+ All Categories
Home > Documents > SWA Report on WWSV Heating Systems

SWA Report on WWSV Heating Systems

Date post: 30-May-2018
Category:
Upload: austindesigninc
View: 220 times
Download: 0 times
Share this document with a friend

of 23

Transcript
  • 8/14/2019 SWA Report on WWSV Heating Systems

    1/23

    BuildingAmericaSystemsEvaluation

    Simple,Non

    Distributed

    Heating

    Systems

    inColdClimateHomes

    PREPAREDFOR:

    NATIONALENERGYTECHNOLOGYLABORATORY

    3610COLLINSFERRYROAD

    MORGANTOWN,WV

    265070880

    &

    MIDWESTRESEARCHINSTITUTE,

    NATIONALRENEWABLEENERGYLABORATORYDIVISION,

    1617COLEBOULEVARD,

    GOLDEN,CO

    804013393

    PREPAREDBYSTEVENWINTERASSOCIATES,INC.

    FORTHE

    CONSORTIUMFORADVANCEDRESIDENTIALBUILDINGS(CARB)

    STEVENWINTERASSOCIATES,INC.

    50WASHINGTONSTREET

    NORWALK,CT06854

    TEL:(203)8570200/FAX:(203)8520741

    CONTACT: ROBBALDRICH

  • 8/14/2019 SWA Report on WWSV Heating Systems

    2/23

    Table of Contents1.

    EXECUTIVE SUMMARY .................................................................................................... 3

    1.1. Overview ........................................................................................................................ 3

    1.2. Key Results ................................................................................................................... 3

    1.1. Gate Status .................................................................................................................... 3

    2. PROJECT OVERVIEW RDI WISDOM WAY SOLAR VILLAGE ..................................... 4

    2.1. Plans .............................................................................................................................. 4

    2.2.

    Basement ...................................................................................................................... 4

    2.3. Above-Grade Walls ....................................................................................................... 4

    2.4. Attic ................................................................................................................................ 5

    2.5. Windows ........................................................................................................................ 5

    2.6. Heating Systems ........................................................................................................... 6

    2.7. Ventilation Systems ..................................................................................................... 6

    2.8.

    Water Heating ............................................................................................................... 7

    2.9. Solar Electric Systems ................................................................................................. 7

    3. SHORT-TERM TESTING .................................................................................................... 7

    3.1. Research Questions ..................................................................................................... 7

    3.2. Blower Door, Airflow, and Power Measurements ...................................................... 8

    3.3. Tracer Gas and Temperature Distribution Testing Procedure ................................. 9

    3.4. Air Distribution Results ............................................................................................... 9

    3.5. Thermal Comfort Analysis and Results ................................................................... 113.5.1. Thermal Design Considerations ............................................................................................................. 113.5.2. Thermal Comfort Test Results ............................................................................................................... 12

    3.6. Recommendations to Residents ............................................................................... 17

    4. LONG-TERM MONITORING AND EVALUATION ........................................................... 17

    5.

    GATE CRITERIA .............................................................................................................. 17

    5.1. Must Meet Criteria ................................................................................................... 175.1.1. Source Energy Savings and Whole Building Benefits ............................................................................ 175.1.2. Performance-Based Code Approval ....................................................................................................... 18

    5.2. Should Meet Criteria ............................................................................................... 185.2.1. Prescriptive Code Approval .................................................................................................................... 185 2 2 Cost Ad antage 18

  • 8/14/2019 SWA Report on WWSV Heating Systems

    3/23

    Building America System Evaluation

    NON-DISTRIBUTED HEATING SYSTEMS IN 50% COLD-CLIMATE HOMES

    1. Executive Summary

    1.1. Overview

    Asenvelopeperformancedramaticallyincreasesincoldclimatehomes,designheatingloads

    becomeverysmall. BuildingAmericateamshavestruggledtofindsystemssmallenoughto

    meettheseloadsefficiently,comfortably,andcosteffectively. AtWisdomWaySolarVillagein

    Greenfield,MA,RuralDevelopmentInc.(RDI)isbuildinghomeswithexceptionalthermal

    envelopes. Toheateachhome,asingle,gasfired,sealedcombustionroomheaterislocatedinthecentrallivingspaceofeachhome. Thereisnoheatprovideddirectlytobedrooms,thougha

    simpleventilationsystemprovidessomethermalequalization. CARBhasperformedshortterm

    testinginconjunctionwithNRELinFebruary2009,andlongtermmonitoringisunderwayfor

    thewinterof20092010.

    1.2. Key Results

    ShorttermtestresultsfromFebruary2009indicatedthattemperaturedistributionthroughout

    thetested

    home

    would

    be

    acceptable

    under

    nearly

    all

    conditions.

    At

    outdoor

    temperatures

    above1015F,testsshowedthatmodestinternalgains(125W)willkeepbedroomswithin34F

    ofthetemperatureofthecentrallivingspace. Atlowertemperatures,nearthedesign

    temperatureof2F,ifroomshaveverymodestinternalgains,occupantsmaywanttoleave

    bedroomdoorsopenoruseportableelectricheaters(verysparingly)tokeepupstairsbedroom

    temperatureshigher.

