+ All Categories
Home > Documents > Synthesis and Reactions of Aromatic Ethers as Model Compounds … · 2020. 7. 21. · Synthesis and...

Synthesis and Reactions of Aromatic Ethers as Model Compounds … · 2020. 7. 21. · Synthesis and...

Date post: 02-Mar-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
71
Eastern Illinois University e Keep Masters eses Student eses & Publications 1983 Synthesis and Reactions of Aromatic Ethers as Model Compounds for Coal James Nicolas Ong Sy Eastern Illinois University is research is a product of the graduate program in Chemistry at Eastern Illinois University. Find out more about the program. is is brought to you for free and open access by the Student eses & Publications at e Keep. It has been accepted for inclusion in Masters eses by an authorized administrator of e Keep. For more information, please contact [email protected]. Recommended Citation Sy, James Nicolas Ong, "Synthesis and Reactions of Aromatic Ethers as Model Compounds for Coal" (1983). Masters eses. 2855. hps://thekeep.eiu.edu/theses/2855
Transcript

Eastern Illinois UniversityThe Keep

Masters Theses Student Theses & Publications

1983

Synthesis and Reactions of Aromatic Ethers asModel Compounds for CoalJames Nicolas Ong SyEastern Illinois UniversityThis research is a product of the graduate program in Chemistry at Eastern Illinois University. Find out moreabout the program.

This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Thesesby an authorized administrator of The Keep. For more information, please contact [email protected].

Recommended CitationSy, James Nicolas Ong, "Synthesis and Reactions of Aromatic Ethers as Model Compounds for Coal" (1983). Masters Theses. 2855.https://thekeep.eiu.edu/theses/2855

THESIS REPRODUCTION CERTIFICATE

TO: Graduate Degree Candidates who have written formal theses.

SUBJECT: Permission to reproduce theses.

The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied.

Please sign one of the following statements:

Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings.

Date Author

I respectfully request Booth Library of Ea..lt�rn/l illinoi� Un}versity not allow my thesis be reproduced because fO-lh:li� fuA!i,ca"ttn, vatu.e '

-- 0 Date Author

m

SYNTHESIS AND REACTIONS OF AROMATIC ETHERS

AS MODEL COMPOUNDS FOR COAL (TITLE)

BY

JAlVIES NICOLAS ONG SY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN CHEMISTRY

IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS

YEAR

I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE GRADUATE DEGREE CITED ABOVE

/\ n\/IC'CD

?f-1- Y> DATE COMMITTEE MEMBER

DATE 'f "COMj.# 1nff MEMBER r} ) ", ·2 -(,. - - .::. "'

J- /- J>? DATE • DEPARTMENT CHAIRPERSON

FCR CCAl

ir·hesis Approved

Dr. D. H. Buchanan

Dr. D. W. Ebdon

Dr. G. 1. Henderson

429460

SYNTHESIS AJ\1D REACTIONS OF ARCMATIC ETHERS

AS MCDEL COMPCU1\1DS FOR COAL

Jame s N i c olas Ong Sy, Mas te r of S c ience , Augus t 1 983

The s i s d ire c te d by Dr. David H. Buchanan

.ACK!\ OWIEDGEIV:ENT

My sincerest appreciation is hereby extended to my Researc�

.Advisor, Dr. David H . Buchanan, whose assistance and guidance

during the entire project have been invaluable.

.-·

D:E:DICATICI\

This piece of work is lovingly dedicated to my family,

specially to my parents, whose love, support, encouragement

and care made this project possible.

This work is also dedicated to our Almighty God:

'I'hy word is a lamp unto my feet and a light unto my path.

-Psalm 119 : 105

Intr oduc ti or1

Experimental

Re sults

D i s c ussion

Referenc e s

TABIE OF CONTENTS

. . ------------------------------

Page

1

7

39

44

59

ABSTRAC'I'

o-Anisic acid and o-ethoxybeRzoic acid were reacted with

pyridine hydriodide in pyridi�e at 115° for 3 days to yield

81% and 18}; salicylic acid respectively. o-Anisic acid with

KI in pyridine at 115 ° for 3 days gave 58% salicyl�c acid

while o-anisic acid with LiI·3H2o in pyridine at 85° for 3 days

gave 54% salicylic acid. p-Anisic acid and o-phe�oxybenzoic

acid did not u�dergo cleavage reactions with pyridine hydriodide

under similar conditions.

Beta-methylnanhthyl beta-naphthyl ether(I) or alpha­

methylnaphthyl alpha-naphthyl ether(II) with pyridine hydriodide

in pyridine at 1 0 0-115° for 3 days showed no cleavage. Ether I

with pyridine hydriodide in the presence of pyridine insoluble

Illinois No.6 coal fraction at 115 ° for 7 days or with added

iron salts, such as FeC12, FeS and FeS2 also showed no cleav­

age. Recovered ether averaged 98 ± 3%.

Since pyridine hydriodide or lithium iodide in pyridine

increases the free phenolic conte�t and reduces the apparent

molecular weight of pre-asphaltene fraction of Illinois No.6

coal, presumably by ether cleavage, the coal structures react-

ing are not well-modeled by ethers I and II. It is proposed

that oxygen atoms of the reacting ether linkages in the coal

fraction are hydrogen bonded by phenol groups either on the

same or adjacent aromatic-cluster which activates them toward

S�,2 cleavage by iodide io1' under mild conditions l�

INTROD�l CTI ON

Studies suggest that coal is composed of macromolecular

units linked together by oxygen bonds. Ruberto1 deduced

from salvation studies of coal that it appears to consist

primarily of 2- and 3- ring condensed aromatic structures

linked mainly by oxygen atoms. Takegami2

concluded that

the formation of asphaltenes from mild hydrogenation of bit­. uminous coal is due to cleavage of ether linkages. Wachcwska3

noted that while the extent of ether linkages varies widely

with coal rank, ether groups represent the main linkages

between aromatic clusters. It is believed that the single

bonds in coal most likely to be broken and assist its lique-

f t. d "l' d"t" 4 ac ion un er mi a con i ions are :

Ar-CH -Ar 2 Ar-0-Ar

Ar- ( CH2 ) n-Ar R-0-Ar

Ar-CH2-0-Ar

R-0-R

and sulfur analogs

where: Ar = aryl groups R = aliphatic groups

The connecting ether linkages in coal have be en the

subject of several studies. Different cleaving agents and

reaction conditions were used to break these bonds in coal

and in model compounds.

A model compound is one whose atomic configuration is

responsible for coal-like behavior and might be a component

of the hypothetical coal molecule5. Studies on model compounds

are conducted to give a better insight of the structure inside

the coal and the connecting linkages responsible for this

2

structure. Hydrogenolysis of coal-related model compo:mds

by a CO-H2o mixture at 300° were conducted and cleavage was

found to occur readily6

.

Model Compounds

Benzyl phenyl ether

Phenyl ether

Benzyl ether

Products

Benzene, toluene

Benzene

Benzene, toluene

ZnC12 has also been used to effect cleavage on model

compounds?:

Model Compounds

Benzyl ether

Phenyl ether

Benzyl phenyl ether

Benzyl naphthyl ether

The post�lated mechanism:

rnCl2 @CHz-�-© �

Products

Diphenyl methane

No reaction

Diphenyl methane

Diphenyl methane,

Beta-naphthol

@�HL + [@0��znc12] <Q>--cH2-© + ft+

@oH + lnC'I,_

3

When c oal i ts e lf was trea te d wi th K/TEF in the pre sence

of naph thalene f o l l owe d by quenc�inr wi th di lute HCl, i t was

f ound that th:re was a s ubs tantial incre ase in the hydroxyl

c onte nt and flui d i ty of c oa1 8 . The se re s ults were c onsi s tent

wi th the c le avage of e ther b onds .

The me chani sm o f the reac t i on may be :

0 • + K+ K + C10H8 --.:;:> (C10H8)-.1

(Ar -0-Ar ) ..!.. + Ar-0-Ar + (C10H8) --� C1c}13 (Ar -0-Ar ).!.

__ ..,,. Aro + Ar· .

Ar · + (C10H8)- --7 Ar + C10H8 Ar +HOH --� ArH + OH Aro +HOH --� Ar OH + OH where Ar-OAr repre s e nt s d iaryl e ther linkage s ,

Sod i um in l i quid ammonia ac t s in a s imi lar manne r when c le av-

ing e ther linkage s

le fragment s 9 : Na

Ar-0-Ar ----- 7 l i q . NHJ

Na Ar• ---?> Ar-

Ar o H

--?> s olv

Ar OH

in c oal, re sulting in smalle r, more solub -

(Ar -0-Ar).!.

H --� ArH s olv

_ _ .,.. Aro + Ar .

C oal c ons i s ts of s e ve ral fracti ons which e xhibi t c ontra s t -

ing s olub i l i tie s i n d ifferent s olvents:

4

E xtrac te d c oal

Pre -aspha ltene ( Asphal t ol)

Asphaltene

Oi l

S oluble in

None

Pyrid ine

Toluene

H exane

Ins oluble in

All

Toluene

Hexane

Proti c s olve nts

Whe n Mayo e t a11 0 reac te d an asphal t ol frac ti on of Ill i ­

noi s N o.6 C oal wi th Na/liq. NHJ f ol l owe d by quenching wi th

NH4c1, there was obs e rve d a d e crease in mole c ular we igh t and

incre ase in the phe nolic - OH c ontent of the c oal frac ti on .

S imi lar obs e rvati ons were note d by reac ting the asphaltol

frac ti on wi th pyrid ine hydri odide at 20°. Whe n the y c onduc ted

the reac ti on at 50°, the y f ound that the mol e c ular we ight of

the c oal frac ti on was re duc e d t o the same extent as with Na/liq.

NH3 . Cle avage of e the r linkage s would e xp lain the s e re sults.

Pyridine hydri od i de has be e n we l l - s tudied. Odinok ov1 1

c onc lude d from h i s infrared and NMR s t ud i e s of pyrid inium

salts , tha t f or s tr ong ac idslike H I ( pKa = -1 1 ), prot on trans ­

fer wi th pyridine take s p lac e and the "i oni c pair" i s the

pre d ominant spe c i e s . A hydrogen b onding enthalpy of - 6 . 7

kcal/mole re sults from the s a l t f ormati on . Thi s "ionic pai r "

i s c onfirme d b y the pre s e nc e of N -H s tre tch ing fre quency maxima

a t 2 83 3 cm- 1 in the infrare d spe c tra .

