _ln

Cl

0 0

4-Si—OH Si—Cl +

0 0

HO

/" 0

? Si

W 0 .OH

I / Si \

0

(6)

0 0 0 0 0

L>si_oJ Si—O-Si-H^J-Si—O

^0 0 0 0 n

146

Page 159: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

c. Reaction with silazanes [Equation 7) [15], and silamines (Equation 8) [16] and Equation 9 [17].

R2

R R R, |- R R \~

HO—Si-@>-Si—OH + R2SY^SiR2 > -Usi-^)Asi—OJ ■ ^•MX' L. I? R 4 n DP a K K.

(7)

R

R2N—Si -® f

i—NR2 +

T 1 HO—Si— Ar-Si— OH

R

f -Si

R

(0)_Si—0—Si-Ar -0-

R J n

(8)

A. Ar = —Si( 02)-

B. Ar = —si—^^—Si—

R I Si-

R R

R = CH^

f f C. Ar = _-Si-@-@-Si-

R

147

Page 160: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

R

( R) 2N—S i—@—5 i—N ( R) 2

HO—s i—(Or- s i—0H

R toluene, 105°C

R I

(R)2N— Si—N(R)2

_i „ toluene, 105°C

0 I

(R)2N—Si—N(R)~

S , toluene, 105°C

0 I

(R)2N—Si—N(R)2

2 * toluene, 105°C

R R

•Si-@-Si—0-

R

f Si-@-Si—O

R

R

_R L R

-Si—@— Si—0— Si—O-

R R

(9)

-J n

"R R 0 "

-Si—O—Si- °— si_- °*

R I R 0

d. Reaction with bis(ureidosilanes) (Equation 10) [18,19].

CH. CH-

HO—Si—Ar—Si—OH + (CH3)2Si I I CH3 CH3

{N—C—N^J I II ^ 0 0

CH3 (10)

—Uo —Si—Ar—Si—0—Si—V—

*- CH3 CH3 CH3Jn

148

Page 161: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

e. Silanol-acetoxysilane condensation (Equation 11) [20].

CH3 CH- CH-:

HO—Si—Ar—Si—OH + CHoCOO—Si II I

CH3 CH3 CH3

CH-:

—0-+-S1—4-OOCCH3

CH-/X

x = 0, 1 (ID

r CHo CHo CHo CH3 -i

Si—Ar—Si—f-0—Si—\—0—Si—0

- ^n3 CH3 V CH3

x CHo J

Silylarylene-siloxane block polymers [21]

a. Condensation of hydroxy end-blocked poly- siloxanes with silylarylene-silane (Equation 12)[23].

HO-

r R I -Si-

I *- R

-H + H0- -Si—Ar—Si—0-

I I R R

(12)

H0-

r R I Si—0-

I R

x

R R

-Si—Ar—Si—0-

R n

-H

149

Page 162: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

b. Selective copolymerization of monomers (Equation 13) [24].

CH-: CH.

+ HO—Si—@— Si— KOH

OH

CH-: CHc

(13)

HO-

CH.

-Si

_ CH3

-J&- CR-.

Si-

CH3 _

-0-

CH~ " I 3

-Si—0-

L CH 3 -1

-H

5.2.3 Properties

Alternating poly(silylarylene-siloxanes)

The simplest polymer in this class (IV) is that derived from the self-condensation of p_-bis (dimethylhydroxy- silyl)benzene.

CH-3 I

-Si — I CH3

Ö CHo I Si—0- I CH-5 n

(IV)

When prepared via alkali metal hydroxide catalysis, the polymer can be either cast as a film or cold drawn into fibers

150

Page 163: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

possessing the following properties [7]

Melting temperature Shrinkage (boiling water) Recovery from bending Modulus of elasticity

125-27°C 9%

88% 100,000 psi

Higher melting temperatures (148°C) can be achieved by use of n-hexylamine-2-ethylhexanoate as the catalyst [7]. The molecular weight obtained under these conditions was of the order of 250,000. The thermal stability (air) of this material was found to be appreciably higher than that of corresponding siloxanes (5% wt. loss at 225°C after 128 hours versus 20% loss for poly(dimethylsiloxane) under identical conditions).

Substitution of the 4,4'-diphenyl ether moiety for p_-phenylene in this polymer system results in a further increase in resistance to thermal degradation [25]. Conversely, replacement of p_-phenylene with m-phenylene clearly reduces thermal stability.

Attempts to improve the thermal stability of of arylene-siloxane polymer via metal complexation (Equation 14) resulted in chain scission yielding lower molecular weight polymers as well as diminished thermal characteristics [26].

CH3 CH3

CH3 CH3

Cr(C0)3 dark

N2, glyme diglyme

(14)

CH3 CH3

CH3 CH3 ^x CH3 I CH3

Cr(C0)3

2. Siloxane modified poly(silylaryjenes)

Incorporation of siloxane units into the poly- silylarylene backbone results in the anticipated increase in flexibility. These materials can be effectively crosslinked bylR or UV radiation [14,27,28] as well as by ester exchange catalyzed by metal salts [29]. Silphenylene-siloxane polymers filled with silica and cured with metal salts have been shown

151

Page 164: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

TABLE I

EFFECT OF STRUCTURE UPON Tg [15]

ninh Polymer Structure (0.5% Solution in Tg (R = CHQ Toluene at 30°C) (°C)

-fS1 'R 2-0"°~^0 (S1R2°>ll 2*48

-CsiR 2~^-0—^-(Si R.20>H 2.72

Tsi R 2-^Or~0~O~(sl R 20>il

-TSiR2—ö~(SiR2°^l °'73

-TsiR2—(^-(SiR20>J 2.77

-TsiR2-^^—(SiR 20)~ 2.48

**

0.15

-£S1R2-(Q-<S1R2°^]n

-)-SlR(0)-^^-SiR(0)O(SiR2O^ "1

-FsLR(0)-Q-siR(0)O(SiR2O)3 j

-tsi(0)-2-^-Si(0)2-O(SiR2O>-3 °'21

4-Si(0)j-^V-Bi(0)2- 0(SiR20>'3-l °-66

* Mw = 905,000 ** M„ = 820,000

-37

-52

3.83 -65

-62

-72

-80

1.60 -75

1.62 -42

152

Page 165: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

to exhibit tensile strengths as high as 2800 psi [28]. The effect of polymer structure and composition upon physical proper- ties can be seen in Table I and Figure 1 [15]. Clearly the 4,4'-diphenyl ether analog having the lowest siloxane content demonstrates superior thermal resistance.

100 200 300 400 500 600 TEMPERATURE *C

700 800 900

Fig. 1 .Thermogravimetric analysis of polyarylenesiloxanes. Heating rate, 15°C./min.; N» atmosphere. [15]

Ferrocene polymers of the type (V)

CH3

-si-^)

CH3 Y CH3

CH3

—0—z—0-

Jn

(V)

Z = 02Si,

CH3 CH3

—si-^QV-si—»

CH3 CH3

CHo CHo

CH3 CH3

were prepared [16] and found to be more hydrolytically stable than the simpler p_-phenylene analogs (also see Section 5.4).

153

Page 166: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Polymers prepared by silylamine condensa- tion techniques were found to exhibit properties presented in

Table II [17].

Introduction of dimethylsiloxane units is shown to systematically decrease Tg and thermal stability. Replacing Si-CH3 with Si-C6H5 increases these values while replacing the p_-phenylene unit with ferrocene increases the Tg value but slightly decreases thermal stability. Further credence for the conclusion is given by the recent work by Rosenberg [20] in which polymers of the type (VI)

R I

•Af-S

R

R'\ R

i—hOSi-H O-Si—0 VR.^ £ Jn R

(VI)

R, R' Ar

x

= CH3 or 0 = arylene or alkarylene = 0, 1 or 2

were prepared and evaluated. Those polymers most resistant to thermal degradation possessed the highest aromatic substi- tution (R=0).

A more recent study dealing with the correlation between polymer structure and glass transition temperature for this class of polymers [3 0] made use of the model system (VII).

X I

-Si- I X

X ^

X > J n

(VII)

X = alkyl Z = alkylene or

arylene

It was found that Tg values increased with the size and bulk of X. For the systems under study (X = CH3), the nature of R increased Tg according to the following sequence:

154

Page 167: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

TABLE II

EFFECT OF STRUCTURE UPON Tg [17] Polymer Structure (R = CH3) Tg, °Ca

.£siR2 _^_ SiR20 j- -25

4-SiR2 —(C%— SiR2—OSiR2 o4- -61 (-65)

-TsiR2 -@— S1R20—(SiR20>2 1 -88

4-SiR2 —@— SiR20-(SiR20>3 L -i n

-102

4-SiR2 —^-SiR20—SiR(0)O-4- -25 (-32)

-L SiR2—^^—SiR20—Si(0)2ö4- 1 (-4)

-t SiR2—C5H4FeC5H4—.SiR20—Si(0) 1 n (37)

-LsiR2 —C5H4FeC5H4—SiR20—SiR2 ——^^~Si R z Jn (-2)

J_SiR2—C5H4FeC5H4—SiR20 — SiR2 H^©-SIR2C I (7)

Polydlmethylslloxane -126

Polyphenylmethylsiloxane -86 (-81)

Polydiphenylslloxane ~-35

a0btained by torslonal braid analyses or (In parentheses) by differential scanning calorimetry.

155

Page 168: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

.0—o—C—0—0 II 0

— > —0—0—0— > -0-

— CH2—0—CH2- -CH2—CH2— (CF2 ) nCH2CH2

The use of the diphenylcarbonate linkage was further extended to yield a Lexan type material (VIII) having a Tg of 80°C (Tg Lexan = 150°C).

r- CH- CH3 CH- CH3

•f-^2>-r °-?-°-<5>-c-<o>-si-o- - CHo CH3 ° CH3 CH3 Jn CH3 CH3 Jn

(VIII)

Attempts to improve thermal stability of siloxane modified poly (silarylenes), while at the same time imparting sol- vent resistance, have also involved the introduction of in-chain perfluoro groups [31]. Polymers of the type

,CH3 CH,

-HSi-^-<CF2)3-^-Si-0

^CH3 CH3

,CH.

-Si'

CH3

CH-3 CH-: CH3

-^(cF2)3-^i-o-si-(gr(cF2)n-[Qrsi-a

;, CHQ CH3SS/

^ CH3 ^

could be crosslinked at room temperature to yield thermoset elastomers having improved thermal and oxidative stability over dimethylsilicones as well as improved resistance to swelling by hydrocarbon solvents.

156

Page 169: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Lenz has described [19] the effect of vinyl substitution in polymer systems of the type IX.

r-CH-

L. CH-

CH-

CH3

(IX)

CH-

-Si—AR—Si—0—Si—0- I i

R J n

R CH3, -CH=CH2

Ar = Hg>-, -®-0-®-

Resistance to thermal degradation was found to be directly proportional to the extent of vinyl functionality present in the system. It is suggested that the vinylsilane units partici- pate in crosslinking reactions during the early stages of degradation, leading to the formation of more thermally stable residue. In the case of the 4,4'-diphenyl ether analog (R=-CH=CH2 degradation (under N2) was observed to commence at 490°C with 35% weight loss noted at 740°C. No additional weight loss was observed up to 980°C. However, from studies carried out with crosslinked vinylsiloxane-carboranes (Section 4.3.2c) prolonged aging in air at temperatures of 300°C is expected to lead to oxidative cleavage [32].

3. Silarylene-siloxane block polymers

These materials differ from their random copolymer analogs with regard to improved elasticity, tensile strength and elongation properties. The degree of crystallinity as well as tensile strength exhibited by these polymers is directly proportional to the percent of silarylene functionality incorporated, as can be seen in Tables III and IV [23,28].

In more recent work [ 32] the mechanical behavior of poly (tetramethyl-p_-silphenylene siloxane) (TMPS) , and random block copolymers of tetramethyl-p_-silphenylene siloxane- dimethyl siloxane (TMPS-DMS)were compared. Results are pre- sented in Table V.

Of additional interest are block copolymers derived from poly(dimethylsiloxane) and perfluoromethylene

157

Page 170: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

00

00 o

oo o

oo

00 o

V H c»

V

00 00

to

On

On

to

•C- 0n K3

On On oo

00 *» J> On ON to o On

ON ON

•^1 I-1

o to l-h O (D

MOQ

O 0 CD ' fD (D

H H- O

fD N l-h i-i (U

rt > H-

O

0 O B

c? CO H- (-'

0* fD 0

M (D 3 (D

> > K H < H-

CfOO 00 c w|0 H B

B fD 0

O. r—.

00

Cfl rt i-l fD 01 CO fD

H fD CO CO fD

H (D 0 CO

OO rt (D 0

00 rt D*

TJ CO

W h-1

O /-s 0 Ä-9 00

rt H» O 0

w *) *j

O H ^ O

i-3 *—*. o o a *J

oo ^ cn to W

Cfl o H- G O W

Z — n > M

G tr1

3 w H 2! n cn CO i-3 — a > > Z 1-3 ö

n ~ o o z: a en

oo i-3 i-3 — J> >

INJ Z Cfl cn H3 f H- w l £

>Ü O H 1 f H

O M H ON a w

1 i-3 cn H H- O «—* n H a z

oo — Cfl to F O O

O — « Cfl

o G O Z nj H O H3 tr1

cn K — S r-, W to 5fl oo cn

158

Page 171: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Pn 00 O fN

»—' CO

« ~ w co £ En >H H

►H- S3 O D 0< o m u -- « ^ u o O CM

J ~ PQ n

ffi S3 u H —"

•H EH CO S3 1 W ^ EH K

> S3 ^> H o u

U 1 . w a K-J W 1 ' PQ S3 -H < W co H J CM

I* ~ S3 ro W ffi S3 C_> a* ~ j •"-•

CO Q I ,S3 o.k

O ,-^ S3 CO H bH CO H < S3

S D

u < S3 ~~— H

i—i

h O O ■H

CO

EH CM

U ^-N

W co Pn S3 Cu U W --'

c o

■H 4J CO /'^ I CM o CO O ÖO^S i vO m o- CTi ß ^ CTi rs vO <r o

rH W

•-s. •H 13 to cu (X en o O O O o

s^ CO o o O o ,C cu rH vO in o u M #» #* #\ n

00 4J CM m in vO ß CO rH rH i-H rH cu M 4J TJ CO cu

CO

CU CO rH cu o r~^ o m m •H M CO <J- 00 CM to 4-1 i-H 00 o r^ ß CO rH rH CM CM cu ß H !=>

/—N

00 a\ i-H rH o CO r—i"*^ CM CTi r-H o in CTrH

.—-Tj rH iH CM CM r-l N-X

■U

ß 0) 0

S CU CU ^^ m 3 öo t>o X3 ■ -tf

•H M ni cfl CNI ■*. vO a\ rH

ß CU t-i N-' 00 00 00 oo 00 •H > U rH rH rH rH rH s <; <!

B*S

, O o O O o CU •U CO -d- m VO r^ ß S a)

i-H >» ß &<? a)

J3 cu a H CO 00 m CO •sf H o rH H CM CO -3- •rl S CO

ß o

•H <rj ■u cd M

M-l N CU o -H e

M O cu cu a O0 00 00 00 00 a) a o rH r-H i-H rH rH M t^s CjOrH cu o «4-H Qh O

159

Page 172: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

091

w

< EH

CO on

w H EH « W

8 P4

< o H CO ^"* C7") S3 g P. g

2 S rH 0

z u

2 s g Q

8 ^

3 * CQ g fa *

EH O U w fa En W

CO *> *» 00 o

STJ o o\ O to o

>H P5 - o in o o vO CN w CM r-. m CN

a) co ->. -H- H H t>o a - «HW M 3 O T) 4-1 O Crt S

>. 4-1 ■r( -—. C O

■H C/3 r-H P O en o CTv r^. cn

cd 4J X

vO m m CN rH rH

O o o O o o CO CD >> *Ö M C

C_> H

^-\ f>, >. 4J 4J •H -H C CO

•H C rH CD CTi r-t <r 00 00 en rH T) m m <r CN rH r-\

Cd ^ 4-> X o o o O o o CO CD

!>.T) H Ö O H

>, ^~N

4JCO vO vo 00 Oi o\ <f •H 0 <d- en CN O CT> CTi

CD U c -- CD 00

o o o O CTl CX\

rH rH rH rH O o Q ^

c_> o o ^r <-t 00 o o

00^— Ö • o vO CN CN CN CN

•H CO vO m m CO CN CTi 4J O, rH rH rH <-H rH

rH a CD (D a H

•H /—. >J U O VO vO cn CN m

,JQ o •H '^ o CO m r^ CN o rH <£> m -d- CN CN rH

•H a ^ H rH H rH rH

a H o- w

X) /-N m CU u • £°~ o\ O CTi

1 ro 1 O vO 1 a) 1 rH 1 rH 1 CO 0

43 H O

C/l

>; /^» H B-S o o O o o

O r-i CM m VO r^ 4-1 ***^ ~*^ ^^ ^^ ***^ ^. O <Z) 4J o o O o o o

a s o o\ oo m <t en O P ^ rH

•H 4J 13

ä §

CD ß cd X o

•H CO

rH

4-1

I P ■K

Page 173: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

siloxanes of the type

^ 9H3 CH.

~0~ -Si-^-(CF2)2-O~Si_0'" CH- CH- -•n

CH3 CH.

— Si—/~V-(CF2)3-^^—Si —0-

CH- CH- —Tl

which had improved thermal characteristics over the non- fluorinated analogues [34].

5.2.4 Summary and Recommendations

Based upon the favorable molecular weight [250,000- 1,000,000] characteristics of poly(silylarvlene-siloxanesItogether with the other physical and chemical properties described in the preceding section, this class of materials (including candidates discussed in Section 5.4) shows considerable potential for composite applications. To date, however, the major interest in these polymers has centered on their use as high performance elastomers.

Elastomeric properties are di the percentage of siloxane functionality main chain. Although this property is a design of processing and handling propert dates, it has already been shown that as increases, resistance to thermal, oxidati dation decreases. In order to achieve a properties, it is suggested that polymers to further investigation.

rectly proportional to incorporated into the consideration in the ies of composite candi- the siloxane content ve, and chemical degra- balance of desired of type (X) be subjected

161

Page 174: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

where Ar* =

(X)

■©■' ^QH§> . «*^®-°-®- R and R' = aryl, alkyl

a = 1-2

Although one would predict that the totally phenylated polymer would be the most thermally stable material, it is antici- pated that steric factors would severely limit the molecular weight which could be achieved during synthesis.

For the simplest preferred member of this class (Ar = p-phenylene, R = CH3, R

1 = 0, a = 1) there has been nothing published regarding the synthesis or properties of the disilanol precursor. However, based upon an estimated price of 53/lb. for methylphenyldichlorosilane it is anticipated that the disilanol will cost $20/lb. (see Section 5.4.3 for specific details). Assuming a 70% conversion to polymer, a final materials cost ot $30/lb. is projected. The 4,4'-diphenyl ether analogs are not expected to cost considerably more because of favoraüle pricing of raw materials and the anticipated ease of preparing the disilanol intermediates. Other structural modifications ot disilanol are discussed in greater detail in Section 5.4.4.

For polymers where a = 2, the most favorable synthetic pathway appears to be via the silanol-acetoxysilane reaction described in Equation (11). Polycondensation reactions (Equa- tions 4-6) do not favor high yields because of competing reactions while the use of silazanes and bis(ureidosilanes) as intermediates pose difficulties in handling (moisture sensitivity) as well as increased cost. Pricing of polymers derived via the silanol- acetoxysilane reaction are estimated to be slightly higher in cost than alternating poly(silylarylene-siloxanes) where a - 1.

* Those materials in which Section 5.4

Ar = ferrocenyl are discussed in

162

Page 175: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

The fact that block copolymers can be prepared does afford some degree of flexibility in the design of the physical properties of candidate materials. Price will be directly propor- tioned to the percentage of poly(silylarylene-siloxane) incorpo- rated into the block.

163

Page 176: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.2.5 Bibliography

1. Dunnavant, W. R., Inorg. Macromol. Rev., 1, 165 (1971) .

2. Cottrell, T. C., "The Strengths of the Chemical Bond", 2nd Ed., Butterworth (London) 1967.

3. Brown, S. P., "Thermally Stable Organometallic Polymers", USN TIS AD/A Rept., July 1974, AD 000 753; Govt. Rept. Announce (U.S.) 1975, 75(1), 53.

4. Korshak, V. V. and Vinogradova, S. V., Usp. Khim. 11_, 2024 (1968). Chem. Abstr. 70_, 38329x (1969).

5. Vada, G. Isidzova, L., Ivamatsu, L., and Kavaduki, K., Kogyo Kagaka Zasshi, 5_5, 631 (1963) .

6. Sveda, M., U. S. Pat. 2,562,000 (1951).

7. Merker, R. L. and Scott, M. J., J. Polymer Sei., 2, 15 (1964).

8. Merker, R. L., French Pat. 1,397,045 (1965). Chem. Abstr., 63, 5851a (1965).

9. Klebanski, A. L. Fomina, L. P., and Dolgoplaosk, S. B., Zh. Uses. Khim. Obscheh in D. I. Mendeleeva, 7, 594 (1962). Chem. Abstr., 58, 4708g (1963).

10. Chugunov, V. S., Izvest. Akad. Nauk. SSSR, Otd. Khim. Nauk, 1960, 942. Chem. Abstr. 54, 24482e (1960).

11. Omietanski, G. M., U. S. Pat. 3,053,872 (1962).

12. Pike, R. M., J. Polymer Sei., 50, 151 (1961).

13. Rochow, E. G., "An Introduction to the Chemistry of Silicones", 2nd Ed., Wiley (New York), 1951.

14. General Electric Co., Brit. Pat. 980,120 (1965).

15. Breed, L. W., Elliott, R. L., and Whitehead, M. E., J. Polymer Sei-, 5, Al 2745 (1967).

16. Patterson, W. J., McManus, S. P., and Pittman Jr., C. U., J. Polymer Sei., Polymer Chem. Ed., ,12, 837 (1974).

164

Page 177: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

17. Pittman Jr., C. U., Patterson, W. J., and McManus, S. P., J. Polymer Sei., Polymer Chem. Ed., 1A_, 1715 (1976).

18. Davison, J. B. and Wynne, K. J., "Silicon-Phthalocya- nine Siloxane Polymers: Synthesis & Proton Nuclear Magnetic Resonance Study", USNTIS, AD A036 274 (1977).

19a. Lenz, R. W. and Dvornic, P. R., Am. Chem. Soc., Polymer Preprints, 19(2), 857 (1978).

19b. Lenz, R. W. and Dvornic, P. R., "Preparation and Evaluation of Exactly Alternating Silarylene- Siloxane Elastomers , " Office of Naval Research Report, Contract No. N00014-76-C-700, August 1978.

20. Rosenberg, H. and Nahlovsky, B. D. , Am. Chem. Soc, Polymer Preprints, 19(2), 625 (1978).

21. Plumb, J. B. and Atherton, J. H., "Block Polymers", Allport, D. C. and James, W. H., Eds.,Wiley (New York), 1973, p. 305.

22. Merker, R. L., U. S. Pat. 3,202,634 (1965).

23. Merker, R. L., Scott, M. J., and Haberland, G. G., J. Polymer Sei., 2(A) 31 (1964).

24. Andrianov, K. A., Pahkomov, V. I., Gel'Perina, V. M., and Mukhina, D. N., Vsysokomolekul Soeden., 8, 1618 (1966); Chem. Abstr., 67_, 117401f (1967).

25. Goldovskii, Y. A., Kuz'minskii, A. S., Gorokhova, T. E., and Dolgoplosk, S. B., Vysokomolekul. Soeden, 8, 960 (1966); Chem. Abstr., 6J5, 5544f (1966).

26. Pittman Jr., C. U., Patterson, W. J., and McManus, S. P., J. Polymer Sei., Polymer Chem. Ed., 13_, 39 (1975).

27. Marsden, J., U. S. Pat. 3,167,528 (1965).

28. Burks Jr., R. E., "A Study of Polymers Containing Silicon-Nitrogen Bonds", NASA Contract No. NAS 8-1510 (1968) .

29. Dow-Corning Brit. Pat. 925,433 (1960); Chem. Abstr., 59, 8950d (1963).

165

Page 178: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

30. Ehlers, G. F. L. and Fisch, K. R., AFML-TR-75-202, "Correlations Between Polymer Structure and Glass Transition Temperature. I. Polysiloxanes, Poly- arylene-siloxanes & Polyxylylenesiloxanes," AD B009 388, October 1975.

31. Patterson, W. J. and Morris, D. E., J. Polymer Sei., A-l, 10, 169 (1972).

32. Peters, E. N., Stewart, D. D., Bohan, J. J., and McNeil, D. W., J. Elastomers & Plastics, 10, 29 (1978) .

33. Li, H. M. and Magell, J. H., Polymer, 19, 829 (1978).

34. Fuqua, S. A. and Silverstein, R. M., J. Appl. Polymer Sei., 8, 1729 (1964).

166

Page 179: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.3 Poly(silarylenes)

5.3.1 Introduction

A review [1] dealing primarily with poly(silarylene- siloxanes) addresses, in some detail, this class of materials. The intervening years have generated only limited activity in this area, primarily because of the inability to generate high molecular weight species. This fact has limited the use of low molecular weight poly(silarylenes) to use as additives for various resin and elastomer systems. It has already been noted that the silarylene unit, in addition to acting as a chain termination site during oxidative degradation [2], pro- vides resistance to both acidic and alkaline hydrolysis [3]. It is therefore postulated that these materials, which can be best represented by the general formula I, can, by appropriate

r- R

-Si—Ar-

L RJ -I n R and R1 = alkyl or aryl Ar = arylene

(I)

introduction of reactive functionality, be modified to yield potential candidates for advanced composites.

5.3.2 Methods of Preparation

Poly(silarylenes) are most conveniently prepared via organomagnesium (Equation 1) or organolithium (Equation 2) intermediates or by use of sodium coupling techniques (Equations 3 and 4).

BrMg-^-MgBr ^UQ^ef. 4]

Br—(Q/- Si02Cl —^[Ref-bl L fa J n

(1)

(ID

167

Page 180: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Ar

x-^/gv-si-ci n-BuLi [Refs.5,6] "®-

Ar

Ar-i I Si

I Ar-1 n

X = Cl, B Ar = aryl

R r * 1 ^=^R [Refs. 5,7] l_W R J*

R = 0, CH3 X = Br, Cl

(2)

(3)

Na Arx2 + 02SiCl2 [Ref.8] "

Ar--©-. -^CH§>-

-Ar- ? -Si-

I 0 n

(4)

A more direct and less costly synthetic route to this class of polymers involves the use of Lewis acid caralysis as shown in Equations (5) [9] and (6) [10].

AlCl 02SiCl2

0SiCl3 + 03SiCl —£lCl3

Cl p-

0-Si-

Cl -®-

Cl i

Si- i Cl

0 Jn

(III)

(5)

168

Page 181: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

CH I

HC I CH3

CH3

-:©HS)-CH +

CH3

_ CH

(C2H5)2SiCl2 A1C1-

0H

(6)

-C I CH

CH-3 C9Hs_

CH3 C2H5 n

Also of interest is the fact that diphenylsilane can be polymerized in the presence of t^butyl peroxide [11] to yield a material having the following structure (IV):

0 "I

(IV)

5.3.3 Physical Properties

With the exception of thermal stability data, the properties of poly(silarylenes) are not well documented. Thus, the polymer system (II), when prepared via Grignard reaction conditions, was found to be thermally stable at 380°C for short periods and at 300°C for longer periods [4]. When prepared by means of lithiation techniques, the polymer exhibited a melting temperature of 4 00°C [6] and when generated via sodium coupling conditions the melting point was found to be 420°C with no weight loss experienced during heating at 300°C for 8 hours under nitrogen [5]. The polymer generated under Friedel-Crafts conditions (Equation 6) was not only unusually stable under these conditions but was found to be highly resistant to acids and alkalies [10]. The polymer (IV) derived from the peroxide initiated polymerization of diphenylsilane was found to be highly resistant to high temperatures, losing only 5% of its weight when heated at 900°C for prolonged periods of time [11].

169

Page 182: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.3.4 Summary and Recommendations

Poly(silarylenes), besides being highly resistant to thermal, oxidative and chemical degradation, afford a unique advantage over the siloxane-type polymers discussed in Sections 5.1, 5.2, and 5.4 in that they are exceptionally stable to hydrolysis. What is lacking, at present, is the ability to generate materials of high enough molecular weight to qualify as candidates for building composites. Based upon the paucity of information in the literature dealing with approaches to this problem, it is difficult to make meaningful recommendations for increasing the molecular weight of these materials short of under- taking a basic development program to achieve this goal.

A secondary concern relative to the selection of this class of materials relates to the costs associated with their synthesis. The economics associated with the use of organometallic intermediates (Li, Mg) are discussed in Sections 5.4.3 and 5.4.4. Since yield data relative to even the low molecular weight polymers in this class is quite sparse, it is difficult to estimate the dollar costs associated with generating candidate materials other than to say that they would be very high (> $50/lb.). Cost reductions may be possible if the reaction sequences involving either the Friedel-Crafts polymerization of diaryl or dialkyl dichlorosilanes (Equations 5 and 6) or the peroxide initiated polymerization of diarylsilanes leading to materials such as (IV) can be optimized. It should be noted that polymers of type (III)generated via Equation 5 would require subsequent replacement of halogens with aryl, alkyl, or alkoxy substituents.