    Thespaceheatingsystemwillrequireadifferentlevelofresidentawareness. CARBhas

    presentedinformation

    to

    residents

    about

    recommended

    practices

    (such

    as

    keeping

    bedroom

    doorsopenwhenunoccupied,avoidingextremedaytimetemperaturesetbacks,etc.). Onlyone

    homewasoccupiedduringthewinterof20082009,andCARBwasnotabletomonitor

    temperaturesthroughoutthishome. Forthewinterof20092010,fourhomeownershave

    agreedtoletCARBmonitortemperaturesandinterviewthemaboutcomfortandenergyissues.

    OnekeyresultinthecosteffectivenessofthesystemisthatRDIsavedapproximately$4,500on

    mechanicalsystemsforeachhomewhencomparedtoaconventionalhomewithaboilerand

    hydronicbaseboard

    convectors.

    Todate,resultshaveshownthatsimpleheatingsystemswithminimalornodistributioncan

    effectivelyprovidecomfortinsomesuperinsulated,coldclimatehomes.

    1.3. Gate Status

  • 8/14/2019 SWA Report on WWSV Heating Systems

    4/23

    Table1. Stage1BGateCriteriaforNonDistributedHeatingSystemEvaluation.

    2. Project Overview RDI Wisdom Way Solar Village

    RDIsWisdomWaySolarVillageisdescribedinmoredetailinthecasestudyBuildingAmerica40+%

    ColdInitialCommunityScale: RDIsWisdomWaySolarVillageupdatedinDecember2010. Thekey

    featuresof

    the

    home

    energy

    systems

    are

    also

    listed

    here.

    2.1. Plans

    Thecommunityconsistsoftwentyhomesintenduplexesasoutlinedbelow:

    Four2bedroom,onestoryhomes(1,137grossft2;twoofthesearefullyaccessible)

    Four2bedroom,twostoryhomes(1,140grossft2)

    Nine3bedroom,twostoryhomes(1,390grossft2)

    Three4bedroom,twostoryhomes(1,773grossft2)

    Thecommunitywasdesignedsothatallhomeshaveexcellentsolaraccessforbothpassiveand

    activecollection. Plansforthethreebedroomhomeusedforshorttermtestingareincludedin

    theAppendix.

    2.2. Basement

    "Must Meet" Gate Criteria No Go Recycle Go

    1. Source Energy Savings and Whole Building BenefitsNew whole house system solutions must provide demonstrated source energy and

    whole building performance benefits, including labor and material cost tradeoffs,

    comfort, durability, reliability, health, ..., relative to current sys tem solutions based on

    BA test and analysis results.

    X

    2. Performance-Based Code Approval

    Must meet performance-based safety, health, and building code requirements for use in

    new homes.

    X

    "Should Meet" Gate Criteria

    1. Prescriptive-Based Code Approval

    Should meet prescriptive safety, health, and building code requirements for use in newhomes.

    X

    2. Cost Advantage

    Should provide strong potential for cost benefits relative to current systems within a

    whole building context.

    X

    3. Reliability Advantage

    Should meet reliability, durability, ease of operation, and net added value requirements

    for use in new homes.

    X

    3. Manufacturer/Supplier/Builder Commitment

    Should have sufficient logistical support (warranty, supply, installation, maintenance

    support) to be used in prototype homes.

    X

    5. Gaps Analysis

    Should include system's gaps analysis, lessons learned, and evaluation of major

    technical and market barriers to achieving the targeted performance level.

    X

  • 8/14/2019 SWA Report on WWSV Heating Systems

    5/23

    wallfiveinchesinsideoftheloadbearing,exteriorwall. Fiberreinforcedpolyethylene(inthe

    firsttwohomes)orinsulationnetting(inthelaterhomes)isstapledtotheinnerstuds,andthe

    entire12

    wall

    cavity

    is

    filled

    with

    dry

    blown

    cellulose

    insulation

    at

    densities

    of

    approximately

    3.4lbm/ft3. WholewallRvalueisapproximately42ft2hrF/Btu.

    Figure1. TypicalwallsectionfromAustinDesign,Inc.

    2.4. Attic

    Roofsofthehomeareconstructedwithmanufactured,raisedheeltrusses. Ventedattics

    incorporatefullsoffitandridgeventsandfullinsulationbafflesateverytrussbay. Homesare

    insulatedwith14oflooseblowncelluloseforanRvalueofapproximately50ft2hrF/Btu.

    2.5. Windows

    Onnorth,east,andwestfacades,RDIinstalledtriplepanewindows. Onthesouthernfacades,

    highersolargaindoublepanewindowswereused. WindowpropertiesareshowninTable2.

    Table2. WindowpropertiesattheWisdomWayVillage.U-value

    2

  • 8/14/2019 SWA Report on WWSV Heating Systems

    6/23

    2.6. Heating Systems

    Thedesignheatloadsofthehomesareverysmalllessthan12,000Btu/hr. Withthevery

    smallloads,

    RDI

    selected

    avery

    small,

    simple

    heating

    system:

    asealed

    combustion,

    natural

    gas

    firedroomheaterlocatedinthecentralareaonthefirstfloorofeveryunit. Theunitisa

    MonitorProductsmodelGF1800;capacityis10,200Btu/hatlowfire,16,000Btu/honhighfire,

    andtheAFUEis83%.