R oye r e t al1 2 has used pyridinium halide salts in e the r

c le avage reacti ons� - The y f ound that pyridine hydrogen bromi de

c le ave d alkyl naphthyl e thers at 23 0°. Chen1 3 f ound that whe n

phenyl alky l e thers and e s te r s we re reac ted wi th pyrid ine

hydri od ide at 6 0 - 8 0 ° , no s i gnificant e ther or e s te r c le avage

5

wa s obs e rve d . A t 2 1 0° , she f ound tha t pyridine hydri odide

c le ave s phenyl e thers and e s te r . The l owe r temperature re s ults

wi th mode ls c ontras t wi th the c oal reac t i ons .

C le avage Reac ti ons wi th Pyridine Hydri odide at H igh

Temperature ( re ac ti on time : 45 h our s , reac ti on temp . : 2 1 0°)

Ether or E s te r

Ani s ole

B e n zyl phe nyl e ther

Cyc l ohexyl phe nyl e ther

Me thyl benz oate

Phenyl phe n ( e thyl) ether

Produc ts

Phenol

Phenol, tolue ne

Phenol

Benz o i c ac i d

Ethylbenzene, phenol

Lar s e n1 4 c onduc te d a reac ti on which s e l e c tive ly labe l e d

the - OH groups in c oal wi th tri-n-butyltin and u s e d Mos sbauer

spe c tr os c opy t o de duce inf ormati on ab out the he teroa t om p op­

ulati on ne ar the hydroxyl group. He reacted I llinois N o . 6

C oal wi th b i s ( tributyl ) ti n oxide in refluxing to luene . The

tin Mos sbaue r spe c trum of the c oal derivative showed that

almos t all of the tin i s in trig onal b ipyramid f orm . N o

evidence was f ound f or the pre s e nc e o f te trahe dral tin . Th i s

c an only b e true i f a ne arby atom wi th an unshared pair of

e le c tr ons can enter into the c o ordinati on she ll of tin . Thi s

he te roatom mus t b e suffi c iently c l o s e f or i t t o s e rve a s an

acce ptor for a hydroge n b ond from the now de rivati z e d hydr oxyl .

I n other words , almos t all of the -OH in I llinoi s N o. 6 C oal

may�hydr ogen bonded to an o ther he te roatom wi thin the s olid .

6

If thi s i s the case , the fir s t s te p in ether c le avage, that

i s , the pr otonati on of the e the r oxyge n , may n o t re quire an

e xte rnal pr o ton s ource ins ide the c oal because the e ther

oxygen is alre ady in hydrogen b onde d form . In c oal , a ttac k

by the i od i d e ion o n the carb on ad j a c e nt to the e the r oxygen

maybe s uffi c ient for c le avage and thus the obs e rved re duc ti on

in the m ole c ular we igh t of c oal . Thi s internal pro t onati on

c ould we l l exp lain the reac ti on of the asphaltol frac ti on of

c oal wi th li th i um i od ide . Mayo e t a11 0 obs e rve d that Lil,

a reagent that d oe s not have a pro t on s ource, i s e qually

e ffe c tive as pyridine hydri odide in re duc ing the mole c ular

we i ght and incre as� the phenolic -OH c ontent of c oal .

Thi s the s i s c overs the f ol l owing areas :

1 . An e x tenti on of Chen's work wi th mode l c omp ounds . That

i s , synthe s i s of various naph thyl e the rs and the s tudy of

the ir reac ti ons wi th pyridine hydri od ide and other agents.

2. In line wi th Lars e n's re s ul t s , a s tudy of c le avage reac t­

i ons of o -ani s i c ac id and p-ani s i c ac id wi th pyrid ine hydr­

i odide , Li I · JH20 and other c le aving agents . The former ac i d

h a s i ts e ther i n hydrogen b on d e d form wh ile the la tter d oe sn't,

J . A s tudy of naph thyl e ther reac ti on wi th pyridine hydr ­

i odide u s i ng c oal as c atalys t . The reas oning i s that , the

environment ins ide the c oal migh t promote e ther c le avage .

7

EXPERIMENTAL SECTION

Gene ral

NMR spe c tra were ob taine d on a Vari an T-6 0 nuc lear mag­

ne tic re s onanc e spe c trome ter us ing te trame thyls i lane(TMS) a s an

inte rnal s tandard . Infrare d spec tra were re cord e d by a Perkin-

E lmer 33 7 grating infrared spe c trophotome ter(calibrati on peaks

at 1 6 01 and 1 0 28 cm-1) . Mas s spe c tral analyse s were c ond uc ted

on a Du P ont 2 1 -4 9 0 mas s spe c trome ter. HPLC analyse s were

d one on a Be ckman Mode l J42 Grad i e nt Liq uid Chromatograph

sys tem , re tenti on t ime s and are a meas urementswere re c orde d

by a Shimad z u Chromatopac C -RlB. The c olumn us e d f or the

HPLC was 4 . 6 mm x 1 5 cm c 1 8 reve r s e d pha s e . Identitie s of

the de s ire d pe aks were base d on c ompari s on of re tenti on time s .

Me lting p oints were taken on a Thomas -H o over cap i llary melting

p o int appara tus and are re p or te d unc orre c ted . Pre -inje c ti on

c le an - up of HPLC samp le s was c e n trifuging on a Beckman M i c r o­

fuge ™ 1 1 at 1 1 , 0 0 0 rpm. S e p -pak u s e d f or analytical c le an - up

of c oa l -cataly z e d reacti ons i s a c 1 8cartri dge purcha s e d from

Wate rs A s s oc iate s . Carbon and hydr ogen analyse s were d one

e ithe r a t the Unive rs i ty of I llino i s or Mi c Anal Organic M i c r o -

analys i s Lab oratory .

Pyridine hydri od ide u s e d was previ ous ly pre pare d by

Che n13(m.p . 2 1 1 - 2 1 4 ° , Che� 's reporte d m.p. 212 - 2 1 4° , li t . ,

2 1 4 °)1 5 . The c oal u s e d was the e xtrac ted c oal p orti on(pyrid ine

ins o l uble frac ti on) of C oal FSOC 25 2(Penn S tate Coa l Data Bank)

prepare d by Ballard16 and has the f o l l owing DAF e lemental

analy s i s : C , 74 . 01% ; H , 5 . 2J% ; N, 2 . 0J % ; O + S, 1 8.7J %(by d i ff -

8

erenc e ) .

Pyrid ine was p urchase d fr om Fi she� S c i entific C ompany

and was d i s t i l le d ove r BaO , the n kept in a r ounqb ottom flask

cappe d wi th a rubbe r s e ptum t o ke e p it anhydrous. The HFLC

water use d was d i s tilled de i o�ize d wate r that was pas s e d

through 45 mi c r on fi l ter purchase d from Mi l l ipore C orporati on.

Me thano l and ac e toni tri le were HPLC grade s olvents purcha s e d

from J.T. Baker Chemi cal C o . . o -Ani s i c a c i d , o -phenoxybenz oi c

acid, o - e thoxybenzoic ac id , bibenzyl , hydr oc innami c acid , te tra­

b utyl phosphon i um bromi de , a lpha - and be ta - me thylnaph thalene

were purchas e d from A ldri ch Chemic a l C ompany . p -Ani s i c ac i d ,

hydr o i o d i c a c i d , phthalic ac i d and p -hydroxyben z o i c ac id were

p urchas e d from Eas tman Organic Chemi cals. A lpha-naphthol , be ta­

naphthol were purcha s e d from Fis cher S c i e ntifi c C ompany .

Li I · JH20 was purcha s e d from A lfa Divi s i on. A l l we re reage nt

grade che mi cals and us e d wi thout further purif i cati on .

9

?re�araticn of AlDha ard Esta Eromomethvlna�hthalene via

Photobromination:

The me thod of Chapman and Williams was us e d17 . Beta-

me thylnaphthalene (l00.00 g, 0.70 m o l e s) in cc14(JOO mL) was

put in a 1-L, J-ne ck r ound bottom flask e quippe d wit.h a mag-

netic stirrer, cond e ns e r and gas trap. Bromine (27.00 g, 0.17

mole s) in cc14(JOO mL) was adde d dropwise during a 6-hr pe riod

to the stirre d s o lution of be ta-me thylnaphthalene in r eflux-

ing cc14 and irradiate d with a 500-w tungsten bull: 2 inche s

fr om the fla sk. Afte r the evo lution of HBr gas had c e a s e d,

the re action mixture was s tirre d at reflux f or ano ther 2 h ours.

cc14 was rem ove d by s imp le distillation and the re sidue was

fractiona t e d at 5 mm Hg to rem ove the unre ac te d be ta-methyl­

naphthal e ne (b. p. 98-102°/5 mm) to give 75.80 g(75.80% re c ove ry).

The crude be ta-br omomethylnaphtha lene wa s obtaine d by c ontin-

uing the vac uum dis ti l lation and c o lle cting a frac tion at

118-12J0/1.2 mm. The crude pr oduct was purifie d by r e c rysta l­

liza tion from h o t e thano l t o give JO.JS g(81% yie ld). (M.P.

52.5-54.0°, lit., 54°)17. NMR(CDClJ) Chemic al s hifts, ppm:

7 . 8-7. 2 ( m, 7 ) ; 4. 5 ( s , 2 ) . IR ( KBr) : J 0 5 0, 2 9 5 O , 16 O O, 15 0 O, 14 O O ,

4 -1 1208, 818, 7 O c m .

Alpha-br omomethylnaphtha l e ne was pr e par e d in the same way

exce pt the starting reagent was alpha-me thylnaphthalene .

Alnha-bromome thylnaphthalene (m.p. 5J.5-55.0°, lit., 56°)18 ..

NKR (CDCl�) Chemical shifts, ppm: 8.2-7.2 (m,7); 4.9 (s,2). _,

IR (KBr) : J050, 2960_, 1590, 1500, 1400, 1.196, 760 c m-1 .

10

Preparati on of Ar omatic Nanhthvl Ethe rs I to I V .