Provided that a cost effective method of preparing high molecular weight poly(silarylenes) can be developed, there are a number of model systems which could be envisioned as likely composite candidates. Derivatives of (I)in which

**--©-. &©-■ -©*©-.

and ferrocenyl and R and R1 are selected from methyl, phenyl, ferrocenyl, and vinyl would be of definite interest. Incorpora- tion of ferrocene as a linking group in the backbone of siloxane polymers has been found to yield materials of high (480°C) thermal stability [3] (see also Sections 4.2 and 5.4). Although poly- (silarylene) analogues of these materials have not yet been prepared, recent efforts [12] have demonstrated the feasibility of preparing two key intermediates (IV) and (V) (Equation 7), albeit in very low yield.

170

Page 183: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

(7)

The use of silicon-vinyl functionality has been studied in systems of type (I) in which oligomers where Ar is 4,4'-biphenylene, R is alkyl or aryl and R1 is vinyl were allowed to react with the corresponding silanes (R1 = H) [13]. Materials of exceptional thermal stability were obtained. Other silicon-vinyl polymers have been reported [14] and are discussed in Sections 5.2.3 and 5.4.4.

171

Page 184: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.3.5 Bibliography

1. Dunnavant, W. R. , Inorg. Macromol. Rev., 1, 165 (1971).

2. Korshak, V. V. and Vinogradova, S. V., Usp.Khim.ll, 2024 (1968).

3. Brown, S. P., "Thermally Stable Organometallic Polymers/' US OTIS AD/A Rept., July, 1974, AD 000 753; Govt. Rept. Announce (U.S.) 1975, 75(1), 53.

4. Pearce, C. A., Hodd, K. A., and Chantrell, P. G., Brit. Pat. 896,301 (1962); Chem. Abstr., 57_, 4881c (1963).

5. Meston, A. M., Brit. Pat. 908,300 (1962); Chem. Abstr., 58, 2515h (1963) .

6. Meston, A. M. U. S. Pat. 3,136,730 (1964); Chem. Abstr., 58_, 5800h (1964) .

7. Korshak, V. V., Polyakova, A. M., Sahkarova, A. A., Mironov, V. F., and Chernysheve, E., Vsysokomolekul. Soedin-r 2, 1370 (1960); Chem. Abstr., 55, 1930f (1961).

8. Hoess, E. A. and O'Brian, E. L., "Preparation of Polysilanes and Polysilarylenes,» Technical Report No. 3289, Picatinny Arsenal (Dover, New Jersey), 1966.

9. Clark, H. A., U. S. Pat. 2,557,782 (1951; Chem. Abstr., 4_6, 529e (1952).

10. Moroni, R. and Dumont, E., Ger. Pat. 1,145,798 (1963); Chem. Abstr., 59, 4063f (1963).

11. Sosin, S. L., Korshak, V. V., and Alekseeva, V. P., Vysokomolekul- Soedin., M4), 745 (1964); Chem. Abstr., 61, 9591e (1964).

12. Osborne, A. G. and Whitely, R. H., J. Organomet. Chem.,

1975 101(2), C'27.

13. Podolskii, A. V., Bulatoo, M. A. and Spasskii, S. S., Russian Pat. 314,780 (1971); Chem. Abstr., 7_6, 73192t (1972) .

14a. Lenz, R. W. and Dvornic, P. R., Am. Chem. Soc., Polymer Preprints, 19(2), 847 (1978).

172

Page 185: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

14b. Lenz, R. W. and Dvornic, P. R., "Preparation and Evaluation of Exactly Alternating Silarylene-Siloxane Elastomers," Office of Naval Research Rept., Contract N00014-76-C-700, August 1978.

173

Page 186: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.4 Poly(silicon linked ferrocenes)

This class of polymers can be represented by the general formula (I).

f- R

I Fc—R1 —Si

I R

(I)

-+ Fc* =

where R = alkyl, aryl Z = alkylene, arylene,

-0-R'- (but not when R' = divalent bond)

R'= covalent bond, alkylene, arylene

R's may be dissimilar

5.4.1 Introduction

Ferrocene's (II) high thermal stability, low toxicity and good hydrocarbon solubility has led to numerous attempts [1, 2,3] to incorporate the ferrocenyl moiety into a polymer.

(ID

Ferrocene has good stability towards acids and bases [4] and is thermally stable up to 450°C [5,6], However, ferrocene decom- poses when heated to 350°C in an aqueous suspension in a closed system [5].

Secondary advantages associated with ferrocene materials are high stability to gamma [7] and ultraviolet [8,9] radiation and high efficiency as a quencher of triplet states [10]. Oxidative stability of ferrocene is poor, but this may

*The abbreviated designation Fc of the divalent heteroannular ferrocenyl radical will be employed in this section.

174

Page 187: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

not be a serious problem because it is converted without molecular weight degradation to the fairly stable ferrocenium ion. Fortunately, structural composites reduce surface exposure of the matrix resin and space environments have very low oxygen concentrations. Both factors lower oxidation rates. Furthermore, oxidation of ferrocene is reversible in many cases and treatment with a variety of mild reducing agents will regenerate the ferrocenium state [5, 11].

A number of ferrocenyl materials, polymeric and non-polymeric, containing silicon directly bonded to the ferrocene nucleus have shown excellent thermal stability [12- 15]. Compound (III) (R = CR"2) remained unchanged after heating 80 hours at 300°C [12] whereas (III)(R = ^CHCH3) was produced in 80% yield from (III) (R = -CH2CH2-) after heating 500 hours at 380°C [13] .

R = -CH2-, -CH2CH2-,

-CHCH3

(III)

Low molecular weight organometallic polymers containing various combinations of carborane, ferrocene, and siloxane nuclei showed thermal stability at 454°C (850°F) [14].

Poly(ferrocenyl) materials not containing silicon have been used to prepare laminates of good quality [16,17]. There- fore the stabler poly(ferrocenyl-siloxanes), of appropriate molecular weight and structure, should represent viable candi- dates for the preparation of advanced composites.

Low and high molecular weight ferrocene-containing polymers have been prepared in which ferrocene groups are connected by siloxanyl groups. Low molecular weight siloxanyl ferrocene polymers have shown potential as high temperature fluids [18]- High molecular weight poly(ferrocenyl-siloxanes) have shown comparable stability (via TGA) to the corresponding poly(arylenesiloxane) analogs [19,20] (also see Section 5.2). Related poly(ferrocenes) linked with silanyl groups are also discussed in this section but they will receive less attention than the siloxanyl linked materials.

175

Page 188: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.4.2 Methods of Preparation

A. Preparation of Intermediates

Ferrocene is usually prepared by the action of FeCl2 on a metal cyclopentadienide [21,22] or by reaction of cyclo- pentadiene with FeCl2 in the presence of a strong organic base such as diethylamine [23a,b] as shown in Equations (1) and (2).

M FeCl? > (ii) (1)

M = Li, Na

o + FeCl2 (C?HE;)2NH (ID (2)

Silylated ferrocene derivatives, that is com- pounds containing silicon bonded directly to ferrocene, can be prepared by several routes as shown in Equations

(5) [18-20,24,25].

(3), (4), and

(ID

BuLi- Li-Fc-Li

excess

(R)?SiCl2 -> Cl(R)2Si-Fc-Si(R)2Cl

(IV) (3)

Br-Fc-Br 2Cl(R)2SiH -*■ H(R)2Si-Fc-Si(R)2H

(V)

176

Page 189: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

0 % H

) BuLi

(2) (R)2Si(Cl)2

Si(R)2Cl H (R)2NH

Si(R)2N(R)2

(1) i-PrMgX

(2) FeCl2

(4)

R I

R

(R)2N-Si-Fc-SiN(R)2 I I R R

(VI)

R

I CcHc-Li + Cl-Si- 5 (

R

R R

I I OSi-H—Cl ^ C5H5Si-

R n=0,l,2

R

R I

-OSi-HCl I n

R

C5H5 = cyclopentadienyl

Fc-

R R 1

-Si- I

L R

-OSi-)—OSiR' I n I R R J

R R R

(1) BuLi c H_si—t-OSi-HOSiR'«-^ (2) FeCl2 I I n I ?

R R R

(5)

RSiONa I

R R = CH-

177

Page 190: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Compounds (IV) can be reacted with carboxylic acids or dialkylamines to afford bis(silyl) derivatives such as (VI) which are polymer precursors [19,20 ].

Other polymer precursors (VII) can be prepared in very high yields (2:80%) by hydrosilylation reactions [26,27] of compounds (V) as shown in Equation (6).

R I

R

C2H50Si—Fc—SiOC2H5

R R

LiAlH4

HCÄ CH

R R H2PtCl6

CHo=CH-Si-Fc-Si-CH=CH 2 I I R R

R R

HSi—Fc—SiH CH2=CH-X

R R H2PtCl6

v

(V)

(6)

R R I I

X-CH2CH2-Si-Fc-Si-CH2CH2-X I ! R R

(VII)

where X = -C02CH3, -CH2OSi(CH3)3, -CH20H, -CH2NH2

R =

R R I I

-CH2-(-S10-^3Si-Cl

R R

-CH2OCH2-CH-CH2

0 CH3

178

Page 191: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

B. Preparation of Polymers

Ferrocenyl siloxane polymers containing -Fc-Si-0 links reported prior to 1974 were either largely uncharacterized or low molecular weight materials [25,27-31].

A number of interesting thermally stable poly- (ferrocenyl siloxanes)(VIII) were prepared in good yields by Pittman et al [19,20] using a silyldiol-bis(aminosilanyl)- ferrocene route as shown in Equation (7).

Fe BuLi> Fe I TMEDA

Cl

(R)2N-Si(R)2>

4p4±-N Fe R

(R)2

(R)2N-Si -^ R = CR-.

i R I Si I R Fe R Fe „

^rf-°-Rl-°7V R

(VIII)

+ HO-R'-OH

I 50-110°C

melt (vac.) or in C6H5CH3

(76-95% yields)

(7)

Polymer A: R1 = —Si—

Polymer B: R-*- = R R

R R

Polymer C: Rl= — Si—^^—(Ck—si_

R

Si- I R

179

Page 192: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Use of melt polycondensations gave higher molecular weights than solution processes. Polymers shown in Equation (7) ranged in Mw from 18,400 to 51,000.

The preparation of silyldiol intermediates is typified in Equation (8) by the preparation of 1,4-bis(hydroxy- dimethylsilyl)benzene [20].

Br-^O)-

CH- CHc

Br MS> THF

(CH3)2Si(Cl)H H-Si^>- SiH

CH-: CH-:

(77%)

CHr CÜ-.

OUT HOSi i^g)-Si-0H

CH3 CH3

(86%)

(8)

Preparation of poly(ferrocenyl-siloxanes) via intermediate (IX) is unsatisfactory because intramolecular condensation proceeds in high yield [32].

CH3

^S-Si—OC2H5

T <lH3 H30+

Fe CH3

EtO—Si—(J>

CH3

Si(CH3)2

(9)

(IX) (X)

However, the bridged product (X) was converted to linear oligomeric product, such as (XI), by reaction with phenyl lithium followed by reaction with a suitable difunctional chlorosilane, such as 1,1'-bis(dimethylchlorosilyl ferrocene [24,25]. In this manner a variety of unsymmetrically

180

Page 193: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

substituted siloxanyl ferrocene fluids were prepared which showed very little weight loss (0.1 to 1.1%) after 10 hours at 366°C (N2) [25].

CH3 CH3

Si—0—Si

C6H5-Si-

CH3

(XI)

The effect of molecular geometry on reaction course can be seen in the preparation of low molecular weight oligomer products (XII) from dicyclopentadienyl dimethyl- silane as shown in Equation (10)[33].

C5H5

11CH3—Si—CH3

C5H5

n-CAHqLi. then FeCl? > (10)

(XII)

Under these conditions compounds such as 1,3-dicyclopenta- dienyl-l,l,3,3-tetramethylsiloxane and 1,5-dicyclopentadienyl- 1,1,3,3,5,5-hexamethyltrisiloxane yield only mononuclear ferrocenophanes.

Other poly (ferrocenes) (XIV) linked by siloxanyl groups and carbon atoms were prepared in high yields by Wilkus and co-workers [34-36] as shown in Equation (11)

181

Page 194: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

^V-X—( CH2 ) x—S i ( CH3 ) 3

Fe

X—(CH2)X—Si(CH3)3

H2SO4,20-30°C,then H20 (-CH4)

(XIII)

CH.

^s-X-(CH2)x-Si(CH3)20H

Fe (not isolated)

^-X-(CH2)!c-Si(CH3)20H

-|H20

CHc (11)

.F X — (CH^ —Si—0—Si— (CH^ X

CH-: CH3 n

(XIV) x= 2, 3 0 H

X = CH2, C

These workers treated 1,1'-bis(ß-trimethylsilylpropionyl)- ferrocene [(XIII) where X = CO and n = 2] with concentrated sulfuric acid at room temperature with subsequent mild dehydra- tion of the hydrolyzed crude product to obtain (XIV) [X - CO, n = 2] The analogous monomers (XIII) where X was CH2 were obtained by Clemmensen reduction. All polymers were viscous or rubber-elastic resins presumably of low molecular weight. Thermal properties were not reported.

The route to polymers (XIV) shown in Equation (11) was based on earlier work with model silanes R-Si(CH3)3

which undergo quantitative methyl cleavage [37] yielding silanol and ultimately disiloxane [38].

Polymers with good thermal stability contain- ing both silanyl and siloxanyl bridging groups between ferrocene nuclei have been prepared [27, 31] by partial hydrolysis of 1,1'-bis[3-(7-chloro-l,1,3,3,5,5,7,7-octamethyl- tetrasiloxanyDpropyldimethylsilyl] ferrocene [obtained from 1,1'-bis(dimethylsilyl)ferrocene and l-allyl-7-chloroocta- methyltetrasiloxanej. A similar polymer containing p_-phenylene groups was prepared from the above dichloro compound and l,4-bis(dimethylhydroxysilyl)benzene. Use of a slight excess of benzene derivative produced polymer (XV) with hydroxy- silylphenylene end groups [27].

182

Page 195: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

i- R

HO

R R R R

-Si-CfiHA-(Si-O)A-Si-(CH2)o-Si-Fc-Si-(CHo)3-(Si-O)4- III I I I

L. R R R R R R -

R R I

Si-C,tH4-Si-0H I I

n R R

R = CH-: (XV)

Soluble ferrocenylene(dimethyl)silane polymers, similar to (XII), can also be synthesized [39,40] by reaction of l,l'-dilithioferrocene and dichlorodimethylsilane. Similarly, use of dilithioferrocene and dichlorodiphenylsilane afford analogous ferrocenylene(diphenyl)silane polymers.

Ferrocenyl silanyl bridged polymers (XVI) with improved thermal stability were prepared via a hydrosilylation reaction exemplified in Equation (12)[26].

(R)2Si—CH==CH2 (R)2Si—H

Fc + (n + 1) Fc H2PtC1fi >

(R)2Si—CH=—CH2 (R)2Si—H (12)

(XVI)

Ferrocene-containing polymers wherein the silicon atoms are not directly bonded to the ferrocene nucleus have also been prepared [31,41] by hydrosilylation eactions, as in Equation (13).

183

Page 196: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

R R I I

HSiCHo-Fc-CHoSiH I I R R

H2PtC]_6 + appropriate

bis-olefin

R R I

H-+Si-CH2-Fc-CH2-Si-CH2-CH2' I I

LR R

(XVII)

rR R

R R I I -Si-CH2-Fc-CH2-Si-H

R

R R ! I

R

(13)

H-t-Si-CH2-Fc-CH2-Si-CH2-CH2-Si-0-Si-CH2-CH2- | I II R R R R Jn

(XVIII)

-Si-CH2-Fc-CH2-Si-H

R R

R = CHi

5.4.3 Properties

Poly(ferrocenyl-siloxanes)(VIII A,B,C) prepared by Pittman [19,20], unlike prior related materials, were of suffi- cient molecular weight to be cast as tough flexible films and exhibited good fiber-forming properties when drawn from their melts. Individual polymers exhibited (via DSC) values of Tm

over a 5°C range and all polymers showed Tm values in the 40-80°C range. Physico-mechanical properties or isothermal aqing characteristics were not reported. TGA and DSC data showed that polymer (VIII B) was at least as thermally stable as the related polymer (XIX A) where £-phenylene replaced the

silyl ferrocenyl moiety.

r VH3 ^3 4-f-^-si-o- L 6n3 CE _J n

(XIX A)

184

Page 197: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Polymer (VIII B) showed slightly better oxidative stability than polymer (XIX A). In air, the 400°C weight loss (TGA) was 4.5% as opposed to 8.7% for polymer (XIX A). Good hydro- lytic stability of these two polymers in refluxing tetrahydro- furan-water (100v/lv) after one hour was observed as shown in Table I.

TABLE I

HYDROLYTIC STABILITY OF POLY(FERROCENYL -SILOXANE) AND POLY(SILYLARYLENE-SILOXANE) [19]

Polymer Intrinsic Viscosity (ml/g)

Mw x 10-3

Initial Final Initial Final

(VIII B )

(XIX A)

31.4 28.8

52.2 50.1

46.8 44.3

105.9 101.4

This stability of the ferrocenyl polysiloxane is in marked contrast to studies obtained with polymer (XX) in which the C-O-Si linkage was associated with hydrolytic instability [42]

{9- Fe

R

CH20—Si—0—R'—0CH2-J—

R Jn 'n

(XX)

The data in Table II show that the replacement of -Si(CH3*20- groups by -Si(0>2° 9

rouPs and the replacement of in chain p-phenylene with ferrocenylene groups increases Tg.

185

Page 198: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

w

< EH

U o

I i 1 a\ r-~- 00 ^ j j I m r^. r-~.

s

«~~1 CU o 0 CM •H

M

53 O

o o m •~N

O rH cd O

H v£> st r~. CN •~\

EH ^ I 1 CO 1 r^. 60

CO 53

EH CM rH

| rH

C •H Ö Ö

W cd Q o 53 CO

O X X X X X rH u m m Xn st <t cd >H , c rH O o^m 00 o O rH O CN O •H i-q IS rH rH o o O rH CN H 00 rH O rH 4-1

O CM

• • rH » • • • Ö rH rH rH <y\ H CN CD

CU W 14-1

53 X X X X X X 14-1

m in m <r sr St •H

ll m o m o en o sf o 00 o o o T3 00 rH in rH CO rH 00 rH VO rH rH rH

r^ en o CN CM CN rH <t 4," XI

53 H

H Q

o /~N

o

i erf

CN

erf >-• •H

CO cu CO cu

4-1

1

O H Q

SO c_j

4, o

1 + O

CN

•n CO

1 (Q)

(Q) cu r-l cd ex

Ö •H

>H 1 CN

CN 1 JNJ j^ -—' « II ^~\ /-—N o •—*\ CN

prf 'S". CN erf ^-s u Q Pi ^w/

V~^ /~\ •^-x erf O

S <

•H •H erf •H s«^'

<u + CO o

1 CO

1 •H CO CN

•H CO

1

CO cu CO

CM M o 1 O 1 ^~\ CN >^ w 3 CN CN CN 1 erf •~s rH

Pi -P /~N /~N *~\ <t ^> erf cd erf erf erf PC •H *•—' Ö CM u s^/ v-^< ^-^ m T

•H cd 3 •H •H •H c_> CO

CO. U CO CO CO cu <r 1 T3 On +J 1 1 I Cu a St •H

CO 1 1 1 St m a cd

>H 6 6 6 SO m u

o CU

m

cu 42

,_} Y^ T^ T 1 St pn rH

O CM

1 1 1 1 a <t cd CN CN CN CN m a a f? erf Prf erf Y m

Y o

•H Cu v—^ ^-X *w* CN CO o •H •H •H •H •~N CN M

CO CO CO CO erf /—N O

+ + + + •H CO

erf

•H

4-1

r»>

H + CO rQ EH + T3

cu Ö

CM /~\ /~\ •-N •H o u j^-N S-*\ S~s <J PQ o cd « cu <J PQ o 4J

CM X! X

H M

M M H

42 o

►o M M H H M H rH o •3 « # <&■ <£> £> cd

Pn

981

Page 199: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

The data in Table III shows that the ferrocenyl polymer (VIII B) has slightly decreased thermal stability compared to polymer (XIX C). However, a more meaningful interpretation would be forthcoming if polymer (VIII A) were compared to polymer (XIX C)

TABLE III

THERMAL PARAMETERS OF SELECTED OXYSILANE POLYMERS [20]

Temperature at which 10% Temperature at which Polymer weight loss occurred at exotherm was observed

4°/min. under N2, °C in DSC under N2, °C

(XIX A) 475 _ — (XIX B) 380 445 (XIX C) 445 490

(VIII B) 440 —

The poly[(silanyl-siloxanyl)ferrocene] (XV) discus- sed earlier showed relatively good thermo-oxidative stability (CO2 atmosphere). Accumulated percent weight losses are shown in Table IV.

TABLE IV

THERMO-OXIDATIVE STABILITY OF POLY[ (SILANYL- SILOXANYL) FERROCENE] (XV)

After 2 hrs., 200°C

After 2 hrs., 250°C

After 2 hrs., 300°C

0.6 2.3 7.7

Increasing molecular weight and/or Tg would most likely result in better thermal stability.

187

Page 200: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

The ferrocenyl silanyl bridged polymers (XVI) showed improved thermal stability relative to polymers (XV). A weight loss of 0.3% was observed after 6 hours at 300°C, whereas the accumulated weight loss after 2 hours additional heating at 350°C was 17.1% [26].

Silanyl containing poly(ferrocenes) and silanyl- siloxanyl containing poly(ferrocenes) wherein the silicon is not directly bonded to ferrocene showed even better thermo- oxidative stability as shown in Table V.

TABLE V

THERMO-OXIDATIVE STABILITY OF SOME POLY(SILANYL)- AND POLY(SILOXANYL)-FERROCENES [26, 41]

Compound

(XVI) (XVII) (XVIII)

Softening (°C)

Point Accumulated Weight Loss (%)

After Additional After 6 hr @ 300°C 2 hr @ 350°C

92-94 90-96

Oily at room temp.

0.3 5.1 4.3

17.1 13.0 11.2

These data suggest that at the higher temperature of 350°C, the ferrocene-silicon bond is more susceptible to fission than is the ferrocene-methylene bond. The reported [12] ready isomeriza- tion of l,l'-disilyl ferrocenes to homoannularly substituted ferrocenes at 300°C supports this view. However, further studies are necessary to elucidate the degradation mechanisms.

Soluble ferrocenylene (diphenyl)silane polymers[39,40] (XXI) of molecular weight 1400 to 1700 are high melting (>350°C),

(XXI)

188

Page 201: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

but despite this, TGA (in nitrogen) showed incipient weight loss at 200° to 250°C. These results suggested a useful service life of dimethylsilane- and diphenylsilane-bridged polymers to be 250°C or less.

The difunctional dimethylsilyl ferrocenes (VII) were employed to prepare linear soluble condensation polymers such as polyesters, polyamides, and polyurethanes [27, 31]. These polymers had softening points of 70° to 130°C and showed poorer stability than the poly (ferrocenyl-siloxane) (XV) and therefore will not be discussed further.

5.4.4 Summary and Recommendations

Poly(ferrocenyl—siloxanes) of structure (XXII) show potential as matrix resins for advanced composites.

Rl I -SiO

#-

Fe

-) Si—0—Si—Ar- A | i

R2 R2

4*4 U *2 R2

-fi

(XXII)

where Rj^ = CH3, Cffi^ R2 = C6H5 Ar = arylene, preferably

Z = covalent bond,-U-,

-S-, -C- x = 1-3 R's may be dissimilar

To realize this potential it will be necessary to increase molecular weight as well as to significantly raise physical transition temperatures over prior art materials. In addition, provision should be made for conversion to thermosetting materials which will be load-bearing at2r300°C and eliminate susceptibility to thermo-oxidation.

Poly(ferrocenes) linked via silanyl or alkylene groups are not recommended for further study because these materials were produced in very low molecular weights and/or show considerably poorer thermal stability than poly(siloxane linked ferrocenes)(VIII). Poly(silicon linked ferrocenes) such as types (XV)-(XVIII) prepared by hydrosilylation reactions contain -CH2CH2- sites which would greatly reduce thermo-oxidative stability and lower Tg and Tm. The same undesirable effect is

189

Page 202: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

anticipated by the presence of -CH2 sites adjacent to ferrocene nuclei.

The preferred method of synthesis of (XXII) (x = 1) is outlined in Equations (14)-(16).

ty

Fe (1) 2BuLi

Rx Rx 0 Rx Rx ° I I CH3C02H || | | ||

*-» Cl-Si-Fc-Si-Cl ► CH3C-0-Si-Fc-Si-0-0CCH3 (2) RxR2SiCl2 II or II

excess «2 *2 CH3C02Na R2 R2 (14)

(XXIII)(Cl) (XXIII)(OAc)

Mg,HSi(Rx)(R2)(Cl) ,

0

Br-Ar-Br

then OH

or

excess Mg. (R1)(Ro)SiCl9, then hydrolysis

HO-Si-Ar-Si-OH I I R2 R2

(XXIV)

(15)

(XXIII)(OAc) + (XXIV)- catalyst

-CH3C02H

(XXII) (16)

190

Page 203: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

The alternate preparation of intermediate (XXIII) (Cl) via silylation of cyclopentadiene with subsequent metallation and reaction with FeCl2 affords lower yields than the route shown in Equation (14)[19].

Preparation of arylene dibromide intermediates (Eq. 15) proceeds in good yield with para or para-para' orientation strongly predominating. Silylation of unisolated dibromide can be accomplished in situ, after removal of HBr^. Favorable reactivity and geometry make biphenyl (36C/lb) and diphenyl ether (85^/lbl very attractive substrates for the preparation of arylene disilanols. Meta orientation is not anticipated because bromination studies of model mono-halobenzenes afford 87-89% para orientation and 11-13% ortho orientation [43]. Recrystallization should readily remove ortho-arylene disilanols from the desired higher melting para-oriented isomers.

The order of thermo-oxidative stability as well as the order of increasing Tg and Tm for polymer structure (XXII) is as follows:

Rl = R2 = C6H5 > Rl C6H5 y Rl = R2 = CH- R2 = CH3

Preparation of the completely phenylated polymer is not recom- mended because the polycondensation reaction would be sluggish and possibly prone to undesirable side reactions, therefore limiting achievement of very high molecular weights. The case where R^ = CH3 and R2 = C6H5 should represent the best compro- mise of polymer properties with attainment of high molecular weights.

Preparation of polymers via the silanol-acetoxy- silane condensation method [44] is preferred over the bis(ureido) silanediol method [45-47a,b] (also see Sections 4.3.2c and 5.2.2). The ureido intermediates are extremely moisture sensitive and potentially much more expensive than the analogous bis(acetoxy- silanes) (XXIII)(OAc).

Molecular weights of at least 250,000, preferably 1 million, should be sought to achieve the full potential of properties. The current state-of-the-art has produced poly- (siloxanyl linked ferrocenes)(VIII A,B,C) with molecular weights to 51,000 [20]. However, poly(arylenesiloxanylenes) have been prepared by a silanol-acetoxysilane condensation in

*Asterisked prices are from Chemical Marketing Reporter, February 5, 1979. All other prices are considered very approximate. Volume prices' will arbitrarily be defined as being based on an annual usage of 100,000 lbs.

191

Page 204: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

molecular weights of 250,000 to 300,000 [44] and in one instance to 600,000 [48]. The importance of molecular weight on properties proved to be quite dramatic for poly(carborane- siloxanes) [46] (also see Section 4.3.2c).

The simplest and least expensive polymers comprise the case where x is unity and Ar is chosen from a simple divalent arylene substituent. If these polymers do not afford sufficiently high physical transition temperatures then two other structural variations should be considered; (a) use of oligomeric poly(ferrocenyl) groups, i.e., x - 2 or 3, and (b) use of poly(silarylene)diols such as (XXV) and (XXVI).

HO-

,_ CH3 CH3

0 0

CH3 CH3 CH3-j

HO- -sin(S^si-<g)-sio-LH

CH3 CH3 CH3

(XXV) (XXVI)

Oligomeric poly(ferrocenes) can be easily prepared by reaction of dilithioferrocene and 1,1'-dibromoferrocene in the presence of CoCl2 Li,49]. Diols (XXV) and (XXVI) show very good solubility in many organic solvents and have been prepared LbUj in 78-83% yields from E-C6H4 [Si (CH3) (0) Cl] 2 and [p_- (Cl) (CH3) 2- SiC6H4]2Si(CH3)2, respectively. Low molecular weight poly- fcerrocenes) have shown very good thermal stability (TGA, argon) , giving relative residual weights of about 85 and 75% at 600 C and 800°C, respectively [51].

Introduction of methylvinylsilylene cure sites to increase thermal stability of poly(silarylene-siloxane) elastomers [47a,b] is discussed in Section 5.2.3. Unfortunately, this cure site has been found to be the weakest link thermally in poly(carborane-siloxane) vulcanizates when heat aged in air at 315°C [46]. If this instability extrapolates to poly- (siloxanyl-ferrocenes), then other means of removing thermo- plasticity may have to be employed.

High performance advanced composites require^ retention of properties at temperatures in excess of 300°C, often in the presence of oxygen. Antioxidants or reducing agents will probably be necessary to insure desired performance.

192

Page 205: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Mild reducing agents such as zinc dust and antioxidants such as arsenic thioarsenate (AsAsS4) and ferric oxide may be employed. The thioarsenate was found to be very beneficial in improving thermal characteristics of a poly(benzimidazole) adhesive [52]. Tensile shear strength after 10 hours at 370°< was found to be five times (2000 vs. 401 psi) that of the control without thioarsenate. Ferric oxide, particularly when derived by thermal decomposition of iron pentacarbonyl, was found very effective in retaining elastomeric properties of poly (carborane-siloxane) vulcanizates aged 1,000 hours in air at 315°C [53].