    Figure2. Gasroomheaterinthelivingroomofthe3bedroomhometested.

    Toalleviate

    concerns

    about

    temperature

    differentials

    and

    to

    improve

    ventilation

    performance

    CARBworkedwithRDItodesignaverysimpleairdistributionsystem. Thisisdescribedmore

    intheVentilationSystemssectionbelow. Toassurecomfortinbathrooms,eachupstairs

    bathroomcontainsasmall,500Wattelectricresistanceheater. Theelectricheatersarewired

    toacranktimersotheycannotbeleftONforlongperiodsoftime.

    2.7. Ventilation Systems

    AswithmostofRDIshomes,theWisdomWaydwellingswilluseanexhaustonlyventilation

    strategy.In

    the

    primary

    bathroom

    of

    each

    home,

    aPanasonic

    Whisper

    Green

    exhaust

    fan

    (modelno.FV08VKSL1)isinstalledandprogrammedtoruncontinuouslytomeetthewhole

    buildingventilationrequirementsofASHRAEstandard62.22007(3060CFM,dependingonthe

    unit). Thefanisalsoequippedtoboosttohighspeed(80CFM)foranadjustableamountof

    timewhenthebathroomisinuse.

  • 8/14/2019 SWA Report on WWSV Heating Systems

    7/23

    Figure3. Theexhaustfanandsimpleductdistributionsysteminstalledbetweenthefirstand

    secondfloors.

    2.8. Water Heating

    Mostoftheenergyneedsfordomesticwaterheatinginthehomeswillbeprovidedbysolar

    thermalsystems. Flatplatesolarcollectorsaremountedonthesouthernroofofeachhome,

    andapropyleneglycolantifreezesolutioniscirculatedbetweenthecollectorsandaheat

    exchangerlocated

    in

    astorage

    tank

    in

    the

    basement.

    A

    direct

    current

    pump

    circulates

    the

    glycol;thepumpispoweredbyadedicatedPVmodule. Auxiliarywaterheatingineachhomeis

    providedbyasealedcombustion,naturalgasfired,tanklesswaterheaterinstalledinthe

    basementnearthesolartank.

    2.9. Solar Electric Systems

    Three andfourbedroomhomeshave3,420WattPVsystems,and2bedroomhomeshave

    2,850Wattsystems. Overthecourseofayear,thelargersystemswillgenerateapproximately

    3,750kWh;

    the

    smaller

    systems

    will

    generate

    3,125

    kWh.

    Benchmark

    analyses

    show

    that

    in

    a3

    bedroomunit,the3.4kWPVsystemwillprovide77%ofthehomeselectricalneeds.

    3. Short-Term Testing

    CARBworkedwithresearchersfromtheNationalRenewableEnergyLaboratory(NREL)toassessthe

    performanceofatypicalthreebedroomhomeoneofthefirstthehomescompleted. Testingwas

    performedduringoneweekinFebruary2009beforethehomewasoccupied.

    3.1. Research Questions

    ThefollowingresearchquestionsandgoalswereidentifiedbyCARBandNRELbeforethetesting

    wasperformed.

    1. Whatistheeffectiveleakageareaoftheunitasmeasuredwithablowerdoor? How

    doestheleakageareachangewhentheadjacentunitisalsopressurized(guarded)? Do

  • 8/14/2019 SWA Report on WWSV Heating Systems

    8/23

    ratesofthedistributionsystem? Whatarethepowerdrawsoftheventilationandair

    distributionfansineachoperatingstate? Doallofthesequantitiesmeetthedesign

    targets?

    3. Whatarethetemperaturesinvariousroomsthroughouttheduplexoverconsecutive

    24hourperiodswitheachoftheconditionsshowninTable3? Doesacentralpointin

    eachroommeettheASHRAEStandard55comfortrecommendationsatvarioustimes

    duringeachtest? DotemperaturedifferentialsbetweenroomsmeetACCAManualRS

    guidelines(4Fmaximum)? Arethereanynoticeablehotorcoldspotsoninterior

    surfacesasmeasuredusinganIRcamera?

    Table3. Testmatrixformeasuringuniformityofheatingandoutsideairdistribution.

    4. Usingoneunitoftheduplexasthetestspace,whatarethedifferencesinoutsideair

    distribution(i.e.RAoA)throughouttheduplex,usingtheoperatingconditionsshownin

    Table3?

    3.2. Blower Door, Airflow, and Power Measurements

    Totestenvelopeairleakage,CARBperformedblowerdoortestingoneachhalfoftheduplex

    separatelyandcoincidentallytoassessleakagethroughthepartywall. Thethreebedroomunit

    wheretheshorttermtestingwasperformedhadtotalenvelopeleakageof273CFMwhenthe

    homewasdepressurizedto50Pa. Afivepointblowerdoorregressionshowedtotaleffective

    leakagearea(ELA)of11.2in2. Whentheneighboringunitwasdepressurizedcoincidentally,

    leakagedropped

    by

    40

    CFM50

    and

    0.2

    in

    2

    .With

    such

    low

    party

    wall

    leakage,

    researchers

    concludedthattracergastestingandRAoAcalculationscouldbedoneeffectivelyinonlyone

    halfoftheduplex. Significanttestingintheotherhalfwasnotpossibleasitwasalready

    occupied.