Ethe r

I

I I

I I I

IV

Name

Beta -methylnaphthyl ­

be ta-naphthyl e ther

Be ta -me thylnaphthyl -

alpha -naphthyl e ther

A lpha -me thylnaph thyl -

�lpha -naph thyl e ther

Alpha -me thylnaph thyl'-

be ta -naphthyl e ther

S tr uc tur e

00- c"2o(o)O) (QfgCH2�

g-c�,O-oo The me thod of D 'Incan and Vi out1 9 was use d . Beta�naph­

thol ( 1 2 . 78 g , 0 . 0 8 9 mole s) in me thylene chloride ( 2 0 0 mL) was

put in a 5 0 0 -mL , J-neck , round b ottom f lask e quippe d wi th a

magne tic . s tirrer and condense r . NaOH ( J.55 g , o. 0 8 9 mole s) in

40 mL H2o was add e d to the f lask . The r e ac t i on mixture was

stirred a t r o om tempe rature f or JO min . . Beta -bromome thyl ­

naphthalene (14. 0 0 g , 0 . 063 mole s ) was adde d to the f lask

f ol l owed by te trab utyl phosphonium bromide as phase transf e r

catalyst. The reaction mixture was stirred at room temre rat­

ure f or 24 hours. The final solutio� was acidified to pH = 3

v1i th 2Ci% HCl, the layers serara ted and the water layer extract-

11

ed wi th 3 x 1 0 ml CH2c12. The organi c layers we re c ombine d

a:r:d washed with 20 rr.L cf 5% I\aCH aEd 1 x 10 mL H2c. 'I'he

soluti on was dri e d wi th anhydrous Na2so4, pas s e d through a

plug_ of gla s s wool and the s olvent remove d on the rotary

evaporat or. The crude produc t was puri f i e d by re c ry stalli z -

ati o� from hot e thano l . NMR, IR and mas s spe c tra of ethers

I to IV are sh own in Figure s I to XI I.

Ether

I I I I I I IV

Yie ld ( %) 2 1 9 1 8 6

NMR Chem. Shift ( ppm) ( m , 14 H) 8,0 -7.0 8 . 4 -6,7 8.3 -6 . 8 8 . 0- 7 . 0 ( s , 2 H) 5 . 5 5,4 5 , 6 5 , 5

Mas s Spe c trum ( m/e) Parent peak 2 84 284 284 284 Base peak 141 141 1 4 1 141

- 1 IR S pe c trum ( cm ) 3 08 0 3 04 0 3 04 0 3 04 0 2 93 0 292 0 2 93 0 2 95 0 15 85 1 5 70 1 5 8 0 1 6 0 0 1 45 0 1 3 7 0 1 3 6 0 147 0 1 25 8 1 2 6 0 1 2 63 1 25 0 1 2 1 8 1 23 0 1 23 8 1 2 0 8 1 0 03 1 06 0 1 06 9 993

Elemental Analys i s

The ore tical c 8 8.7 0 8 8 . 7 0 8 8 . 7 0 8 8 . 7 0 H 5,67 5 ,67 5 . 6 7 5,6 7 0 5 . 63 5 ,63 5 . 63 5 .63

Ac tual c 88.36 88.64 87 . 92 88.28 H 5 ,37 5.42 5 . 7 7 5 . 77 0 ( d i ffere nce ) 6.27 5 ,94 6 . 31 5 . 95

1 2

S tandard i zati on of Naphthyl E ther I and Be ta -naph th ol with

Bibe nzyl f or Quantitative Analys i s o f Reac ti on Mixture s .

Naphthyl e ther I ( l O . O mg) and be ta-naph th o l ( l O . O mg) were

we ighed into a 25 -mL volumetric f lask and d i lute d to volume

with ace t onitri le to give a s tock c onc entrati on of 0 . 4 0 0 mg/mL.

In a s eparate 1 0 0 -ml v olumetri c f lask , b i benzyl ( 2 . 0 0 0 0 f was

we ighed and di lute d to volume with acetonitri le to give a

stock c onc entrati on of 2 0 . 0 0 mg/mL . For standard 1 , 2 ml of

naph thyl e ther I + beta -naphth ol stock s oluti on was mixe d wi th

1 mL of the bibenzyl stock s oluti on. For standard 2 , 1 mL of

naphthyl e ther I + beta-naphth ol stock was mixe d with 1 mL of

the bibenzyl stock s oluti on . The bibenzyl i s an internal

standard whi le beta-naphth ol i s one of the expe cte d c leavage

pr oducts .

The two standards were c e ntrifuge d , inje c te d into the

HPLC and the re lative are as re c orde d. Duplicate runs of e ach

s tandard were d one and the re lative are as ave rage d . From the

re lative are as and known amount of materials us e d in calibrat-

ing , the dete ctor re s p onse factors were de termine d .

Naphthyl ether II I was c alibra te d in a s imi lar way.

S tandard i zati on of Naphthyl Ether I and B-e ·ta-naph thol with

Naph thale ne f or Quantitative Analys i s o f Phe nyl S ulfide -

Catalyze d Re ac ti o� _ Naphthy l e ther I ( 2 0 . 0 mg) and �naph th ol ( 2 0 . 0 mg) were

weighe d int o a 25 -mL volume tr i c f lask and d i lute d t o volume

with ac etoni tri le to give a stock c or:c entrati on of O. 8 0 0 mg/ml .

13

l!'l a se pa:ra te 1 C-rr.I. volu.me tri c flask, napt-'chalene ( 1 0. 0 mg)

was weighed and dilute d to volume with a c e tonitrile to give

a stock conc entration of 1.00 mg/mL. Standard 1 was pre pared

by mixing 1 mL of beta-naphthol + naphthyl ether I stock

solution with 1 mL of naphthale ne stock, while standard 2

was pre pare d by mixing 2 mL of naphthyl ether I + beta-naphthol

stock with 1 mL of naphthalene stock. These 2 standards were

c e ntrifuge d and calibrate d on the HPLC.

S tandardiza tion of o-Anisic Acid and S alic ylic Acid with

Hydrocinnamic Acid for Quantitative Analysis of Cle avage

Re actions.

o-Anisic acid(25.0 mg) and s alic ylic acid(25. 0 mg) we re

weighe d int o a 25-mL volumetric flask and dilute d to volume

with 1, 2-dic hloroethane t o give a stock conc entration of 1.00

mg/mL. In anothe r 50-mL volume tric flask, hydrocinnamic acid

( 3 0 0 . 0 mg) was weighed and dilute d to vo lume with 1,2-dichl oro­

e thane to give a s to c k conce ntratio� of 6.oo mg/mL. For

s tandard 1, 1 mL of o-anisic acid + salicylic acid s tock

solution was mixed with 1 mL of hydrocinnamic acid s t ock

solution, while 2 mL of o-anisic a cid + salicylic acid s tock

was mixed with 1 mL of hydr o cinnamic acid s tock t o make stand­

ard 2. The s e 2 s tandard s were c entrifuge d and us e d to calib-

rate the HPLC.

In a s e cond c al i b ration, o-anisic acid ( 1 0.0 mg) and

salicylic acid(10.0 mg) were weighed into a 25-mL volumetric

flask and diluted to volume with 1,2-dichloroethane to give

a stock conc entration of 0.400 mg/rr:L. Hydrocinnamic acid

(350.0 mg) was weighed into a 50-mL volumetric flask and

14

dilute d to volume wi th 1 ,2- d i c hloroethane to give a stock

concentration of 7,00 mg/mL. Two ml· of o - anisic acid + sal-

icylic aci d st ock was mixe d with 2 mL of hydrocinnamic acid

st ock to make standard 1, while 5 mL of o - anisi c acid+ sal-

icylic acid stock soluti on was mixed with 2 mL of hydr oc innam -

ic ac id st ock to make standard 2, These standards were c e nt-

rifuged and use d to c alibra t e the HPLC.

Standardizati on of p-Anisic Acid and P-Hydroxybenzoic Acid wi th

Hydrocinnamic Acid for Quantita t ive Analysis of Reactions.

p-Anisiq acid(25.0 mg ) and p-hydroxybenzo ic ac id ( 25.0 mg )

were we ighe d into a 50-mL volumetric flask and diluted to '

volume wi th 1,2 -d ichlor o e thape t o give a stock conce ntra t ion

of 0.500 mg/mL. In another 50-mL volume tric flask, hydrocinnam ­

i c acid(JOO. O mg) was we i ghed and dilute d to volume wi th 1,2-

dichloroe thane to give a stock conce n tra tion of 6.000 mg/mL .

For standard 1 , 1 mL of p-anisic aci d + p-hy droxyben z o ic acid

stock soluti on was mixe d with 10 mL of hydrocinnamic acid

st ock solution , while 2 mL of p- anisic aci d + p -hydroxyb e n z oic

acid s to c k was mixe d w i th 10 mL of hydrocinnamic aci d stock t o

make standard 2. The se standards were ce ntrifuge d and use d •

to calibra te the HPLC.

Standardization of o -Ethoxybenzoic Aci d and Salicylic Acid wi th

Phthalic Acid for Quan t i ta t ive Analysis of Cle avage R e actions.

o-Ethoxybenzoic acid(44.4 mg) and salicylic acid ( 40 . 0 mg)

were we1ghe d into a 10-mL vol umetric flask and dilut�d t o

volume with 1 , 2-d ic hlor oe thane t o give a stock concentration

of 4. 44 and 4. 00 rr,g/mL re spe c ti ve ly. Iodoethane ( 160. 2 mg)

was weighed in to a sep'ara te 10-mL volumetric flask and dilut ed

15

t o volume w i th 1 , 2 -d ictloroe thane t o give a s tock c onc entra t-

i on of 16.02 mg/mL. In an other 100 -ml v o l ume tri c flask ,

phthalic ac id ( 2 0 0.0 mg) was we ighe d and d i lute d to volume

wi th me thanol to give a s tock c onc entra t i on of 2.0 0 0 mg/mL.

F or s tandard 1 , 1 mL of o - e th oxybenz o i c ac id+ salicylic ac id

s t ock s oluti on was mixed wi th 2 mL of i o d oe thane s tock and 1

mL of phthal i c ac id s t oc k s oluti on , while f or s tandard 2 , 2

mL of o -e thoxybe nz o i c ac id + salicylic acid s tock , 4 mL of

i od oe thane s t ock and 1 mL of phthalic ac id s tock was mixe d.

The se 2 s tandard s were c entrifuged and use d to calibrate the

HPLC .