Ferrocene can be prepared readily in high yield and high purity from cyclopentadiene, base (e.g., CH30Na), and FeCl2 [21,22]. Cyclopentadiene is readily produced in high conversion by thermal cracking of dicyclopentadiene, currently available at HC/lb.* Ferrous chloride can be prepared in situ from powdered iron and FeClß (19<Vlb*)• The potential price of ferrocene is estimated at —$l/lb.

The preparation of bis(silyl)derivative (XXIII) (Cl) utilizes butyl lithium (about $3-$4/lb), ferrocene ( £ $l/lb), and most likely methylphenyldichlorosilane (estimated at a potential cost of $3/lb). It is anticipated that (XXIII) can be prepared in yields of ^-75%. Therefore its approximate cost, in volume, is estimated at $10/lb. This assumes good recovery of excess dichlorosilane intermediate.

The simplest desirable arylene disilanol is (XXVII)

CH3 CH3

HO—Si-^OV-Si—OH

0 0

(XJV?E)

Asterisked prices are from Chemical Marketing Reporter, February 5, 1979. All other prices are considered very approximate. Volume prices will arbitrarily be defined as being based on an annual usage of 100,000 lbs.

193

Page 206: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

which would be prepared by aqueous alkali treatment of the product derived from the reaction of magnesium (99<:/lbT , 1,4-dibromobenzene, and methylphenyl chlorosilane. 1,4-Dibromo- benzene can be prepared in good yield from benzene and bromine (55<Vlb) and could be priced at about $2.51/lb. Assuming a potential price of $5/lb for methylphenyl chlorosilane and conversion of 1,4-dibromobenzene to (XXVII) in 65% yield [note: Pittman [20] similarly prepared 1,4-bis(hydroxydimethyl- silyl)benzene from 1,4-dibromobenzene in overall yield of 0.77 x 0.86 x 100% - 66%], the potential price of disilanol (XXVII) would be about $23/lb. The price of disilanol could be reduced to about $20 by replacing methylphenylchlorosilane with methyl- phenyldichlorosilane ($3/lb).

Polymer (XXII), Ri = CH3, R2 = C6H5, x = 1, is anticipated to be prepared in s 75% yield. Using the above prices of monomers the polymer cost is estimated to be $36/lb. Any further sophistication of polymer structure, such as increas- ing x, having ^ = R2 = C6H5, use of silanediols (XXV) or (XXVI), or use of uncommon cure sites would increase the cost of polymer.

There is some likelihood that aromatics can be silylated at elevated temperatures using appropriate silane halide(s) and aromatic hydrocarbon in the presence of catalyst(s). If such a process were to be demonstrated commercially, the price of chlorosilanes of structure (R1)(R2)- SiH(Cl) would be considerably reduced. The price of polymer would decrease accordingly.

194

Page 207: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.4.5 Bibliography

1. Neuse, E. W. and Rosenberg, H., "Metallocene Polymers," Reviews in Macromolecular Chemistry, 5_, Pt. 1, Dekker (New York) 1970.

2. Pittman Jr., C. U. , J. Paint Technol., 39_, 585 (1967) .

3. Lorkowski, H. J. , Fortschr. Chem. Forsch., 9_(2), 207 (1967).

4. Rausch, M. D., Vogel, M., and Rosenberg, H., J. Chem. Educ, 3_4, 268 (1957).

5. Weinmayr, V., J. Am. Chem. Soc., 77, 3009 (1955).

6. Kaplan, L., Kester, W. L., and Katz, J. J., J. Am. Chem. Soc, 75, 5531 (1952).

7. Mcllhenny, R. C., and Honigstein, S. A., July 1965, Report No. AF MLTR-65-294, AD 476 623, Contract No. AF33-(615)-1694.

8. Chem. & Eng. News, 3_9, No. 38, 51 (1961).

9. Air Force WADC Technical Reports, 59-354; 60-704; 61-298.

10. Richards, J. H. , J. Paint Technol., 3_9, 569 (1967).

11. Wilkinson, G., Rosenblum, M., Whiting, M. C. and Woodward, R.B., J. Am. Chem. Soc, 74.' 2125 (1952).

12. Kumada, M., Hiroshi, T., and Susumi, T., J. Organomet. Chem., 10, 111 (1967).

13. Kumada, M., Ogura, M., Tsunemi, T., and Ishikawa, M., Chem. Comm., 5, 207 (1969).

14. Brown, S. P., "Thermally Stable Organometallic Poly- mers," U.S.N. T.I.S., AD/A Rept., July 1974, AD 000 753; Govt. Rept. Announce (U.S.) 1975, 75(1), 53.

15. U. S. Government Research Reports, Projects Nos. 8(107331) and MIRR 346-1, Contract No. AF33(616)-5033.

195

Page 208: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

16. Bilow, N. and Rosenberg, H., U. S. Pat. 3,560,429 (1971).

17. Bilow, N. and Rosenberg, H., U. S. Pat. 3,640,963 (1972) .

18. Schaaf, R. L., Kan, P. T., Lenk, C. T., and Deck, E. P., J. Org. Chem., 25, 1986 (1960).

19. Patterson, W. J. , McManus, S. P., and Pittman Jr., C. U., J. Polymer Sei., 12, 837 (1974).

20. Pittman Jr., C. U., Patterson, W. J., and McManus, S. P., J. Polymer Sei., Polymer Chem. Ed., 14, 1715 (1976).

21. Cordes, J. F., Fr. Pat. 1,341,880 (1963); Chem. Abstr., 60, 6873a (1964).

22. Org. Synth., Coll. Vol. IV, Wiley (New York) 1963, p. 473.

23a. Org. Synth., Coll. Vol. IV, Wiley (New York) 1963, p. 476.

23b. Cais, M., U. S. Pat. 3,382,268 (1968).

24. Kan, P. T., Lenk, C. T., and Schaaf, R. L., J. Org. Chem., 26, 4038 (1961).

25. Schaaf, R. L., U. S. Pat. 3,036,105 (1962).

26. Greber, G. and Hallensleben, M. L., Makromol. Chem., 83_, 148 (1965).

27. Greber, G. and Hallensleben, M. L., Makromol. Chem., 9_2, 137 (1966).

28. Neuse, E. W. and Rosenberg, H., J. Macromol. Sei. Rev., Macromol. Chem., C4, 1 (1970).

29. Azirnikov, V., Nauk i Zhizn, 11, 22 (1960).

30. Schaaf, R. L., Kan, P. T., and Lenk, C. T., J. Org. Chem., 26, 1790 (1961).

31. Hallensleben, M. L., Ph. D. Thesis, Univ. of Freiburg i. Br., 1965.

196

Page 209: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

32. Schaaf, R. L., Kan, P. T., and Lenk, C. T., J. Org. Chem., 26, 1790 (1961).

33. Rosenberg, H. and Rausch, M. D., U. S. Pat. 3,060,215 (1962) .

34. Wilkus, E. V., Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, New York, 1963.

35. Wilkus, E. V., and Berger, A., Fr. Pat. 1,396,271 (1965) .

36. Wilkus, E. V. and Rauscher, W. H. , J. Org. Chem., 3_0, 2889 (1965).

37. Shorr, L. M., Freiser, H., and Speier, J. L., J. Am. Chem. Soc, 77, 547 (1955).

38. Sommer, L. H. and Ansul, G. R. , J. Am. Chem. Soc, 77, 2482 (1955) .

39. Rosenberg, H., U. S. Pat. 3,426,053 (1969).

40. Rosenberg, H., Barton, J. M., and Hollander, M. M., 2nd International Symposium on Organometallic Chemistry, Madison, Wisconsin, 1965; Abstr. Proc., p. 42.

41. Greber, G. and Hallensleben, M. L., Makromol. Chem., 104, 77 (1967).

42. Pittman Jr., C. U., Patterson, W. J., and McManus, S. P., J. Polymer Sei., A-l, 9, 2187 (1971).

43. Ferguson, L. N., Garner, A. Y., and Mack, J. L., J. Am. Chem. Soc, 76, 1250 (1954).

44. Rosenberg, H. and Nahlovsky, B. D. , Am. Chem. Soc, Polymer Preprints, 19(2), 625 (1978).

45. Hedaya, E., Kawakami, J. H., Kopf, P. W., Kwiatkowski, G. T., McNeil, D. W., Owen, D. A., Peters, E. N., and Tulis, R. W., J. Polymer Sei., Polymer Chem. Ed., 15, 2229 (1977).

197

Page 210: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

46. Barker, K. A., Beard, C. D., Bohan, J. J., Dunks, G. B., Hedaya, E., Joesten, B. L., Kawakami, J. H., Kopf, P. W., Kwiatkowski, G. T., McNeil, D. W., Moffitt, R. B., Owen, D. A., Peters, E. N., Poutsma, M. L., Stewart, D. D., and Tulis, R. W., "The Preparation and Properties of Do-m-Carboranesiloxane Polymers," Final Report to Offree of Naval Research, Contract N00014-72-C-0277, July 1978.

47a. Lenz, R. W. and Dvornic, P. R., Am. Chem. Soc., Polymer Preprints, 19(2), 857 (1978).

47b. Lenz, R. W. and Dvornic, P. R., "Preparation and Evalua- tion of Exactly Alternating Silarylene-Siloxane Elastomers, Office of Naval Research Rept., Contract N00014-76-C-700, August 1978.

48. Rosenberg, H., private communication.

49. Bednarik, L., Gohdes, R. C., Neuse, E. W., Transition Met. Chem. (Weinhein, Ger.), 2, 212 (1977); Chem. Abstr., 88, 105523t (1978).

50. Nikitenkov, V. E., Vysokomolekul. Soedin., Ser. B, 11(12), 877 (1969); Chem. Abstr., 72, 67020m (1970).

51. Neuse, E. W. and Crossland, R. K., J. Organomet. Chem., 7, 344 (1967).

52. Levine, H. H., "Polybenzimidazole Resins for High Temperature Reinforced Plastics and Adhesives," Symposium sponsored by Air Force Materials Center, Dayton, Ohio, December 1962; cited in Lee, H., Stoffey, D., and Neville, K., "New Linear Polymers," McGraw-Hill (New York) 1967, pp. 279-280.

53. Peters, E. N., Stewart, D. D., Bohan, J. J., and McNeil, D. W., J. Elastomers & Plast., 10, 29 (1978).

198

Page 211: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.5 Poly (organophosphazenes)

Poly(organophosphazenes), also called poly(phosphonitrilics), are linear polymers defined by the general structure (I):

R I

-P=N- I

R

(I)

where R = Alkyl (R1), aryl (Ar), OR', OAr, NHR', NHAr

n

Cyclic oligomers will only be discussed relative to the preparation of linear high molecular weight polymers. Linear or 3-dimensional polymers containing cyclic phosphazene struc- tures or polymers containing significant amounts of nonphosphazene structures will not be reviewed critically because too little is known about these materials or they have not shown sufficient promise to date (also see Section 4.1.2f].

5.5.1 Introduction

Phosphazenes, which are isoelectronic with siloxanes, have been receiving increasing attention in recent years. Several excellent reviews [1-6] have appeared on poly(organo- phosphazenes) . Current interest in these materials centers on their ability to be formulated into highly fire-retardant low smoke producing compositions [7-13] and their potential use in biomedical applications [3].

The most common method of synthesis, discussed in Section 5.5.2, allows for unprecendented structure-property control. High molecular weight elastomers with Tg values of -70°C as well as high melting plastics can be prepared by judicious choice of R groups in (I). Many poly(organophosphazenes] are film-forming thermoplastics and several are fiber formers.

Other properties besides fire-retardancy and extremely simple physical property control that make poly(organo- phosphazenes) attractive are:

199

Page 212: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Wide temperature serviceability, Hydrolytic stability, Ease of processing and curing, Excellent electrical properties, Radiation resistance, and Environmental safety.

To date, the one limiting property of poly(organo- phosphazenes) is that of thermal stability. Little work has been reported on the use of poly(organophosphazenes) for the preparation of composites. No outstanding performance was observed in several instances.

A highly fluorinated poly(phosphazene) [PNF v^ ] and a poly (aryloxyphosphazene), both containing a small amount of cure site, are currently available from The Firestone Tire & Rubber Company (Akron, Ohio).

5.5.2 Methods of Preparation

The most widely used method of synthesis for the preparation of linear poly(organophosphazenes) is shown in Equations (1) and (2).

(C12PN)3

(trimer)

[Cl2PN]n

(polymer)

(1)

[Cl2PN]n

2nNaOR y

2n(Rx)2NH

OR

OR X

r N(RXU-, -P=N

L N(R1)2

(2)

n

where R may be selected from alkyl, aryl, R1 may be selected from H, alkyl, aryl with the proviso that both R-^s are not H, ethyl (or higher alkyl), and/or aryl, Both R's or R!'S may be dissimilar.

200

Page 213: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Very high or low molecular weight poly(dichloro- phosphazene),[Cl2PN]n, can be prepared by a ring opening polymerization of hexachlorocyclotriphosphazene, (C12PN)3, depending on polymerization conditions and presence of catalyst. The [Cl2PN]n polymer is extremely hydrolytically unstable and readily crosslinks in the presence of water. Conventionally, bulk polymerizations are carried out in sealed evacuated tubes at 250° to 270°C for periods of 6 to 48 hours. Alternately, high molecular weight polymer can be prepared easily by a catalytic solution polymerization [14]. This latter mode of preparation is advantageous because it employs ordinary labora- tory glassware at atmospheric pressure at temperatures of about 200°C.

The conversion of [C12PN] polymer to [(RO)2PN]n polymer is generally performed at 2 5°C to 130°C, depending on the nature of RONa, in ethereal and/or aromatic hydrocarbon solvents. In this manner quantitative replacement of P-Cl sites is achieved and molecular weights in excess of one million [15] are possible. Use of more than one alkoxide affords random copolymers and higher interpolymers. It is therefore not only possible to tailor physical properties of the final polymer, but one can control the amounts of selected cure sites that can be incorporated into it. These cure sites allow for crosslinking by conventional methods (organic peroxides, sulfur accelerated, radiation).

A variation of the chemistry in Equations (1) and (2) is shown in Equation (3). This is a highly significant modification because poly(organophosphazenes) with high phosphorus-carbon content can be prepared [16,17] from soluble high molecular weight precursor. At a phenyl/CF3CH20 ratio of 62/38, a film-forming polymer with Tg of 60°C and molecular weight of 1.2 x 106 was obtained [16].

(F2PN)3 35P°.% [F2PN]n (D0Li/21° ^ f (0) (cp dH 0) PN] (3)

J n (2)CF3CH2ONa Y n

Unfortunately, there are several drawbacks to this approach. First, the polymerization requires very high temperatures in a high pressure autoclave. Second, expensive perfluorinated solvents are used to dissolve the poly(difluorophosphazene). Third, high (^80%) substitution of P-Cl sites by the organo- metallic reagent leads to extensive molecular weight degradation.

201

Page 214: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

This necessitates reaction of residual P-Cl with another nucleophile (e.g. CF3CH2ONa).

Attempts to prepare linear poly(organophosphazenes) from organo substituted cyclotri(or tetra)phosphazenes,[(R2PN)3f4] have generally been unsuccessful. However, there are some reports claiming successful ring opening polymerization. The cyclic oligomers [(0)2PN]x and [0O)2PN]X are reported to polymerize at 250°-300°C using an acid catalyst [18]. Tris(o-phenylenedioxy)phosphonitrile trimer (II) was reported to undergo thermal polymerization [19].

*ib) (II)

Several cyclotriphosphazenes containing both organic ligands (e.g. 0, CF3CH20) and P-Cl sites have been homopolymerized and copolymer- ized with (C12PN)3 [20,21].

Other less attractive methods of preparing poly- (organophosphazenes) involve reactions of phosphines with azides, amines, or ammonium halides as shown in Equations (4)-(7).

(CfiHc)2PCl + (CH3)3SiN3 *■ [(C6H5)2PN]n + N2f b => z J [22] (4)

+ (CH3)3SiCl

202

Page 215: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

n N3-Y-N3 + n R2P-X-PR2 r2n N2* #PR2-X-PR2=N-Y-N#n (5) [23-25]

where X = -eCH2>-4, -©H§>- > ~©- 5 <CB2^

R = -C6H5

CH3

(0)2P_ygy^_P(0) H2N-<ö>-CH2-<ö>:NH2

Cl2

CCI4, then Et^NX (6)

Cl2 (0) 2P-^)-^)-P (0) 2C12

[24] * =£N-C6H4CH2C6H4N=P(0)2-C6H4-

C6H4P<0>2*£

H2lWoy-CHWoV-NH2

-HC1

[(CH3)2P(NH2)2]C1 4_ ► [(CH3)2PN]n (7)

[26]

The azide reaction (Equations 4 and 5) is hazardous because of the potential for explosion. The polymers produced in Equations (5) and (6) suffer in that the degree of polymeri- zation varied from 3 to 12 despite many adjustments in reaction conditions [24].

203

Page 216: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

A survey of the above methods of preparing poly- (organophosphazenes) leads to the inescapable conclusion that the ring opening polymerization with subsequent derivatization is the method of choice to prepare high molecular weight poly- mers with diverse structures.

5.5.3 Properties

(a) Physical Transitions

Physical transitions (Tg, Tm) of poly(organo- phosphazenes) vary widely and are highly dependent on two factors; the type of substituent bonded to phosphorus and the number of different kinds of substituents bonded to phosphorus. Table I summarizes transition and decomposition temperatures representative of poly (organophosphazenes). Poly(arylamino- phosphazenes) have significantly higher Tg values than their aryloxy analogs, but their T^ec values are at least 100°C lower.

Based on TGA, [(C6H5O)2PN]n and its halogenated derivatives appear to offer the best combination of properties as candidates for advanced composites. Tm and T^ are not given for poly(alkoxyphosphazenes) because these materials, in addi- tion to being elastomers with very low Tg values, should isomerize to hydrolytically unstable poly(phosphazanes) at temperatures of 130°C and above. This has been conclusively demonstrated for alkoxycyclotriphosphazenes [30,31].

(b) Hydrolytic Stability

Relatively little is reported on the hydrolytic stability of thermoplastic poly(organophosphazenes). [(CF3)2PN]n

polymer is insoluble in all common organic solvents and shows no change upon refluxing with H2SO4, HNO3, or HCIO4 [32,33]. However, this polymer undergoes partial hydrolysis with 10% NaOH. Impure poly(diphenylphosphazene) shows excellent stability to refluxing 0.1 M HNO3 and 0.1 M NaOH after 48 hours [34]. Films of poly[bis(trifluoroethoxy)phosphazene] are unaffected by moisture, glacial acetic acid, pyridine, and concentrated caustic solution and high intensity ultraviolet light [35].

Excellent hydrolytic stability has been observed for cyclic poly (organophosphazenes) and for cured elastomeric poly(organophosphazenes). [(CgH50)2PN]3 trimer underwent no detectable hydrolysis after 200 hours at 100°C in

204

Page 217: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

TABLE I

TRANSITION AND DECOMPOSITION TEMPERATURES FOR VARIOUS POLY(PHOSPHAZENES), [R2PN]n [4,27,29]

Polymer (a) (a) (e) R = Tg, °C T(l), °C T •Lm» °C Td, °C

CH3CH20 -84 — — — CF3CH20 -65 80 240 (b) 360

C6H50 5.5 160 390 (b) 380 m-ClCgttyO -24 66 370 (b) 380 £-ClC6H40 4 167 365 (c) 410

111-CH3C6H4O -25 90 348 (c) 350 £_-CH3C6H40 0.3 152 340 (c) 310

p-CH3CH2C6H40 -18 43 — (d) 285 ~~ 111-CF3C6H4O -35 — — (a)(f) —

(330)(g) p-FC6H40 -14 — — — F-C10H70 47 — 160 (a) (f ) —

(>350)(g) p-C6H5-C6H40 43 — 160 & 398 (a) —

(>350)(g)

CF3CF2CF2CH2O [28] 14 — .-._ —

CF3(CF2)6CH20 -40 — — — (C3F7CH20)(CF3CH20) -77

C6H5NH 105 (h) — — -- (i) E-CH3g6Ii4^tH 97 (h) — — 250 (i)

m-Öl3C6H4NH 76 (h) — — 262 (i)

P_-C2H5C6H4NH 88 (h) — — 245 (i)

111-C2H5C6H4NH 61 (h) — — 243 (1) p-n-BuC6H4NH 53 (h) — — 253 (i)

P-CH3OC6H4NH 92 (h) — — 266 (i) p-ClC6H4NH 85 (h) — — 265 (i) m-ClC6H4NH 80 (h) — — 253 (i) p-FC6H4NH — (h) — — 260 (i) 111-FC6H4NH 80 (h)

" 249 (i)

(a) By differential thermal analysis or differential scanning calorimetry. (b) By optical microscopy and differential scanning calorimetry. (c) By thermal mechanical analysis. (d) Decomposes with expansion. (e) By thermal gravimetric analysis. Results obtained in argon or nitrogen.

Values in oxygen were not significantly different. (f) The thermogram showed a strongly exothermic reaction above 300°C,

probably degradation taking place which possibly masked the melting transition above 300°C.

(g) By microscopy. (h) By duPont 990 thermal analyzer at scan rates of 10°C/min. (i) By duPont 951 thermogravimetric analyzer at heating rates of 20°C/min.

(static air). 205

Page 218: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5 volume percent aqueous dioxane with 4.25 x 10" N NaOH [36]. [ (CF3CF;?CF2CH20)2PN]3 showed no change after refluxing one hour in 68% HN03 [37]. [(CF3CH2O) (C3F7CH20)PN]n, the first elas- tomeric fluoroalkoxyphosphazene reported, remained unchanged up- on prolonged contact with boiling water, common organic solvents, concentrated H2SC>4,and concentrated KOH [38].

Excellent hydrolytic stability of compounded poly(fluoroalkoxyphosphazene) interpolymers has been demon- strated. Cured vulcanizates, prepared for elevated service with lubricants and fluids, retain 80% of tensile strength after 888 hours at 100°C and 100% relative humidity [39]. Similar vulcanizates, prepared for use as lip seals, show good reten- tion of physical properties after 166 hours at 100°C and 100% relative humidity and after 120 hours in 30% KOH at 93°C [40a,b].

(c) Thermal Properties

To date the major limitation of poly(organo- phosphazenes) for use as a matrix resin for advanced composites has been thermal stability. Efforts over the past decade have focused on elastomeric poly(organophosphazenes) for broad temperature serviceability or for highly fire-retardant appli- cations. Consequently, there has been less interest in opti- mizing the physical and thermal properties of essentially unfilled thermoplastic or thermosetting poly(organophosphazenes).

Isothermal aging of poly(organophosphazenes), neat or in solution, has generally been disappointing. Studies at temperatures of 149°C and higher have revealed that crystal- line film-forming thermoplastics [(CF3CH20)2PN]n [41], [(C6H50)2PN]n [42], and [(m-ClC6H40)2PN]n [43] and the elastomer [(CF3CH20) (HCF2(CF2)3CH20) (X)PN]n (X = small amount of cross- link site)[44] undergo initial rapid molecular weight degrada- tion followed by a more gradual decrease. Degradation was accelerated in the presence of water or acids. In these studies reaction products were analyzed by gel permeation chromatography and solution viscosity. The degradation mechanism is consistent with an initial random chain scission at weak sites along the polymer, followed by depolymerizat.ion to cyclic oligomers [41,42,44]. In the case of [(m-ClC6H40)2PN]n no evidence was obtained for depolymerization [43].

The thermal degradation of poly [bis (p_-isopropyl- phenoxyphosphazene)] was reported very recently [45]. Interest- ingly, this polymer showed higher thermal stability than other poly(aryloxyphosphazenes) [42,43]. Thermal studies were

206

Page 219: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

conducted in sealed evacuated tubes placed in heated baths. Degradation was followed by gel_permeation chromatography. After 1,344 hours at 135°C the Mw was 484,000, down from an initial value of 997,800. The lack of formation of cyclic trimeric or tetrameric species suggested degradation exclusively by random scission. After 1,008 hours at 200°C Mw was 363,000, with increasing formation of cyclics after 168 hours. Polymer heated at 200°C did not change in physical appearance, although at 300°C the polymer eventually darkened and liquified. Short periods of heating, i.e. 4 hours at 300°C, led to no signifi- cant change in Tg or infrared spectrum. As with earlier findings [41-44] the data indicated initial rapid molecular weight reduction followed by a more gradual reduction, both processes seemingly involving scission.

The weak link sites responsible for thermal degradation have been postulated [41,42,44] to include -P-OH, -P(0)-NH(phosphazane), chain branch point, and residual P-Cl sites. Chain scission most likely occurs by attack of a protonic species at a phosphazane site to produce lower molecular weight polymers with active end groups [44].

Several options are available for improving thermal stability of poly(organophosphazenes). These include one or more of the following: (a) provision for effective neutralization of weak links, (b) optimization of the number and type of organic substituents, and (c) removal of weak links.

The approach of deactivating weak sites by the addition of stabilizers was successfully pioneered at The Firestone Tire & Rubber Company [44,46-49]. Specifically, use of 1-3 weight percent bis(8-oxyquinolate)zinc (+2) (III)

(III)

has led to greatly improved thermal performance of poly(fluoro- alkoxyphosphazenes) (PFAP). This has been reflected in solution viscosity as well as physico-mechanical properties of vulcani- zates as shown in Figures 1 and 2 and Table II. Use of 3 weight percent of bis(8-oxyquinolate)zinc with PFAP affords a molecular weight of 4 x 106 (down from 6 x 106) after 32 hours at 177°C. Without stabilizer the molecular weight drops to 0.3 x 106 under these conditions. The effect of stabilizer also leads to great improvement in properties of 0-ring seal formulations after >600 hours aging at 177°-200°C [47].

207

Page 220: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

2or 3 WT %

—i •— 10 20 30

TIME (HR)

1.9

100

L

12 RETENTION 50

0.38

40

OF cr, 50

"0

wt. %

0 wt. %

65%

100 200 TIME (HR)

300

Figure 1

Change in solution viscosity of PFAP [with 0, 1, 2, and 3 wt. % bis(8-oxyquinolate) zinc]with time at 177°C [44],

Figure 2

Retention of 50% modulus (050) for reinforced PFAP vulcanizates [with 0 and 3 wt. % bis (8-oxyquino- late) zinc] on aging in air at at 200°C [44].

TABLE II

EFFECT OF HEAT AGING ON PFAP VULCANIZATE PROPERTIES [48]

(a)

Stress-Stain Property

50% Modulus, psi 100% Modulus, psi Tensile strength, psi Elongation @ break, %

Unaged Value

461 1445 1559 108

Aged (120 hrs/200°C) Value

<a)Contains 2 parts of bis(8-oxyquinolate)zinc.

317 937

1016 110

The stability shown by poly [bis (p_-isopropylphenoxy- phosphazene)] certainly represents a step forward in the search for more thermally stable poly(organophosphazenes). Another, and more likely approach, to improve thermal stability comprises at least partial replacement of alkoxy or aryloxy substituents bonded to phosphorus by phosphorus-carbon sites, particularly by direct bonding of phenyl or substituted aryl groups to phosphorus. Introduction of significant quantities of P-C

208

Page 221: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

sites in the polymer is anticipated to circumvent the pathways that permit depolymerization or decomposition at >200°C. Consequently, higher thermal and photolytic stability will result.

Significant progress has been made in the last two years concerning the preparation of high molecular weight P-carbon containing poly(organophosphazenes) using organometallic reagents (e.g., phenyl lithium or phenyl Grignard) [16,17], Earlier attempts were unsuccessful primarily due to extensive skeletal degradation [34,50]. Successful phenylation of a high molecular weight [F2PN]n polymer was described earlier in Section 5.5.2, Equation (3). A high molecular weight (1.2 x 106)[(0)Q.62(CF3CH2°)0.38PN1n copolymer was prepared which showed greater resistance to molecular weight decline at 300°C than did the [ (CF3CH20)2PN]n homopolymer [16]. TGA results indicated that incorporation of as little as 10 mole % P-0 sites raised the decomposition temperature at least 50°C [51].

Unfortunately, the state-of-the-art prevents achievement of high P-0 containing poly(phosphazenes) at high molecular weights, i.e.,^5 x 105. For example, the P-phenyl content could be raised to 84 mole % but molecular weight decreased to about 80,000 [16]. Fully substituted phenylated product could be obtained at a molecular weight of about 2500.

High yields of cyclic phosphazenes with a carbon-phosphorus site have been prepared recently [51,52] as shown in Equations (8) and (9).

Cl2 P. CH3MgCl,THF, 0°C , JQ» a^

J [Bu3P-CuI]4, C12P^P J b J 3

then (CH3)2CHOH CH3

[52] 76%

1- or 2- „-R F2

(F2PN)3 P-^YlLi, , F2EOfc3„5

cold, then reflux F

[53] 52-60%

209

Page 222: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

The chemistry in Equation (8) is noteworthy because it does not necessitate the use of a poly(difluorophosphazene) intermediate. The phosphine and Cul probably moderate the activity of the organometallic reagent to such an extent that substitution proceeds in high yield without major skeletal degradation. Hopefully this technique may eventually be employed for the preparation of high molecular weight polymer containing carbon- phosphorus bonds.

There are earlier reports in the literature strongly indicative of potential stability of poly(organo- phosphazenes) at temperatures in excess of 300°C. These cita- tions are listed:

1. Hexakis(heptafluorobutoxy)cyclotriphosphazene, [ (C3F7CH20)2PN]3, gave 50% of the corresponding tetramer after 50 hours of heating at 340°C [37].