    TheHVAClayoutforthehometestedisincludedintheappendix. CARBmeasuredairflowand

    Test

    Case Doors

    Ventilation

    Fan

    Distribution

    Fan Notes

    0 Closed Off Off Basecase;noventilation

    1 Closed On On

    2 Closed On Off

    3 Closed On Off 1in2

    openingineachbedroom

    4 Open On On

    5 Closed On On60Wlampineachbedroom. Notracer

    gastests;tempmeasurementsonly.

  • 8/14/2019 SWA Report on WWSV Heating Systems

    9/23

    3.3. Tracer Gas and Temperature Distribution Testing Procedure

    Atsixpointsthroughoutthehome,NRELresearchersinstalledthermocoupleswithinradiation

    shieldsat

    4

    above

    the

    floor.

    A

    simple

    weather

    station

    also

    measured

    outdoor

    air

    temperature

    andwindspeed. ThermocouplesandothersensorswerewiredtoaCampbellScientificCR10

    datalogger,andconditionswererecordedat5minuteintervals.

    Atthesamelocationofeachofthesixinteriorthermocouples(seeFigure4),NRELalsoinstalled

    2.5mm(ID)polyethylenetubingthroughwhichairsamplesweredrawnevery12minutes. Air

    sampleswererunthroughaBruelandKjaermodel1303multipointsamplerandmodel1302

    multigasmonitor. Atthebeginningofeachtest,researchersintroducedasmallamountof

    sulfurhexafluoride

    (SF6)

    into

    the

    home

    and

    distributed

    it

    evenly

    through

    all

    spaces.

    By

    analyzing

    theratesofdecayinSF6concentration,researcherswereabletocalculateeffectiveairchanges

    ineachspace;moreaccurately,researcherscouldcalculatereciprocalageofair(RAoA,hr1)in

    eachspace. Formoredetailsonthistestprocedure,seeNRELdocumentNREL/TP55031548,

    ATestProtocolforRoomtoRoomDistributionofOutsideAirbyResidentialVentilation

    Systems. Eachtestbeganatapproximately8:00AMandranforapproximately23hours.

    Figure4. Sensorstandinonebedroomcontainingtracergassamplingpointandshielded

    thermocouple. PhotofromNREL.

    3.4. Air Distribution Results

    Tracer gas tests performed ith all doors closed and the distrib tion fan t rned off (test case 2)

  • 8/14/2019 SWA Report on WWSV Heating Systems

    10/23

    closed. Whendoorsareopen,thereisvirtuallynodifferenceinairchangerates. Inthistested

    RDIhome,whenthedistributionfanwasturnedON(Case1),thevariationsinairchangerates

    are

    dramatically

    reduced.

    The

    lowest

    RAoA

    is

    again

    in

    the

    northeast

    bedroom

    at

    0.27

    hr

    1

    ,

    but

    thehighestvaluesinthekitchenandlivingroomisonly0.32hr1.

    Basedontheseresults,CARBhasconcludedthatthissimpledistributionsystemmoving2530

    CFMfromthecentralspacetoeachbedroomdoesindeedaddressconcernsaboutunequalair

    changeratesindifferentpartsofthesehomes.

    Whatremainsuncleariswhatrealimplicationsthatsuchvariationsinairchangerateshave.

    Builders

    like

    RDI

    have

    used

    exhaust

    only

    ventilation

    in

    hundreds

    of

    relatively

    small,

    efficient

    homeswithnoapparentperformance,health,ordurabilityproblems. Ontheotherhand,when

    bedroomsareoccupieddoorsareoftenclosed;receivinghalftheairchangesunderthese

    circumstancesdoesnotseemideal. Itseemsthatthesimpledistributionsysteminthesehomes

    seemstoaddressthisproblemquiteeffectively. CARBhopesthisresearchwillleadtogreater

    understandingofthesesystems,butCARBbelievesmoreinvestigationisneededof

    performanceissuesandIEQimplicationsofvariousventilationsystems. CARBalsohopesthat

    theseinvestigationswilldrivedevelopmentofmoresmall,simple,lowcostmechanicalsystems

    for

    high

    performance

    homes.

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    Case 1 Case 2 Case 3 Case 4

    RAOA,

    hr

    1

    AirChangeComparisons

    LivingRoomKitchen

    SWBRSEBRNEBRBath

  • 8/14/2019 SWA Report on WWSV Heating Systems

    11/23

    3.5. Thermal Comfort Analysis and Results

    3.5.1. Thermal Design Considerations

    Thekeythermalcomfortconcerninthehomesiswintertemperaturesinupstairsbedrooms

    thatarenotdirectlyheated. Whileloadsvaryfromroomtoroom,theaveragedesignloadofa

    bedroomisapproximately1,500Btu/h(440W)withoutdoortemperaturesof2F. Asdesign

    loadsgenerallyoccurduringthenight,solargainswerenotconsideredinthisanalysis.

    Thesimpleheatingsystemreliesonmeetingthisloadinfourbasicways:

    Internalgains(people,lights,electronics,etc.inbedrooms);

    Natural

    convection

    air

    moving

    upstairs

    from

    a

    warmer

    downstairs;

    Conductionthroughthefloorfromtheheatedspacesbelow;

    Forcedconvectionfromthesmalldistributionsystem.