S tandard i zation of o -Phenoxybenz oic Ac id and Sali cylic Acid

wi th Phthalic Acid f or Quanti tative Analys i s o f Reac t i ons,

o -Phenoxybenzo ic ac id ( 5 0 . 2 mg ) and salicylic ac id ( 5 0 . 2

mg) were we ighe d into a 25 -mL volume tric f lask and d i l ute d

t o volume wi th e thyl e ther to give s tock c onc entrati on of

2.01 mg/mL. The phthalic ac i d use d was prepare d ab ove and

has a s tock c onc entrati on of 2 . 0 0 0 mg/mL . F or s tandard 1 ,

2 mL of o -phen oxybenz o i c ac id+ sali cyl i c ac i d was mixed wi th

2 mL of ph thalic ac i d s tock , while 5 mL of o -phe noxybenz oic

a c i d+ salicylic ac id s t ock was mixe d wi th 2 mL of phthali c

ac i d s tock t o make s tandard 2 . The se 2 s tandard s we re cent­

rifuge d and us e d t o calibrate the HPIC .

A ttempte d C le avage of Naphthyl Ethers I and I I I wi th Pyridine

Hydri odide and Other C le aving Agents at Low Tempe rature .

The pr oce dure f or a l l e ther reac t i o�s at l ow tempe ra ture

are s imi lar . Var iati ons in the c l e aving agent employe d , reac t­

i on time , re ac ti on tempe ratu1-eand c onc entrati on of the c leav-

16

ing agent are noted in the d i s c us sion se c ti on . A repre sentat-

-ive reac ti on i s d e s cribe d here:

Naphthyl e ther I ( 5 0.0 mg , 0.17 6 mmol ) , pyridine hydri odi de

( 6 2.1 mg, 0 . 3 0 mm ol ) in 8 mL pyrid ine were place d in a 25 -ml

round b o t t om fiask e quippe d wi th a ni trogen atmosphere, re flux

c ondens e r and magne t i c s t irre r. The reac ti on was run at 10 0°

f or 3 days . A t thi s p oint , a ye l l owi sh s oluti on was observe d .

The c oole d reac ti on mixture was the n p oure d into 7 0 mL of 1 M

H 2so4 unti l the pH = 2 and n o pyrid ine od or was de te c ted. I t

was extrac te d wi th 3 x 10 mL of e thyl e ther and the c ombined

organic extrac ts washed w i th 1 x 10 mL brine s oluti on and

f i ltered . B ibenzyl ( 2 0 0.0 mg) was we ighe d and adde d t o the

s olu ti on as internal s tandard . The mixture was shaken and

a 1 -mL aliquot was take n , c entrifuge d and HPLC analys i s d one.

The e lu ting s o lvent f or the HPLC was 85% ac e toni tri le/

9 . 5% H20/0 . 5% ac e ti c ac id . The flow rate was 0 . 8 mL/min .

I n j e c ti ons cf 2 0 -mi c r ol i te r or 10-mi c r o li te r ( to ke e p the peaks

ons cale ) sample was used per run. The de te c tor was a Be ckman

M ode l 15 3 Analytical UV D e te c tor.

F or the phe nyl sulfide - cataly z e d c leavage reac ti on, the

e luting s olvent f or the HPLC was 60% ac e t oni tri le/3 8% H2 o/

2% ace ti c ac i d.

Naphthyl Ether I Re ac ti ons in the Pre senc e of a C oal Frac ti on .

Naph thyl e ther I ( 5 0.0 mg,0,176 mmol) and pyridine hydr­

i ocide(62.1 mg , O.J O mmol) in 10 ml p�rrid ine we re plac e d in

a 25 -mL r ound b o t t om f lask e quippe d wi th a re f l ux c ondens e r ,

magne t i c s tirrer and c onne c te d via a thre e -way s topcock to

a ni tr oge n line and an aspirator vacuum. Ex trac ted c oa11 9

17

(500.0 mg) was added s lowly to the surface of the pyridine .

_;.spira to2:' vacu0.In was ger;tly applied a:nd -.:hen slowly released

to nitrogen atmosphere . This process was repeated 5 times,

to insure the coal was thoroughly wetted by the solvent . The

0 temperature was then brought to 110 and the reaction allowed

to run for 7 days under nitrogen atmosphere,

After the reaction time, the reaction m i xtur e was allowe d

to cool under nitrogen to room temperature, It was then poured

into 70 mL of 1M HC l and extracted with 4 x 12 mL of ethyl ether .

'Ihe organic extract was allowed t-o pass through a plug of

glass wool. The combined extract was transferred to a sep-

aratory funnel and wasred with 2 x 10 mL of 1M HCl, then with

1 x 10 mL brine solution and then diluted to volume in a 50-

mL volumetric flask. A 1 -mL aliquot was pipetted and passed

through a c18 Sep-pak and 3 mL acetoni trile used to wash the

Sep-pak, all 4 mL was collected. Bibenzyl(10.0 mg) was weighed

and added to the aliqout as internal standard. The sample was

centrifuged and HPLC analysis conducted. The total weight of

the material in the reaction mixture is found by multiplying

the weight found in the aliq UPt by a factor of 50,

Reactions of o-Anisic Acid, p-Anisic Acid, o -Ethoxybenzo ic

Acid and o-Phenoxybenzoic Acid with Pyridine Hydriodide or

Other Cleaving Agents.

The pr oce dure for the se cleavage reactions is s imi lar

to the one employe d for the naphthy l ether reactions,·- howe'\rer

the following changes should be noted. The extracting solvent

was 1,2-dichloroethane or ethyl e the r, the internal standard

was either hydrocinnamic or phthalic acid, the HPLC eluting

18

s olvent for o- , p -ani s ic ac id was 40% me than ol/5 7% wa ter/2.5%

ac e tic ac id. For o -phe noxybe nz oic ac id, i t was 5 0% me thano l/

47.5% wa ter/2.5% ac e tic acid whi le i t was J5% me thanol/61.8%

water/J .2% ac e ti c ac i d f or o - e th oxyben z o i c ac id,

o -Ani s i c ac id ( 26 . 6 mg , 0 . 1 7 5 mmol) , pyridine hydri odide

( 6 2.1 mg , O . J O O mmo l ) in 1 0 mL pyridine were plac e d in a 25-

mL r ound b o tt om f las k , the f lask being under ni tr ogen atmos ­

phe re and e quipped wi th re flux c ondens er, The mixture was

heated at 85 ° f or J days . The work-up follows that of the

naphthyl e ther I re ac ti on. Hydroc innamic ac id ( J O O . O mg) was

use d as internal s tandard.

In s ome of the experiments , a modifi cati on of the work-up

was c arried out, The c ombined organic extrac t was di luted to

v olume wi th 1 , 2 -d i ch lor oe thane in a 5 0 -mL volume tri c flas.k.

A 1 0 -mL aliquot was pipe t te d out , hydroc innamic ac id ( J 2 . 0 mg)

was we ighe d and add e d t o the aliquot. The t o tal we igh t of the

material to be analy z e d was f ound by mul t iplying the we ight of

the material in the aliquot by a fac t or of 5,

---- . 1 · - .---r-­

� 00

} _/ . .!I. r � - ·I'' V" .,,.,., ,...,...'"_ .,.//

8.0

- --- - r-··---- t

I \ •

I _I I i I I ' \ '

I

I;.,: 1 / I ' I I ·!

\ 11r�i 11 i\J�I\

/ /

/

. I L , 1. I ·!\ f; \I I' j ' i : I V . 1 1 11:, :· I 11

1 I \

400 300 200 100

/_,,,---/------- _,I

,-- Jl .- , ... ., ' �· ....... : '1 ,.'\" ', �' . ,. �.�\A../\; .

J --·

·,1.0 . 6.0 5.0 PPM (a) 4.0 3.0 2.0

Figure I nmr spectrum of Naphthyl Ether I

(Beta-methylnaphthyl }?Q_t_9:-naphthyl p·ther)

1 9

).0

I 0 HT

>-H)-

0

SOD

I i\1 I

/\�)i· //

8,0

400 300 200 100

� I l _,./------/ /

--�----------

.I I / I

\.tfV(

'7.0

v�������tfl·

6.0 s.o PPM ( i l 4.0 3.0 2.0

Figure II : nmr spectrum of Naphthyl Ether II

(Let§:_-methylnaphthyl alph§.-naphthyl ether)

20

1.0

0 H•

>-H)>

n

I �00

, r

) ./

-!/ ""''

8.0

!�I \ '

I , I ''

/

I 400 300 200 100

!/�·

v/

\. II i:' ::' 1,

r � (�! \ .. ,··!

.7.0 6.0

FLcr-ure III

·��-'vj�

5.0 PPM ( 6) 4.0 3.0 2.0

nmr spectrum of Naphthyl Ether III

(A1£b.§.-me thy1naph thyl 3]:.p]}�.-naph thy1 F· ther)

21

0 HI

>-H).

,�___.

1.0 0

I 500

/1 I I

rj I, ' : 1 .J i \ 1; " I 1!, ]1 ·. j '1 'i 1 i

L / 11 ' 11_ i.' \ !1

/

/Ii 1 I 1 1 1 / :'n ,I ! I

400

/'-

_,...---/--- .) . 1 I ), Mf .1

M.. M� V \1\.\il '-'\ 0f lj r . I• I"{' \,}.;1,\•

300 200 100 0 •h

>-fl�

'---- -- I I I I I I I L __ J 1 I I 1 I .1 1 [ I I I I I

l'I . I

I I I I I t _ _t_ ,....____.

8.0 7.0 6.0

Fit:u.re IV

5.0 PPM I 6 l 4.0 3.0 2.0

nmr spectrum of Naphthyl Ether IV

(AJcl?ll§:l.-rne thy J naph thy 1 }2�.Y.9:-naph th;/] ether)

22

1 n

"!"OU

-- . -- -- i --j -- - --f- ·- - -[- - .

- - -�-= ��--=; =---- -�.J.--=-�� -=�---: ±_t. 1 I �-��lccJ��!-NJ�J�_l�.T'J-jt=LSk�� _,J� - f • . ' --+<- : .. ' Lhkd ld"'b ,[._J=l:=L . --- -=r=-r-±-···1:.---:�-:- -1-�=�- =·t--= � :_, _ _ f-�-•1=�:+��=.:: -=-r=: --r�--=r--=�T:=1-·-- : - -- ·- - - - 1 ---- 1 -- --- --- -- - - - --- -- --t---- - 1-·-- -- 1 -- . -- __ t__ ----!