2. Diphenylcyclophosphazenes (presumably tri- and tetramer) did not thermally rearrange but at 400°C benzene elimination began [34]. This does not preclude the possibility of extended service at 350°C. Cyclic trimer melts at 226- 227°C [22].

3. Hexakis(3- or 4-trifluoromethylphenoxy)cyclotri- phosphazene remained unchanged after heating at 410°C (770°F) for 10 hours [54].

4. Hexakis(phenoxy)cyclotriphosphazene is used as a high temperature standard for mass spectrometry [55].

5. Poly[bis (trifluoromethyl)phosphazene], [(CF3)2- PN]n showed a decomposition or depolymerization temperature near 380°C [33].

6. *NC3N3(0)-N=P(0)2—@ ©—p (0)2*12 lost 6% of its weight in air upto 420°C (TGA) and several other compositions showed no weight loss up to 390°C (TGA, air)[24].

(d) Physico-Mechanical Properties

Although there have been a number of reports describing physico-mechanical properties of filled cured poly(organophosphazene) elastomers, little information is avail- able concerning these properties of poly (organophosphazene) thermoplastics. Most of these thermoplastics orient upon

210

Page 223: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

drawing and in so doing show a substantial increase in tensile strength and a substantial decrease in elongation as shown in Table III. Properties of [ (p-ClCöH^O) 2PN] n film (similar in appearance to polyethylene) which had been cast into clear thin films (8-10 x 10_3 nm thick) are shown in Table IV.

TABLE III

TENSILE PROPERTIES OF POLY(FLUOROALKOXYPHOSPHAZENE) CAST FILMS [56]

[(CF3CH20)2PN]n

Unoriented (10-15 mils)

Oriented (3-5 mils)

Yield strength (psi) Tensile strength

at break (psi) Elongation (%) Tensile modulus (psi)

1,220

1,250 130

162,500

7,690 50

384,500

[(C3F7CH20)2PN]n

Yield strength (psi) Tensile strength

at break (psi) Elongation (%) Tensile modulus (psi)

430

750 6,800 785 60

553,425 408,000

TABLE IV

TENSILE TEST OF POLY [DI (p_-CHLOROPHENOXY) PHOSPHAZENE] FILMS [27]

Sample' Untreated

Film After 4 8 hrs in water at 25°C

After 8 hrs in water at 100°C

Initial modulus 4,700 (kg/cm^)

Yield stress (kg/cm2) 210 Elongation (%) 100

3,900

220 83

3,400

180 108

aFor comparative purposes Initial moduli (kg/cm2) of polyethylene and polypropylene are 103 and 10^, respectively.

211

Page 224: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

(e) Phosphazene Composites

Little information exists concerning the use of poly(phosphazenes) for fabrication of composites. Several [(CF3CH20)x(NH2)vPN]n copolymers were synthesized from rela- tively low molecular weight [Cl2PN]n=4Q-80 P

olYmer for evalua- tion as possible laminating resins [57]. These resins were evaluated with silica cloth but none gave high tensile strengths and all decomposed above 300°C. However, thermally crosslinked products obtained by partial amination of (CI2PN)3 gave hydro- lytic and thermal stabilities comparable to aryloxy- and aryl- substituted poly(phosphazenes). Heating above 500°C eventually led to formation of phosphorus nitride.

Recently, low molecular weight amine terminated arylated poly(phosphazene) was used to prepare a flame retardant modified polyimide for composite fabrication [24]. Feasibility of the PMR (Polymerization of Monomer Reactants) technique to prepare glass laminates was established. The organic components for the PMR system comprised 4,4'-methylene- dianiline, monomethyl ester of norbornene-2,3-dicarboxylic ester, dimethyl ester of 3,3',4,4'-benzophenone tetracarboxylic acid with or without the phenylated poly(phosphazene)(IV).

0 0

(IV)

The phosphazene modified product showed high thermal stability, no weight loss to 390°C, and a char yield of 47% at 600°C. Properties of the phosphazene modified polyimide glass lami- nates are compared to polyimide system in Table V. Clearly the phosphazene modified materials were inferior to the wholly polyimide materials.

Asbestos (Chrysotile) reinforced composites were prepared [58] from poly(decaboranyl-phosphazenes) of structure (V)[59].

212

Page 225: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

w rJ

5

w o M

a rJ o P-l

I w z w

P-i CO o EC P-i >-< rJ O

CM

a, ü

60 a ^ a) co M I 4J O CO rH

M cd CD

X! CO

M vo cd I C p

cd X rH U CM <u a ■u ^ a 53

o O O vO

C_> o vO

co

o O O -ci-

o CM

rH

CO

CM CM

m vo

o m

FK tu PM

CM co

O

H prf

o O O vO

CO I -

Xi O 4J rH Ö0 C X 0) )-l -H •U CO CO P.

v—'

rH VD cd I

X

PM CM s

CM CO

m CO

CO

m

CO

XI fe f*H

o VO

o o o vO O

O vo

VO m r~- ^f CM CM

VD m CO

CO m

o CM

Pi

00

CM CO

VO

O

CM

O

00

VO

Pn o o o

c_> o

o CM

X

•H Ö e^s co a)

ai c o

vD CM CM

rH CO

00 CO CO

CO 00

m CM m

P-I H

CO CO

m

O

m o m

o CO

m vO CM CO

oo -* CM O CO rH

o o

m o- rH o o o * • • • • •

CM CO CO o o o m m m CO CO CO

CM vO CO

O vO CO

vO vO CO

o CM

o CM

CD 4J cd cd C •

cd rJ

CO CO CO co

CM CO

CD -a- CM

CD

CM

00

>

C1J c a) N cd

X! a. co o X p.

rH o p.

a •H cd u a o u

I 00

CO a)

rH

i CO

CD u s •u cd u a>

§■ ■u

0 O

a

PH H

O •H ■M CO cd

rH P. O

a) X! H

01 t-i 3

rH •H cd

CJ •H 4J CO cd

rH P. O

CD Xi H

XI

00 Ö •rl X) rH O 0 00 (3

•H M

13 O

rH 14H

C •rH

CO a) M

CD >

•H CO CD CD CJ

W

213

Page 226: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

*=p-<o>~HN""i)~"BioHi2'_T_N=#n

0 0 0 0

(V)

Polymer (V) starts to soften above 340°C accompanied by the release of hydrogen. Results of isothermal aging in air of (V) at two molecular weights is shown in Table VI, and the effects of composite aging on flexural strength and modulus is shown in Figures 3 and 4. Composites derived from

TABLE VI

ISOTHERMAL HEAT AGING IN AIR OF POLY(DECABORANYL-PHOSPHAZENES) [58]

% Weight loss After Cumulative Exposure

Aging Temperature "F _, .-■.., TÖöJrrPC) 800(427»C) 9QQ(AUAUC)

PNp_n(a) 4.9/48 hrs. 8.5/29 hrs. 13.1/24 hrs.

PNP-IIl(b) 1.0/6 " 1.6/8 " 2.4/3

Resin (%)

(a) Molecular weight in excess of 20,000. (b) Oligomeric; readily soluble in a number of

solvents.

polymer (V) have several limitations; the resin shows limited solubility, composite fabrication requires relatively severe processing conditions, the resin is hydrolytically unstable, and the resin evolves hydrogen starting at about 2 70°C.

214

Page 227: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

o z

2or

15

10 PNP-ll

_JL 50

i X ICO 150

HOURS AT 800°F

_J 200

2.5 r

o O i

1.5 PNP-ll

< 5i DC O.

5 O

0.5 X X X 50 100 150

HOURS AT 800oF

200

Figure 3

Effect of Heat Aging on Flexural Strength of Poly(decaboranyl- phosphazene) Composites [58].

Figure 4

Effect of Heat Aging on Flexural Modulus of Poly(decaboranyl- phosphazene) Composites [58].

(f) Crosslinking

Physico-mechanical properties as well as thermo-oxidative behavior is invariably improved by proper polymer crosslinking. For example, introduction of vinyl func- tionality with subsequent cure of a poly(silarylene-siloxane) significantly improved thermal stability [60] (also see Section 5.2.3) .

Numerous examples of crosslinking poly(organo- phosphazene) elastomers have been cited [1,8-10,12,39,40,44, 46-49,61-63]. Crosslinking was generally achieved by use of an organic peroxide or a sulfur accelerated system at tempera- tures of 140°C to 175°C. Increased versatility of cure site structure and method(s) for its introduction into a poly (organo- phosphazene) should further advance the development of improved phosphazene materials. To a large extent this has been accom- plished [64] by modifying the substitution reaction of [Cl2PN]n

polymer (see Equation 2). Replacement of the conventional sodium alkoxide nucleophile by an organic hydroxyl reactant in the presence of triethylamine allows for the introduction

215

Page 228: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

of a number of different cure sites, many of which can be acti- vated at low temperatures.

Another method of crosslinking poly (organo- phosphazenes) , not dependent on an unsaturated cure site, was accomplished by ligand exchange on poly(fluoroalkoxyphospha- zenes)[65a,b]. [(CF3CH20)2PN]n and [(CF3CF2CF2CH2O)2PN]n were crosslinked at 25°C in tetrahydrofuran or Freon TA solvent by reaction with the disodium salt of 2,2,3,3,4,4-hexafluoro- pentanediol.

(g) Miscellaneous Properties

1. Fiber formation:

Several poly(organophosphazenes) can be fabricated into fibers. Elastic fibers of [(CF3CH2O)2PN]n were prepared by extrusion of polymer into a nonsolvent [35]. Poly[bis (p-phenylphenoxy)phosphazene], [(£-CgH5C6H4O)2PN]2, formed fibers quite readily from the melt at 225°C [27]. Undrawn monofilaments of diameter 50-60 ym gave a Young's Modulus of 2.14 x lOlO dyn/cm2 (2.14 x 10

y N/m^) which is about the same as undrawn nylon.

2. Radiation resistance:

Exposure of [(CH3)2PN]n to 40 Mrads (Co60 source) at 150°C decreased the molecular weight from 11,000-12,000 to 6,000-7,000 and broadened the melting point from 139-142°C to 137-145°C [26]. In addition, PNF® shows good resistance to radiation, ozone, and N2O4 [40].

(h) Economic

Polymerization of (CI2PN)3 trimer is the recommended route to the preparation of high molecular weight poly(organophosphazenes). The trimer is prepared from PCI5 and NH4CI which in turn are prepared from the appropriate combina- tions of P, Cl2, NH3, and HC1. In volume it is likely that

216

Page 229: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

the trimer would be expected to sell for $3-$5/lb. Polymeriza- tions are usually carried to 30-50% conversion. Monomer and solvent (if employed) would be readily recovered and therefore no significant additional increase in materials cost is anti- pated. Commonly employed phenols used for the preparation of poly(aryloxyphosphazenes)(APN) are generally priced in the range $0.25-$l.00/lb. Therefore the price of APN should be in the range of $5-$10/lb.

High P-phenyl containing poly(organophospha- zenes) derived from a poly(dichlorophosphazene) intermediate would cost more, at least 25%, than APN materials because of the organometallic reagents (e.g., 0Li, 0MgBr) employed.

Preparation of high P-phenyl containing polymers via poly(difluorophosphazene) intermediate as shown in Equation (3) would greatly increase the cost of poly- (organophosphazene). This is anticipated because of costlier halogenated intermediates, more expensive equipment, and more expensive solvents (see Section 5.5.2).

Introduction of a simple cure site derived from readily available intermediates should not significantly effect the price structure. Costly reagents ($5-$10/lb) would only marginally increase the cost (ca. 50C/lb) of the final polymer because they would be employed in small amounts (1-5%).

5.5.4 Summary and Recommendations

Poly(organophosphazenes) have been extensively studied and offer unique advantages as potential matrix resins for advanced composites;

(a) Ability to be prepared in very high molecular weight from relatively simple materials [i.e., (Cl2PN)3, alcohols, phenols],

(b) Virtually unlimited structure-property control, and

(c) Ease of introduction of cure site.

The major obstacle to development is limited thermal stability, although major strides have been made in recent years by way of structure improvement and deactivation of weak links. This positive trend is expected to continue with future efforts focusing upon:

217

Page 230: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

(a) Polymerization of [(Clg_x (0)xPN]o (x = 1,2) and its copolymerization with (Cl2PN)3 to afford high molecular weight polymers contain- ing 10-15 mol % P-phenyl sites. The remainder of organic substituents bonded to phosphorus would be selected from aryloxy groups because these structures appear to offer the best combination of thermal stability, high transi- tion temperatures, and processability. The above level of P-phenyl might be sufficient to significantly block thermal degradation by a depolymerization mode at temperatures of ca. 300°C. This blocking approach has a success- ful parallel in poly (siloxane) chemistry, and also might be the explanation for the improved thermal stability of poly(organophosphazenes) resulting from treatment with a lithium carborane- containing phenolate or alcoholate [66].

It is unknown at this time as to whether high (2:75% mol) P-phenyl containing poly(organo- phosphazenes ) would be thermally superior to the best known poly(organophosphazenes). The question* as to whether intramolecular steric hindrance in polymer relative to that in cyclic oligomers would act as a thermodynamic driving force for depolymerization [1,41], in the absence of "weak links", is yet to be answered.

(b) Reduction of the number of weak links in poly- (organophosphazenes). Two approaches can be visualized. First, attempt the purification, polymerization of (C12PN)3, and its quantita- tive conversion (final % Cl as P-C1^0.01%) to poly(organophosphazene) under scrupulously dry conditions. Second, identification of new reagents which would react irreversibly with

?H ? _P=N- ■#—» -PNH sites.

(c) Design of a volatile-free crosslinking system which would permit processability under modest temperature-pressure conditions. Crosslinking by a ligand exchange [see Section 5.5.3(f)] reaction of metal salts might be advantageous. Variation in crosslinker structure should afford wide latitude in cure temperature and time under conditions where no volatiles are formed. It would also be worthwhile to study the effect of solid poly(nucleophilic) specie upon

*Also see Section 4.1.2a. 218

Page 231: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

conventional poly(aryloxyphosphazenes). Aryloxide nucleophiles would be most suit- able at elevated temperatures since salts of polyfluorinated alcohols are thermally unstable.

219

Page 232: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

5.5.5 Bibliography

1. Allcock, H. R., "Phosphorus-Nitrogen Compounds," Academic Press (New York) 1972.

2. Allcock, H. R., Chem. Rev., 72, 315 (1972).

3. Allcock, H. R., Science, 193, 1214 (1976).

4. Singler, R. E., Schneider, N. S., and Hagnauer, G. L., Polymer Eng. Sei., 15, 321 (1975).

5. Allcock, H. R., CHEMTECH, 5, 552 (1975).

6. Shaw, R. A., Fitzsimmons, B. W., and Smith, B. C., Chem. Rev., 62, 247 (1962).

7. Reynard, K. A., Gerber, A. H., and Rose, S. H., "Synthesis of Phosphonitrilic Elastomers and Plastics for Marine Applications," Naval Ship Engineering Center, AMMRC CTR 72-79, December 1972, AD 755 188.

8. Reynard, K. A., Sicka, R. W., Thompson, J. E., and Rose, S. H., "Poly(aryloxyphosphazene) Foams and Wire Coverings," Naval Ship Engineering Center, Contract N00024-73-5474, March 1975.

9a. Reynard, K. A., Sicka, R. W., and Thompson, J. E., Final Rept., "Poly(aryloxyphosphazene) Foams," Naval Ship Systems Command, Contract N00024-73- C-5474, June 1974, AD A009 425.

9b. Thompson, J. E. and Reynard, K. A., J. Appl. Polymer Sei., 21, 2575 (1977).

10. Reynard, K. A. and Vicic, J. C., "Polyphosphazene Wire Coverings," Naval Ship Engineering Center, Contract N00024-75-C-4402, June 1976, AD A028 872.

11a. Quinn, E. J. and Dieck, R. L., J. Fire & Flammability, 7, 5 (1976).

lib. Quinn, E. J. and Dieck, R. L., J. Fire & Flammability, 7, 358 (1976).

220

Page 233: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

12. Quinn, E. J. and Dieck, R. L. , U. S. Pats. 4,061,606 (1977) and 4,107,108 (1978).

13. Widenor, W. M., "Model Fire Tests on Polyphospha- zene Rubber and Polyvinyl Chloride (PVC)/Nitrile Rubber Foams," presented (by the Dept. of Navy), at the Fireman Program Review, NASA-Ames Research Center, Moffett Field, CA, April 13-14, 1978.

14. Reynard, K. A. and Gerber, A. H., U. S. Pats. 4,005,171 (1977) and 4,139,598 (1979).

15. Hagnauer, G. L. and Schneider, N. S., J. Polymer Sei., Pt. A-2, 10, 699 (1972).

16. Allcock, H. R., Patterson, D. B., and Evans, T. L., J. Amer. Chem. Soc, 99, 6095 (1977).

17. Allcock, H. R., Am. Chem. Soc. Meeting, September 1978, Miami, Florida.

18. Korshak, V. V., Kireev, V. V., Eryan, M. A., and Teikova, I. R., USSR Pat. 417,452 (1974); Chem. Abstr., 81, 170234u (1974).

19. Allcock, H. R. and Kugel, R. L., Inorg. Chem., 5, 1016 (1966).

20. Allcock, H. R. and Moore, G. Y., Macromolecules, 8, 377 (1975).

21. Allcock, H. R., Schmutz, J. L. and Kosydar, M., Macromolecules, 11, 179 (1978).

22. Kratzer, R. H. and Paciorek, K. L., Inorg. Chem., 4, 1767 (1965).

23. Herring, D. L., J. Org. Chem., 26, 3998 (1961).

24. Paciorek, K. L., Karle, D. W. , and Kratzer, R. H. , "Flame Retardant Polyphosphazenes," NASA CR-135090, August 1976.

25. Horn, H. G., Makcromol. Chem., 138, 163 (1970); Chem. Abstr., 7_3, 131362z (1970).

26. Sisler, H. H., Frazier, S. E., Rice, R. G., and Sanchez, M. G., Inorg. Chem., 5, 326 (1966).

221

Page 234: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

27. Allen, G., Lewis, C. J. and Todd, S. M., Polymer, 11, 44 (1970).

28. Allcock, H. R., Konopski, G. F., Kugel, R. L, and Stroh, E. G., Chem. Commun., 1970, 985.

29. White, J. E., Singler, R. E.,and Leone, S. A., J. Polymer Chem., Polymer Chem. Ed., 13_* 2531 (1975).

30. Fitzsimmons, B. W. , Hewlett, C, and Shaw, R. A. , J. Chem. Soc, 1964, 4459.

31. Mochel, V. D. and Cheng, T. C, Macromolecules, 11, 176 (1978).

32. Tesi, G., Haber, C. P., and Douglas, C. M., Pro. Chem. Soc, London, 1960, 219; U. S. Pat. 3,087,937 (1963).

33. Tesi, G. and Douglas, C. M. , J. Am. Chem. Soc, 84, 549 (1962).

34. MacCullum, J. R. and Tanner, J., J. Polymer Sei., Pt. A-l, 6, 3163 (1968).

35. Allcock, H. R., Kugel, R. L., and Valan, K. J., Inorg. Chem. 5, 1709 (1966).

36. Allcock, H. R. and Walsh, E. J., J. Am. Chem. Soc, 91, 3102 (1969).

37. Ratz, R., Schroeder, H, Ulrich, H., Kober, E., and Grundman, C, J. Am. Chem. Soc, 84, 551 (1962).

38. Rose, S. H., J. Polymer Sei., Pt. B, 6^ 837 (1968).

39. Reynard, K. A. , Vicic, J. C, Sicka, R. W. , and Rose, S. H., "Elastomers for Service with Engine Lubricants and Hydraulic Fluids," Naval Air Systems Command, Contract N00019-73-C-0406, March 1974.

40a. Vicic, J. C. and Reynard, K. A., "Poly(fluoroalkoxy- phosphazene) Lip Seal Materials," Army Materials & Mechanics Research Center, Contract DAAG 4 6- 74-C-0056, October 1975.

222

Page 235: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

40b. Vicic, J. C. and Reynard, K. A., J. Appl. Polymer Sei., 21, 3185 (1977).

41. Allcock, H. R., Moore, G. Y., and Cook, W. J., Macro- molecules, 7, 571 (1974).

42. Allcock, H. R. and Cook, W. J. , Macromolecules, 1_, 284 (1974).

43. Hagnauer, G. L. and LaLiberte, B. R., J. Appl. Polymer Sei., 20, 3073 (1976).

44. Kyker, G. S. and Valaitis, J. K., "Stabilization of Poly(fluoroalkoxyphosphazene)(PFAP) Elastomer Against Thermal Degradation," Chapter 24, p. 294 in Stabilization and Degradation of Polymers," Advances in Chemistry Series No. 169, Eds. Allara, D. and Hawkins, W. L., Am. Chem. Soc., 1978.

45. Goldfarb, L., Hann, N. D., Dieck, R. L. , and Messer- smith, D. C, J. Polymer Sei., Polymer Chem. Ed., 16, 1505 (1978).

46. Kyker, G. S., Beckman, J. A., Halasa, J. A.,and Hall, J. E., U. S. Pat. 3,843,596 (1974).

47. Kyker, G. S., U. S. Pat. 3,867,341 (1975).

48. Täte, D. P. and Antkowiak, T. A., "Fluoroalkoxyphospha- zenes," in press, Encyclopedia of Chemical Technology, Wiley (New York).

49. Täte, D. P., Rubber World, 112, 41 (1975).

50. Liu, C. F. and Evans, R. L., U. S. Pat. 3,169,933 (1965).

51. Allcock, H. R. , private communication.

52. Allcock, H. R. and Harris, P., Am. Chem. Soc, Meeting, 1978, Miami, Florida.

53. DuPont, J. C. and Allen, C. W. , Inorg. Chem., 1_7, 3093 (1978).

54. Moran, G. F. and Coffey, C. E., ML-TDR-64-15 (Part II), 1965.

55. See reference 1, p. 151.

223

Page 236: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

56. Reynard, K. A., Gerber, A. H., Sicka, R. W., Vicic, J. C, and Rose, S. H. , "Evaluation of Poly- (fluoroalkoxyphosphazene) Elastomers and Plastics," Final Report, Army Materials & Mechanics Research Center, Contract DAAG46-73-C-0215, March 1974, AD 781 578.

57. Maselli, J. E., Bieniek, T., Murch, R. M., Kawam, A., and Rice, R. G., "Phosphonitrilic Laminating Resins," Air Force Materials Lab., TR65 314, Pt. 2, June 1967, AD 839 953.

58. Schroeder, H. A. and Trainor, J. T., "Fiber Reinforced Borane-Based Resin Composites," presented at the 12th National SAMPE Symposium, October 1967; Science of Advanced Materials & Process Eng., 12 (1967) AC-2.

59. Schroeder, H. A., Reiner, J. R., and Knowles, T. A., Inorg. Chem., 2, 393 (1963).

60a. Lenz, R. W. and Dvornic, P. R., Am. Chem. Soc., Polymer Preprints, 19(2), 857 (1978).

60b. Lenz, R. W. and Dvornic, P. R., "Preparation and Evaluation of Exactly Alternating Silarylene- Siloxane Elastomers," Office of Naval Research Rept., Contract N00014-76-C-700, August 1978.

61. Kyker, G. S. and Antkowiak, T. A., Rubber Chem. Tech., 47, 32 (1974).

62. Täte, D. P., J. Polymer Sei., £48, 33 (1974).

63. Touchet, P. and Gatza, P. E., J. Elastomers & Plast., 9, 3 (1977).

64. Täte, D. P., Hergenrother, W. G., Rang, J. W., and Graves, D. F., Am. Chem. Soc, Polymer Preprints, 20(1), 177 (1979).

65a. Allcock, H. R. and Moore, G. Y., Macromolecules, 5, 231 (1972).

65b. Allcock, H. R., U. S. Pat. 3,732,175 (1973).

66. Korshak, V. V., USSR Pat. 602, 513 (1978); Chem. Abstr., 88, 192170s (1978).

224

Page 237: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

6.0 BIBLIOGRAPHY

6.1 General References

1. Encyc. of Polymer Sei. & Tech., Interscience (New York), 1964-1971.

2. Andrianov, K. A., "Metalorganic Polymers," Eng. transl., Interscience (New York), 1965.

3. Carraher Jr., C. E., Sheats, J. E., and Pittman Jr., C. U., eds. "Organometallic Polymers," Academic Press (New York), 1978.

4. Conley, R. T., ed., "Thermal Stability of Polymers," vol. I, Dekker (New York), 1970.

5. Cotter, R. J. and Matzner, M., "Ring-Forming Polymeriza- tions," Pt. A: Carbocyclic and Metallo-Organic Rings, Academic Press (New York), 1969.

6. Currell, B. R. and Frazer, M. J., "Inorganic Polymers," R.I.C. Reviews, 2(1), 13 (1969).

7. Frazer, A. H., "High Temperature Resistant Polymers," Interscience (New York), 1968.

8. Gerrard, W., Trans. J. Plastics Inst., June 1967, pp. 509-523.

9. Gimblett, F. G. R., "Inorganic Polymer Chemistry," Butterworths (London, Engl.), 1963.

10. Glemsar, 0. "Anorganische Polymers" (Inorganic Polymers), Plenary Main Sect. Lect. Int. Congr. Pure Appl. Chem., 24th 1973 (Pub. 1974) 1, 177-202 (Ger.)y Butterworths (London, Engl.).

11. Hansmann, J. , Gummi, Asbest., Kunstst., 2j9 (7), 440 (1976)

12. Holliday, L., Z. f. Werkstofftechnik (J. of Materials Technology), 2_ (5), 254 (1971).

13. Korshak, V. V., "Heat Resistant Polymers," Halsted Press (New York), 1971.

14. Lappert, M. F. and Leigh, G. J., eds. "Developments in Inorganic Polymer Chemistry," Elsevier (New York), 1962.

225

Page 238: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

226

15. MacCallum, J. R., Kinet, Mech. Polym., 3, 333 (1972).

16. Neuse, E. W. and Rosenberg, H. , "Metallocene Polymers," Reviews in Macromolecular Chemistry, 5 (1), Dekker (New York), 197 0.

17. Stone, F. G. A. and Graham, W. A. G., eds. "Inorganic Polymers ," Academic Press (New York), 1962.

18 Zeldin, M., Polymer News, 3, 65 (1976)

Page 239: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

6. 2 Author Bibliography

Aftergut, S. See: Brown, G. P.

Akutin, M. S. See: Osipchik, V. V.

Alekseeva, V. P. See: Sosin, S. L.

Aleskovs, V. B. See: Signalov, I. N.

Alexander, R. P. and Schroeder, H. A., Inorg. Chem., 5, 493 (1968).

Alexander, R. P. See also: Dietrich, H. J.

Reiner, J. R.

Allara, D. See: Kyker, G. S.

Allcock, H. R., "Phosphorus-Nitrogen Compounds," Academic Press (New York) 1972, p. 370, and references disclosed therein.

Allcock, H. R., Am. Chem. Soc. Meeting, September 1978, Miami, Florida.

Allcock, H. R., Chem. Rev., 72, 315 (1972).

Allcock, H. R., CHEM TECH, 5, 552 (1975).

Allcock, H. R., private communication.

Allcock, H. R., Science, 193, 1214 (1976).

Allcock, H. R., U. S. Pat. 3,732,175 (1973).

Allcock, H. R. and Cook, W. J. , Macromolecules, 1_, 284 (1974).

Allcock, H. R., Forgione, P. S., and Valan, K. J., J. Org. Chem., 30, 947 (1965).

Allcock, H. R. and Harris, P., Am. Chem. Soc. Meeting, 1978, Miami, Florida.

Allcock, H. R., Konopski, G. F., Kugel, R. L., and Stroh, E. G., Chem. Commun., 1970, 985.

227

Page 240: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Allcock, H. R. and Kugel, R. L., Inorg. Chem., 5, 1016 (1966).

Allcock, H. R., Kugel, R. L., and Valan, K. J., Inorg. Chem., 5, 1709 (1966).

Allcock, H. R. and Moore, G. Y., Macromolecules, 5, 231 (1972) .

Allcock, H. R. and Moore, G. Y., Macromolecules, 8, 377 (1975).

Allcock, H. R., Moore, G. Y., and Cook, W. J., Macro- molecules, 7, 571 (1974).

Allcock, H. R., Patterson, D. B., and Evans, T. L., J. Amer. Chem. Soc., 99, 6095 (1977).

Allcock, H. R., Schmutz, J. L.,and Kosydar, M., Macro- molecules, 11, 179 (1978).

Allcock, H. R. and Walsh, E. J. , J. Am. Chem. Soc, 91, 3102 (1969).

Allen, C. W. See: DuPont, J. C.

Allen, G., Lewis, C. J., and Todd, S. M., Polymer, 11, 44 (1970).

Allport, D. C. See: Plumb, J. B.

Andrianov, K. A., Dokl. Akad. Nauk. SSR, 140, 1310 (1961); Chem. Abstr., 56, 8737c (1962).

Andrianov, K. A., J. Polymer Sei., 52, 257 (1961).

Andrianov, K. A., "Metalorganic Polymers," Eng. transl., Interscience (New York), 1965; also Inorganic Polymers, Chemical Society (London), Special Publi- cation No. 15 (1961); also Inorg. Macromol. Rev. 1(1), 33 (1970).

Andrianov, K. A., "Thermal Degradation of Polymers," SCI Monograph No. 13, (1961).

Andrianov, K. A., Imailov, B. A., Kononov, A. M., and Kotrilev, G. V., J. Organomet. Chem., 3, 129 (1965).