    Internalgainswillvarytremendously. Asleepingpersonmaygiveoffapproximately60W,while

    anawakepersonnotperformingrigorousexercisemaygenerate80100Watts. Avery

    conservativeestimateforlightsandotherelectronics(TV,computer,alarmclock,stereo,

    chargers,etc.)is45Wattswhileabedroomisoccupiedbyanawakeperson. Asanexample,a

    bedroom

    occupied

    by

    a

    single,

    awake

    person

    reading,

    studying,

    or

    watching

    TV

    might

    have

    internalgainsof125W. Thisvalueisapproximately30%ofthedesignloadofthebedroom.

    CARBbegancomputationalfluiddynamicsanalysis(CFD)toattempttoquantifyenergytransfer

    fromnaturalconvectionwithinthehome. However,itsoonbecameapparentthatthe

    quantitiesofheattransferredweresosmallandimpactoffactorssuchasresidenthabitswere

    solargethathighuncertaintiesintheanalyseswouldmaketheresultsnexttomeaningless.

    However,itispossibletoperformsimpleUAcalculationsonthefloorassemblybetweena

    downstairs

    space

    (heated

    directly)

    and

    an

    upstairs

    bedroom.

    With

    a

    floor

    area

    of

    160

    ft

    2

    ,

    an

    effectivefloorassemblyRvalueof3ft2hrF/Btu,andatemperaturedifferentialof7F,heat

    conductionthroughthefloorassemblyisapproximately340Btu/hor100Watts. This

    represents2025%ofthetypicaldesign load.

    Notethatthetemperaturedifferentialinthiscalculationhastwoelements:

    Upstairsbedroomairtemperatures(at4abovethefloor)of23Fcoolerthan

    downstairsairtemperatureat4abovethefloor;

    Airtemperatures

    at

    the

    ceiling

    of

    the

    first

    floor

    from

    where

    the

    exhaust

    fan

    exhausts

    of45Fhigherthanroomairtemperaturesat4feetfromthefloor. Duringthe

    testing,CARBverifiedthatairattheceilingwasindeed45Fwarmer.

    Thefinalheattransferelementisheatfromthesmalldistributionsystem. Usingthesame

    temperaturedifferentialfromabove(7Ffromtheceilingofthefirstfloortotheaverage

  • 8/14/2019 SWA Report on WWSV Heating Systems

    12/23

    Naturalconvection i.e.warmairrisingfromdownstairstoupstairswillprovide

    significantheattobedrooms,especiallywhenbedroomdoorsareleftopen. Thiswas

    not

    quantified

    during

    design

    stages;

    Whenusedforsleeping,bedroomtemperaturesoflessthan6870Fareoftendesired

    orconsideredacceptable;

    Ifnotusedforsleeping,e.g.ifabedroomisusedasanofficeorstudy,internalgains

    substantiallyhigherthanthe125Wattsusedintheexampleabovearelikely. Also,

    designtemperaturesoccurinthenightorveryearlymorningnotwhenactivityinsuch

    roomsishighest;

    Finally,somesparinguseofportableelectricheatersmaybeusedunderextreme

    conditions.

    3.5.2. Thermal Comfort Test Results

    TheweekoftestinginFebruary2009hadconsistentwinterweather: amixofcloudsandsun,

    hightemperaturesinthe30sor40s,lowtemperaturesintheteensortwenties(F). When

    CARBandNRELarrivedatthehome,theheaterthermostatwassettoapproximately50F;

    researcherssetthetemperatureupto68F,butitrequiredalmost1012hoursbeforeupstairs

    bedroomswerewithin4Fofdownstairstemperatures.

    Plotsshowingtheresultsofthefourrelevanttestcasespertainingtotemperaturedistribution

    areshownbelowinFigure6throughFigure9. Table4showsasummaryofthefinal

    temperaturemeasurements. Thetableshowsairtemperaturesmeasuredat4:00AMduring

    eachtest. Astestsbeganatapproximately8:00AMeachday,at4:00AMtestshadrun

    approximately20hours,andoutdoortemperatureswereusuallynearthecoldestofeach24

    hourperiod;CARBbelievesthesevaluesareasclosetosteadystateconditionsaspossible

    duringthesetests.

    Table4.

    Summary

    of

    temperature

    distribution

    test

    results.

    Final

    temperatures

    were

    recorded

    at4:00AMofthedayofthetest,whenthetesthadbeenrunningapproximately20hoursand

    outdoortemperatureswereneartheircoldest.

    Test

    Case Doors

    Dist.

    Fan Notes

    Out

    doors

    Living&

    Kitchen SEBR NEBR SWBR Bath

    1 Closed On 17.3 68.9 65.4 63.1 66.4 64.1

    2 Closed Off 34.8 70.6 61.8 60.6 62.7 63.7

    4 Open On 23.7 69.1 65.9 65.9 66.6 65.7

    5 Closed On60Wlampin

    eachbedroom.26.6 68.1 66.3 65.0 67.4 64.6

    "Final"Temperatures

  • 8/14/2019 SWA Report on WWSV Heating Systems

    13/23

    Figure6. Plotshowingtemperaturesduringtestcase1. Alldoorsinthehomewereclosed,the

    distributionfanwasrunning,andthesetpointoftheheaterinthelivingroomwas70F.

