+ All Categories
Home > Documents > Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction...

Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction...

Date post: 22-Aug-2020
Category:
Upload: others
View: 14 times
Download: 1 times
Share this document with a friend
33
X-ray Scattering at the ALS: An Overview Brian A. Collins Physics and Astronomy Washington State University 10/4/2018 Light Sources 101, ALS User Meeting 2018 1
Transcript
Page 1: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

X-ray Scattering at the ALS: An Overview

Brian A. CollinsPhysics and Astronomy

Washington State University

10/4/2018 Light Sources 101, ALS User Meeting 2018 1

Page 2: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Outline• What is scattering and what does it measure?

• Traditional Elastic Scattering• Wide-angle scattering and diffraction• Small-angle scattering• Reflectivity

• Coherent Scattering Techniques• Coherent diffractive imaging (ptychography)• X-ray photocorrelation spectroscopy (XPCS)

• Resonant Soft X-ray Scattering• Sorting out order in molecular systems

10/4/2018 Light Sources 101, ALS User Meeting 2018 2

Page 3: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

What is X-ray Scattering?• Photon changes trajectory after hitting electron

10/4/2018 Light Sources 101, ALS User Meeting 2018 3

Δ𝜙 determines if constructive or destructive interference

E.g. Bragg’s Law: 2𝑑 sin𝜃 = 𝑚𝜆

• Interferes with other photons at detector

• Intensity vs angle (𝜃) tells about 𝑟(distance) between scatterers

X-ray photon

Page 4: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

• Crystal atomic spacing, arrangement• Strain, defects (faults, disorder)• Thin film orientation• Grain/crystallite size• Macromolecular structure

Scattering: Statistics of internal structure

10/4/2018 Light Sources 101, ALS User Meeting 2018 4

Page 5: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

• Crystal atomic spacing, arrangement• Strain, defects (faults, disorder)• Thin film orientation• Grain/crystallite size• Macromolecular structure

• Nanoparticle size & shape• Statistics if disordered• Conformation of macromolecules

Scattering: Statistics of internal structure

10/4/2018 Light Sources 101, ALS User Meeting 2018 5

Page 6: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

• Crystal atomic spacing, arrangement• Strain, defects (faults, disorder)• Thin film orientation• Grain/crystallite size• Macromolecular structure

• Nanoparticle size & shape• Statistics if disordered• Conformation of macromolecules

• Nanophase separation/identification• Composition, volume fraction• Pore size, volume

Scattering: Statistics of internal structure

10/4/2018 Light Sources 101, ALS User Meeting 2018 6

Page 7: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

• Crystal atomic spacing, arrangement• Strain, defects (faults, disorder)• Thin film orientation• Grain/crystallite size• Macromolecular structure

• Nanoparticle size & shape• Statistics if disordered• Conformation of macromolecules

• Nanophase separation/identification• Composition, volume fraction• Pore size, volume

• Thin film stratification • Thickness, roughness

Scattering: Statistics of internal structure

10/4/2018 Light Sources 101, ALS User Meeting 2018 7

All non-destructive measurements!

Page 8: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Size Scale Sensitivity• Bragg Law: 2𝑑 sin 𝜃 = 𝜆

• 𝑑𝑚𝑖𝑛~𝜆

2• 𝑑𝑚𝑎𝑥 ∝ 𝜃𝑚𝑖𝑛

(beam size/divergence)

• SAXS vs WAXS • Switch 𝜃~2° for hard X-rays (10keV)• Accomplished via detector distance

10/4/2018 Light Sources 101, ALS User Meeting 2018 8

WAXS

SAXS

𝜃

Sample

X-ray𝜃

Page 9: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

𝒌0𝒌𝑓

2𝜃

Scattering: An FFT of your sample

10/4/2018 Light Sources 101, ALS User Meeting 2018 9

𝐴 𝑥 = 𝐴0 cos 𝑘𝑥 = 𝐴𝑒𝑖𝑘𝑥

𝜙 =− 𝒌𝑓 −𝒌0 ∙ 𝒓

Fourier Transform of the electron density distribution!(Just like electron microscopists do, but huge sample)