228

Page 241: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Andrianov, K. A. and Khanananashvili, L. M., Organomet. Chem. Rev., 2, 141 (1967).

Andrianov, K. A., Kurakov, G. A., Shushentsova, F. F., Myagkov, V. A., and Avilov, V. A., Dokl. Akad. Nauk. SSSR, 166, 855 (1966) (Eng. transl.); Chem. Abstr., 64, 14288 (1966).

Andrianov, K. A., Kurakov, G. A., Shushentsova, F. F., Mgagkov, V. A., and Avilov, V. A., Polymer Sei. (USSR) (Eng. transl.), 1_, 1637 (1965).

Andrianov, K. A., Kurakov, G. A., Shushentsova, F. F., Mgagkov, V. A., and Avilov, V. A., Proc. Acad. Sei. (USSR) Chem. Sec. (Eng. transl.), 166, 151 (1966).

Andrianov, K. A., Kurasheva, N. A., Kuteinikova, L. I., and Lavrukhin, B. D., Vysokomolekul. Soedin., Ser. A, 17.(5), 1049 (1975); Chem. Abstr., 83, 114991t (1975).

Andrianov, K. A., Kurasheva, N. A., Kuteinikova, L. I., Lavrukhin, B. D., and Gurvits, E. D., Vysokomolekul. Soedin., Ser. A, 16(5), 1082 (1974); Chem. Abstr., 8_3, 59343f (1975).

Andrianov, K. A. and Makarova, N. N., Vysokomolekul. Soedin., Ser. A, 12(3), 663 (1970); Chem. Abstr., 73, 4466m (1970).

Andrianov, K. A., Misina, V. P., Makarova, L. I., Slonimskii, G. L., Lyubavskaya, E. A., Bokareva, 0. I., Levin, V. Yu., Savin, V. A., and Raigorodskii, I. M., Vysokomolekul. Soedin., Ser. B, 20(6), 471 (1978); Chem. Abstr., £9, 147259n (1978).

Andrianov, K. A., Pahkomov, V. I., Gel'Perina, V. M., and Mukhina, D. N. , Vsysokomolekul. Soedin., 8_, 1618 (1966); Chem. Abstr., 67, 117401f (1967).

Andrianov, K. A., Petrashko, A. I., Bebchuk, T. S., Pashintseva, G. I., and Golubkov, G. E., Vysokomolekul. Soedin., Ser. A, 9(9), 2025 (1967); Chem. Abstr., 62, 117614c (1967).

Andrianov, K. A., Slonimskii, G. L., Kvachev, Yu. P., Perspechko, I. I., Papkov, V. S., and Levin, V. Yu., Meckhanika Polym., 5, 804 (1973).

Andrianov, K. A., Slonimskii, G. L., Levin, V. Yu., Kvachev, Yu. P., Makarova, N. N., and Kozlova, G. N., Vysokomolekul. Soedin., B12, 875 (1970).

229

Page 242: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Andrianov, K. A., Slonimskii, G. L., Zhdanov, A. A., and Levin, V. Yu., J. Macromol. Sei., Chem., 2(5), 959 (1968); Chem. Abstr., 69, 97376n (1968).

Andrianov, K. A., Slonimskii, G. L., Zhdanov, A. A., Tsvankin, D. Ya., Levin, V. Yu., Papkov, V. S., Kvachev, Yu. P., and Belavtseva, E. M., J. Polymer Sei., Polymer Chem. Ed., 14(5), 1205 (1976); Chem. Abstr., 85, 22183u (1976).

Andrianov, K. A., Tverdokhlebova, I. I., Makarova, N. N., Mamaeva, I. I., Chekalov, A. K., Men'shov, V. M., and Pavlova, S. A., Vysokomolekul. Soedin., Ser. A, 20(2), 377 (1978); Chem. Abstr., 88, 137273c (1978).

Andrianov, K. A., Tverdokhlebova, I. I., Pavlova, S. A., Mamaeva, I. I., Rabkina, A. Yu., and Larina, T. A., Vysokomolekul. Soedin., Ser. A, 19(6), 406 (1977); Chem. Abstr., 87, 68990z (1977).

Andrianov, K. A., Zavin, B. G., and Rabkina, A. Yu., Russian Pat. 602,511 (1978); Chem. Abstr., 88, 192062h (1978).

Andrianov, K. A., Zhdanov, A. A., and Asnovich, E. Z., Izv. Akad. Nauk SSSR, Otd. Khim. Nauk., p. 1760 (1959); Resins, Rubbers, Plastics, p. 227 (1960).

Andrianov, K. A., Zhdanov, A. A., and Levin, V. Yu., Ann. Rev. Mater. Sei., 8, 313 (1978).

Andrianov, K. A. See also: Asnovich, E. Z.

Karlin, A. V. Korshak, V. V. Osipchik, V. V. Papkov, W. S. Severnyi, V. V. Vargina, R. A. Zhdanov, A. A.

Ansul, G. R. See: Sommer, L. H.

Antkowiak, T. A. See: Kyker, G. S.

Täte, D. P.

Antonen, R. C., Kookootsedes, G. J., and Field, A. J., U. S. Pat. 3,703,562 (1972); Chem. Abstr., 78^ 30845g (1973).

230

Page 243: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Ardedter, H. F., "Fibers, Inorganic," in Encyc. of Polymer Sei. & Tech., 6_, Interscience (New York) 1967, p. 610.

Arsen'eva, E. D., Aulova, N. V., Fromberg, M. B., Gashnikova, N. P., and Grozdov, A. G., Vysokomolekul. Soedin., Ser. A., 14(1), 212 (1972); Chem. Abstr., 76, 127589y (1972).

Artemova, V. S. See: Korshak, V. V.

Arvan, P. G. See: Callis, C. F.

Aseev, Yu. G. See: Berlin, A. A.

Asnovich, E. Z. and Andrianov, K. A., Vysokomolekul. Soedin., 4, 216, 256 (1962); Chem. Abstr., 56, 15664b.

Asnovich, E. Z. See also: Andrianov, K. A.

Aso, C. See: Kunitake, T.

Aspey, S. A. See: Marvel, C. S.

Atherton, J. H. See: Plumb, J. B.

Atkinson, I. B. and Currell, B. R., Inorg. Macromol. Rev., 1, 203 (1971), and references disclosed therein.

Aulova, N. V. See: Arsen'eva, E. D.

Avilov, V. A. See: Andrianov, K. A.

Ayers, O. W. See: Pittman Jr., C. U.

Aylett, B., Organometallic Chem. Rev., 3_, 151 (1968).

Azirnikov, V., Nauk i Zhizn, 11, 22 (1960).

231

Page 244: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Baburina, V. A. See: Lebedev, E. P.

Bachmann, J. J., Sellers, J. W., Wagner, M. P., and Wolf, R. E., Rubber Chem. Technol., _32, 1286 (1959).

Baijal, S. K. , J. Scientific & Ind. Res., 3_3(7), 328 (1974).

Bailar Jr., J. C., "Coordination of Inorganic Ions to Polymers," in Organometallic Polymers, Eds. Carraher Jr., C. E., Sheats, J. E., and Pittman Jr., C. U., Academic Press (New York) 1978, p. 316.

Bailar Jr., J. C., Inorganic Polymers, Special Publica- tion No. 15, The Chemical Society, London, 51 (1961).

Bailar Jr., J. C., Martin, K. V., Judd, M. L., and McLean Jr., J. A., WADC Tech. Rept. No. 57-391, Part I (1957).

Bailar Jr., J. C., Martin, K. V., Judd, M. L., and McLean Jr., J. A., WADC Tech. Rept. No. 57-391, Part II (1958).

Bailar Jr., J. C. See also: Goodwin, H. A.

Klein, R. M.

Bakul, V. N. and Prikhna, A. I., Sin. Almazy, 3(1), 36 (1971); Chem. Abstr. , 7J5, 15541z (1971).

Balabanov, E. M. See: Berlin, A. A.

Balakrishnan, S. See: Ramanathan, V.

Baldoni, A. A. See: Patterson, T. R.

Barker, K. A., Beard, C. D., Bohan, J. J., Dunks, G. B., Hedaya, E., Joesten, B. L., Kawakami, J. H., Kopf, P. W., Kwiatkowski, G. T., McNeil, D. W., Moffitt, R. B., Owen, D. A., Peters, E. N., Poutsma, M. L., Stewart, D. D., and Tulis, R. W., "The Preparation^ and Properties of D2-m-Carboranesiloxane Polymers," Final Rept. to Office of Naval Research, Contract N00014-72-C-0277, July 1978.

232

Page 245: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Bartholin, M. and Guyot, A., C. R. Acad. Sei., Paris, Ser. C, 26^(21), 1694 (1967); Chem. Abstr., 67, 74076J (1967).

Barton, J. M. See: Rosenberg, H.

Baughman, R. H. in "Contemporary Topics in Polymer Science," Vol. 2, Eds. Pearce, E. M. and Schaefgen, J. R., Plenum Press (New York) 1977, p. 205.

Bayles, F. D. and Dudley, M. A., U. S. Pat. 3,989,875 (1976); Chem. Abstr., 86, 30705b (1977).

Beard, C. D. See: Barker, K. A.

Peters, E. N.

Bebchuk, T. S. See: Andrianov, K. A.

Severnyi, V. V.

Beckman, J. A. See: Kyker, G. S.

Bedford, J. A. and LeGrow, G. E., U. S. Clearinghouse Fed. Sei. Tech. Inform., AD 645 722; Chem. Abstr., 68, 30344m (1968) .

Bednarik, L., Gohdes, R. C., Neuse, E. W., Transition Met. Chem. (Weinhein, Ger.), 2, 212 (1977); Chem. Abstr., 88, 105523t (1978).

Bekasova, N. I. See: Korshak, V. V.

Belavtseva, E. M. See: Andrianov, K. A.

Benner, C. L. See: Helminiak, T. E.

Berger, A. See: Wilkus, E. V.

Berlin, A. A., J. Polymer Sei., 55, 621 (1961).

Berlin, A. A., Cherkashina, L. G., Frankevich, E. L., Balabanov, E. M., and Aseev, Yu. G., Vysokomolekul. Soedin., 6(5), 832 (1964).

233

Page 246: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Berlin, A. A., Matveeva, N. G., Sherle, A. I., and Kostrova, N. D. , Vysokomolekul. Soedin., £, 860 (1962); Polymer Sei. (USSR) (Eng. transl.), 4, 260 (1963); Resins, Rubbers, Plastics, 2095 (1962).

Berlin, A. A. and Sherle, A. I., Inorg. Macromol. Rev., 1(3), 235 (1971).

Berlin, A. A. See also: Gerasimov, B. G.

Berry, T. E. See: Hawthorne, M. F.

Bieniek, T. See: Maselli, J E,

Bilow, N. and Rosenberg, H. 2689 (1969).

J. Polymer Sei., Pt. A-l, ]_,

Pat. 3,560,429 (1971).

Pat. 3,640,961 (1972).

Pat. 3,640,963 (1972).

Bilow, N. and Rosenberg, H., U. S

Bilow, N. and Rosenberg, H., U. S

Bilow, N. and Rosenberg, H., U. S

Bird, J. D. See: Curry, J. E.

Dunnavant, W. R.

Birke, A. H. and Rosenberg, H., "Silicon-Nitrogen Polymers for High Temperature Protective Coatings," AFML-TR-69- 94-PT-l, Air Force Materials Lab., October 1969, AD 864 678.

Block, B. P., "Coordination Polymers," in Encyc. of Polymer Sei. and Tech., 4, Wiley (New York) 1966, p. 150.

Block, B. P., Inorg. Macromol. Rev., 1, 115 (1970).

Block, B. P., Gillman, H. D., and Nannelli, P., "The Synthesis and Characterization of the Poly(metal phosphinates)," Office of Naval Research Final Rept., Contract N-00014-69-C-0122, June 1977, and references therein, AD A041 511.

Block, B. P. and Meloni, E. G., NASA Accession No. N65- 13167, Rept. No. AD 449 580; Chem. Abstr. , 6J3, 11708 (1965).

234

Page 247: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Block, B. P., Rose, S. H., Schaumann, C. W., Roth, E. S., and Simkin, J. , J. Am. Chem. Soc. , 8_4, 3201 (1962).

Block, B. P. See also: Rose, S. H.

Bloomfield, J. J. See: Mulvaney, J. E.

Blyumenfel'd, A. B., Fomina, N. I., Kovarskaya, B. M., Pakhomov, V. I., Gel'perina, V. M., and Mukhina, D. N., Plast. Massy, (2), 45 (1976); Chem. Abstr., 84, 165474e.

Blyumenfel'd, A. B., Fomina, N. I., Kovarskaya, B. M., Pakhomov, V. I., Gel'perina, V. M., Mukhina, D. N., and Korol'kov, Yu. A., Plast. Massy, (11), 46 (1977); Chem. Abstr., 88, 7865m (1978).

Bohan, J. J. See: Barker, K. A.

Peters, E. N.

Bokareva, O. I See: Andrianov, K. A.

Bonsignore, P. V. See: Marvel, C. S.

Boonstra, B. B., Cockrane, H., and Dannenberg, E. M., Rubber Chem. Technol., 48, 558 (1975).

Bourrie, D. B. See: Kim, Y. K.

Bradley, D. C., "Polymeric Metal Alkoxides, Organo- metalloxanes, and Organometalloxanosiloxanes," in Inorg. Polymers, Eds., Stone, F. G. A. and Graham, W. A. G., Academic Press (New York), 1962.

Bradley, D. C. , Lorimer, J. W. , and Prevedorou-Demas, C, Can. J. Chem., 49(13), 2310 (1971).

Bradley, D. C. and Prevedorou-Demas, C., Chem. Ind. (London), 52, 1659 (1970).

Breed, L. W., Elliott, R. L., and Ferris, A. F., J. Org. Chem., 27, 1114 (1962).

Breed, L. W., Elliott, R. L., and Ferris, A. F., J. Polymer Sei., A2, 4_5 (1964).

235

Page 248: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Breed, L. W., Elliott, R. L. , and Rosenberg, H., U. S. Pat. 3,702,317 (1972); Chem. Abstr. , 7_8, 85595f (1973)

Breed, L. W., Elliott, R. L., and Whitehead, M. E., J. Polymer Sei., 5, Al 2745 (1967).

Breed, L. W., Elliott, R. L., and Wiley, J. C. , "New Synthetic Methods for Silicon-Nitrogen Polymers," AFML-TR-69-20-PT-2, Contract F33615-68-C-1371, November 1970, AD 882 634.

Breed, L. W., Wiley, J. C., and Elliott, R. L., "New Synthetic Methods for Silicon-Nitrogen Polymers," AFML-TR-69-2 0-PT-3, Contract F33615-68-C-1371, August 1971, AD 887 752.

Breed, L. W., Wiley, J. C., and Elliott, R. L., "New Synthetic Methods for Silicon-Nitrogen Polymers," AFML-TR-69-20-PT-4, Contract F33615-71-C-1235, November 1972, AD 908 905L.

Bresadola, S., Rosetto, F., and Tagliavini, G., Chim. Ind. (Milan), 50(4), 452 (1968); Chem. Abstr., 69, 3242r (1968).

Bresadola, S., Rossetto, F., and Tagliavini, G., Eur. Polymer Jr., 4(1), 75 (1968); Chem. Abstr., 68, 96185s (1968).

Bressel, B. See: Buechner, W.

Bright, A. A. See: MacDiarmid, A. G.

Brown, G. P. and Aftergut, S., J. Polymer Sei., A2, 1839 (1964).

Brown Jr., J. F., J. Polymer Sei., C, 83 (1963).

Brown Jr., J. F., French Pat. 1,437,889 (1966); Chem. Abstr., 66, 31662 (1967).

Brown Jr., J. F., U. S. Pat. 3,000,858 (1961); Chem. Abstr., 56, 6001c (1962).

Brown Jr., J. F. and Slusarczak, G. M. , J. Am. Chem. Soc, Polymer Preprints, 8_, 157 (1967).

Brown Jr., J. F. and Vogt Jr., L. H., U. S. Pat. 3,017,386 (1962); Chem. Abstr., 57, 13993h (1962).

236

Page 249: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Brown Jr., J. F., Vogt Jr., L. H., Katchman, A., Eustance, J. W., Riser, K. M., and Krantz, K. W., J. Am. Chem. Soc, 8^2, 6194 (1960).

Brown Jr., J. F., Vogt Jr., L. H., and Prescott, P. I., J. Am. Chem. Soc, 86^ 1120 (1964).

Brown, S. P., "Thermally Stable Organometallic Polymers," USN TIS AD/A Rept., July 1974, AD 000 753; Govt. Rept. Announce (U.S.) 1975, 75(1), 53.

Bryk, M. T., Kardanov, V. K., Kompaniets, V. A., Pavlova, I. A., Sint. Fiz.-Khim. Polim. 1978, 22, 54; Chem. Abstr., 89^, 60415m (1978).

Bryk, M. T., Kompaniets, V. A., Kardanov, V. K., Sint. Fiz.- Khim. Polim. 1974(13) , 135; Chem. Abstr., 81, 136828f (1974) .

Bryk, M. T. See: Kardanov, V. K.

Buechner, W., Noll, W., and Bressel, B., Ger. Pat. 2,162,418 (1973); Chem. Abstr., 79, 92984f (1973).

Bulatoo, M. A. See: Podolskii, A. V.

Bulgakova, I. A. See: Korshak, V. V.

Burg, A. B., J. Inorg. Nucl. Chem., 11, 258 (1959).

Burg, A. B., "Types of Polymer Combination Among the Non-metallic Elements," in Inorg. Polymers, Chem. Soc. (London) Special Publication No. 15 (1961).

Burg, A. B. and Wagner, R. I., Brit. Pat. 912,530 (1962); Chem. Abstr., 5_9, 4121e (1963).

Burish, G. F. See: Carraher Jr., C. E.

Burks Jr., R. E., "A Study of Polymers Containing Silicon- Nitrogen Bonds," NASA Contract No. NAS 8-1510 (1968).

Byrd, J. D. and Curry, J. E., "Silazane Chemistry," NASA Accession No. N65-25990, Rept. No. NASA-TM-X-53197, 1965; Chem. Abstr., 67, 34044d (1967).

237

Page 250: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Cais, M.f U. S. Pat. 3,382,268 (1968).

Callis, C. F., Van Wazer, J. R., and Arvan, P. G., Chem. Rev., 54, 777 (1954).

Carraher Jr., C. E. , Am. Chem. Soc, Preprints, Organic Coatings & Plastics Chemistry, 35(2), 380 (1975).

Carraher Jr., C. E. , Am. Chem. Soc, Polymer Preprints, 19(2), 100 (1978).

Carraher Jr., C. E.,"Organometallic Polymers," in Inter- facial Synthesis, Dekker (New York), 1977, p. 367.

Carraher Jr., C. E., "Solubility Properties of Organo- metallic Condensation Polymers," in Structure- Solubility Relationship in Polymers, [Proc. Symp., 1976], Eds. Harris, F. W. and Seymour, R. B., Academic Press (New York) 1977, p. 215.

Carraher Jr., C. E. and Burish, G. F., J. Macromol. Sei., Chem., A10(8), 1451 (1976).

Carraher Jr., C. E., Christensen, M. J., and Schroeder, J. A., J. Macromol. Sei., Chem., All (11), 2021 (1977).

Carraher Jr., C. E. and Reese, C. D., Angew. Makromol. Chem., 65, 95 (1977).

Carraher Jr., C. E. and Reese, C. D., J. Polymer Sei., Polymer Chem. Ed., 16, 491 (1978).

Carraher Jr., C. E., Sheats, J. E., and Pittman Jr., C. U., Eds. "Organometallic Polymers," Academic Press (New York), 1978.

Carraher Jr., C. E. See also: Bailar Jr., J. C.

Millich, F. Sheats, J. E.

Caserio Jr., F. F. See: Wagner, R. I.

Cekada, Jr. See: Joyner, R. D.

Chakravarty, D. N. and Drinkard, W. C., J. Indian Chem. Soc, 37, 517 (1960).

238

Page 251: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Chantrell, P. G. See: Pearce, C. A.

Charles, R. G., J. Phys. Chem., 6±, 1747 (1960); Resins, Rubbers, Plastics, 2385 (1961).

Charles, R. G., J. Polymer Sei. Al, 267 (1963); Resins, Rubbers, Plastics, 557 (1963).

Chekalov, A. K. See: Andrianov, K. A.

Chem. & Eng. News, 39, No. 38, 51 (1961).

Chemische Werke Albert, Brit. Pat. 740,576 (1955); Chem. Abstr., 50, 10448 (1956).

Cheng, T. C. See: Mochel, D.

Cherkashina, L. G. See: Berlin, A. A.

Chernichkina, A. S. See: Severnyi, V. V.

Chernysheve, E. See: Korshak, V. V.

Chiang, C. K., Cohen, M. J., Heeger, A. J., Klepping, J., and MacDiarmid, A. G. , J. Chem. Soc, Chem. Commun. , 1977(13), 473.

Chibrokova, R. V. See: Vodopyanova, A. E.

Christensen, M. J. See: Carraher Jr., C. E.

Christensen, R. G. See: Horowitz, E.

Chugunov, V. S., Izvest. Akad. Nauk. SSSR, Otd. Khim. Nauk, 1960, 942; Chem. Abstr., 54, 24482e (1960).

Clark, H. A., U. S. Pat. 2,557,782 (1951); Chem. Abstr., 46, 529e (1952).

Cockrane, H. See: Boonstra, B. B.

239

Page 252: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Coffey, C. E. See: Moran, G. F.

Cohen, M. J. See: Chiang, C. K.

MacDiarmid, A. G.

Cohen, M. S. See: Green, J.

Collins, W. T. See: Frye, C. L.

Conley, R. T., Ed., "Thermal Stability of Polymers," Vol. I, Dekker (New York), 1970.

Cook, W. J. See: Allcock, H. R.

Cooper, S. L See: Sperling, L. H.

Cordes, J. F., Fr. Pat. 1,341,880 (1963); Chem. Abstr., 60, 6873a (1964).

Cotter, R. J. and Matzner, M., "Ring-Forming Polymeriza- tions, Part A. Carbocyclic and Metallorganic Rings," Academic Press (New York), 1969.

Cottrell, T. C, "The Strengths of Chemical Bonds," 2nd Ed., Butterworths (London) 1967.

Crossland, R. K. See: Neuse, E. W.

Cuidard, R. See: Guyot, A.

Cullingworth, A. R., Gosling, K., Smith, J. D., and Wharmby, D., "Aluminum-Nitrogen and Aluminum-Phosphorus Polymers," AFML-TR-67-69, June 1967, AD 655 807.

Currell, B. R. and Frazer, M. J., "Inorganic Polymers," R.I.C. Reviews, 2(1), 13 (1969).

Currell, B. R. See also: Atkinson, I. B.

Curry, J. E. and Bird, J. D., J. Appl. Polymer Sei., 9, 295 (1965).

240

Page 253: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Curry, J. E. See also: Byrd, J. D.

Dunnavant, W. R.

Dannenberg, E. M. See: Boonstra, B. B.

David: L. D. See: West, R.

Davidson, W. E. See: Henry, M. C.

Davison, J. B. and Wynne, K. J. , Macromolecules, 11./ 186, (1978).

Davison, J. B. and Wynne, K. J., "Silicon-Phthalocyanine Siloxane Polymers: Synthesis & Proton Nuclear Magnetic Resonance Study," USNTIS, AD A036 274 (1977).

Dawes, J. W., U. S. Pat. 3,189,580 (1965); Chem. Abstr., 63, 5852d (1965).

Deck, E. P. See: Schaaf, R. L.

Dent, C. E. and Linstead, R. P., J. Chem. Soc., 1029 (1934)

Deryabin, A. V., Zhivukhin, S. M., Kireev, V. V., and Kolesnikov, G. S., USSR Pat. 242,391 (1969); Chem. Abstr., 71, 82078J (1969).

Dieck, R. L. See: Goldfarb, L.

Quinn, E. J.

Dietrich, H. J., Alexander, R. P., Heying, T. L., Kwasnik, H., Obenland, C. O., and Schroeder, H. A., Makromol. Chem., 175, 425 (1974) .

Dighe, S. V. See: Murch, R. M.

Dima, M. See: Marcu, M.

DiPietro, H. R. See: Johns, I. B.

241

Page 254: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Ditsent, V. E. See: Volkova, R. V.

Dolgoplaosk, S. B. See: Goldovskii, Y. A.

Klebanski, A. L.

Donovan, G. See: Green, J.

Douglas, C. M. See: Tesi, G.

Dow-Corning Brit. Pat. 925,433 (1960); Chem. Abstr., 59, 8950d (1963).

Drinkard, W. C. See: Chakravarty, D. N.

Dudikova, E. D. See: Zhibukhin, S. M.

Dudley, E. A. See: Marvel, C. S.

Dudley, M. A. See: Bayles, F. D.

Duebzer, B. and Kreuzer, F. H., Kunststoffe 1976, 66(10), 629; Chem. Abstr., 86, 17367y (1977).

Dumont, E. See: Moroni, R.

Dunks, G. B. See: Barker, K. A.

Dunnavant, W. R., Inorg. Macromol. Rev., 1, 165 (1971).

Dunnavant, W. R., Markle, R. A., Sinclair, R. G., Stickney, P. B., Curry, J. E., and Bird, J. D., Macromolecules, 1, 249 (1968).

DuPont, J. C. and Allen, C. W., Inorg. Chem., r7, 3093 (1978).

Dushina, A. P. See: Signalov, I. N.

242

Page 255: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Dvornic, P. R. See: Lenz, R. W.

Dzhashiashvili, T. K. See: Nogaideli, A. I.

Eberlein, J. See: Schmidbam, H.

Edwards, L. J. See: Keller, R. N.

Eglin, S. B. and Landis, A. L., U. S. Pat. 3,287,285 (1966); Chem. Abstr., 6J5, 19577c (1967).

Ehlers, G. F. L. and Fisch, K. R., AFML-TR-75-202, "Correlations Between Polymer Structure and Glass Transition Temperature. I. Polysiloxanes, Poly- arylene-siloxanes & Polyxylylenesiloxanes," AD B009 388, October 1975.

Eisenberg, A., "Viscoelastic and Thermal Properties of Inorganic Polymers and Related Materials," Contracts Nonr-233(87), N00014-68-C-0237, 1963-1970; AD 717 364.

Elliott, R. L. See: Breed, L. W.

Encyc. of Polymer Sei. & Tech., Interscience (New York), 1964-1971.

Erich, W. J., "Preparative Studies of Linear Polymers Containing Aluminum," NASA Doc. N63-14470 (1963); Chem. Abstr., 60, 9364c (1964).

Eryan, M. A. See: Korshak, V. V.

Eustance, J. W. See: Brown Jr., J. F.

Evans, R. L. See: Liu, C. F.

Evans, T. L. See: Allcock, H. R.

Falk, B. See: Raubach, H.

243

Page 256: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Farbwerke Hoechst, A. G. , Brit. Pat. 772,480 (1957); Chem. Abstr., 51, 12549 (1957).

Farmer, V. C., Fräser, A. R., and Tait, J. M., J. Chem. Soc., Chem. Commun., 1977 (13).

Fein, M. M. See: Green, J.

Feld, H., Sprechsaal Keram., Glas. Email. Silikate, 102(24), 1098, 1100 (1969); Chem. Abstr., 72, 82385c (1970).

Feiton, R. P., Sprechsaal Keram., Glas. Baustoffe, 107 (3), 92, 101 (1974); Chem. Abstr., 81, 16019w (1974).

Ferguson, L. N., Garner, A. Y., and Mack, J. L., J. Am. Chem. Soc, 76, 1250 (1954).

Ferris, A. F. See: Breed, L. W.

Fessenden, J. S. See: Fessenden, R.

Fessenden, R. and Fessenden, J. S., Chem. Rev., 61, 361 (1961).

Field, A. J. See: Antonen, R. C.

Filatov, E. S. See: Terent'ev, A. P.

Fink, W., Angew. Chem. Int. Ed., 5, 760 (1966).

Fisch, K. R. See: Ehlers, G. F. L.

Fitzsimmons, B. W., Hewlett, C., and Shaw, R. A., J. Chem. Soc., 1964, 4459.

Fitzsimmons, B. W. See also: Shaw, R. A.

Flagg, E. E. and Schmidt, D. L., U. S. Pat. 3,508,886 (1970); Chem. Abstr., 73, 26082k (1970).

Flagg, E. E. See also: Schmidt, D. L.

244

Page 257: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Fomina, L. P. See: Blyumenfel'd, A. B.

Klebanski, A. L.

Forgione, P. S. See: Allcock, H. R.

Foster, W. E. and Koenig, P. E., U. S. Pat. 2,998,440 (1956) and Brit. Pat. 880,910 (1961).

Frank, R. L. See: Patterson, T. R.

Frankevich, E. L. See: Berlin, A. A.

Fräser, A. R. See: Farmer, V. C.

Frazer, A. H., "High Temperature Resistant Polymers," Interscience (New York), 1968.

Frazer, M. J. See: Currell, B. R.

Frazier, S. E. See: Sisler, H. H.

Freeman, L. D. See: Wagner, R. I.

Freiser, H. See: Shorr, L. M.

Fricke, A. L. See: Pusatcioglu, S. Y.

Fridland, D. V. See: Lebedev, E. P.

Fromberg, M. B. See: Arsen'eva, E. D.

Severnyi, V. V.

Frulla, F. F. See: Schroeder, H.

Frye, C. L. and Collins, W. T., J. Am. Chem. Soc., 92, 5586 (1970). —

245

Page 258: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Frye, C. L. and Klosowski, J. M. , J. Am. Chem. Soc, 93, 4599 (1971).