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    57

    59

    61

    63

    65

    67

    69

    71

    73

    75

    1

    200

    1

    400

    1

    600

    1

    800

    2

    000

    2

    200

    2

    400

    200

    400

    600

    OutdoorT

    emperature,

    F

    RoomT

    em

    perature,

    F

    Hour

    RDI Room TemperaturesCase 1: Doors Closed, Distribution Fan On

    Living

    Kitchen

    SE BR

    NE BR

    Bath

    SW BR

    Outside

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    57

    59

    61

    63

    65

    67

    69

    71

    73

    75

    OutdoorT

    emperature,

    F

    RoomT

    emperature,

    F

    RDI Room TemperaturesCase 2: Doors Closed, Distribution Fan Off

    Living

    Kitchen

    SW BR

    SE BRNE BR

    Bath

    Outside

  • 8/14/2019 SWA Report on WWSV Heating Systems

    14/23

    Figure8. Plotshowingtemperaturesduringtestcase4. Alldoorsinthehomewereopen,the

    distributionfanwasrunning,andthesetpointoftheheaterinthelivingroomwas70F.

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    57

    59

    61

    63

    65

    67

    69

    71

    73

    75

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    2400

    200

    400

    600

    Outdoor

    Temperature,

    F

    RoomT

    emperature,

    F

    Hour

    RDI Room TemperatureCase 4: Doors Open, Distribution Fan On

    Living

    Kitchen

    SW BR

    SE BR

    NE BR

    Bath

    Outside

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    57

    59

    61

    63

    65

    67

    69

    71

    73

    75

    Outdoo

    rTemperature,

    F

    Room

    Temperature,

    F

    RDI Room TemperaturesCase 5: Doors Closed, Distribution Fan On, 60W lights On

    Living

    Kitchen

    SW BR

    SE BR

    NE BR

    Bath

    Outside

  • 8/14/2019 SWA Report on WWSV Heating Systems

    15/23

    Whilethechartsoftemperatureresultsareinformativeinthemselves,CARBusedthetest

    resultstocreateasimple,steadystateheattransfermodeltopredicttemperaturesin

    bedrooms

    under

    varying

    conditions.

    The

    variable

    inputs

    to

    this

    model

    are

    outdoor

    temperature,

    livingroomtemperature,internalgainsineachbedroom,andconditionofthebedroomdoors

    (openorclosed). ThismodelwasbasedoncalculationssimilartothosedescribedinThermal

    DesignConsiderationsabove,buttheassumptionswererefinedbasedonmeasurementsand

    testresults. Thetestsalsoallowedapproximationsfornaturalconvectiveheattransferfrom

    downstairstoupstairsbedrooms(whichvariedtremendouslywhendoorswereopenorclosed).

    Whilethemodelisverysimple,ithashelpedCARBpredictthermalcomfortundervarious

    conditionsanddeveloprecommendationsforRDIandhomeresidents.

    Severalexampleresultsofthesteadystatemodelareshownbelow. Thefirst,inTable5,shows

    conditionssimilartotestconditions1and4(seeTable4). Inthisscenario,theunoccupied

    northeastandsoutheastbedroomswithdoorsclosedwouldbemorethan4Fcoolerthan

    thedownstairsspace(this4FtoleranceisusedincomfortstandardssuchasACCAManualRS).

    Table5. OutputofCARBssteadystateheattransfermodelpredictingbedroomtemperatures.

    Theexample

    shown

    in

    Table

    6parallels

    test

    case

    5,

    where

    a60

    Watt

    lamp

    was

    lit

    in

    each

    bedroomtosimulateasingle,sleepingperson. Theeffectsofsuchasmallloadarenoticeable

    (seeFigure9aswell),butthetemperatureinthenortheastbedroom(withdoorsclosed)isstill

    morethan4Flowerthanthecentralspacedownstairs.

    Table6. OutputofCARBssteadystateheattransfermodelpredictingbedroomtemperatures.

    Downstairs Temp: 70 F

    Outdoor Temp: 20 FInternal Gains: 0 Watts

    SW BR SE BR NE BR

    Doors Closed 67F 65F 63F

    Doors Open 68F 67F 66F

    Downstairs Temp: 70 F

    Outdoor Temp: 20 FInternal Gains: 60 Watts

    SW BR SE BR NE BR

    Doors Closed 69F 68F 65F

    D O 70F 69F 68F

  • 8/14/2019 SWA Report on WWSV Heating Systems

    16/23

    Table7. OutputofCARBssteadystateheattransfermodelpredictingbedroomtemperatures.

    Ofcourse,20FisnotthedesigntemperatureinGreenfield,MA;the99%designtemperatureis

    2F. Undertheinteriorloadconditionswith2Foutdoortemperature,Table8showsthatair

    temperatureinthenortheastbedroomwithdoorsclosedisagainpredictedtobemorethan

    4Fbelowtheairtemperaturedownstairs.

    Table8. OutputofCARBssteadystateheattransfermodelpredictingbedroomtemperatures.