--- ·--· - - - ·-- - --- -- --- ----t--- -- ---1 -- -.- ·-- -- -- -- --f-- - I

f - j __

l 01

�r -- +--

801 ! -g�f =1-3�::.FJ.�1'')M"J'l"1C::!�--11•-lt.•l•-.•11 -j/�-�---1 . - '-�180

f

1---- __ , _ __. --- +---t----+ ----- �----1

60�

I ---1 ---

I

20 --:--t-

--"-

. t-I ----+-- . '

I--- • --- . -

i I

--i-1 I

.:: 1�--t:

- -t I --1 -�---0 4000 \35GO 3000

Figure v

2500 2000 FREQUENCY (CM-1)

ir spectrum of Naphthyl Ether I

(Ee t_§_l.-me th.YI naph thyl lig_t.!_l.-naphthyl 2 thf:r)

2J

1500

J� ! 0

..--, .. , , I ---- --- ----- f------- --

! -

i , -

I

: - r ---.--·1 --·1-··-. ' r - · . . . . - r---� - - ; I -• . , . •- . , . 1.. ---y- i l - t • t l· .

1--··- • -i-� -- - ; � - 1 -· -·-

l::-:-:--::.-r_; .!

I I

- . : - _l:Jj__;_ ;:tT: : Fr::, ; · · -i ; - :·r

, .

'.Fl __ _! '. : ; ' t : : : ! ' ; . ' l

1 I

.. ' ; I, I 1 · -·- ... . ·-·--· --· ·- -··-·-·-·· · r·---

r-;-: - · / �� 1 . :, ;· �j�: t i ! l '. i : :-: ; �>;: '

r ____ /_!:---��[� -�--- - -1,1= i;t1- _:=: � � -=I-' =�-,- -�-�-�t-t (J l,

� !

\. � . ..

I I (.I

I 20

i A __ , __ _J_

\ 1-··. . . I �· I . . . .. r, ,� � _ _:_.:_· ._;_j_. � -r -- �--- -f-·: _ _._ , r :_'_ -� - -r-- - :�_!_�-�-- - .i : _ _ ,

I . ' l • • l I I I • I- t 1 I I ' ' I . ! ' I I ' -I I I 1 I ' ' I . l I 1 I I I ---: 1-;-�

-I -- . I

I _' ' -· -'-- --- -- -,--t- 'T �.....:J_ - ·t ... - --

1 ·-- .4 ·1· I I • I ' I ' ' • I - I ' ' . I I I 1- '

· .... ·l· --\ -· ' · 1 l · 1-· · · · 1 • ·r· · · ·

--- •1-l-· --1--r- -... . , � ,_ I I

_'

_'_. -2--r-! - _!� -� _'._� -----�-.::_ I . ��:+� - . ..

L-�1�_,_ -I . . �-; i.j • tj I 1-i ' • , • I j_! I ! I

I �.: �-:- ,. _ 1 : ". . t- .. J: '. -! -- - • i :--! � , -�-�+��. �j·'.· .· �-· _ __ ---- -- · · I I !

\ ' I --I

------ -.. ----+---

l ' _, . ,.. - t I 1--t- I I I I J J • f I - I • ' ' • I I ; .! ·' -f-· ! i · J ---- --·::'._. -;�� -,- ; ·----- 1���,2��- 1• ,_! --1-µ-�--- :--�-P-+:-L -�i--H----; !--· j-r

' -- · , . 1- 1 • I ! I I I ' ' I , I ' I j i : ' I ' - I· ' t . ! I -· I • ' i ' • • j i ; ' : ; : ; : ' .': ' I ' •

I ' ! . L ' : I I_ i ! ___ I,___ ·-r=, . . . -,� ' ·t , , --. 1--;--:;-� , i :--;:::-:- -- _ _,_ :- -. -. : rr;-�-:- -,-1-;-.-.. i - . •. - . ·-:- -� -i- :·-· . ---;-- . : ,. � - : · 1 . : - I ' ! � - '

- t ! - ' ! : j I i I '. ; : . '. ; : � � l I ' . • • ' . . t !__ - • --1 • I I � ' • I j l ' l t ' ' ' ! I I L 1 l ! I !

- --- t--- ,__ �-.. -. ·-·------ � 7�-- :;------1 ! rr-"--T"---:�:r · · 1-r,' :1�·-rrr,, ; ,. ,·: I ";· ! , t ' -- - : . ; : ; 1 - - J " i -r· : � . ; '.: ; �: ; � ; _ __ ;_,_;_ :-�-r- 1' 1 , , • • • , . , • . . . . , .. 1

• , • J -j . . . , 1 ' , 1

.11 I . 1, -·· . • l :�- _:;��:l_F_ .�---!-; i ; - ) -:�-+- -r-���-'-;--,-�-������;� �ti,��-f _:_:·>r----•--:-:: .L ' l i--�- l -l I ' I I I ; ' ' ! • t

ul

!k {

'' ( "'- -

G: · ' . ......

.. �.

-- ·---- j

. -- __ .. __

0

II

- -·-r- : , , J. i-- . -! I l · J , ( . . ! j ! t ; -. ----·- I , :n�-l : : ; -· -- �;1,-: ··- -�·-

I 1--; ·---- --- _:_ - - ·-�f -+-� -- ---·- �-r :- ;::-i---1--�-;-f-- ·---·�- - ' - .. ·-- . - ; ·-+-�-,-:--:--�-:-,.,- ..

i----�-� ··; !-:.:-: -�:::: ·:'; +4+�- ·--·---·-L _____ ·�:.1 __ 1·�,·:11-·--·----l--, • ,

• ; i : : . : ' i ; I ' ' l 1 : [ ' 1 I

, I t , • . • • I···· ' ;:'.ij . I 0 i : ----- -r------- __ .:._ __ __!__�_ J++-r- �-�-:- -·-r+-; -�-H .;._'..-: :- - --·-; -·--·: l' .. ·--·--'-- !-:-'-- -,-:-�--·_J-, - _: - -

I' ·1 · . • ! i I 1 1 · t I • ' I 1 • •

._ ....... ___ ...._ ___ _._ ___ -'------'------'----- - - ---- - -- \ .' 1300 ·1 ��OJ l l 00 1000

Firi�re v

� 00 800 F1' :ouENCY (CM 1)

7' '' r'\ Uv ' , .. ') (Ji,);

-----------· ·-· , --·- ·1

ir spectrum of Naphthyl Ether I

(Bej,_9..-rr.ct�41naphthyJ l?:!�-narhthyl eU1cr)

500 l ,·-.., .•-. "• \)l I

- ' -- · 1

r I 00 ! ·-1-n-+ ! ' ! !

----l---+-

801 I I

[;·

�_,_-1 · 1 r r1-t ' l_�,Gi--ffi�·-rr-. - -f�]-�-lf - i-� :· ��:��-- .� =--��-+==-· -� �-=- ::--� :· - -__ :� = -:--· .:--= :.=::: == -=-- -::::: -��= :=-.: -�� .�---: -=- ���- _:�_-j � _:_ := �_:=--:· - ��-�---- -�:- =-:� .. � =�---- -- --t- -· - - - ,,, - -1 _, - =::- ·· - -.=- - -- -

___ ::=::r __ __ :-.:.:.::_:_ · ::: .. :::- - l - -- --- --=-- .:t -- :. _ __ == :.-_ i :-=: :-=�c===· :·;::c:cc.c;_.=- .c:; - -t ·c1:-::ii0=c0=�:1c -- :·: c=:c=-.. F cc, - -= "; A -·-- r--- - __ __,__ -- -t - ,

-�•••VI ·r

---���· -1 T - ' I. I

I---I , I

r· -_:r-

"""

8(

I; �- -�������������������

���������������������

I i+-

··-� 6( _ _J --

r:. :-:�i=:t� I- ,,

! I l---·

-·-I -�1--i--·-t

' Ir-·. . . /"'--'..,-1 :"' .. r......,:.,.,· -�.--

-'--'--'--

. -- -� ..

�·

2 0 1�· , _ . : --i---:--

n_- � _ -�--+--' 4v

----1-� . -i -- 1-- _ l

- �___________L___

- Lil

-- - ! �-

- -

�---.--L-�--f

1-1---

--�- · I , .

·�-

[ , ' I

-

: I : : - -1- -- 1--· 0 4000 3500 3000

Fi2ure VI

I

I

2500 2000 1500 fREQUENCY (CM·1)

ir spectrum of Naphthyl Ether I I

(Bc.19--mr� thyJ.naphthyl §:1.Pb§:-naphthyl P thcr)

25

4(

21

c

f )

I 0 0 1 I I

... . \ ...

2(J

I

i i

- : . i --·--:--:--;-:Fi--. -:

' ' ' - i------1 -- ---+--· . : ; . : T i . • . · . . . .. I

. . . . . i· -· : - .�L,_ - 1 _: _:_ : - ·--�- ·

! _ : 1-- - -- -:---- ·-·-r-�-; :- -- .-- '. : > I __ : : _

. . . .. I . . ' '-!-· L .:..1. -t ., . I , __ __ .. _; ____ _ r-----1--r

! : - -----·- -·-· r- ·- -. . , I ,

I • •

- ; l ; ; : : ·

· +� :-:-:-I . : � : �/J. : : I . - .

t -:

I . , . 1 1 : ! r ; !

. ... -r-+

-, ·rr-r� -r-i-r;-­: I . ! I : i : '

-• ----·· _;--1....:_ I : j ' • - +- j t , . - ' j i ; . !

i ;·· I ' I · ·:-r-1 · ·

, - ; ' •• • · - . . + • r ' - j ; . , . : ! J J : · r ; '. ' . 1,,. 1 . 1

-;--:-: - ;-1-· ' I I

I � ' . �h: ' : ' � ·�! . j i ;�' f /T1�f - � � - 1;- _! .' !T l .

...J_,... ' ...;.....:_ _: __ L_;_C_' � _.;._ --)- ·-·-r 1'·--+- ' - - --: ;_t ; I ' . . ' I I ' ' I I I ' : - • I ' 1 1 ' LW· ' ' . I I ' ' I ' l l I I • I : ' ! i I l I ' I l ; ' i I ' : ' : 1-+_..._,,..........-i-...-+-+-+-!--+...,.,.-+--+-+-.,.._,...... - -- �Ll- --rr--- -- -· - - · · -- . -- · • -

+ ' I·

· i l : i ; ' - i I I l I t . ' I ! . � : � - ! ! l ; l- • ! 1 - i I ' ' ; ·-i-1--��.- j:li- -;r;T t--j fl-T -; -;- -·· · · :· ; . ' , - 1 i 1 i r 1 J 1_1_±_ ; \ 1 ' ! 1

• I I , :-Fr-1 _. _ . . -r· :-:;· rr 1 -• . ' ' I · ·1 . · 1 · · . ' I . I

f \ I . . . . ! ... - . . - ·- ·- ---�--:-r:·· I .