Frye, C. L., private communication

Fukatsu, K. See: Hojo, N.

Fuqua, S. A. and Silverstein, R. M. , J. Appl. Polymer Sei., 8, 1729 (1964).

Gabe, J. and Leonta, D., Rev. Roum. Chim., 14J12), 1535 (1969).

Gamble, E. L. and Gilmont, P., J. Am. Chem. Soc, 62^, 717 (1940).

Garito, A. F. See: MacDiarmid, A. G.

Mikulski, C. M.

Garner, A. Y. See: Ferguson, L. N.

Gashnikova, N. P. See: Arsen'eva, E. D.

Gatza, P. E. See: Touchet, P.

Geib, B. H. See: Rice, R. G.

Gel'perina, V. M. See: Andrianov, K. A.

Blyumenfel'd, A. B.

General Electric Co., Brit. Pat. 980,120 (1965).

Gerasimov, B. G., Maslyukov, A. P., Berlin, A. A., Kalinin, V. N., and Zakharkin, L. I., USSR Pat. 537,599 (1977); Chem. Abstr., 88, 153224t (1978).

Gerber, A. H. See: Reynard, K. A.

Gerrard, W., Trans. J. Pasties Inst., June 1967, p. 509.

Gerrard, W., Goldstein, M., Marsh, C. H., and Mooney, E. F., J. Appl. Chem. (London), 13, 239 (1963).

Gibbs, W. E. See: Helminiak, T. E.

246

Page 259: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Gillham, J. K. See: Roller, M. B.

Gillman, H. D. See: Block, B. P.

Gilmont, P. See: Gamble, E. L.

Gimblett, F. G. R., "Inorganic Polymer Chemistry," Butterworths (London, Eng.), 1963.

Glemsar, 0., "Anorganische Polymers" (Inorg. Polymers), Plenary Main Sect. Lect. Int. Congr. Pure Appl. Chem., 24th 1973, 1, 177-202 (Ger.), Butterworths (London, Enq). 1974.

Glukhov, N. A., Koton, M. M., and Mitin, Yu. V., Vysokomolekul Soedin., 2, 791 (1960).

Gohdes, R. C. See: Bednarik, L.

Goldfarb, L., Hann, N. D., Dieck, R. L., and Messersmith, D. C., J. Polymer Sei., Polymer Chem. Ed., 16, 1505 (1978). —

Goldovskii, Y. A., Kuz'minskii, A. S., Gorokhova, T. E., and Dolgoplosk, S. B., Vysokomolekul. Soeden,. 8^ 960 (1966); Chem. Abstr., 6J5, 5544f (1966).

Goldschmidt, H. R., Brit. Pat. 866,558 (1961); Chem. Abstr., 5_5, 26524g (1961).

Goldstein, M. See: Gerrard, W.

Golubeva, I. A. See: Vishnyakova, T. P.

Golubkov, G. E. See: Andrianov, K. A.

Goodwin, H. A. and Bailar Jr., J. C., J. Am. Chem. Soc., 83, 2467 (1961).

Gorokhova, T. E. See: Goldovskii, Y. A.

Gosling, K. See: Cullingworth, A. R.

247

Page 260: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Graham, W. A. G. See: Bradley, D. C.

McCloskey, A. L. Stone, F. G. A.

Graves, D. F. See: Täte, D. P.

Gray, A. P. See: Papetti, S.

Greber, G. and Hallensleben, M. L., Makromol. ehem., 83, 148 (1965).

Greber, G. and Hallensleben, M. L. , Makromol. Chem., 92, 137 (1966).

Greber, G. and Hallensleben, M. L. , Makromol. Chem., 104, 77 (1967).

Green, J., Fein, M. M., Mayes, N., Donovan, G., Israel, M., and Cohen, M. S., J. Polymer Sei., B2, 987 (1964).

Green, J. and Mayes, N., J. Macromol. Sei., Al(l), 135 (1967) .

Green, J., Mayes, N., and Cohen, M. S., J. Polymer Sei., Pt. A2, 3113 (1964).

Green, J., Mayes, N., Kotloby, A. P., and Cohen, M. S., J. Polymer Sei., Pt. A2, 3135 (1964).

Green, J. See also: Teach, W. C.

Green, R. L. and Street, G. B.,in "Chemistry and Physics of One-Dimensional Metals," Ed. Keller, H. J., Plenum Press (New York) 1977, p. 167.

Greene, R. L. See also: Street, G. B.

Griffith, J. R. and Walton, T. R., Am. Chem. Soc., Polymer Preprints, 15(1), 787 (1974).

Griffith, J. R. See also: Keller, T. M.

Walton, T. R.

248

Page 261: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Groszos, S. J. and Hall, J. A., U. S. Pat. 2,885,370 (1959); Chem. Abstr., 53, 16585i (1959).

Grozdov, A. G. See: Arsen'eva, E. D.

Gruber, V. N., Panchenko, B. I., Klebanskii, A. L., Kruglova, G. A., Matseyun, T. A., and Kuz'mina, E. V., USSR Pat. 235,310 (1974); Chem. Abstr., 82 (1975).

Grundman, C. See: Ratz, R.

Guenther, F. 0. See: Sprung, M.

Gukalov, S. P., Karavan, Yu. V., Lesnichenko, A. Ya., Stasyuk, Z. V., Zh. Prikl. Khim. (Leningrad), 45(3), 688 (1972); Chem. Abstr., 77, 21137e (1972).

Gunyaev, G. M. See: Vargina, R. A.

Gurvits, E. D. See: Andrianov, K. A.

Gutmann, V., Miller, A., and Schlegel, R., Monatsh. Chem., 94, 1071 (1963).

Gutmann, V., Miller, A., and Schlegel, R., Monatsh. Chem., 95, 314 (1964).

Guyot, A. and Cuidard, R., Compt. Rend., C264, 1585 (1967); Chem. Abstr., 6_7, 73891J (1967).

Guyot, A. See also: Bartholin, M.

Haber, C. P. See: Tesi, G.

Haberland, G. G. See: Merker, R. L.

Hagnauer, G. L. and LaLiberte, B. R., J. Appl. Polymer Sei., 20, 3073 (1976).

Hagnauer, G. L. and Schneider, N. S., J. Polymer Sei., Pt. A2, 10, 699 (1972) .

249

Page 262: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Hagnauer, G. L. See also: Singler, R. A.

Haiduc, I. See: Ungureansu, C.

Halasa, J. A. See: Kyker, G. S.

Hall, J. A. See: Groszos, S. J.

Hall, J. E. See: Kyker, G. S.

Hallensleben, M. L., Ph. D. Thesis, Univ. of Freiburg i. Br., 1965.

Hallensleben, M. L. See also: Greber, G.

Hanke, W. , East Ger. Pat. 51,432 (1966); Chem. Abstr. , 6_6, 71488y (1967).

Hann, N. D. See: Goldfarb, L.

Hansmann, J. , Gummi. Asbest., Kunstst. , 2_9 (7) , 440 (1976).

Harrington, R. V. See: Hutchins III, J. R.

Harris, F. W. See: Carraher Jr., C. E.

Harris, P. See: Allcock, H. R.

Haruki, E. See: Okawara, M.

Hasegawa, Y. See: Yajima, S.

Hashimoto, M. See: Kajiwara, M.

Hasslek, J. C. See: Pusatcioglu, S. Y.

250

Page 263: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Hauck, J. E., Materials in Design Engineering, 65(2), 70 (1967).

Hawkins, W. L. See: Kyker, G. S.

Hawthorne, M. F., Berry, T. E., and Wegner, P. A., J. Am. Chem. Soc., 87, 4746 (1965).

Hedaya, E., Kawakami, J. H., Kopf, P. W., Kwiatkowski, G. T., McNeil, D. W., Owen, D. A., Peters, E. N., and Tulis, R. W., J. Polymer Sei., Polymer Chem. Ed., 15, 2229 (1977).

Hedaya, E. See also: Barker, K. A.

Peters, E. N.

Heeger, A. J., MacDiarmid, A. G., and Moran, M., J. Amer. Chem. Soc, Polymer Preprints, 19(2), 862 (1978).

Heeger, A. J. See also: Chiang, C. K.

MacDiarmid, A. G. Mikulski, C. M.

Helminiak, T. E., Benner, C. L., and Gibbs, W. E., Am. Chem. Soc, Polymer Preprints, 8, 284 (1967).

Henry, M. C. and Davidson, W. E., Annals of N. Y. Acad. of Sei., 125, 172 (1965).

Hergenrother, W. G. See: Täte, D. P.

Herring, D. L., J. Org. Chem., ^6, 3998 (1961).

Hewlett, C. See: Fitzsimmons, B. W.

Heying, T. L. See: Dietrich, H. J.

Papetti, S. Schroeder, H.

Hibuchi, T. See: Kinoshita, Y.

Hiroshi, T. See: Kumada, M.

251

Page 264: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Hodd, K. A. See: Pearce, C. A.

Hoess, E. A. and O'Brian, E. L., "Preparation of Poly- silanes and Polysilarylenes," Tech. Rept. No. 3289, Picatinny Arsenal (Dover, New Jersey), 1966.

Hofmann, E., Brit. Pat. 941,556 (1963); Chem. Abstr., 60, 4305g (1964).

Hojo, N., Shirai, H., Fukatsu, K., and Suzuki, A., Kogyo Kagaku Zasshi, 73(11), 2539 (1970).

Hojo, N., Shirai, H., and Suzuki, A., J. Chem. Soc. (Japan), Ind. Chem. Sect., 6_9, 253 (1966); Chem. Abstr., 65, 7282 (1966).

Hojo, N., Shirai, H., and Suzuki, A., Kogyo Kagaku Zasshi, 73(7), 1438 (1970); Chem. Abstr., 73, 131428a (1970).

Hojo, N., Shirai, H., and Suzuki, A., Kogyo Kagaku Zasshi, 73(11) , 2425, 2539 (1970) .

Hojo, N., Suzuki, A., Yagi, S., and Shirai, H., Makromol. Chem., 178(7), 1889 (1977).

Hollander, M. M. See: Rosenberg, H.

Holliday, L., Z. f. Werkstofftechnik (J. of Materials Technology), 2(5), 254 (1971).

Honigstein, S. A. See: Mcllhenny, R. C.

Hooks Jr., H. See: Scott, R. N.

Horn, H. G., Makcromol. Chem., 138, 163 (1970); Chem. Abstr., 73, 131362z (1970).

Horowitz, E., Advan. Chem. Ser., No. 85, 82 (1968).

Horowitz, E. and Perros, T. P., J. Inorg. & Nucl. Chem., 26, 139 (1964).

Horowitz, E. and Perros, T. P., J. Res. Natl. Bur. Std., A69, 53 (1965); Chem. Abstr., 62, 13252 (1965).

252

Page 265: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Horowitz, E., Tryon, M., Christensen, R. G., and Perros, T. P., J. Appl. Polymer Sei., 9, 2321 (1965).

Hsu, J. H. See: Tseng, H. M.

Hutchins III, J. R. and Harrington, R. V., "Glass," in Encyc. of Chem. Tech., 10, 533, 2nd Ed., Interscience (New York) 1966.

Il'ina, E. T., Tezisy Dokl. - Resp. Konf. Vysokomolekul. Soedin., 3rd, 80 (1973), Ed. by Lipatov, Yu. S., "Naukova Dumda": Kiev, USSR; Chem. Abstr., 84, 18282n (1976).

Il'ina, M. N. See: Papkov, V. S.

Imailov, B. A. See: Andrianov, K. A.

Imoto, E. See: Okawara, M.

Ingebrigtson, D. N., Klimisch, H. M., and Smith, R. C., Chem. Anal. (New York) 1974, 41, (Anal. Silicones), 85,

Inoue, M., Kishita, M., and Kubo, M., Inorg. Chem., 4, 626 (1965).

Ishikawa, M. See: Kumada, M.

Isidzova, L. See: Vada, G.

Israel, M. See: Green, J.

Ivamatsu, L. See: Vada, G.

Ivanova, N. A. See: Volkova, R. V.

Jabovic, M., Z. Anorg. Allgem Chem., 288, 324 (1956).

Jaffe, P., "High-Temperature Resistant Phthalocyanine Polymers," U. S. Govt. Res. Develop. Rept., 41(4), 75 (1966), AD 625 680; Chem. Abstr., 67, 22235r (1967).

253

Page 266: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

James, W. H. See: Plumb, J. B.

Joesten, B. L. See: Barker, K. A.

Johns, I. B. and DiPietro, H. R. , J. Org. Chem. , 27_, 592 (1962).

Johns, I. B. and DiPietro, H. R., U. S. Pat. 3,169,943 (1965); Chem. Abstr. , 6_2, 10620g (1965).

Johns, I. B. and DiPietro, H. R., U. S. Pat. 3,211,698 (1965); Chem. Abstr., 6j4, 6845 (1966).

Jones, J. I., "Polymetallosiloxanes. Part I. Introduction and Synthesis of Metallosiloxanes," and "Part II. Polyorganometallosiloxanes and Polyorganosiloxy- metalloxanes," in Developments in Inorg. Polymer Chem., Eds. Läppert, M. F. and Leigh, G. J., Elsevier (New York), 1962.

Jones, J. I. and McDonald, W. S., Proc. Chem. Soc., 366 (1962) .

Jones, M. E. B., Thornton, D. A., and Webb, R. F., Makromol, Chem., 49, 62 (1961).

Jones, M. E. B., Thornton, D. A., and Webb, R. F., Makromol, Chem., 49, 69 (1961); Resins, Rubbers, Plastics, 1163 (1962) .

Joyner, R. D. and Kenney, M. E., Inorg. Chem., 1, 236 (1962) .

Joyner, R. D. and Kenney, M. E., Inorg. Chem., 1, 717 (1962).

Joyner, R. D., Linck, R. G., Cekada, J., and Kenney, M. E., J. Inorg. Nucl. Chem., 15, 387 (1960).

Joyner, R. D. See also: Kroenke, W. J.

Owen, J. E.

Judd, M. L. See: Bailar Jr., J. C.

Juliano, P. C. See: Kantor, S. W.

254

Page 267: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Kajiwara, M., Hashimoto, M., and Saito, H., Polymer, 14, 488 (1973).

Kajiwara, M. and Saito, H., Polymer, _16, 671 (1975).

Kalinin, V. N. See: Gerasimov, B. G.

Kan, P. T., Lenk, C. T., and Schaaf, R. L., J. Org. Chem., 26, 4038 (1961).

Kan, P. T. See also: Schaaf, R. L.

Kanda, S. and Yoshihiko, S., Bull. Chem. Soc., Japan, 30, 192 (1957).

Kang, J. W. See: Täte, D. P.

Kantor, S. W. and Juliano, P. C, Ger. Pat. 2,257,206 (1973); Chem. Abstr. , 7_9, 67278w (1973).

Kaplan, L., Kester, W. L., and Katz, J. J., J. Am. Chem. Soc., 75, 5531 (1952).

Kaplan, L. A. See: Rice, R. G.

Karavan, Yu. V., Kulinich, E. P., Shibistaya, Z. P., Fiz. Elektron. (Lvov) 1975, 10, 91; Chem. Abstr., 85, 160947X (1976).

Karavan, Yu. V. See also: Gukalov, S. P.

Kardanov, V. K., Bryk, M. T., Fiz-khim. Mekh. i Liofil'nost' Dispersn. Sistem. Resp. Mezhved. Sb. 1975 (7) 51; Chem. Abstr., 8£, 180987t (1976).

Kardanov, V. K., Bryk, M. T., Ukr. Khim. Zh. (Russ. Ed.) 1978, 44(5), 543; Chem. Abstr., 89^ 75784e (1978).

Kardanov, V. K. See also: Bryk, M. T.

Karle, D. W. See: Paciorak, K. L.

255

Page 268: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Karlin, A. V., Lobkov, V. D., Andrianov, K. A., Petrova, I. M., Vasil'eva, N. A., and Trofilmov, V. M., USSR Pat. 413,836 (1978); Chem. Abstr., 88, 122452m (1978)

Katchman, A., U. S. Pat. 3,162,614 (1964); Chem. Abstr., 62, 10554f (1965).

Katchman, A. See also: Brown Jr., J. F.

Katz, J. J. See: Kaplan, L.

Kavaduki, K. See: Vada, G.

Kaverov, A. T. See: Vargina, R. A.

Kawakami, J. H. See: Barker, K. A.

Hedaya, E. Peters, E. N.

Kawam, A. See: Maselli, J. E.

Keller, R. N. and Edwards, L. J. , J. Am. Chem. Soc., 74, 215 (1952).

Keller, T. M. and Griffith, J. R., Am. Chem. Soc. Preprints, Organic Coatings and Plastics Chemistry, 39(2), 546 (1978).

Kendrick, T. C. See: Thomas, T. H.

Kenney, M. E. See: Joyner, R. D.

Kroenke, W. J. Owen, J. E.

Kester, W. L. See: Kaplan, L.

Khananashvili, L. M. See: Andrianov, K. A.

Vargina, R. A.

256

Page 269: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Kim, Y. K., Bourrie, D. B., and Pierce, 0. R., J. Polymer Sei., Polymer Chem. Ed., 16^ 483 (1978).

Kim, Y. K., Pierce, 0. R., and Bourrie, D. B., J. Polymer Sei., Pt. A-l, 10(3), 947 (1972).

Kinoshita, Y., Matsubara, I., Hibuchi, T., and Saito, Y., Bull. Chem. Soc, Japan, 32, 1221 (1959); Chem Abstr., 54, 16982 (1960).

Kireev, V. V. See: Deryabin, A. V.

Korshak, V. V.

Kiselev, B. A., Nikiforov, A. V., Plast. Massy 1973, (6), 29; Chem. Abstr., 7^9, 92913g (1973).

Kiser, K. M. See: Brown Jr., J. F.

Kishita, M. See: Inoue, M.

Kitaoka, H. See: Okawara, M.

Klabukova, L. F. See: Osipchik, V. V.

Klebanskii, A. L., Fomina, L. P., and Dolgoplaosk, S. B., Zh. Uses. Khim. Obscheh in D. I. Mendeleeva, 1_, 594 (1962); Chem. Abstr., 5_8, 4708g (1963).

Klebanskii, A. L. See also: Gruber, V. N.

Klein, R. M. and Bailar Jr., J. C., Inorg. Chem., 2(6), 1190 (1963).

Klepping, J. See: Chiang, C. K.

Klimisch, H. M. See: Ingebrigtson, D. N.

Klosowski, J. M. See: Frye, C. L.

Kluiber, R. and Lewis, J. , J. Am. Chem. Soc, 82, 5777 (1960). —

257

Page 270: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Knollmueller, K. 0., Scott, R. N., Kwasnik, H., and Sieckhaus, J. F., J. Polymer Sei., A-l, 9, 1071 (1971).

Knollmueller, K. 0. See also: Scott, R. N.

Knowles, T. A. See: Schroeder, H. A.

Kober, E. See: Ratz, R.

Koenig, P. E. See: Foster, W. E.

Kokolevskii, I. A. See: Vargina, R. A.

Kolesnikov, G. S. See: Deryabin, A. V.

Vargina, R. A.

Kolli, I. D. See: Spitsyn, V. I.

Komeya, K., Kogyo Reametaru, 57, 68 (1974); Chem. Abstr., 83, 47028u (1975).

Kompaniets, V. A. See: Bryk, M. T.

Kononov, A. M. See: Andrianov, K. A.

Konopski, G. F. See: Allcock, H. R.

Kookootsedes, G. J. See: Antonen, R. C.

Kopf, P. W. See: Barker, K. A.

Hedaya, E.

Korol'kov, Yu. A. See: Blyumenfel'd, A. B.

258

Page 271: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Korshak, V. V., "Heat Resistant Polymers," Halsted Press (New York), 1971.

Korshak, V. V. See also: Luneva, L. K.

Sosin, S. L.

Korshak, V. V., Kireev, V. V., Eryan, M. A., and Teikova, I. R., USSR Pat. 417,452 (1974); Chem. Abstr. , 8jL, 170234u (1974).

Korshak, V. V., Krongauz, E. S., Sladkov, A. M., Sheina, V. E., and Luneva, L. K., Vysokomolekul. Soedin., 1, 1765 (1959).

Korshak, V. V., Mirkamilova, M. S., and Bekasova, N. I.,. Vysokomolekul. Soedin., Ser., B9(10), 748 (1967).

Korshak, V. V., Polyakova, A. M., Sahkarova, A. A., Mironov, V. F., and Chernysheve, E., Vysokomolekul. Soedin., 2, 1370 (1960); Chem. Abstr., 55, 1930f (1961).

Korshak, V. V., Rogozhin, S. V., and Makerova, T. H., Vysokomolekul. Soedin., 4, 1297 (1962); Chem. Abstr., 58, 14112e (1963).

Korshak, V. V., Rogozhin, S. V., and Vinogradov, M. G., Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1473 (1962); Resins, Rubbers, Plastics, 2871 (1962).

Korshak, V. V., Sladkov, A. M., and Luneva, L. K., Itzvestiya AN SSSR, OKhN, 728, 1962.

Korshak, V. V., Sladkov, A. M., Luneva, L. K., and Bulgakova, I. A., Vysokomolekul. Soedin., 5, 1288 (1963); Polymer Sei. (USSR) (Eng. transl.), 5, 363 (1964).

Korshak, V. V., USSR Pat. 602,513 (1978); Chem. Abstr., 88, 192170s (1978).

Korshak, V. V. and Vinogradova, S. V., Dokl. Akad. Nauk., SSSR, 138, 1353 (1961); Chem. Abstr., 55, 21646 (1961); Proc. Acad. Sei., USSR, Chem. Sect. (Eng. transl.), 138, 612 (1961).

Korshak, V. V. and Vinogradova, S. V., Usp. Khim. 11, 2024 (1968); Chem. Abstr., 70, 38329x (1969).

259

Page 272: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Korshak, V. V., Vinogradova, S. V., and Artemova, V. S., Vysokomolekul. Soedin., 2, 492 (1960).

Korshak, V. C., Vinogradova, S. V., and Artemova, V. S., Vysokomolekul. Soedin., 2, 498 (1960).

Kostrova, N. D. See: Berlin, A. A.

Kosydar, K. M. See: Allcock, H. R.

Kotloby, A. P. See: Green, J.

Koton, M. M. See: Glukhov, N. A.

Kotrilev, G. V. See: Andrianov, K. A.

Osipchik, V. V.

Kovarskaya, B. M. See: Blyumenfel'd, A. B.

Koyava, N. A. See: Nogaideli, A. I.

Kozlova, G. N. See: Andrianov, K. A.

Krantz, K. W., French Pat. 1,423,143 (1966); Chem. Abstr., 65, 12361c (1966).

Krantz, K. W., French Pat. 1,484,327 (1967); Chem. Abstr., 68, 3505h (1968).

Krantz, K. W., U. S. Pat. 3,294,717 (1966); Chem. Abstr., 6_6, 38436x (1967).

Krantz, K. W., U. S. Pat. 3,294,737 (1966); Chem. Abstr., 66, 46908t (1967).

Krantz, K. W., U. S. Pat. 3,318,844 (1967).

Krantz, K. W., U. S. Pat. 3,668,273 (1972); Chem. Abstr., 77, 76029b (1972).

Krantz, K. W. See also: Brown Jr., J. F.

260

Page 273: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Kratzer, R. H. and Paciorek, K. L., Inorg. Chem., 4, 1767 (1965).

Kratzer, R. H. See also: Paciorak, K. L.

Kreuzer, F. H. See: Duebzer, B.

Krikunenko, V. T. See: Lebedev, E. P.

Krivonishchenko, V. V., Semerneva, G. A., and Suvorov, A. L., (USSR), Zh. Prikl. Spektrosk, 28(3), 475 (1978); Chem. Abstr., 8_8, 191740r (1978).

Kroenke, W. J., Sulton, L. E., Joyner, R. D., and Kenney, M. E., Inorg. Chem., 2, 1064 (1963) .

Krongauz, E. S. See: Korshak, V. V.

Krotov, A. I. See: Vargina, R. A.

Krueger, C. R. and Rochow, E. G., J. Polymer Sei., Pt. A, 2(7), 3179 (1964).

Kruglova, G. A. See: Gruber, V. N.

Kubo, M. See: Inoue, M.

Kugel, R. L. See: Allcock, H. R.

Kugler, V., J. Polymer Sei., 29, 637 (1958).

Kulinich, E. P. See: Karavan, Yu. V.

Kumada, M., Hiroshi, T., and Susumi, T., J. Organomet. Chem., 10, 111 (1967).

Kumada, M., Ogura, M., Tsunemi, T., and Ishikawa, M., Chem. Comm., 5, 207 (1969).

Kunitake, T., Nakashima, T., and Aso, C, Makromol. Chem., 146, 79 (1971); Chem. Abstr., 75, 110628s (1971).

261

Page 274: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Kurakov, G. A. See: Andrianov, K. A.

Kurasheva, N. A. See: Andrianov, K. A.

Kuteinikova, L. I. See: Andrianov, K. A.

Kuz'mina, E. V. See: Gruber, V. N.

Kuz'minskii, A. S. See: Goldovskii, Y. A.

Kvachev, Yu. P. See: Andrianov, K. A.

Papkov, V. S.

Kwasnik, H. See: Dietrich, H. J.

Knollmueller, K. 0.

Kwiatkowski, G. T. See: Barker, K. A.

Hedaya, E. Peters, E. N.

Kyker, G. S., U. S. Pat. 3,867,341 (1975).

Kyker, G. S. and Antkowiak, T. A., Rubber Chem. Tech., 4_7, 32 (1974).

Kyker, G. S., Beckman, J. A., Halasa, J. A., and Hall, J. E., U. S. Pat. 3,843,596 (1974).

Kyker, G. S. and Valaitis, J. K., "Stabilization of Poly(fluoroalkoxyphosphazene)(PFAP) Elastomer Against Thermal Degradation," Chapter 24, p. 294 in "Stabilize tion and Degradation of Polymers," Advances in Chemist Series No. 169, Eds. Allara, D. and Hawkins, W. L., Am. Chem. Soc., 1978.

Labes, M. M., Love, P., and Nichols, L. F., Chem. Rev., 79, 1 (1979).

LaLiberte, B. R. See: Hagnauer, G. L.

Lambing, L. L See: Millich, F.

262

Page 275: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Landis, A. L See: Eglin, S. B.

Lang, R. F., Makromol. Chem., £3, 274 (1965).

Läppert, M. F., "Polymers Containing Boron and Nitrogen," in Developments in Inorg. Polymer Chem., Eds. Lappert, M. F. and Leigh, G. J., Elsevier (New York) 1962.

Lappert, M. F. and Leigh, G. J. , Eds. "Developments in Inorg. Polymer Chem.," Elsevier (New York) 1962.

Lappert, M. F. See also: Jones, J. I.

Larchar, T. B. See: Schroeder, H.

Larina, T. A. See: Andrianov, K. A.

Tverdokhlebova, I. I.

Lavrukhin, B. D. See: Andrianov, K. A.

Lavygin, I. A., Leitan, 0. V., Lysenko, L. S., and Uklonskii, D. A., Teizisy Dokl. Soobshch. - Vses. Sint. Fiz.-Khim. Osn. Primen. Napravlennogo Sint. Poverkhn.-Akt. Veschestu, 49 (1974); Chem. Abstr., 8_5, 78742t (1976).

Lawton, E. A., J. Phys. Chem., 62^, 384 (1958).

Lawton, E. A. and McRitchie, D. D., WADC Tech. Rept. No. 57-642 (1957); Chem. Abstr., 55, 18166 (1961).

Laycock, J. N. C. See: Ray, N. H.

Lebedev, E. P., Baburina, V. A., Fridland, D. V., and Krikunenko, V. T., USSR Pat. 454,230 (1974); Chem. Abstr., 83, 80311d (1975).

Lee, H. See: Levine, H. H.

LeGrow, G. E. See: Bedford, J. A.

263

Page 276: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Leigh., G. J. See: Jones, J. I.

Lappert, M. F.

Leitan, 0. V. See: Lavygin, I. A.

Lekishvili, N. G. See: Osipchik, V. V.

Lenk, C. T. See: Kan, P. T.

Schaaf, R. L.

Lenz, R. W. and Dvornic, P. R. , Am. Chem. Soc, Polymer Preprints, 19(2), 847 (1978).

Lenz, R. W. and Dvornic, P. R., "Preparation and Evalua- tion of Exactly Alternating Silarylene-Siloxane Elastomers," Office of Naval Research Rept., Contract N00014-76-C-700, August 1978.

Leone, S. A. See: White, J. E.

Leonta, D. See: Gabe, J.

Lesnichenko, A. Ya. See: Gukalov, S. P.

Lever, A. B. P., Lewis, J., and Nyholm, R. S., Nature, 189, 58 (1961) .

Levin, V. Yu. See: Andrianov, K. A.

Levine, H. H., "Polybenzimidazole Resins for High Tempera- ture Reinforced Plastics and Adhesives," Symposium sponsored by Air Force Materials Center, Dayton, Ohio, December 1962; cited in Lee, H., Stoffey, D., and Neville, K., "New Linear Polymers," McGraw-Hill (New York) 1967, pp. 279-280.

Lewis, C. J. See: Allen, G.

Ray, N. H.

Lewis, J. See: Kluiber, R.

Lever, A. B. P.

264

Page 277: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Landis, A. L See: Eglin, S. B.

Lang, R. F., Makromol. Chem., 83, 274 (1965).

Läppert, M. F., "Polymers Containing Boron and Nitrogen," in Developments in Inorg. Polymer Chem., Eds. Lappert, M. F. and Leigh, G. J., Elsevier (New York) 1962.