Elastic Scattering

𝑘0 = 𝑘𝑓 =2𝜋

𝜆No energy transfer

=−Δ𝒌 ∙𝒓

=−𝒒 ∙𝒓𝑞 = 2𝑘 sin 𝜃𝒌0

𝒌𝑓 𝒒 ≡ Δ𝒌2𝜃

𝒓: ‘Real Space’𝒒: ‘Reciprocal Space’Also ‘Spatial frequency’

Big 𝒒 = Small 𝒓

𝐴𝑑𝑒𝑡 𝑟 = 𝑏𝑒𝑒𝑖𝜙 = 𝑏𝑒𝑒

−𝑖𝒒∙𝒓

Constructive Interference

𝐴𝑑𝑒𝑡 𝒒 = න𝑉

𝜌𝑒(𝒓)𝑒−𝑖𝒒∙𝒓𝑑𝒓

Sum over illuminated sample

Measure intensity, lose 𝑒−𝑖𝒒∙𝒓

𝐼(𝒒) = 𝐴 𝒒 𝐴∗(𝒒)Can’t take IFT to recover 𝜌𝑒(𝒓)

…except for COSMIC!!!

Page 10: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Experiment

Detectors

• Point Detector: High q-res • high crystalline materials

• Area Detector (CCD): speed• amorphous, in-situ studies

Sample Geometry

• Transmission: probe mainly in-plane (IP) structure• Similar to transmission microscopy (TEM)

• Grazing: Probe both IP and out-of plane (OOP) structure• Analysis might be more qualitative/complicated…

• Reflectivity: Probe only OOP structure

10/4/2018 Light Sources 101, ALS User Meeting 2018 10

CCD DetectorBeamstop

Collimating Slits

Sample

2𝜃X-ray

𝒒2𝜃𝜃

𝜃

Substrate

Film

Grazing Incidence: Multi directional scattering

Page 11: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Diffraction modes and their applications• Powder: isotropic crystal orientations

• See every diffraction peak in one 𝐼(𝜃) scan• Get Bulk Properties

• Thin film: isotropic IP, but orient OOP• Use grazing sample geometry• Confinement/interfacial effects

• Single crystal: (point detector)• Strain states, defects, atomic effects

10/4/2018 Light Sources 101, ALS User Meeting 2018 11

K. Huang, Sci Rep (2015)

FCC VN Powder

R. Steyrleuthner, JACS (2014) Collins, PRB (2008)

Page 12: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Peak broadening: Grain size & disorder

10/4/2018 Light Sources 101, ALS User Meeting 2018 12

Instrument Resolution(beam divergence, size, Δ𝜆)

Nanocrystal SizeCoherence LengthScherrer Analysis

𝐷 ≅2𝜋𝐾𝑠ℎ𝑎𝑝𝑒

Δ𝑞𝐹𝑊𝐻𝑀

Paracrystalline DisorderBuilds up over unit cells

Warren-Averbach Analysis

Debye-Waller Disorder(Thermal, random)

RMS fluctuation around equilibrium positions

J. Rivnay, PRB (2011)

Page 13: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Crystal orientation in a thin film• Interfaces affect crystal orientation distribution in thin films

• Distribution obtained via “Pole Figure” from GIWAXS

• Relative Degree of Crystallinity from integrating pole figure

10/4/2018 Light Sources 101, ALS User Meeting 2018 13

Electron Conducting Polymer “N2200”

(100)

(010)Pi-Stacking

Lamellar Stacking

VerticalStacking

HorizontalStacking

Substrate

“Face-On”

Substrate

“Edge-On”

(010)

Steyrleuthner, JACS (2014)

Page 14: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

10/4/2018 Light Sources 101, ALS User Meeting 2018 14

Aggregation-crystallinity-charge transport in conjugated polymers

Steyrleuthner, JACS (2014)

Absorbance

Solution

Films

Aggregate I

Aggregate II

1.0

0.8

0.6

0.4

0.2

0.0

Re

l. D

oC

[a

u]

CB

AC

CB

An

Xy:C

N A

C

Xy:C

N A

n

IR A

C

IR A

n

CB Xy:CN RIAC An AC An AC An

VerticalStacking Horizontal

Stacking

Pi-Stacking

GI-XRD (7.3.3)

𝑽−

−− −−

Page 15: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Small angle scattering• Larger scale than atomic/molecular 𝐷 > 1𝑛𝑚

• Have to be careful of direct beam!