! 1 1 ; l - I l J . _ j � r - · i : . 1 ; '. I 1

-•--r-·- -r-·�: : . J:-� : 1 . rrr ·· 1 · f ; ·-r- · : - �- r · ' ; '. : i T ; l l :j , ' i . . ! ---i ---. - ·

I . . i ' t -

*':1lt , t • --�· ---

--:;-r.--. -.. -.. . -. 1TT1. · , _ , t . .. ! l +:- · -- ,-,.- - - · --;--

,_ _ _ _ _ -� -�- : -� _:� !-;-�-� - *�L�- - . � . .. � .. ' _ � I - I - I : I 1--<--l !-,-,..�, ...,_ ,,-t. �, ...,..-.,_+-i_,.-+....,.--i---�-;---r -:--r- .

1 - . . . . I ' . I

· ·· · . .. T____ . 1-h�l-Wn -- · I i ' I I I I , • ; l+-+-l- 1·�........,..-t--.-

! I

' ' . . .. .

--- ·- l ' j ;

-1- · · 1 v : I 1 � l >< : 1 1TTT� --t� ·t

:-:-:--r-t-......,..-;-�l...l.· J·� '-"'

i l

• • I ! ��f-�·- __ J _ _ ; __ : ___ L -� - - - '. __ 1 __ 4

L . � I - �� �-- ! : : ; I i - -I ; j- ! ! I ! - --r-1--· -·---i--.. -··· · -··

I . j i 1 : \ ! ..-:1- ;-�- :-- 1 . ·. ! I : : '. " 1

I C

-;' J ,. o l..

/. ( '-�"

• t (

'..� (

. v I

0 r · I ' ·1 - 1 · l · : · : . L : : • · : · J · · _,__.__ __ .;..... ---- l_,.._;_,_ ---- - - · , . I

-� -t -- 1 · : ; I . , _ ,

: ; ;-: :+-� - . --� ·-/· : tfililiJ·.--'- ··· - : . I -· . . . , I ' ' ' 1 ' ! . ; . • --------l--.1---

I -- - · - - l :J

1 3 00 1 ·:� 00 1 1 00 1 000

F i g ure V l

i_ ; oo 800 700 .soo F 2 Q U E N CY ( CM 1 )

i r s pectrum of Naphthyl Ether I I

(I:. e ta -rn e th y J n aph th y l a lp.ba -naph thy l e the r ) 26

i: · c, o " \ ' . ..... ,/ ·iC \ i

--.. 0

'j'

• • J

._) - t ..:_ <.(

i o o · I .... 1 -+-d�- - ' 1

8 0

·-. -___._ . _

· · •

: • � h -�- : � - -- �- r

·--+---- --l l

----+---

��.

60� !: _ _ __ -: j _ : : :_l� "

-- f- ·-- t. · -- .• --- -- - t ·- - -

:: -�t .

, j ,

J) 4 0 7

1 . ­. --,-�--L

. j -r�G1��1¥-�1=t�����iiLi�[ I .

-� t - +�- -����� �g��-+H�m:rr ..__

..:( ::...::::

2 0

l -� __ J_ __ c__

. · · 1 - 1 �- �- --- - -;••····· -- -- ! - - - -+--

t I :�����-1��������1������������������1����1����������1�����1�����1�����1������ � I - t. . :.:

I .. --- --1--

0 4000

! 1� . . 1. -����nt� 3 5 00 3000 2 5 00 2000

F i g ure V I I -

FREQUE NCY (CM-1) : 11 spec tr um of .Naph thy l :i: the 1 I I I - -- · •

( A lpha -me thy l naphthyl a lpha -nap h thy l e th e r )

27

1 5 00

crH� I �, . I

1

f

,. J.

t � _,i

� ,I \..__ I

- r I - i

i

· - ---·-·- �-----

r · I

···1 ---·- ·-· ·- · - -. ! - - t

_ _ J ' ·-·-f--- - ------' . ,.. ____ --

I . t--- - -� . 1 - - l__:�j -� i-

---

----· -·­

'

-- ---· ·

j : .

' . '

I --- · - - 1 . · I : : �- : I i = : .. ; I : : • . : I

.-r�_;J_t . . --:- -�::��: : ; : 1 1 . , rr l-- -�

12lil ; : i : ' .

-�

: - ;.--. �-- - -

I · r-:·- 1 I : l jj ·- . t --· t·-1 ' t I ' ' '

I i

. · · '· . . · · 1 -� -- - - -+ -" ' -

. � 1 ·_· .

·---- -�- . . , _· . . I . " I : .

· 1 .

--:-�-Di-:-: ·;- 1--: . - --- , .

, -_. - : -- --:- :

. . . . . m1 .-�- T ·- -: - - . T . .. _ - - 1 u· · - · - �

I ; - , : • - :

: : ' . . : . : . : . : . - ; -1 . . · _-L u J I . � ' I I ' I I � I '

.--.__._____. _ -uµ-. __

Tr.::+1:1 ___, __ __ _ _ ,.. _ ---�--- - -- --- r- - · - -,--Ttt-1 - · --- -: : : '. .

. · -

. '.

J I . '. - 1 :- ' - - 11 I - I I ; � : . I • I I . ' ' - ' ; I I 1 · j I � ; : [ • - t I • - · • � 1 ..- - · - • • - • -- • I �H · J t l , • • 1 1 r · •

_: _ _ _ ·. : _ _ ; _ _:_;_ __ _ _ _:T-f__!.. -r�. :_f-t·I · - - - -- -�-'- • - - _y ·- - ---- . l __ _ ' - - l � - -J_ - - � · t " - · · 1 I : 1 -_ • : . · : · · · 1 1 -: : • r --

- 1 , : 1 1 , • . 1 1 1 l . 1 : I . 1 . · - . - ' - ' I ' ' • I I ! 1 . . . , - - I ; j ! I • ' ' I • ' ' ' ! , I ' ! ! 1 ' I

1 · -- - m·r_'._ :- , . . � - f . . I i . : [' : o ' , - I -- I -:- - - �� -;-�-__:-,--;-:�- _ _ _ _ , _..;__ , __ _ _ '. .

' . . . . . I . I . ' . . , . I 1 : I ' ' . ' ., . 1 . , , ' ; : - i ; - , - 1 - : ; _ .. t � j ... ; I I

I ! ' f i I l - 1 - - - -, --u- - . - . -; 1,-- --�· 1- �-�- ;:-- --: . I

l - � fi -- --i- -- -�-� · . 1- r-- ·- · - -- - - - -r · :- ; -r -�� - - _:_ · . , : , ---1---:-.---,-� ·+; _ I l l - - -·--:-�:-- �- : -"- · - 1-� - ·--- -- -- ·- -· - i

-;- -�� · -r : t I I

I l : I f I _ I I ! I ; ! '

I : ' ' • ' ! ! . f 1 · · - - - -- - 1 r--:� ·-, -

. : '. - ---;-·::: ---- -- - · -�::-1�f--;-- 1 � i+1 + : - 1- --: - TT�- -� �-: - - �l-,-·- -- -,--i-· ·--:-- · ;--;-rr · · · - ·

' t I I - _f_ - - - + 1 I - 1 t I I • ' ' ' ' ' l : 1 j

I- ·-"------ ,--- ·-+- - ' · • - - I 1 ' I _l4-)_ ' ;__r _1 _, __ _;__ __ :_ _. _ ___:_..;_ I · i '-�--+-- --- � -�- ··

' . . I . . I - t : I I � - � : - I ' I : : : : ' j � ' : : . ' ' ; . j ! I

I \ J 1 ·- . • • • . • , ...• . : • - ; - - - · - --' -·- ••••• - ·-+-··- __ '._� �_:__� --

I : ' .

.

: : ' -

.,; y J ' �.; ;-

.- -�-H--�- - H- ·-:- -:--: -- - �,�+H-�

r. 1 V , - l ; ' 1 1 : ; • 1 ; • 1 - - : '. - ; 1 � : : ! : · ' ' ; : : � L l.i j - - - -- - - - i - - - -- -r- .

- - - � . - -· · 1 -!1 · ; I I : - . --- ---- - --- - · --·- --1�--:-·-

I I !

: -- _J ++� c. - l + -i - J . : :+ + + ' '�:� - - I ' ,

l' - - - - -----} I · : - -1 · .. · ·�· ; : - : '. ! : r--: : : � : �� � - --: - -; - - T --- ' - -,, - -- -- L - �-:_ : _I _ _ _ - �- !- . j _ ;

i . . . I I ' • I f- - 1 - ' ' ' ' I ' . ! . I , - ---- -� f-- -:; - · 7" �..:�:-'.:- : �� - r-+�-;: · ;-�-1 : . 1' - 1T :·:rTt- - - ,- ; --t - - , - - - �-[' · �- , --·- < · - ! · · · : : [- · . ' . I . : . . ' - r · · : . · � 1 - tr · : - ::+ - - ::- ·- : : i . ! " · ' : : I i l ; : I

. I 0 -- - � - -� -- - --- � - __ J . I • • , , ' ' T ' ! , _ I ' I I - - ' - · - I j - ' -- ---- _:.�---.�---- -- ·---· _! - --- -- -··

r ·i · () �-

i, (

. . t

, ' \

·1 3 0 0 ·1 :� 00 i 1 oo i o o o � : oo s o o 700 /"'\ '"\ 0 -.... 0 .s co ,,( . . l � . ,I \ i

F i g ure V I I

F . . , QU E N CY (CM 1 )

: i r spe c tr um o f N a ph thyl E the r I I I

( A lpha -me thy lnaph thy l a lpha -naphthyl e the r )

28

r]oo r-.i-= i . 1 - - __ J _r_, =�- ;�J, =1�=,� �ttJ �� �- -=)�- ����· : ;r �'. �:-�·= r -��0��· , , H---t-:---,-- 1 r- - - I ± - ' - - - - - - - - - - I +- :,. � o\: - - r I I

IS!\-�-+ ·- �--;,_; _;=;�=;��-�j ·=�������;�.��r:� J �f ��-j�}L � f, · �L . . . _._ 8 0 .___,___ , H I

, J

) I'

.{

I.� -�

0 40 l'

:£. !'.'.'.

_ ;-± _ _ _, ; _ ___ _ _ · · _--_ ;I� ����;��.���: t-���� �I��� ' .- � 'L -=�2�··� � �y . F�· -1 • . .