    Underdesign

    conditions,

    the

    model

    shows

    that

    with

    internal

    gains

    of

    only

    200

    Watts

    the

    bedroomtemperaturesarenotmorethan2Fbelowthedownstairsairtemperature(seeTable

    9). Suchgainsarenotatalluncommoninoccupiedroomswherecomputerequipment,audio

    equipment,ortelevisionsarebeingused. Insomecaseswhenoutdoortemperaturesarevery

    lowandinternalgainsaremodest,residentsmayusesmallelectricresistanceheatersforshort

    periodsoftimetomakeupthisdifference.

    Table9. OutputofCARBssteadystateheattransfermodelpredictingbedroomtemperatures.

    Downstairs Temp: 70 F

    Outdoor Temp: 20 F

    Internal Gains: 120 Watts

    SW BR SE BR NE BR

    Doors Closed 72F 70F 68F

    Doors Open 72F 70F 70F

    Downstairs Temp: 70 F

    Outdoor Temp: 2 FInternal Gains: 120 Watts

    SW BR SE BR NE BR

    Doors Closed 69F 67F 64F

    Doors Open 70F 68F 67F

    Downstairs Temp: 70 F

    Outdoor Temp: 2 F

    Internal Gains: 200 Watts

    SW BR SE BR NE BR

  • 8/14/2019 SWA Report on WWSV Heating Systems

    17/23

    3.6. Recommendations to Residents

    SWAhaspresentedasummaryofthesetestresultstohomebuyersandfoundthemquite

    interestedand

    receptive

    though

    they

    were

    certainly

    most

    excited

    about

    the

    extremely

    low

    energycostsexpected. SWAhasalsoprovidedmaterialtoRDIforthehomeownersmanualson

    recommendationsforoperatingandstayingcomfortableinthesehomes. Briefly,the

    recommendationsinclude:

    Comfortispersonal;neighborsmaybecomfortableunderverydifferentconditions.

    Onceroomsarewarm,theytendtostaywarm. However,coldbedroomsmaytake

    severalhourstofullyheatup.

    Werecommendagainstextremedaytimethermostatsetback. Recoverymaybeslow,

    andenergy

    savings

    are

    minimal

    for

    two

    reasons:

    o Verylowenvelopeheatloss.

    o Duringsunnydays,theheaterdoesnotneedtorun.

    Ifyoudousedaytimesetback,makesetbackssmallandstartincreasingtemperatures

    early.

    Itisworthsettingthetemperaturedownifleavingforseveraldays.

    Youmayalsowanttolowertemperaturesslightlyatnightforsleeping.

    Keepbedroomdoorsopenwhennotoccupied.

    Itspossible

    that

    sparing

    use

    of

    small,

    inexpensive

    electric

    heaters

    may

    be

    desirable.

    Oncearoomiswarm,heatersshouldntbeneededexceptunderextremelycold

    conditions.

    Duringcoldestweather,keepingdownstairsattheupperendofcomfortrange(7072F,

    ratherthan6668F)willkeepbedroomswarmer.

    Learnwhatworksbestforyou.

    4. Long-Term Monitoring and Evaluation

    Duringthe

    winter

    of

    2009

    2010,

    CARB

    has

    made

    agreements

    with

    residents

    of

    four

    homes

    to

    record

    temperatureandhumidityconditionsatseverallocationsineachhome. Temperaturesineach

    bedroom,thecentrallivingspaces,andoutdoorsarebeingrecordedat10minuteintervalsthroughout

    thewinter. Inthespring,CARBwillalsointerviewresidentstodetermine:

    Howtheygenerallyusedeachspace;

    Theirimpressionsofcomfortconditionsinvariousspaces;

    Whatpracticestheyusedtostaycomfortable(opendoors,thermostatsetbacks,spaceheaters,

    etc.);

    OtherfeedbackorerecommendationsrelatedtotheperformanceoftheHVACsystems.

    CARBfeelsthatlongtermmonitoringofoccupiedhomesalongwithfeedbackfromresidentsis

    criticaltoaccurateassessmentofthisHVACstrategy.

    5. Gate Criteria

  • 8/14/2019 SWA Report on WWSV Heating Systems

    18/23

    equipment. CondensinggasroomheatersareavailableinEurope;theymaybecomemore

    availableintheUSsoon.

    5.1.2. Performance-Based Code Approval

    Therewerenocodeissueseitherperformanceorprescriptiveencounteredrelatedtothe

    mechanicalsystemsinthesehomes.

    5.2. Should Meet Criteria

    5.2.1. Prescriptive Code Approval

    Therewerenocodeissueseitherperformanceorprescriptiveencounteredrelatedtothe

    mechanical

    systems

    in

    the

    homes.

    5.2.2. Cost Advantage

    Thecostsavingsistheprimarybenefitofthistypeofsimplemechanicalsystem. Inthese

    homes,thesimpleheatingsystemsavedRDIapproximately$4,500(whencomparedtotheir

    standardsystemofaboilerwithbaseboardconvectors). Thissubstantialsavingswentalong

    waytooffsettheadditional$6,050spentinthermalenvelopeimprovementsineachhome.