Lappert, M. F. and Leigh, G. J., Eds. "Developments in Inorg. Polymer Chem.," Elsevier (New York) 1962.

Lappert, M. F. See also: Jones, J. I.

Larchar, T. B. See: Schroeder, H.

Larina, T. A. See: Andrianov, K. A.

Tverdokhlebova, I. I.

Lavrukhin, B. D. See: Andrianov, K. A.

Lavygin, I. A., Leitan, 0. V., Lysenko, L. S., and Uklonskii, D. A., Teizisy Dokl. Soobshch. - Vses. Sint. Fiz.-Khim. Osn. Primen. Napravlennogo Sint. Poverkhn.-Akt. Veschestu, 49 (1974); Chem. Abstr., 85_, 78742t (1976).

Lawton, E. A., J. Phys. Chem., 62, 384 (1958).

Lawton, E. A. and McRitchie, D. D., WADC Tech. Rept. No. 57-642 (1957); Chem. Abstr., 55, 18166 (1961).

Laycock, J. N. C. See: Ray, N. H.

Lebedev, E. P., Baburina, V. A., Fridland, D. V., and Krikunenko, V. T., USSR Pat. 454,230 (1974); Chem. Abstr., 8J3, 80311d (1975).

Lee, H. See: Levine, H. H.

LeGrow, G. E. See: Bedford, J. A.

263

Page 278: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Leigh., G. J. See: Jones, J. I.

Lappert, M. F.

Leitan, 0. V. See: Lavygin, I. A.

Lekishvili, N. G. See: Osipchik, V. V.

Lenk, C. T. See: Kan, P. T.

Schaaf, R. L.

Lenz, R. W. and Dvornic, P. R. , Am. Chem. Soc, Polymer Preprints, 19(2), 847 (1978).

Lenz, R. W. and Dvornic, P. R., "Preparation and Evalua- tion of Exactly Alternating Silarylene-Siloxane Elastomers," Office of Naval Research Rept., Contract N00014-76-C-700, August 1978.

Leone, S. A. See: White, J. E.

Leonta, D. See: Gabe, J.

Lesnichenko, A. Ya. See: Gukalov, S. P.

Lever, A. B. P., Lewis, J., and Nyholm, R. S., Nature, 189, 58 (1961).

Levin, V. Yu. See: Andrianov, K. A.

Levine, H. H., "Polybenzimidazole Resins for High Tempera- ture Reinforced Plastics and Adhesives," Symposium sponsored by Air Force Materials Center, Dayton, Ohio, December 1962; cited in Lee, H., Stoffey, D., and Neville, K., "New Linear Polymers," McGraw-Hill (New York) 1967, pp. 279-280.

Lewis, C. J. See: Allen, G.

Ray, N. H.

Lewis, J. See: Kluiber, R.

Lever, A. B. P.

264

Page 279: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Li, H. M. and Magell, J. H., Polymer, 19, 829 (1978).

Libutti, B. L., Diss. Abstr. Int. B, 32(4), 2057 (1971).

Lichtenwalner, H. K. and Sprung, M., "Silicones," in Encyc. of Polymer Sei. & Tech., 12, Interscience (New York) 1970.

Linck, R. G. See: Joyner, R. D.

Lindop, T. W., Mater. Eng., 75(1), 28 (1972); Chem. Abstr., 7_6, 89402x (1972).

Linsky, J. P., "Organosilicon Sheet Polymers and Phthalocyanine Polymers," Diss. Abstr. Int. B, January 1970, 31(6), 3242.

Linstead, R. P. See: Dent, C. E.

Lipatov, Yu. S. See: Il'ina, E. T.

Lipincott, E. R. and Nelson, R. D. , J. Am. Chem. Soc, 77, 4990 (1955).

Litvianva, M. D. See: Sosin, S. L.

Liu, C. F. and Evans, R. L., U. S. Pat. 3,169,933 (1965)

Lobkov, V. D. See: Karlin, A. V.

Lorimer, J. W. See: Bradley, D. C.

Lorkowski, H. J., Fortschr. Chem. Forsch., 9(2), 207 (1967).

Losev, Y. P., Vodopyanova, A. E., and Paushkin, Y. M., Dokl. Akad. Nauk BSSR, 20(5), 431 (1976); Chem. Abstr., 85, 63362v (1976).

Losev, Y. P. See also: Vodopyanova, A. E.

Love, P. See: Labes, M. M.

265

Page 280: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Luce, J. B. and Vaughn Jr., H. A., Ger. Pat. 2,446,423 (1975); Chem. Abstr. , 8J3, 29217a (1975).

Luloff, J. and Vogel, C., "High Temperature Resistant Polymers," U. S. Govt. Res. Develop. Rept., 40 (1) , 19 (1965), AD 608 263; Chem. Abstr., 6J3, 740b (1965).

Luneva, L. K., Sladkov, A. M., and Korshak, V. V., Vysokomolekul. Soedin., 7(3), 427 (1965); Chem. Abstr., 63, 1879e (1965).

Luneva, L. K., Sladkov, A. M., and Korshak, V. V., Vysokomolekul. Soedin., 9, 910 (1967).

Luneva, L. K. See also: Korshak, V. V.

Lush, E. J., Brit. Pat. 573,083 (1945); Chem. Abstr., 4_3, 4894c (1949).

Lynn, T. R. See: Yancey, J. A.

Lysenko, L. S. See: Lavygin, I. A.

Lyubavskaya, E. A. See: Andrianov, K. A.

MacCallum, J. R., Kinet. Mech. Polym., 3, 333 (1972).

MacCullum, J. R. and Tanner, J., J. Polymer Sei., Pt. A-l, 6, 3163 (1968).

MacDiarmid, A. G., Mikulski, C. M., Saran, M. S., Russo, P. J., Cohen, M. J., Bright, A. A., Garito, A. F., and Heeger, A. J., Adv. Chem. Ser., No. 150, 63 (1976).

MacDiarmid, A. G. See also: Chiang, C. K.

Heeger, A. J. Mikulski, C. M.

McCloskey, A. L., "Boron Polymers," in Inorg. Polymers, Eds. Stone, F. G. A. and Graham, W. A. G., Academic Press (New York), 1962.

McDonald, W. S. See: Jones, J. I.

266

Page 281: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

McGee, H. A. See: Pusatcioglu, S. Y.

Mcllhenny, R. C. and Honigstein, S No. AF MLTR-65-294, AD 476 623 (615)-1694.

A., July 1965, Rept. , Contract No. AF33-

McLean Jr., J. A. See: Bailar Jr., J. C.

McManus, S. P. See: Patterson, W. J.

Pittman Jr., C. U.

McNeil, D. W. See: Barker, K. A.

Hedaya, E. Peters, E. N.

McRitchie, D. D. See: Lawton, E. A.

Mack, J. L. See: Ferguson, L. N.

Magell, J. H. See: Li, H. M.

Makarova, L. I. See: Andrianov, K. A.

Makarova, N. N. See: Andrianov, K. A.

Papkov, V. S.

Makerova, T. H. See: Korshak, V. V.

Malyarenko, A. V., Semerieva, G. A. USSR Pat. 413,849 (1976); Chem. (1976).

, and Suvoroy, A. L., Abstr., £4, 122569x

Mamaeva, I. I. See: Andrianov, K. A.

Mangold, D. J., Appl. Polymer Symp. , 11, 157 (1969).

Marcu, M. and Dima, M., Rev. Roum. (1968).

Chim., 13(3), 359

Markle, R. A. See: Dunnavant, W. R.

267

Page 282: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Marsden, J., U. S. Pat. 3,167,528 (1965).

Marsh, C. H. See: Gerrard, W.

Martin, K. V., J. Am. Chem. Soc, 80, 233 (1958).

Martin, K. V. See also: Bailar Jr., J. C.

Martin, M. M. See: Marvel, C. S.

Marvel, C. S., Aspey, S. A., and Dudley, E. A., J. Am. Chem. Soc, 7_8, 4905 (1956).

Marvel, C. S. and Bonsignore, P. V., J. Am. Chem. Soc, 81, 2668 (1959).

Marvel, C. S. and Martin, M. M. , J. Am. Chem. Soc, 80^ 6600 (1958).

Marvel, C. S. and Tarköy, N. , J. Am. Chem. Soc, 7_9, 6000 (1957).

Marvel, C. S. See also: Mulvaney, J. E.

Maselli, J. E., Bieniek, T., Murch, R. M., Kawam, A., and Rice, R. G., "Phosphonitrilic Laminating Resins," Air Force Materials Lab., TR65 314, Pt. 2, June 1967, AD 839 953.

Maslyukov, A. P. See: Gerasimov, B. G.

Matseyun, T. A. See: Gruber, V. N.

Matsubara, I. See: Kinoshita, Y.

Matsuzawa, T. See: Yajima, S.

Mattson, C. E. See: Musgrave, T. R.

Matveeva, N. G. See: Berlin, A. A.

268

Page 283: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Matytsyn, V. S. See: Vargina, R. A.

Matzner, M. See: Cotter, R. J.

Noshay, A.

Mayes, N. See: Green, J.

Mazdiyasni, K. S. See: West, R.

Mehrotra, R. C. See: Pande, K. C.

Meissier, D. R. and Murphy, M. F., "Silicon Nitride for Structural Application," Army Material & Mechanics Research Center; U. S. Nat. Tech. Inform. Serv., AD 747 785 (1972); Chem. Abstr., 78, 47001b (1973).

Meloni, E. G. See: Block, B. P.

Men'shov, V. M. See: Andrianov, K. A.

Merker, R. L., French Pat. 1,397,045 (1965); Chem. Abstr., 63, 5851a (1965).

Merker, R. L., U. S. Pat. 3,202,634 (1965).

Merker, R. L. and Scott, M. J., J. Polymer Sei., 2, 15 (1964).

Merker, R. L., Scott, M. J., and Haberland, G. G., J. Polymer Sei., 2(A), 31 (1964).

Merriam, C. N. See: Noshay, A.

Messersmith, D. C. See: Goldfarb, L.

Meston, A. M., Brit. Pat. 908,300 (1962); Chem. Abstr., 5_8, 2515h (1963) .

Meston, A. M., U. S. Pat. 3,136,730 (1964); Chem. Abstr., 58, 5800h (1964).

269

Page 284: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Meyer, G. and Wohrle, D. , Makromol. Chem., 175, 714 (1974) .

Mgagkov, V. A. See: Andrianov, K. A.

Mikulski, C. M., Russo, P. J., Saran, M. S., MacDiarmid, A. G., Garito, A. F., and Heeger, A. J., J. Am. Chem. Soc., 97, 6358 (1975).

Mikulski, C. M. See also: MacDiarmid, A. G.

Miller, A. See: Gutmann, V.

Million, F., Lambing, L. L., and Teague, J., Interfacial Synth. 1977, 2, 309, Eds. Millich. F. and Carraher Jr. C. E., Dekker (New York).

Mininni, R. M. and Tobolsky, A. V., J. Appl. Polymer Sei., 16, 2555 (1972).

Mirkamilova, M. S. See: Korshak, V. V.

Mironov, V. F. See: Korshak, V. V.

Misina, V. P. See: Andrianov, K. A.

Mitin, Yu. V. See: Glukhov, N. A.

Mochel, V. D. and Cheng, T. C., Macromolecules, 11, 176 (1978) .

Moedritzner, K., Organomet. Chem. Rev., 1, 1, 9 (1966).

Moffitt, R. See: Barker, K. A.

Peters, E. N.

Monroe, R. F. and Schmidt, D. L., U. S. Pat. 3,497,464 (1970); Chem. Abstr., 72, 122177v (1970).

Mooney, E. F. See: Gerrard, W.

270

Page 285: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Moore, G. Y. See: Allcock, H. R.

Moran, G. F. and Coffey, C. E., ML-TDR-64-15 (Part II), 1965.

Moran, M. J. See: Heeger, A. J.

Morgan, G. T. and Smith, M. J., J. Chem. Soc., 912 (1926).

Moroni, R. and Dumont, E., Ger. Pat. 1,145,798 (1963); Chem. Abstr., 59, 4063f (1963).

Morris, D. E. See: Patterson, W. J.

Mukhina, D. N. See: Andrianov, K. A.

Blyumenfel'd, A. B.

Mulvaney, J. E., Bloomfield, J. J., and Marvel, C. S., J. Polymer Sei., 62, 59 (1962).

Murch, R. M. and Dighe, S. V., "Metal-Containing Phospho- nitrile Polymers," Contract No. 8-0333-019, November 1969; AD 865 129.

Murch, R. M. See also: Maselli, J. E.

Murphy, M. F. See: Messier, D. R.

Murthy, M. K. See: Westman, A. E. R.

Musgrave, T. R. and Mattson, C. E., Inorg. Chem., 7(7), 1433 (1968).

Myagkov, V. A. See: Andrianov, K. A.

Nahlovsky, B. D. See: Rosenberg, H.

Nakashima, T. See: Kunitake, T.

271

Page 286: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Nametkin, N. S.f Vdovin, V. M., and Zav'yalov, V. I., DAN SSSR, 1^9, 824 (1965).

Nametkin, N. S., Vdovin, V. M., and Zav'yalov, V. I., Vysokomolekul. Soedin., 7, 757 (1965).

Nannelli, P. See: Block, B. P.

Nanush'yan, S. R. See: Severnyi, V. V.

Nekhaenko, E. A., Rogovina, L. Z., and Stonimskii, G. L., Kolloidn. Zh., 38(5), 992 (1976); Chem. Abstr., 85, 193267d (1976).

Nekrasov, L. I. See: Rode, V. V.

Nelson, R. D. See: Lipincott, E. R.

Neuse, E. W., Advan. Macromol. Chem., 1, 1 (1968).

Neuse, E. W., in Organometallic Polymers, Carraher Jr., C. E., Sheats, J. E., and Pittman Jr., C. U., Eds., Academic Press (New York), 1978, pp. 95-100.

Neuse, E. W., J. Mater. Sei., 7, 708 (1972).

Neuse, E. W., "Metallocene Polymers," in Encyc. of Polymer Sei. & Tech., 8_, Interscience (New York), 1968, pp. 667-692.

Neuse, E. W. and Crossland, R. K., J. Organomet. Chem., 7, 344 (1967).

Neuse, E. W., private communication.

Neuse, E. W. and Rosenberg, H., J. Macromol. Sei. Rev., Macromol. Chem., C4, 1 (1970).

Neuse, E. W. and Rosenberg, H., "Metallocene Polymers," Reviews in Macromol. Chem., 5, Pt. 1, Dekker (New York) 1970.

Neuse, E. W. See also: Bednarik, L.

272

Page 287: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Neville, K. See: Levine, H. H.

Nichols, L. F. See: Labes, M. M.

Nikiforov, A. V. See: Kiselev, B. A.

Nikitenkov, V. E., Vysokomolekul. Soedin., Ser. B, 11(12), 877 (1969); Chem. Abstr., 7_2, 67020m (1970).

Nogaideli, A. I., Tkeshelashvili, R. Sh., Dzhashiashvili, T. K., and Koyava, N. A., Soobshch. Akad. Nauk Gruz. SSR, 64_(3), 585 (1971); Chem. Abstr., 76, 127497s (1972) .

Noll, W. See: Buechner, W.

Noltes, J. G. and Van der Kerk, G. J. M., Rec. Trav. Chim., 80, 623 (1961).

Noltes, J. G. and Van der Kerk, G. J. M., Rec. Trav. Chim., 81, 41 (1962).

Noshay, A., Matzner, M., and Merrian, C. N., J. Polymer Sei., Pt. A-I, 9(11), 3147; Chem. Abstr., 76, 100111z (1972).

Noshay, A., Matzner, M., and Williams, T. C., Ind. Eng. Chem., Prod. Res. Develop., 12^(4), 268 (1973).

Nyholm, R. S. See: Lever, A. B. P.

Obenland, C. 0. See: Dietrich, H. J.

0'Brian, E. L. See: Hoess, E. A.

Oehlert, H. See: Raubach, H.

Ogawa, J. See: Shaw, R. A.

Ogura, M. See: Kumada, M.

273

Page 288: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Okamura, K. See: Yajima, S.

Okawara, M., Takemoto, Y., Kitaoka, H., Haruki, E.f and Imoto, E., Kogyo Kagaku Zasshi, 65, 685 (1962); Chem. Abstr., 58, 577c (1963).

Omietanski, G. M., U. S. Pat. 3,053,872 (1962).

O'Rear, J. G. See: Walton, T. R.

Org. Synth., Coll. Vol. IV, Wiley (New York), 1963, p. 473,

Osborne, A. G. andWhitely, R. H., J. Organomet. Chem., 1975, 101(2), C'27.

Osipchik, V. V., Andrianov, K. A., Akutin, M. S., Kotrelev, G. V., Klabukova, L. F., and Lekishvili, N. G., USSR Pat. 518,507 (1976); Chem. Abstr., 85, 95314x (1976).

Owen, D. A. See: Barker, K. A.

Hedaya, E.

Owen, J. E., Joyner, R. D., and Kenney, M. E., Abstr. 139th Meeting Am. Chem. Soc., St. Louis, p. 17M (1961).

Paciorek, K. L., Karle, D. W., and Kratzer, R. H., "Flame Retardant Polyphosphazenes," NASA CR-135090, August 1976.

Paciorek, K. L. See also: Kratzer, R. H.

Pai, W. M. See: Zelentsov, V. V.

Pakhomov, V. I. See: Andrianov, K. A.

Blyumenfel'd, A. B. Pavlova, S. A.

Panchenko, B. I. See: Gruber, V. N.

Pande, K. C. and Mehrotra, R. C., Z. Anorg. Allgem. Cheme., 286, 291 (1956).

274

Page 289: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Papetti, S., Schaeffer, B. B., Gray, A. P., and Heying, T. L., J. Polymer Sei., A-l, 4, 1623 (1966).

Papetti, S. See also: Semenuk, N. S.

Papkov, V. S., Il'ina, M. N. , Kvachev, Yu. P., Makarova, N. N., Zhdanov, A. A., Slonimskii, G. L., and Andrianov, K. A., Vysokomolekul. Soedin., Ser. A, 17(9), 2050 (1975); Chem. Abstr., 83, 193939h (1975)

Papkov, V. S., Il'ina, M. N., Pertsova, N. V., Makarova, N. N., Zhdanov, A. A., Andrianov, K. A., and Slonimskii, G. L., Vysokomolekul. Soedin., Ser. A., 19(11), 2551 (1977); Chem. Abstr., 88, 51413m (1978)

Papkov, V. S. See also: Andrianov, K. A.

Parvin, K., Plast. Inst., Trans. J., 31(95), 132 (1963).

Pashintseva, G. I. See: Andrianov, K. A.

Severnyi, V. V.

Patterson, D. B. See: Allcock, H. R.

Patterson, T. R., Pavlick, F. J., Baldoni, A. A. and Frank, R. L., J. Am. Chem. Soc., ^1, 4213 (1959).

Patterson, W. J., McManus, S. P., and Pittman Jr., C. U. J. Polymer Sei., Polymer Chem. Ed., 12_, 837 (1974).

Patterson, W. J. and Morris, D. E., J. Polymer Sei., A-l, 10, 169 (1972).

Patterson, W. J. See also: Pittman Jr., C. U.

Paushkin, Y. M. See: Losev, Y. P.

Vodopyanova, A. E. Volozhin, A. I.

Pavlick, F. J. See: Patterson, T. R.

Pavlova, I. A. See: Bryk, M. T.

i

275

Page 290: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Pavlova, S. A. See also: Andrianov, K. A.

Pavlova, S. A., Pakhomov, V. I., and Tverdokhlebova, I. I Vysokomolekul. Soeden, 6, 1275 (1964); Chem. Abstr., 62, 1751 (1965).

Pearce, C. A., Brit. Pat. 858,817 (1961); Chem. Abstr., 5_ 14975h (1961).

Pearce, C. A., Hodd, K. A., and Chantrell, P. G., Brit. Pat. 896,301 (1962); Chem. Abstr., 57, 4881c (1963).

Pearce, E. M. See: Baugman, R. H.

Perros, T. P. See: Horowitz, E.

Perspechko, I. I. See: Andrianov, K. A.

Pertsova, N. V. See: Papkov, V. S.

Peters, E. N., "Poly (dodecacarborane-siloxanes)," in pres Macromol. Sei., Rev. in Macromol. Chem., 1979.

Peters, E. N., Bohan, J. J., Hedya, E., Kawakami, J. H., and Kwiatkowski, G. T., U. S. NTIS AD/A Rept., No. 003544/4GA (1974).

Peters, E. N., Hedaya, E., Kawakami, J. H., Kwiatkowski, G. T., McNeil, D. W., Tulis, R. W., Rubber Chem. Tech 48, 14 (1975).

Peters, E. N., Kawakami, J. H., Kwiatkowski, G. T., McNeil, D. W., and Hedaya, E., J. Polymer Sei., Polymer Phys. Ed., 15, 723 (1977).

Peters, E. N., Stewart, D. D., Bohan, J. J., and McNeil, D. W., J. Elastomers & Plast., 10, 29 (1978).

Peters, E. N., Stewart, D. D., Bohan, J. J., Moffitt, R., and Beard, C. D., J. Polymer Sei., Polymer Chem. Ed., 15, 973 (1977).

Peters, E. N., Stewart, D. D., Bohan, J. J., Kwiatkowski, G. T., Beard, C. D., Moffitt, R., and Hedaya, E., J. Elastomers & Plast., 9, 177 (1977).

276

Page 291: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Peters, E. N. See also: Barker, K. A.

Hedaya, E.

Petrashko, A. I. See: Andrianov, K. A.

Petrova, I. M. See: Karlin, A. V.

Pierce, 0. R. See: Kim, Y. K.

Pike, R. M., J. Polymer Sei., 50, 151 (1961).

Pittman Jr., C. U., J. Paint Technol., 39, 585 (1967).

Pittman Jr., C. U., Ayers, O. E., Suryanaranan, B., McManus, S. P., and Sheats, J. E., Makromol. Chem., 175, 1427 (1974) .

Pittman Jr., C. U., Patterson, W. J., and McManus, S. P. J. Polymer Sei., A-l, 9, 2187 (1971).

Pittman Jr., C. U., Patterson, W. J., and McManus, S. P, J. Polymer Sei., Polymer Chem. Ed., 13, 39 (1975).

Pittman Jr., C. U., Patterson, W. J., and McManus, S. P. J. Polymer Sei., Polymer Chem. Ed., 14, 1715 (1976).

Pittman Jr., C. U. See also: Bailar Jr., J. C.

Carraher Jr., C. E. Patterson, W. J. Sheats, J. E.

Plumb, J. B. and Atherton, J. H., "Block Polymers," Allport, D. C. and James, W. H., Eds., Wiley (New York), 1973, p. 305.

Podolskii, A. V., Bulatoo, M. A., and Spasskii, S. S., Russian Pat. 314,780 (1971); Chem. Abstr., 76, 73192t (1972).

Polyakova, A. M. See: Korshak, V. V.

Poutsma, M. L. See: Barker, K. A.

277

Page 292: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Prescott, P. I. See: Brown Jr., J. F.

Prevedorou-Demas, C. See: Bradley, D. C.

Prikhna, A. I. See: Bakul, V. N.

Pusatcioglu, S. Y. , Fricke, A. L. , Hassler, J. C, and McGee, H. A., J. Appl. Polymer Sei., 21(6), 1561 (1977).

Quinn, E. J. and Dieck, R. L., J. Fire & Flammability, 7, 5 (1976).

Quinn, E. J. and Dieck, R. L., J. Fire & Flammability, 7, 358 (1976).

Quinn, E. J. and Dieck, R. L., U. S. Pats. 4,061,606 (1977) and 4,107,108 (1978).

R&D Polymers Ltd., Neth. Pat. Appl. 6,404,070 (1965).

Rabkina, A. Yu. See: Andrianov, K. A.

Raigorodskii, I. M. See: Andrianov, K. A.

Ramanathan, V. and Balakrishnan, S., Chem. Petro-Chem. J., 6(4), 19 (1975); Chem. Abstr., 87, 136654v (1977).

Ranney, M. W., "Silicones," Vols. 1 and 2, Noyes Data Corp. (Park Ridge, NJ), 1977.

Ratz, R., Schroeder, H., Ulrich, H., Kober, E., and Grundman, C. , J. Am. Chem. Soc, 8_4, 551 (1962).

Raubach, H., Falk, B., Stoffer, U., and Oehlert, H., Ger. (East) Pat. 110,890 (1975); Chem. Abstr., £4, 5654k (1976).

Rausch, M. D., Vogel, M., and Rosenberg, H., J. Chem. Educ., 34, 268 (1957).

Rausch, M. D. See also: Rosenberg, H.

Sheats, J. E.

278

Page 293: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Rauscher, W. H. See: Wilkus, E. V.

Ray, N. H., Chem. and Ind., 1976 (3), 89.

Ray, N. H., J. Polymer Sei., Polymer Chem. Ed., 11, 2169 (1973) .

Ray, N. H. , Lewis, C. J. , Laycock, J. N. C, and Robinson, W. D., Glass Tech., 14(2), 50 (1973).

Ray, N. H. and Robinson, W. D., U. S. Pat. 3,935,018 (1976) .

Ray, P. See: Xavier, J.

Reardon, J. P. See: Walton, T. R.

Redfarn, C. A., U. S. Pat. 2,866,773 (1958).

Redl, G. and Rochow, E. G. , Angew. Chem., 76_(4), 650 (1964) .

Reese, C. D. See: Carraher Jr., C. E.

Reichle, W. T., J. Polymer Sei., 49^ 521 (1961).

Reiner, J. R., Alexander, R. P., and Schroeder, H. A., Inorg. Chem., 5, 1460 (1966).

Reiner, J. R. See also: Shroeder, H. A.

Reynard, K. A. and Gerber, A. H., U. S. Pats. 4,005,171 (1977) and 4,139,598 (1979).

Reynard, K. A., Gerber, A. H., and Rose, S. H., "Synthesis of Phosphonitrilic Elastomers and Plastics for Marine Applications," Naval Ship Engineering Center, AMMRC CTR 72-79, December 1972, AD 755 188.

Reynard, K. A., Gerber, A. H., Sicka, R. W., Vicic, J. C., and Rose, S. H., "Evaluation of Poly(fluoroalkoxy- phosphazene) Elastomers and Plastics," Final Rept., Army Materials & Mechanics Research Center, Contract DAAG46-73-C-0215, March 1974, AD 781 578.

279

Page 294: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Reynard, K. A., Sicka, R. W., and Thompson, J. E., "Poly(aryloxyphosphazene) Foams," Final Rept., Naval Ship Systems Command, Contract N00024-73-C-5474, June 1974, AD A009 425.

Reynard, K. A., Sicka, R. W., Thompson, J. E., and Rose, S. H., "Poly(aryloxyphosphazene) Foams and Wire Coverings," Naval Ship Engineering Center, Contract N00024-73-5474, March 1975.

Reynard, K. A. and Vicic, J. C., "Polyphosphazene Wire Coverings," Naval Ship Engineering Center, Contract N00024-75-C-4402, June 1976, AD A028 872.

H, Reynard, K. A., Vicic, J. C, Sicka, R. W. , and Rose, S "Elastomers for Service with Engine Lubricants and Hydraulic Fluids," Naval Air Systems Command, Contract N00019-73-C-0406, March 1974.

Reynard, K. A. See also: Thompson, J. E.

Vicic, J. C.

Rice, R. G., Geib, B. H., and Kaplan, L. A., U. S. Pat. 3,121,703 (1964).

Rice, R. G. See also: Maselli, J. E.

Sisler, H. H.

Richards, J. H., J. Paint Technol., 39, 569 (1967).

Rinse, J., Brit. Pat. 772,144 (1957); Chem. Abstr., 51, 12549 (1957).

Rinse, J., Ind. Eng. Chem., 56(5), 42 (1964).

Roberts, C. B. and Toner, D. D., U. S. Pat. 3,413,242 (1968); Chem. Abstr., 70, 29701k (1969).

Robinson, W. D. See: Ray, N. H.

Roch, K. N., Rep. Prog. Appl. Chem., 1975 (Pub. 1976), 60, 34; Chem. Abstr., 88, 23645v (1978).

Rochow, E. G., "An Introduction to the Chemistry of Silicones," 2nd Ed., Wiley (New York), 1951.

Rochow, E. G. and Stern, R. L., U. S. Pat. 3,291,783 (1966); Chem. Abstr., 6_6, 29428m (1967).

280

Page 295: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Rochow, E. G. See also: Krueger, C. R.

Redl, G.

Rode, V. V., Nekrasov, L. I., Terent'ev, A. P., and Rukhadze, E. G., Vysokomolekul. Soedin., 4, 13 (1962); Chem. Abstr., 57, 1055 (1962).

Rode, V. V. See also: Terent'ev, A. P.

Rogovina, L. Z. See: Nekhaenko, E. A.

Rogozhin, S. V. See: Korshak, V. V.

Roller, M. B. and Gillham, J. K., J. Appl. Polymer Sei., 17, 2141 (1973).

Roller, M. B. and Gillham, J. K., Polymer Eng. Sei., 8, 567 (1974).

Rose, S. H. and Block, B. P., J. Am. Chem. Soc, 87, 2076 (1965).

Rose, S. H., J. Polymer Sei., Pt. B, 6, 837 (1968).

Rose, S. H. See also: Block, B. P.

Reynard, K. A.

Rosenberg, H., Barton, J. M., and Hollander, M. M., 2nd International Symp. on Organometallic Chemistry, Madison, Wisconsin, 1965; Abstr. Proc, p. 42.

Rosenberg, H. and Nahlovsky, B. D. , Am. Chem. Soc, Polymer Preprints, 19(2), 625 (1978).