• - �- - +- - - � -- JI - -j - - - - - - __:} - - - -T - - - - � -- - - �j---H-1-'-'

·- 1 I

I

2 0 1- :- ; ! .. --t=--<-- -- � � _ _::--_:j_ _ _ �--.! - i - �- - _ _ , - - � - - - - - - . - - - - - - - - i - -I-+-

0 - -�!

. ._ 4000 - . . _ ; ..

} "

� ,

- 1 - - , -I

3 5 00 3 000

Figure V I I I

2500 2000 F � EQU ENCY (CM-1)

i r spectrum of Naphthy l E ther I V

( A l pha -methyl naphthyl beta -naphthyl e the r )

2 9

1 5 00

6 1

4 1

2

c

I

' '

I "

.. ,..

..... __

/ )

I C-1 0

�) ,_, I

' I . .., !__ .' I

2 G

- · ·- 1 I

I - 1 - -

I

1 f I I - !----

. I - I

- !

�-�- : _--_ __ l�-�-���-: • �-r -

1 I '

� - . . - : : · • . .- I - J . , . . . i . r

r � -�; � i --, , -r::- -- � �! \ ; -: J r . . ::-r· r·-::-]T� --i.- . i �-� -: � · ' • -- j ' t - ! . . . :-.- . �--� --+-+

: : • ' · : i t i :mi : : . : i : • I : I : ! ! , , �-�--:-. . -j_H! 1. � ,.· - �t�- '. : � ::-:r-__ 1-r;- ;-r·-�-:-���-1 � ; :-� Tt-m-: - · - -- - -- I - 1 �--:- _ _ _ '. : · : . . ; ; : _- I ·: - ; � : :-T-ri -�! : :-� � : · �� + - �+n

I - I . . . ' . t ' ' : - , I ' . , I . i . , • . - ' • ' . I , . · ! - - 1 - ' � - · I ' . I . . ' : ' . : _ _ . : I . . I l I ! ! 4 ; : -· -- I . , . . - l l- : I '

--+---· _[_-F-i -_ � ' . ,� . . _ ---:t_ - ; · -' ; I : l :

• , •

- - - - t -- -- . --:-· . · r:- . -; --- -� - :-:�;j- :-

·

- - --;--- ·- 1-l'1 • -11_J:--[ :· i-::�,. r- 1, � ! ·--

- :-·I �-;�.t-,, _ 1_- - •

- - - -- - -. -r- --�-�- 1-: 'T. -: -· . ._ _ -- - - .h--+�J-8� : · · " ; _;-. : �._,__ -��+- -;-·-: J :-- . ; - 1 _ _ � ; · - I � .

. : .- ! - '._j' � : -1 1 ! t i- · ; _ · _ _ ; _ _ i :

- - ---· - • .l'o. --� ,-- - - --- - -- - -· -_ , T-r-r :. :7_- �- ;-1-;-_ -; �_- - , , . - i_-�· - -:F:-r_ �- �- - i -� -:-:· 1 " i " . 1 - - I - 1 1 , - t · . . 1 ; • • 1· - . - . - : . , . - , . . , . . 1 . ' i I - ' L- t . .. ; . ,_ � - I - ! - - . . I !- � l ' . - ·1 - ' I I . ! T LJ 1 • I. l I -r- I . t·· : ' I ' - . I ' • I !- I i . - I - I ' '_ I I I

. . . l r - - , . I- 1 r · I . ' - ! . · -- - ' T 1 : . . j i + 1

i ; · 1

· ;-r I '

- · --- -- - - - - --� • -• -->--+--- 1 --1� -1--1- -1 � . , _ 1 :: , . ,_

, -:- , _ , ; , . I , . · 1 : ---:-�-:---,:-;--- - ·· - r 1 , -. ...:tt· _ .....;,._ ,:.-_t+- . ..: . ..;.�- : · _ _ __ _;_ : _i_ ;_; �L� __ _J_ �: _ _j__ _- · -ri--+ - ; , _ _J_ I - + - -- , . f j • . l I L "J . l t . ' ·1 · -- ! · - ._, . , ' - . ' . j ' I ' • I I . - - 1 - I · - 1 i _(_ ' - - ' I i ' . I I - ' · - I I I - - · ' - I - • ' I I

----+---- - -- -l- - ' L -· i I ; ' ' i ,. � - '._ _' 1 ; : . ; : ;__�-j-L!-+:.2- �--: ; :�:.._ . . --��- --· --

_ __ :h-- - -11:\ - f J - --1-0 -:}T�� : 1 11u1p• : · ___ J�i:_l l rU_� i-� � -L �h �-> -11_· ��-l����-�i_l_ _ ; ;_ �_L[ _�_ ; j --, - .... · ;·- 1 . , •• . . , • • • < ; ' • ! ! - - 1 • ' ' 1 · · ' ! ! ' ' r t ! ) j - ! ' '

J · I -• - · -- - 1 1 - · • • - • • • J • 1 • · 1 1 1 - , · . I I · ' 1 r t - ' • ' I - I . ; . : - � �� �; -- ; \ 1 - ��1· : :_· : _ _ I,'.-: . - : --:�, I . : ·� -·--� :-: ! �-I· , �--:- --,��:-� � ��- -� : l��r�1 ·: -·--1-;-1 - -;-r f • . - . • . • . . • t • · . ' • j.. . 1 ' j • : • ., ' ' • t

- ---+ --_

_ __ __ ----:- ;; -;- _ �- -��r- . _

.

_ �-1 - J. -;- --;- · -;; --; :- �-- -·;---;- � - -;, -r·-t - -;-;--:-: - -1- ·1 t-- ·- 1 I ' . : ' I ' �: : : : • ; : : - : ; ; ; ! : • . I J;. I ' ' I • ' : : , _ ! ! ' . 4 . I I I • I I ' . . I I . , - , _ ;_. ; . ;_ . : . --- . : "� ! l · 1 . � -:-�-. -r:- : ! -ri-.-� · - 1 - : - : ; --r- -TJ - �- :

t-· r . . ;: . . . . - ' . •- , , , ' . I , : . ' . . . ' , r I ' . I i ,

l 1

, ') u

,· ' ,_

.:. , I

. , .

\ / - . - 1 · 1-·1 - . - ---- --l : . -:-; T -=-� Ft# -:-: � . .. i ; i i

·-' ·: 1T .:_; : ·- .

. . -�- ; -;-Tr- 1-r�: .=- r�-; ;- - :-----; -�- , --, :· ' I . , _ · · · · j . - 1 -� . . , . . . ..! ./ . . • . , · -- 1 · - . . I , . • • • I ' - 1 - 1 ' . ' · 1 1 · I ' . ·- • ... t --J 1 · I - - T • • l- I I • : I ! I ' 1 ' ' -- · - · I ' 1 . . I t ) 1- - ---+---�-+------+-•f-+"'"'·--

- , + 1 j • 1 - , • • ---:-i- -. -Ti -.--r 1 --·-r-:�T �-1-� -r- ./. � . • f ' - j ' • ' t ' t ' . ' I + I . ! ' V I , . j l ' ' . . ' . ' 1 I , . I ' 1 · j I I ' . • I

: . - - - ·- - - -- �- - -----, · - , . i:r" 'l , ,-: -,- - -; , · , · · j : , · - � - , · I • ·

� I v

r : : : :- : . , • • l • : . : ! . •

. . . : I . j � r : : ! . . - : I ' I - I · ' • - I . ' I • . ' ' ' ' ' I .- ' ' ' ' ' . - : • - . I I . I · ·-- 1 . • ' .... I I , t I • J • • I ' . ' ' I

·b·- , 0 ' - .

- - - -

t2d=• ' -· - I : ' _;_;__�-t - ---· >-r;-�-:��· ' -7-�-�-:-- :- i-,--�-- ,- · -- -·i-i · -- -· ! �-. -- --- - - -- �--i--- -·-� +-�-- -r - - ,- - -· - - -- - · -r-- .. ---�1---l-�- :-·�:--: -_ �-:-- J - , · 1

: - 1 ·- ' • • ' j j ' I 1 - I I I ' 1 ' I 1 - l . . • · I ' i I -�---�-----'----�----�-

: · � : � : ' ·: ·i ! ; ! L • ! r- ·'. 1 --�..:.i__L:__!�� 1 ·I - ' • '. ' � > �-�-��---•- _ .. . _. i

0 � 0 i· ,.. """ 1 3 00 ·i .'.L OO 1 1 00 1 000

F i gure V I I I

;·oo 800 700 " l U E N CY ( C l'/1 1 )

i r spe c tr um o f Naphthyl E the r IV

( A lpha -me thylnaphthyl b e ta -naph thyl e the r )

J O

::J l,, u • l . ' \

.. ·, qo ·l

t· � ' '

�o l , ( ' · I�-' c

1D I • r · ·�� 1 " ,.-• r--1

hol v er· ' ' r-<

t..l�

5b ' )._,

40

30

20

10 1 I

0 2D 4D 60 yo 100 .1zo 11o 160 1_go 2oc 2.).J) 2 'fo 26,(, 2fo �oo 3.20

F igure IX

3 1 : mas s s p e c tr um of Naph thy l E ther I. ( Be ta -me thyln�phthyl be ta-naphthy l e the r )

in/e

I i

/00

qo I � · r-1 U1 c:: �0 1 (!) .p c::

7o I .r-1

(j) >

-� �o l ·P

ctj rl

SOI � 4-0

30

20

10

0 20 !!Ul....l g11 y1 !!!!IHI II .J'=-...Jll!-.JUUI. Ill _ __l

4o 6o 8o foo 120 14-o IW /So 200 220 210 2Go 250 Jco m/ e

F i g ure X J 2

mas s spectrum of N aph thy l E th e r I I ( B e ta -me thy lnaph thy l §: lpha -naph thyl e the r )

/oo

>.. C/D I -P •rl CJ) c:

JO I Q) -P

70

k,O

SD

40

)b

1.0

10

0

s::: ·rl

Q) >­·rl -P ('j r-l

. Q) H

;w 4J ' . " ' ' � " " lli . . - - ·-- - ---

too 120 140 /60 lfiO 200 22-0 .24<> � 2go r;o �o

3 3

Joo

Figure X I : mass spectrum of Naphthy l E ther I I I ( A lpha -me th y l naphthyl a lpha-naphthy l e the r ) ·

m/e

/00

qo l V ·r-1 Ul c:

�o I OJ -P c:

·r-1 10 1 (j)

> ·r-1

�o l -P cd rl (1)