• Dilute particulate systems• Scattering within particle gives shape and size• Incoherent scattering between particles

• Phase separated structures• Mean domain size, interphase boundary• Larger periodic structures from macromolecules

or biomolecules

10/4/2018 Light Sources 101, ALS User Meeting 2018 15

Page 16: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

SAS Data Analysis: Dilute Particles• Simple particle shapes: Get dimension statistics

• Spheres, Rods, Disks (distribution of radii and length)• Assumption: equal probability for all orientations

• Guinier Law: Get size if you don’t know the shape• Particle “Radius of Gyration” 𝑅𝑔• Assumptions: 𝑞 ≪ 1/𝑅𝑔, dilute (𝐶 < 1𝑣.%), no other scattering

10/4/2018 Light Sources 101, ALS User Meeting 2018 16

lim𝑞→0

𝐼 𝑞 = 𝜌𝑒2𝑣2exp(−1

3𝑞2𝑅𝑔

2)

Page 17: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Buried Interface or Surface

Rough Sharp Diffuse

Stoeckel; PCCP (2014)

Mesoporous Structures

DiffuseSharp

Rough

𝑞−4𝑞−5 𝐼 ∝ 𝑞−3

SAS: Two-phase systems• Auto/Pair Correlation

• Avg length scale of domains (sizes, distances)

• Porod Invariant• Phase volume fractions• Domain ‘contrast’ (RMS fluctuations)

• Porod Law• Specific Interfacial Area• Interface roughness/diffusivity

10/4/2018 Light Sources 101, ALS User Meeting 2018 17

𝑄 = න𝐼 𝒒 𝑑𝒒 = 𝑉𝜙1𝜙2 Δ𝜌𝑒2

Γ 𝒓 = 𝐼𝐹𝐹𝑇 𝐼 𝒒

lim𝑞→∞

𝐼 𝑞 /𝑄 =2𝜋

𝜙1𝜙2𝑞4𝑆

𝑉

Emory University

Smaller Sizes

Page 18: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Data Processing• NIKA – processing tool coded by Jan Ilavsky (ANL)

• Runs in Wavemetics’ Igor Pro• Converts 2D CCD data into 𝐼 𝑞• Handles most detectors

• XICAM – Next generation processing/analysis tool• Python based

10/4/2018 Light Sources 101, ALS User Meeting 2018 18

Page 19: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Data Analysis• IRENA –by Jan Ilavsky (ANL) Igor Pro

• Power Diffraction fitting• Particle Modeling• Guinier Analysis

• NCNR/NIST SANS Analysis• Igor Pro

• Fit2D (ESRF)

10/4/2018 Light Sources 101, ALS User Meeting 2018 19

Always need model for accurate interpretation!(Good to pair with microscopy)

Page 20: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Reflectivity: Nondestructive depth profile

• Resolution depends on q-range & “Kiessig” fringes (1-2 nm)

• Software: Motofit; Refl1D (NIST)

10/4/2018 Light Sources 101, ALS User Meeting 2018 20

Alqhatani, Adv Energ Mater, (2018)

Page 21: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Coherent Scattering• Every source some coherence

• Depends on source size, beam length, and spectral bandwidth

• Make beam fully coherent via a pinhole the size of the coherence length

• When scattering, get ‘speckle patterns’ (complex interference pattern)

• Can use to ‘solve the phase problem’ to invert pattern into spatial image• “Coherent Diffractive Imaging” – ptychography