Rosenberg, H., private communication.

Rosenberg, H. and Rausch, M. D., U. S. Pat. 3,060,215 (1962).

Rosenberg, H., U. S. Pat. 3,426,053 (1969).

Rosenberg, H. See also: Bilow, N.

Birke, A. H. Breed, L. W. Neuse, E. W. Rausch, M. D. 281

Page 296: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Rosenblum, M. See: Wilkinson, G.

Rosetto, F. See: Bresadola, S.

Roth, E. S. See: Block, B. P.

Rozmyslova, A. A. See: Volozhin, A. I.

Ruehlmann, K., Plaste Kautsch., 24(8), 535 (1977); Chem. Abstr., 87, 118484k (1977).

Rukhadze, E. G. See: Rode, V. V.

Terent'ev, A. P.

Russo, P. J. See: MacDiarmid, A. G.

Mikulski, C. M.

Sacconi, L., Gazz. Chim. Ital., 83, 894 (1953); Chem. Abstr., 48, 10471 (1954).

Sadykova, E. M. See: Spitsyn, V. I.

Sahkarova, A. A. See: Korshak, V. V.

Saito, H. See: Kajiwara, M.

Saito, Y. See: Kinoshita, Y.

Sanchez, M. G. See: Sisler, H. H.

Sander, M., "Phosphorus-Containing Polymers," in Encyc. of Polymer Sei. & Tech., 10, 12 3, Interscience (New York) 1969.

Saran, M. S. See: MacDiarmid, A. G.

Mikulski, C. M.

Savich, I. A. See: Zelentsov, V. V.

282

Page 297: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Savin, V. A. See: Andrianov, K. A.

Schaaf, R. L., Kan, P. T., and Lenk, C. T., J. Org. Chem., _26, 1790 (1961).

Schaaf, R. L., Kan, P. T., Lenk, C. T., and Deck, E. P., J. Org. Chem., 2_5, 1986 (1960).

Schaaf, R. L., U. S. Pat. 3,036,105 (1962).

Schaaf, R. L. See also: Kan, P. T.

Schaeffer, B. B. See: Papetti, S.

Schaefgen, J. R. See: Baughman, R. H.

Schaffung, O. G. See: Schroeder, H.

Schaumann, C. W. See: Block, B. P.

Schlegel, R. See: Gutmann, V.

Schmidbam, H., and Eberlein, J., Z. Anorg. Allg. Chem., 434. 145 (1977).

Schmidt, D. L. and Flagg, E. E., J. Polymer Sei., A-l, 6^, 3235 (1968).

Schmidt, D. L. See also: Flagg, E. E.

Monroe, R. F.

Schmutz, J. L. See: Allcock, H. R.

Schneider, N. S. See: Hagnauer, G. L

Singler, R. E.

Schroeder, H. See: Ratz, R.

283

Page 298: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Schroeder, H. A., "Carborane Polymers, A Summary," Contract No. N00014-71-C-0003, April 1972, AD 742 444

Schroeder, H. A., Inorg. Macromol. Rev., 1, 45 (1970).

Schroeder, H. A., Reiner, J. R., and Knowles, T. A., Inorg. Chem., 2, 393 (1963).

Schroeder, H. A., Rubber Age, 101, 58 (1969).

Schroeder, H. , Schaffung, 0. G., Larchar, T. B. , Frulla, F. F., and Heying, T. L. , Rubber Chem. Technol., _39, 1184 (1966).

Schroeder, H. A. and Trainor, J. T., "Fiber Reinforced Borane-based Resin Composites: A New Approach to Oxidative Thermal Stability," 12th National SAMPE Sym., October 1967; Science of Advanced Materials and Process Engineering, 12_ (1967), AC-2.

Schroeder, H. A., U. S. Pat. 3,533,968 (1970).

Schroeder, H. A. See also: Alexander, R. P.

Dietrich, H. J. Reiner, J. R. Semenuk, N. S.

Schroeder, J. A. See: Carraher Jr., C. E.

Scott, M. J. See: Merker, R. L.

Scott, R. N., Knollmueller, K. 0., Hooks Jr., H., and Sieckhaus, J. F., J. Polymer Sei., A-l, 10, 2303 (1972) .

Scott, R. N. See also: Knollmueller, K. 0.

Sellers, J. W. See: Bachmann, J. J.

Semenuk, N. S., Papetti, S., and Schroeder, H. A., Angew. Chem., 7_9, 1017 (1967).

Semerieva, G. A. See: Malyarenko, A. V.

284

Page 299: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Semerneva, G. A. See: Krivonishchenko, V. V.

Sevastja, T. G. See: Spitsyn, V. I.

Severnyi, V. V., Nanush'yan, S. R., Fromberg, M. B., Chernichkina, A. S., Bebchuk, T. S., Pashintseva, G. I., and Andrianov, K. A., Vysokomolekul. Soedin., Ser. B, 12(7), 512 (1970); Chem. Abstr., 73, 88555a (1970).

Seymour, R. B. See: Carraher Jr., C. E.

Shaw, R. A., Fitzsimmons, B. W. , and Smith, B. C, Chem. Rev. , 62^, 247 (1962) .

Shaw, R. A. and Ogawa, T. , J. Polymer Sei., Pt. A, 3_, 3865 (1965) and Pt. C, 16, 1479 (1967).

Shaw, R. A. See also: Fitzsimmons, B. W.

Sheats, J. E., in "Organometallic Polymers," Carraher Jr., C. E., Sheats, J. E., and Pittman Jr., C. U., Eds., Academic Press (New York) 1978, pp. 87-94.

Sheats, J. E. & Rausch, M. D., J. Org. Chem.,35,3245 (1970)

Sheats, J. E. See also: Bailar Jr., J. C.

Carraher Jr., C. E. Pittman Jr., C. U.

Sheina, V. E. See: Korshak, V. V.

Sheldon, J. C. and Smith, B. C, Quart. Rev. (London), 14, 200 (1960).

Sherle, A. I. See: Berlin, A. A.

Shibistaya, Z. P. See: Karavan, Yu. V.

Shirai, H. See: Hojo, N.

285

Page 300: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Shorr, L. M., Freiser, H., and Speier, J. L., J. Am. Chem. Soc, 77, 547 (1955).

Shushentsova, F. F. See: Andrianov, K. A.

Sicka, R. W. See: Reynard, K. A.

Sieckhaus, J. F. See: Knollmueller, K. 0.

Scott, R. N.

Signalov, I. N., Aleskovs, V. B., and Dushina, A. P., J. Appl. Chem. USSR, 48(10), 2210 (1975).

Silverstein, R. M. See: Fuqua, S. A.

Simkin, J. J. See: Block, B. P.

Sinclair, R. G. See: Dunnavant, W. R.

Singler, R. E., Schneider, N. S., and Hagnauer, G. L., Polymer Eng. Sei., L5, 321 (1975).

Singler, R. E. See also: White, J. E.

Sisler, H. H., Frazier, S. E., Rice, R. G., and Sanchez, M. G., Inorg. Chem., 5, 326 (1966).

Skorokhodov, I. I. See: Volkova, R. V.

Sladkov, A. M. See: Korshak, V. V.

Luneva, L. K.

Sleptsov, V. M. and Tsurui, M. F., Visn. Akad. Nauk Ukr. RSR, 5, 53 (1976); Chem. Abstr., 8J5, 111918e (1976).

Slonimskii, G. L. See: Andrianov, K. A.

Papkov, V. S.

Slusarczak, G. M. J. See: Brown Jr., J. F.

Smith, A. L., Chem. Anal. (New York) 1974, 41, (Anal. Silicones), 3.

286

Page 301: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Smith, B. C. See: Shaw, R. A.

Sheldon, J. C.

Smith, J. D. See: Cullingworth, A. R.

Smith, M. J. See: Morgan, G. T.

Smith, R. C. See: Ingebrigtson, D. N.

Sokolinskaya, T. A. See: Vishnyakova, T. P.

Sommer, L. H. and Ansul, G. R. , J. Am. Chem. Soc, 77, 2482 (1955).

Sosedov, V. P. See: Vargina, R. A.

Sosin, S. L. , Alekseeva, V. P., Litvianva, M. D., Korshak, V. V., and Zhigach, A. F., Vysokomolekul. Soedin., Ser. B, 1-8(9), 703 (1976); Chem. Abstr. , 86, 173916 (1977).

Sosin, S. L., Korshak, V. V., and Alekseeva, V. P., Vysokomolekul. Soedin., 6(4), 745 (1964); Chem. Abstr., 61, 9591e (1964).

Spasskii, S. S. See: Podolskii, A. V.

Speier, J. L. See: Shorr, L. M.

Sperling, L. H., Cooper, S. L., and Tobolsky, A. V., J. Appl. Polymer Sei., 1^, 1725 (1966).

Spitsyn, V. I., Sevastja, T. G., Kolli, I. D., and Sadykova, E. M., Z. Chem., 14(12), 459 (1974).

Spitsyn, V. I. See also: Zelentsov, V. V.

Sprung, M. and Guenther, F. 0., J. Am. Chem. Soc, 77, 3990, 3996, 4173, and 6045 (1955).

Sprung, M. and Guenther, F. 0., J. Polymer Sei., 28, 17 (1958).

287

Page 302: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Sprung, M. and Guenther, F. 0., U. S. Pat. 3,017,385 (1962); Chem. Abstr. , 5_6, 10190h (1962).

Sprung, M. See also: Lichtenwalner, H. K.

Stasyuk, Z. V. See: Gukalov, S. P.

Stauffer Chemical Co., Japan Pat. 76 20,543 (1976); Chem. Abstr., 85, 178784b (1976).

Steinberg, H., "Organoboron Chemistry," Wiley (New York), 1964.

Stern, R. L. See: Rochow, E. G.

Stewart, D. D. See: Barker, K. A.

Peters, E. N.

Stickney, P. B. See: Dunnavant, W. R.

Stoffer, U. See: Raubach, H.

Stoffey, D. See: Levine, H. H.

Stone, F. G. A. and Graham, W. A. G., Eds. "Inorganic Polymers," Academic Press (New York), 1962.

Stone, F. G. A. See also: Bradley, D. C.

McCloskey, A. L.

Stonimskii, G. L. See: Nekhaenko, E. A.

Street, G. B. and Green, R. L., IBM J. Res. Dev., 21, 99 (1977).

Street, G. B. See also: Greene, R. L.

Stroh, E. G. See: Allcock, H. R.

288

Page 303: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Stumpf, von W., Chem. Zeitung, 99», 416 (1975).

Sulton, L. E. See: Kroenke, W. J.

Suryanaranan, B. See: Pittman Jr., C. U.

Susumi, T. See: Kumada, M.

Suvorov, A. L. See: Krivonishchenko, V. V.

Malyarenko, A. V.

Suzuki, A. See: Hojo, N.

Sveda, M., U. S. Pat. 2,562,000 (1951).

Tagliavini, G. See: Bresadola, S.

Tait, J. M. See: Farmer, V. C.

Takemoto, Y. See: Okawara, M.

Tanner, J. See: MacCallum, J. R.

Tarköy, N. See: Marvel, C. S.

Täte, D. P., J. Polymer Sei., C48, 33 (1974).

Täte, D. P. and Antkowiak, T. A., "Fluoroalkoxyphospha- zenes," in press, Encyc. of Chem. Technol., Wiley (New York).

Täte, D. P., Hergenrother, W. G., Kang, J. W., and Graves, D. F., Am. Chem. Soc, Polymer Preprints, 20(1),177 (1979).

Täte, D. P., Rubber World, 172, 41 (1975).

Teach, W. C. and Green, J., "Boron-Containing Polymers," in Encyc. of Polymer Sei. & Tech., 2, Interscience (New York), 1965, pp. 581-604.

289

Page 304: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Teague, J. See: Millich, F.

Teikova, I. R. See: Korshak, V. V.

Terent'ev, A. P., Rode, V. V., and Rukhadze, E. G. , Vysokomolekul. Soedin., 2, 1557 (1960); Chem. Abstr., 55, 19303 (1961).

Terent'ev, A. P., Rode, V. V., and Rukhadze, E. G., Vysokomolekul. Soedin., 4, 1005 (1962); Chem. Abstr., 59, 772 (1963).

Terent'ev., AP., Rode, V. V., and Rukhadze, E. G., Vysokomolekul. Soedin., 5, 1658 (1963); Chem. Abstr., 60, 15992 (1964).

Terent'ev, A. P., Rode, V. V., Rukhadze, E. G., and Filatov, E. S., Proc. Acad. Sei., USSR, Chem. Sect. (Eng. transl.), 138, 620 (1961); Chem. Abstr., 5_6, 10927 (1962).

Terent'ev, A. P., Rukhadze, E. G., and Rode, V. V., Vysokomolekul. Soedin., 4, 821 (1962); Chem. Abstr., 59, 771 (1963); Resins, Rubbers, Plastics, 565 (1963)

Terent'ev, A. P. See also: Rode, V. V.

Ter-Sarkisyan, E. M. See: Zhibukhin, S. M.

Tesi, G. and Douglas, C. M. , J. Am. Chem. Soc, 84, 549 (1962) .

Tesi, G., Haber, C. P., and Douglas, C. M., Proc. Chem. Soc. (London), 1960, 219; U. S. Pat. 3,087,937 (1963)

Theobald, C. W., U. S. Pat. 2,744,074 (1956); Chem. Abstr., 50, 17492 (1956).

Thilo, E., Advan. Inorg. Chem. Radiochem., 4, 1 (1962); Chem. Soc. (London), Spec. Publ. 15_, 33 (1961), "Inorganic Polymers"; and subsequent papers, e.g. Angew. Chem. (Int. Ed.), 3, 232 (1964).

Thomas, T. H. and Kendrick, T. C, J. Polymer Sei., Pt. A-2, 8(10), 1823 (1970).

290

Page 305: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Thompson, J. E. and Reynard, K. A., J. Appl. Polymer Sei., 21, 2575 (1977).

Thompson, J. E. See: Reynard, K. A.

Thorton, D. A. See: Jones, M. E. B.

Tkeshelashvili, R. See: Nogaideli, A. I.

Tobolsky, A. V. See: Mininni, R. M.

Sperling, L. H.

Todd, S. M. See: Allen, G.

Tomic, E. A., J. Appl. Polymer Sei., 9(11), 3745 (1965).

Toner, D. D. See: Roberts, C. B.

Touchet, P. and Gatza, P. E., J. Elastomers & Plast., 9, 3 (1977).

Trainor, J. T. See: Schroeder, H. A.

Trofilmov, V. M. See: Karlin, A. V.

Tryon, M. See: Horowitz, E.

Tseng, H. M., Yu, S. W., and Hsu, J. H., K'o Hsueh Ch'u Pan She, 286 (1963); Chem. Abstr., 63, 14992 (1965).

Tsunemi, H. See: Kumada, M.

Tsurui, M. F. See: Sleptsov, V. M.

Tsvankin, D. Ya. See: Andrianov, K. A.

Tuemmler, W. B., U. S. Pat. 3,245,965 (1966).

291

Page 306: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Tulis, R. W. See: Barker, K. A.

Hedaya, E. Peters, E. N.

Tverdokhlebova, I. I. and Larina, T. A., Uspekhi Khimi., 44, 367 (1965); Chem. Abstr., 82, 156774z (1975).

Tverdokhlebova, I. I. See also: Andrianov, K. A.

Pavlova, S. A.

U. S. Air Force WADC Technical Repts. 59-354, 60-704, 61-298.

U. S. Borax & Chemical Corp., Brit. Pat. 977,096 (1964); Chem. Abstr., 63, 4162c (1965).

U. S. Government Research Repts, Projects Nos. 8(107331) and MIRR 346-1, Contract No. AF33(616)-5033.

Uklonskii, D. A. See: Lavygin, I. A.

Ulrich, H. See: Ratz, R.

Ungureansu, C. and Haiduc, I., Rev. Roum. Chim., 13(7), 957 (1968); Chem. Abstr., 70, 48004b (1969).

Vada, G., Isidzova, L., Ivamatsu, L., and Kavaduki, K., Kogyo Kagaka Zasshi, 5_5, 631 (1963).

Valaitis, J. K. See: Kyker, G. S.

Valan, K, J. See: Allcock, H. R.

Van der Kerk, G. J. M. See: Noltes, J. G.

Van Wazer, J. R., "Phosphorus and Its Compounds," Inter- science (New York), Vol. 1, 1958; Vol. 2, 1961.

Van Wazer, J. R. See also: Callis, C. F.

Vargina, R. A., Sosedov, V. P., Andrianov, K. A., Kolesnikov, S. A., Krotov, A. I., Kaverov, A. T., Gunyaev, G. M., Khananashvili, L. M., Matytsyn, V. S., and Kokolevskii, I. A., Russian Pat. 531,616 (1976); Chem. Abstr., 86^, 17751u (1977).

292

Page 307: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Vasil'eva, N. A. See: Karlin, A. V.

Vaughn Jr., H. A. See: Luce, J. B.

Vdovin, V. M. See: Nametkin, N. S.

Verhovodka, L. Y. See: Volozhin, A. I.

Vicic, J. C. and Reynard, K. A., J. Appl. Polymer Sei., 21, 3185 (1977).

Vicic, J. C. and Reynard, K. A., "Poly(fluoroalkoxy- phosphazene) Lip Seal Materials," Army Materials & Mechanics Research Center, Contract DAAG 46-74- C-0056, October 1975.

Vicic, J. C. See also: Reynard, K. A.

Vinogradov, M. G. See: Korshak, V. V.

Vinogradova, S. V. See: Korshak, V. V.

Vishnyakova, T. P., Golubeva, I. A., and Sokolinskaya, T. A., Usp. Khim., 36(12), 2136 (1967); Chem. Abstr., 68, 59890x (1968).

Vodopyanova, A. E., Losev, Y. D., Paushkin, Y. M., and Chibrokova, R. V., Dokl. Akad. Nauk BSSR, 21(7), 611 (1977); Chem. Abstr., 87, 68958v (1977).

Vodopyanova, A. E. See also: Losev, Y. P.

Vogel, C. See: Luloff, J.

Vogel, M. See: Rausch, M. D.

Vogt Jr., L. H. See: Brown Jr., J. F.

293

Page 308: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Volkova, R. V., Skorokhodov, I. I-, Ivanova, N. A., and Ditsent, V. E., Plast. Massy, (3), 36 (1974); Chem. Abstr., 81, 26145y (1974).

Volozhin, A. I., Verhovodka, L. Y., Rozmyslova, A. A., and Paushkin, Y. M., Vysokomolekul. Soedin., Ser. B, 19(8), 593 (1977); Chem. Abstr., 87, 1532354g (1977).

Wagner, M. P. See: Bachmann, J. J.

Wagner, R. I., and Caserio Jr., F. F., and Freeman, L. D. WADC (Wright Air Development Center) Tech. Rept. 57-126, Pt. I (1957); Pt. II (1958), Pt. Ill (1959), and Pt. IV (1960).

Wagner, R. I., and Caserio Jr., F. F., J. Inorg. Chem., 11, 259 (1959).

Wagner, R. I. See also: Burg, A. B.

Walsh, E. J. See: Allcock, H. R.

Walton, T. R., Griffith, J. R., and O'Rear, J. C., Am. Chem. Soc. Preprints, Organic Coatings and Plastics Chem., 34(2), 446 (1974).

Walton, T. R., Griffith, J. R., O'Rear, J. G., and Reardon, J. P., Am. Chem. Soc. Preprints, Organic Coatings and Plastics Chem., 37(2), 180 (1977).

Walton, T. R. See also: Griffith, J. R.

Webb, R. F. See: Jones, M. E. B.

Wegner, P. A. See: Hawthorne, M. F.

Weinmayr, V., J. Am. Chem. Soc, 77, 3009 (1955).

Wesson, J. P. and Williams, T. C., "Organosilane Polymers. I. Poly(dimethylsilylene)," Technical Rept., Contract N00014-75-C-1024, December 1977, AD A050 337/5ST.

294

Page 309: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

West, R., David, L. D., and Mazdiyasni, K. S., Am. Chem. Soc, Polymer Preprints, 19_(2), 855 (1978).

Westcott, P. A., Diss. Abstr. Int. B., 32(3), 1497 (1971).

Westman, A. E. R. and Murthy, M. K., "Silica and Silicates," in Encyc. of Polymer Sei. & Technol., 12, 441, Interscience (New York), 1970.

Wharmby, D. See: Cullingworth, A. R.

White, J. E., Singler, R. E., and Leone, S. A., J. Polymer Chem., Polymer Chem. Ed., 13, 2531 (1975).

Whitehead, M. E. See: Breed, L. W.

Whitely, R. H. See: Osborne, A. G.

Whiting, M. C. See: Wilkinson, G.

Widenor, W. M., "Model Fire Tests on Polyphosphazene Rubber and Polyvinyl Chloride (PVC)/Nitrile Rubber Foams," presented (by the Dept. of Navy) at the Fireman Program Review, NASA-Ames Research Center, Moffett Field, CA, April 13-14, 1978.

Wiley, J. C. See: Breed, L. W.

Wilkinson, G., Rosenblum, M., Whiting, M. C., and Woodward, R. B., J. Am. Chem. Soc, 74, 2125 (1952).

Wilkus, E. V., Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, New York, 1963.

Wilkus, E. V. and Berger, A., Fr. Pat. 1,396,271 (1965).

Wilkus, E. V. and Rauscher, W. H., J. Org. Chem., 30, 2889 (1965). —

Williams, R. E., Pure Appl. Chem., 29, 569 (1972).

Williams, T. C. See: Noshay, A.

Wesson, J. P.

295

Page 310: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Wohrle, D. See: Meyer, G.

Wolf, R. E. See: Bachmann, J. J.

Woodward, R. B. See: Wilkinson, G.

Wynne, K. J., private communication.

Wynne, K. J. See also: Davison, J. B.

Xavier, J. and Ray, P., J. Indian Chem. Soc, 589 (1958); Chem. Abstr., 53, 16815 (1959).

Yagi, S. See: Hojo, N.

Yajima, S., Hasegawa, Y., Okamura, K., and Matsuzawa, T., Nature, 273, 525 (1978).

Yamashita, M., Kagaku Kogyo, 22(7), 981 (1971); Chem. Abstr., 75, 112893y (1971).

Yancey, J. A. and Lynn, T. R., Analabs. Inc. Research Notes, 14(1)(April 1974).

Yoshihiko, S. See: Kanda, S.

Yu, S. W. See: Tseng, H. M.

Zakharkin, L. I. See: Gerasimov, B. G.

Zavin, B. G. See: Andrianov, K. A.

Zav'yalov, V. I. See: Nametkin, N. S.

Zeldin, M., Polymer News, 3, 65 (1976).

Zelentsov, V. V., Pai, W. M., Savich, I. A., and Spitsyn, V. I., Vysokomolekul. Soedin., 3, 1535 (1961); Chem. Abstr., 56, 10375 (1962).

296

Page 311: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

Zhdanov, A. A. See: Andrianov, K. A.

Papkov, V. S.

Zhibukhin, S. M., Dudikova, E. D., and Ter-Sarkisyan, E. M., Zhur. Obshch. Khim., 32^ 3059 (1962); Chem. Abstr., 58, 10312b (1963).

Zhigach, A. F. See: Sosin, S. L.

Zhivukhin, S. M. See: Deryabin, A. V.

(1) Individual authorship was not readily available for several foreign patents.

(2) Due to differences in the transliteration of the names of some foreign authors, the same author may appear under different spellings in this bibliography.

297

Page 312: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

7.0 ACKNOWLEDGEMENTS

The authors would like to thank the following for help- ful comments and material:

Allcock, H. R., Dept. of Chemistry, Pennsylvania State Univ., University Park, PA 16802.

Bailar, Jr., J. C., Dept. of Chemistry, University of Illinois, Urbana, IL 61801.

Block, B. P., Pennwalt Corp., King of Prussia, PA 19406.

Carraher Jr., C. E., Dept. of Chemistry, Wright State Univ., Dayton, OH 45431.

Frye, C. L. , Dow-Corning Corp., Midland, MI 48640.

Griffith, J. R., Naval Research Lab., Chemistry Section, Washington, DC 20375.

Lenz, R. W., Chemical Engineering Dept., University of Massachusetts, Amherst, MA 01002.

Neuse, E. W., Dept. of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.

Peters, E. N., Union Carbide Corp., Tarrytown, NY 10591.

Pittman Jr., C. U., Dept. of Chemistry, University of Alabama, University, AL 354 86.

Rosenberg, H., AFML, Wright Patterson Air Force Base, Dayton, OH 45433.

Sheats, J. E., Dept. of Chemistry, Rider College, Lawrenceville, NJ 08648.

Singler, R. E., Organic Materials Lab., Army Materi- als & Mechanics Research Center, Watertown, MA 02172.

Stewart, D. D., Union Carbide Corp., Bound Brook, NJ 08805.

298

Page 313: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

ACKNOWLEDGEMENTS (Continued)

Täte, D. P., Central Research Laboratories, The Firestone Tire & Rubber Co., Akron, OH 44317.

Valaitis, J. K., Central Research Laboratories, The Firestone Tire & Rubber Co., Akron, OH 44317.

Wynne, K., Office of Naval Research, Arlington, VA 22215.

299

Page 314: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

8.0 DISTRIBUTION LIST

National Aeronautics and Space Administration Copies Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135

Attn: Contracting Officer, J. E. Bolander, M.S. 500-312 1 Technical Report Control Office, M.S. 5-5 1 Technology Utilization Office, M.S. 3-16 1 AFSC Liaison Office, M.S. 4-1 2 Library, M.S. 60-3 2 Office of Reliability & Quality Assurance, M.S. 500-211 1 M&S Division Contract File, M.S. 49-1 1 R. W. Lauver, M.S. 49-1 10

NASA Scientific and Technical Information Facility Attn: Accessioning Department P.O. Box 8757 Baltimore/Washington International Airport, MD 21240 25

National Aeronautics and Space Administration Washington, DC 20546

Attn: J. J. Gangler/Code RTM-6 1

National Aeronautics and Space Administration Ames Research Center Moffett Field, CA 94035

Attn: John Parker, M.S. 223-6 1

National Aeronautics and Space Administration Flight Research Center P.O. Box 273 Edwards, CA 93532

Attn: Library 1

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, MD 20771

Attn: Library 1

National Aeronautics and Space Administration John F. Kennedy Space Center Kennedy Space Center, FL 32899

Attn: Library 1

301

Page 315: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

2

Distribution List (Cont'd) Copies

National Aeronautics and Space Administration Langley Research Center Hampton, VA 23665

Attn: N. Johnston, M.S. 226 W. A. Brooks, M.S. 188M i

National Aeronautics and Space Administration Manned Spacecraft Center Houston, TX 77001

Attn: Library 1

Code EP

National Aeronautics and Space Administration George C. Marshall Space Flight Center Huntsville, AL 35812

Attn: J. Curry, EH31 1

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103

Attn: G. Varsi, Mail Code 125-159 X

Naval Air Systems Command Department of the Navy Washington, DC 20361

Attn: C. F. Bersch

Defense Documentation Center Cameron Station , Alexandria, VA 22314

U.S. Naval Research Laboratory Advanced Concepts Staff Washington, DC 20375

Attn: R. E. Proodian, Code 4105

SARPA-FR-MD Plastics Technical Evaluation Center Picatinny Arsenal Dover, NJ 07801

Attn: A. M. Anzaline, Bldg. 176

302

Page 316: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

3

Distribution List (Cont'd) Copies

Acurex Corporation Aerospace Systems Division 485 Clyde Avenue Mountain View, CA 94042

Attn: C. Delano

Aerospace Corporation P.O. Box 95085 Los Angeles, CA 90045

Attn: Library Documents

Air Force Material Laboratory Wright-Patterson Air Forbe Case, OH 45433

Attn: H. Rosenberg

Air Force Office of Scientific Research Washington, DC 20333

Attn: SREP, Dr. J. F. Masi

Battelle Memorial Institute 505 King Avenue Columbus, OH 43201

Attn: Report Libraby, Room 6A

The Boeing Company Aerospace Division P. 0. Box 3999 Seattle, WA 98124

Attn: W. Symonds

Celanese Reserach Company Morris Court Summit, NJ

Attn: Dr J. R. Leal

Ultrasystems, Inc. 2400 Michelson Drive Irvine, CA 92664

Attn: D. R. Kratzer

Hughes Aircraft Company Culver City, CA

Attn: N. Bilow

303

Page 317: SURVEY OF INORGANIC POLYMERSInorganic polymers Matrix polymers Metallocene polymers Organometallic(metallo-organic) polymers Phthalocyanine polymers Phosphazene polymers Phosphonitrilic

4

Distribution List (font'd) Copies

ITT Research Institute Technology Center Chicago, IL 60616

Attn: C. Giori, Chemistry Division

Lockheed Missiles & Space Company Propulsion Engineering Division (D.55^11) 111 Lockheed Way Sunnyvale, CA 94087

Stanford Research Institute Menlo Park, CA 94025

Attn: M. Maximovich

United Technologies Corporation Pratt 5 Whitney Aircraft East Hartford, CT 06108

Attn: D. Scola, M.S. 24

Westinghouse Electric Corporation Westinghouse R&D Center 1310 Beulah Road Pittsburgh, PA 15235

Attn: Dr. J. H. Freeman

TRW, Inc. Defense S Space Systems Group One Space Park Redondo Beach, CA 90278

Attn: R. W. Vaughan

Army Materials and Mechanics Research Watertown, MA 02172

Attn: R. E. Sacher

Texas Research Institute 5902 W. Bee Caves Road Austin, TX 78746

Attn: P. G. Cassidy

304


Recommended