    5.2.3. Reliability Advantage

    Theoperation

    and

    maintenance

    of

    sealed

    combustion,

    gas

    fired

    room

    heaters

    is

    generally

    simplerthanmaintenancerequiredoncentralfurnaces. Thesedeviceshavebeenavailableand

    inusefordecades;theysimplyhavenotoftenbeentheprimaryheatsourceforanentirehome.

    CARBfeelsthatthisreliabilitycriterionhasnotyetbeenfullyaddressedbecauseofthelackof

    documentationofcomfortconditionsinoccupiedhomes. Afterthewinterof20092010,CARB

    hopestohavedatatomorefullyaddressthiscriterion.

    5.2.4. Manufacturer/Supplier/Builder CommitmentTherearenomanufacturerorsupplierissuesrelatedtothistechnology. Theseroomheaters

    arereadilyavailablefromseveraldifferentmanufacturers. CARBhasalsoheardreportsofmore

    modelsandmoreefficientmodelsbecomingavailable.

    Regardingbuildercommitment,aslongascomfortandreliabilityisaddressed,RDIiscertainly

    opentousingsimilarsystemsinfutureprojects. Withthesignificantpublicitythatthisproject

    hasachieved,therehavebeenseveralotherbuildersanddeveloperswhohaveexpressed

    interestin

    such

    simple

    mechanical

    systems.

    5.2.5. Gaps Analysis

    5.2.5.1 Comfort

    Asdescribedabove,comfortinbedrooms(withoutdirectheat)isoneofthelargestconcerns

    i h hi B d d li d h i CARB b li h f ill b

  • 8/14/2019 SWA Report on WWSV Heating Systems

    19/23

    threesmall,pointsourceheaters(gasroomheaters,minisplitheatpumps,etc.)ratherthana

    conventionaldistributedHVACsystem. Implicationsforlargerhomesneedtobeinvestigated

    further.

    5.2.5.3 VentilationAirDistribution

    Thesmall,simpledistributionsysteminstalledinthesehomescombinedwiththeexhaustonly

    ventilationsystemappearedtoaddressvariationsinairchangeratesinallspaceswhendoors

    areclosed. However,thereisstillaquestionaboutperformanceofexhaustonlyventilation

    withoutsuchadistributionsystem.

    Inaddition,thedistributionsystemusesanexhaustfan. CARBhastalkedtoseveralHVAC

    equipmentmanufacturers

    about

    adistribution

    fan

    of

    similar

    size

    and

    power

    consumption

    but

    withpotentialforairfiltrationandpossiblyevenauxiliaryresistanceheat. Forlargerhomes,

    slightlylargerfansmaybeappropriate. Asthisisrelativelynewterritory,CARBbelievesagreat

    dealmoreinvestigationisneededintoappropriateapplicationsandequipmentforsuchsmall,

    simpleairsystems.

    6. Discussion and Conclusions to Date

    HomeslikethesethatarereallyapproachingzeroenergyareforcingaparadigmshiftinHVAC

    systems.There

    are

    simply

    no

    conventional

    heating

    systems

    sized

    to

    meet

    these

    small

    loads.

    Also,

    as

    shownabove,typicalinternalgainsinbedroomsareonthesameorderofmagnitudeasheatlost

    throughtheenvelope. Notonlywouldanyconventionalfurnaceorboilercapacitybethreetimesthe

    sizeofthedesignloadofthesehomes,unlesseachbedroomwasaseparatezone,aconventional

    systemwouldalsonotaccountforvaryinginternalgainsinbedrooms;thiscouldfrequentlyresultin

    overheatingofspaceswithoutathermostat.

    Withtheinvestigationsdonetodate,SWAbelievesthissimple,efficient,lowcost,lowmaintenance

    HVACsystem

    will

    provide

    comfort

    as

    good

    if

    not

    better

    than

    aconventional

    system

    (such

    as

    acentral

    gasfurnace). Theonehomeownerwhooccupiedahomeduringthewinterof20082009saidtherewas

    noneedforauxiliaryheatinbedrooms;theystayedcomfortable. Monitoringandinterviewsfromthe

    winterof20092010willshedmorelightoncomfortandperformanceissuesinthehomes.

    Ifperformanceresultscontinuetobepositive,CARBbelievesthatsmall,simpleHVACsystemscanoffer

    tremendouscostsavingsinhighperformancehomesatleastpartiallyoffsettingthecostofsuper

    insulatedenvelopes. IntheseRDIhomes,theaddedthermalenvelopefeaturescostRDIapproximately

    $6,050(when

    compared

    to

    their

    standard

    construction:

    2x6

    walls

    with

    blown

    cellulose,

    double

    pane

    windows,R38attics). Withthesimplemechanicalsystems,RDIsavedapproximately$4,500when

    comparedtotheirconventionalheatingsystem(boilerwithhydronicbaseboardconvectors). Such

    savingscanbetremendouslyhelpfulinachievingBuildingAmericaperformancegoalscosteffectively.

  • 8/14/2019 SWA Report on WWSV Heating Systems

    20/23

  • 8/14/2019 SWA Report on WWSV Heating Systems

    21/23

  • 8/14/2019 SWA Report on WWSV Heating Systems

    22/23

  • 8/14/2019 SWA Report on WWSV Heating Systems

    23/23


Recommended