• Can monitor in time to capture dynamics• X-ray photocorrelation spectroscopy (XPCS)

10/4/2018 Light Sources 101, ALS User Meeting 2018 21

Shpyrko Group UCSD

http://amasci.com

Page 22: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Ptychography• Scattered wave is FFT of density distribution

𝐴 𝒒 = 𝐹𝐹𝑇 𝜌 𝒓

• Measured intensities: Only the amplitudes!𝐼 𝒒 = 𝐴 𝒒 𝐴∗ 𝒒

• Can’t take an inverse FFT to get 𝜌(𝒓) back!

• Coherent Diffractive Imaging recovers phase• CAN get 𝜌(𝒓) maps or even tomograms!

• Overlap coherent beam over sample• Diffraction limited microscopy

10/4/2018 Light Sources 101, ALS User Meeting 2018 22

Thibault, Science (2008)Dierolf, Nature, (2010)

Pfeiffer, Nat Photon (2018)

Page 23: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

X-ray Photo Correlation Spectroscopy

Time scales of dynamic processes at the nano/atomic scale

10/4/2018 Light Sources 101, ALS User Meeting 2018 23

Carnis, Sci Rep (2014)

Correlation functions at specific q-values for NPs in a polymer melt

Page 24: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

X-ray energy: New dimension in scattering• Combine spectroscopy and scattering

• Adds chemical information to structure measurement

• Elemental absorption edge (NEXAFS or XANES)• Organics: Carbon/Nitrogen/Oxygen – bond-sensitivity!• Metals: Fe/Co/Mn – oxidation & spin state sensitivity!

10/4/2018 Light Sources 101, ALS User Meeting 2018 24

1s π*C=C

1s π*C=O 1s *C-H

Ab

s 𝛽

𝛽 𝐸

PMMA

P2VP

N

PS

Molecular Fingerprint𝜎*

𝜋*

𝜋

𝜎

1𝑠

sp2

pz

X-raysAtom Molecule

𝜌𝑒 =2𝜋

𝑟𝑒𝜆𝑛 Refr. Index: 𝑛 𝐸 = 1 − 𝛿 𝐸 + 𝑖𝛽 𝐸𝐼(𝑞) = නΔ𝜌𝑒

2 𝑟 𝑒−𝑖𝑞𝑟

Page 25: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

RSoXS: Bond-Sensitive Scattering

10/4/2018 Light Sources 101, ALS User Meeting 2018 25

• Resonance: 100x better contrast, No Tagging• 𝐼 𝐸 ∝ Δ ǁ𝑛 𝐸 2 (𝑛 - index of refraction)

• Contrast variation (w/out isotopic labeling)• Non-resonant: roughness, porosity• Resonant: Material domains

• Domain compositions/purity from Total Scattering Intensity (TSI)Linearly or Circularly

Polarized X-rays

Sample

CCD

ScatteringAngle (θ)

C DAzimuth

A B

π*- orbital

σ*- orbital

𝒒 =𝟒𝝅

𝝀𝐬𝐢𝐧𝜽

CCD Image

Substrate

Film

Resonant X-rays

Sample

CCD

TSI = න0

𝐼 𝑞 𝑞2𝑑𝑞 ∝ ⟨Δ𝑥⟩2

Carbon Edge

Hard X-RaysSoft X-Rays

Δ𝜌

Δ𝑛

Contrast: Δ𝑛 𝐸 2

n Roughness

MolecularDomains

Page 26: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Measuring Nonplanar Interfaces

• Block copolymers have known morphologies• Thermo properties determines limits of

nanostructure (energy cost of mixing)• Bottom-Up assembly for sub-10nm devices• Need to measure 𝑤

• Porod Invariant & Spectral Analysis

10/4/2018 Light Sources 101, ALS User Meeting 2018 26

Ferron PRL (2017)

න𝐼 𝑞, 𝐸 𝑞2𝑑𝑞 = 𝑉 Δ𝑥122 Δ𝑛12 𝐸 2 𝜙1𝜙2 −

1

2

𝑆

𝑉𝑤

Lamellar

Cylinders

PS-PMMA

Mixing 𝑤

𝑤 = 4.4 ± 0.7𝑛𝑚1st measurement of

non-planar interfaces in thin film!

