+ All Categories
Home > Environment > Swat modeling of nutrient bieger

Swat modeling of nutrient bieger

Date post: 23-Jan-2018
Category:
Upload: soil-and-water-conservation-society
View: 131 times
Download: 3 times
Share this document with a friend
13
SWAT modeling of nutrient response to BMPs in the Beargrass Creek Watershed Katrin Bieger, Douglas R. Smith, and Jeffrey G. Arnold 2016 SWCS Annual Conference Louisville, KY July 2427, 2016
Transcript
Page 1: Swat modeling of nutrient   bieger

SWAT modeling of nutrient response to BMPs in the Beargrass Creek Watershed 

Katrin Bieger, Douglas R. Smith, and Jeffrey G. Arnold2016 SWCS Annual Conference

Louisville, KY July 24‐27, 2016

Page 2: Swat modeling of nutrient   bieger

Outline

1. Introduction

2. Input data and model setup

3. Preliminary results 

4. Outlook

Page 3: Swat modeling of nutrient   bieger

Soil and Water Assessment Tool

• Arnold et al. (1998), http://swat.tamu.edu/

• Predict the impact of land management practices on water quantity and quality in large complex watersheds

• Subdivision of the watershed into subwatersheds and Hydrologic Response Units (HRUs)

• Limited capability to identify critical source areas

1. Introduction

Page 4: Swat modeling of nutrient   bieger

SWAT+

• Expected to facilitate– maintenance of code and input files– linkage of SWAT and other models– addition of new process subroutines

• Flexible spatial representation of interactions and processes within a watershed using “connect” files

• Routing of runoff, sediment and nutrients across the landscape

1. Introduction

Page 5: Swat modeling of nutrient   bieger

Watershed delineation and stream definition

2. Input data and model setup

10 m DEM Resampling to 5 m

Processing using TauDEM

• Predefined watershed and streams?• Delineate riparian areas?

Page 6: Swat modeling of nutrient   bieger

HRU definition

2. Input data and model setup

Land use SSURGO

Dominant soils

Land use digitized from aerial photosHydrologic Response Units

• Soil properties• Management schedules• Tile drains

Page 7: Swat modeling of nutrient   bieger

Climate and streamflow

2. Input data and model setup

Observed Q at watershed outlet: 6/10/2014‐5/16/2016→ calibra on

Page 8: Swat modeling of nutrient   bieger

Observed and simulated streamflow

3. Preliminary results

DailyNSE: 0.70R2: 0.75PBIAS: ‐16.4

MonthlyNSE: 0.88R2: 0.94

Page 9: Swat modeling of nutrient   bieger

Water balance 2014‐2015

3. Preliminary results

Amount [mm] % of precipitation

Precipitation 1084 100

ET 609 56

Water yield 353 33

Surface runoff 242 22

Lateral flow 51 5

Tile flow 61 6

Unaccounted for 122 11

too high

too low

I have no idea what is going on here…• Error in writing output?• Error in model calculations? Source: Sanford & Selnick, 2013

Page 10: Swat modeling of nutrient   bieger

“A major challenge of the ongoing evolution of the model will be meeting the desire for additional spatial complexity while maintaining ease of model use.” (Gassman et al. 2007)

HRU routing

4. Outlook

Challenges:1. Circular routing2. Roads

Page 11: Swat modeling of nutrient   bieger

Implementation of BMPs

4. Outlook

Reduction efficiencies or simulation of processes?

Why use SWAT?• Identification of most effective combination of management 

practices• Prediction of long‐term effects of management practices• Consideration of climate change?

Page 12: Swat modeling of nutrient   bieger

Moving forward…

1. Spatial extent/parameterization of tile drains

2. Management schedules and plant growth

3. Soil parameterization

4. Calibration of water balance and streamflow

5. Calibration of nitrogen concentrations/loads

6. Implementation of BMPs in the model

7. HRU routing

4. Outlook

Page 13: Swat modeling of nutrient   bieger

Thank you for your attention!

[email protected]


Recommended