𝑇𝑆𝐼 𝐸

𝝌𝟐 = 𝟏. 𝟏

𝑇𝑆𝐼 𝐸

Page 27: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

RSoXS Data Processing Tool for 11.0.1.2• Wrapper on NIKA to incorporate energy series into

scattering experiments

• Download at Collins Websitehttps://labs.wsu.edu/carbon/xray-analysis-tools/

10/4/2018 Light Sources 101, ALS User Meeting 2018 27

Page 28: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

𝝐

1μm

STXM: P3HT dark phase

• Angle-dependent NEXAFS Spectroscopy: sample average molecular orientation due to transition dipole moment (𝝁)

𝐼~𝝁𝑎𝑣𝑔 ∙ 𝑬

• Can use microscopy and scattering to measure local orientation

𝐼𝑠𝑐𝑎𝑡𝑡~ 𝝁1 − 𝝁2 ∙ 𝑬

10/4/2018 Light Sources 101, ALS User Meeting 2018 28

Collins et al., Nat. Mater. (2012).

Polarized RSoXS: Spatially correlated orientation

P3HT

P(NDI2OD-T2)TDM

Interface

Collins et al., Nature Materials (2012).

Molecular Dipole

Interface

Internal Interface

Page 29: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

10/4/2018 Light Sources 101, ALS User Meeting 2018 29

• Magnitude: Degree (statistics) of molecular ordering

• Sign: Preferred orientation in nanostructure

E-field𝑆

𝑃 𝐼𝑃

𝐼𝑆

Anisotropy Ratio

𝐴 𝑞 =𝐼𝑆 𝑞 − 𝐼𝑃 𝑞

𝐼𝑆 𝑞 + 𝐼𝑃 𝑞

Tumbleston et al., Nature Photon (2014).

Quantifying Scattering Anisotropy

Page 30: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

RSoXS: High-Dimensional SAXS/SANS

10/4/2018 Light Sources 101, ALS User Meeting 2018 30

Wang et al, Nano Lett 2011

Orientational Structure

Chemical Ordering320

310

300

290

280

270

Photo

n E

nerg

y [eV

]

6 8

0.012 4 6 8

0.12 4 6 8

1Q [nm

-1]

320

310

300

290

280

270

Photo

n E

nerg

y [eV

]

101001000

2/Q [nm]

10-5

10-4

Inte

nsity

*Q2 [s

r-1n

m-3]

-20

-10

0

10

20 Anis

otro

py [%

]

Deep characterization of molecular nanostructures

Xu, J of Drug Delivery (2013).

Walsh, JACS (2015)

What about Solvated Nanostructures?!

Page 31: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

F

X-rays

Operando Environments• Liquids, temperatures, electric fields

• TEM flow/electrochem cell by Protochips• Testing stage

• New RSoXS instrument designed by David Kilcoyne• Assembly and testing starting August

10/4/2018 Light Sources 101, ALS User Meeting 2018 31

Collab with ALS (Wang & Kilcoyne), Penn State (Gomez),

and NCSU (Ade)

from David Kilcoyne

Protochips

Multimodal Characterization!

Page 32: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Summary

• Scattering reveals statistics of ordering

• Atomic –> nano –> micron sizescales

• Crystalline –> amorphous materials

• Inorganic –> organic –> biological materials

• Many opportunities at the ALS for scientists of all disciplines

10/4/2018 Light Sources 101, ALS User Meeting 2018 32

Page 33: Synchrotron X-ray Scattering: An Overview · •Wide-angle scattering and diffraction •Small-angle scattering •Reflectivity •Coherent Scattering Techniques •Coherent diffractive

Resources

10/4/2018 Light Sources 101, ALS User Meeting 2018 33


Recommended