SO I �

4o

30

20

!l o I 0

. . I� 1 1� I� i1l�1l 1l�1i I I 1l 1 LllJu_ 20 � � eo 100 120 t'l<J r'o tio :ioo 2!2.0 :Z.!f6 :2,0 1.. 5o gM

J4 F i g ure X I I 1 mas s spe c tr um of N aph thy l E th e r IV

( A lpha -me thy lnaph thyl be ta�naphthyl e the r )

m/e

S tandard i z ati on of Naph thjl E the r I and Be ta -naPhth o l U sing

3 ib e n z;yl a s I n -t e rn a l S tand a:!:'d

C ompound Re te ntion C l ; C2 -* A l ; A 2 -�- -�· F 1 ; F2 Time (min . ) ( mg/mL )

Bibenzyl 3 . 2 6 . 6 7 8 0 2 9 0 1 1 0 . 0 8 0 91 7 0

Naphthyl 4 . 1 0 . 2 6 7 43 877 0 . 07 0 8 E the r I 0 . 2 0 0 2 1 3 75 0 . 0 0 1 3

Be ta- 2 . 1 0 . 2 6 7 2 94 7 8 0 . 1 04 Naphth o l 0 . 2 0 0 1 4 1 4 9 0 . 0 0 1 8

S tandardi zati on of Naph thyl E the r I and Be ta-naphthol

Naphthalene as Inte rna l S tandard

C omp o und Re te n ti on · c1 ; c -:i- A1 ; A 2** F1 ; F2 Time ( min . ) ( mg/fnL )

Naphthalene 4 . 6 0 . 5 0 0 1 645 85 1 0 . 3 3 3 7 9 841 0

Be ta- 2 , 7 o . 4 oo 1 1 98 1 1 1 . 146 Naphthol 0 . 5 3 3 1 1 3 8 7 9 - 0 . 034

Naphthyl 14 . 5 o . 4 oo 1 996 08 0 . 6 0 0 E the r I 0 . 5 3 3 2 03 24 0 0 . 0 7 2

* For b ibenzyl and naphthalene , c 1 ; c 2 i s C . l ; C . 2 . l S l S ** F or b ibenzyl and naphthalene , A 1 ; A2 i s A . l ; A . 2 ; l S l S

Integrated areas are ave rage o f d up lic ate runs .

U sing

3 6

S tand ar d i z a t i on of o - Ph e n oxyb e n z o i c A c i d and S a l i c y l i c A c i d

U s i n� Ph tha lic A c i d a s I n t e rna l S tandard .

C ompo u.nd R e tent i on C l ; C 2* Time ( min . ) ( mg/mL )

Phtha l ic 2 . 3 1 . 0 0 A c i d o . 5 7 1

o -Phenoxybe nz oic 7 . 3 1 . 0 1 A c i d 1 . 44

Salicylic 3 . 9 1 . 0 1 Ac i d . 1 . 44

S tandard i zat i on of Na�hthyl E ther I I I ,

U s ing B ibenzyl as Internal

C ompo und Re tenti on

T ime ( min . )

B ibenzyl 3 . 0

Naphthyl 3 . 8 E the r I I I

Alpha - 2 . 1 Naphtho l

S tandard

C 1 ; C 2*

( mg/mL )

6 . 6 7 3 . 33

0 . 53 3 0 . 6 6 7

0 . 5 3 3 0 . 6 6 7

A · A ** 1 ' 2 F 1 ; F2

1 3 95 1 8 1 1 1 8 6 9 1 0

1 35 8 95 1 . 348 24 95 23 - 0 . 2 988

744 2 8 2 . 03 7 1 5 1 934 - 0 . 0 7 25

and Al'pha -na�hthol

A · A * * 1 , 2 F 1 ; F2

1 234 1 9 1 8 745 0 0

5 2 1 4 7 0 . 3 635 85 854 - 0 . 0 05 1

2 8 8 81 0 . 2 1 4 9 4 93 7 2 - 0 . 0 1 0 9

* For phthal i c ac id and biben zy l , c 1 ; c 2 i s c . l ; C . 2 . l S l S

* * F or phthalic ac id and bibenzyl , A1

; A 2 is A . 1 ; A . 2 I n t e gra t e d are a s are average o f d upl i cat e rtlns . 1 s

3 7

S tandardization of o-Anisic Acid and S a licyl i c Ac id U s i ng

Fh thal i c A c i d a s I n te rna l S tan d ar d

Compound

Ph thalic A c i d

o-Anisic Acid

Salicylic Acid

Retention Ti me ( min. )

2 . 7

4 . 2

5 , 6

0 . 6 6 7 7 142 9 0 . 3 3 3 5 855 6

0 . 6 67 455 0 9 0 . 83 3 9023 0

0 . 6 67 2 7 7 6 6 0 . 83 3 6 0554

S tandard i z a t i on of o-Anisic Acid and S a l i cy l i c

Hvdrocinnarilic A c id as In ternal S tandard* *'*

1 0

1 . 6 6 1 - 0 . 05 9

2 . 3 27 0 . 01 0

Acid Usin_g

C ompound Retention C 1 ; C 2* A · A * * 1 ' 2 F1 ; F2 Time ( min . ) ( mg/mL )

Hydrocinnamic 7 . 8 3 . 0 0 7 5 63 0 1 A c i d 2 . 0 0 5 94 04 0

o -Anisic 4 . 1 0 . 5 0 0 741 92 0 . 1 6 93 A c i d 0 . 6 6 7 1 6 1 7 97 0 . 0 0 0 6

Hydrocinnamic 7 . 8 3 . 5 0 3 1 7 8 04 1 Acid 2 . 0 0 1 98 1 1 2 0

S a l i c y l i c 4 . 8 0 . 2 0 0 67 544 0 . 3 0 05 A c i d 0 . 2 8 6 98 6 1 2 - 0 . 0 067

F or phthalic and hydrocinnamic a c i d , c 1 ; c 2 i s c . l ; C . 2 . l S l S

F or ph tha l i c anf :r, yd;: o c i nnam i c a c i d , A 1 ; A 2 i s A . . 1 ; A . 2 l S l S

I nte gra t e d a r e as are av e rage o f d up l i c a te r uns

* * * Th i s c a l i bra t i on wa s d on e at 2 d i f f e r e nt c onc e n tra t i ons

o f the s tandards .

3 8

S tandard i za t i on of P -Ani s i c and P -Hvdr oxvb e nz o i c A c i d U s ing

Comp o und R e t e n t i on

T ime ( miE . ) c 1 ; C * ( mg?mL )

Al ; A2** F l ; F2

H y dr o c i nnam i c 8 . 1 5 ; 45 1 55 946 1 Ac i d 5 , 0 0 7 01 03 0

p -Ani s i c 6 . 1 0 , 0454 1 25 6 97 0 . 0 0 9 A c i d 0 . 0833 1 2 15 7 2 0 . 0 01 1

p -Hydr oxyb e n z o i c 3 . 0 0 . 0454 1 2 063 9 0 . 01 1 7 A c i d 0 , 0833 1 04275 - 0 , 0 007

S tandard i z a t i on of o -E th oxyb e n z o i c A c i d and S a l i cy l i c A c i d . .

U s i ng Ph tha l i c Ac i d a s Internal S (2and ard

C omp ound R e t e n t i o'.':1 C 1 ; C 2* Al ; A 2

* * F1 ; F2 Time ( min . ) ( mg/rnL )

Ph tha l i c 3 . 1 0 . 5 0 0 1 1 85 1 0 1 A c i d 0 . 2 8 6 4 825 8 0

6 -E th oxyb e n z o i c 8 . 7 1 . 1 1 1 944 94 1 . 354 A c i d 1. 27 1 5 82 0 9 - 0 . 0 025

S a l i c y l i c 7 . 1 1 . 0 0 1 2 6 1 07 1 . 7 65 Ac i d 1 . 14 1 05 924 0 . 1 2 1

* F or ph tha l i c �nd h yd r o c i nnam i c ac i d , c 1 ; c2 i s c . l ; C . 2 l S l S

* * F or ph tha l i c and hydr o c i nnami c a c i d , A1 ; A2 i s A . l ; A . 2 l S l S

Inte grate d are a s are ave rage o f d up l i c a t e r uns .

3 9

RES ULTS

Tab le I C l e av i ng agents , s o lve n t , tempe rature , reac ti on time

and e th e r re c ove ry f or naph thyl e th e r r e a c ti ons * *

Exp E th e r N o ,

1 I

2 I

3 I

4 I

5 I

6 I

7 I

8 I

9 I

1 0 I

1 1 I

1 2 I

1 3 I I I

1 4 I

1 5 I

16 I

C leaving Agent

Py • H I

Py • H I

Py · H I

Py • H I

H I gas

5 7% H I

Py . H I F e C 1 2 · 4H 2 0

Py · H I F e S 2

F e S

Py · H I F e S

Li l · 3H 2 o

Py · H I

Py · H I ( Ph ) 2S

Py · H I c oal

c oal

S olvent

Pyr i d i ne

Pyr i d i ne

Pyr i d ine

95% Pyr i d i ne 5% H 2 0

CH 3 CN

Pyr i d ine

aq . H I

Pyr i d i ne

Pyr i d ine

Pyr i d i ne

Pyr i d ine

Pyr i d ine

Pyr i d i ne

Pyr i d i ne

/ Pyr i d ine

Pyr i d i n e

Temp . Time % E th e r ( oc ) ( days ) Re c ove ry

9 0 ° 3 9 6

s5 ° 6 1 03

1 0 0 ° 3 1 01

1 1 0 ° 7 96

7 8 ° 5 94

5 9 ° 3 94

1 3 5 ° 0 . 1 J 6 9*

95 ° 6 95

95 ° 4 9 9

9 0 ° 5 1 0 2

9 0 ° 5 1 02

9 0 ° 5 98

1 1 5 ° 3 1 02

1 1 5 ° 3 94

1 1 5 ° 7 94

1 1 5 ° 7 93

* 0 . 0 2 3 mmo l of be ta -naph th o l wa s al s o d e te c te d ( 13% c l e avage ) .

* * Th e ave rage for e ther re c ove ry i s 96 ± J� .

4 0

Tab le I I : Q uant i tative Analys i s o f Naphthyl E ther Produc t Mixture by HPLC

E xp . E th e r N o .

1 I

2 I

J I

4 I

5 I

6 I

7 I

8 I

9 I

1 0 I

1 1 I ,

1 2 I

Am o unt E ther

( mmo l )

0 , 1 7 6

0 . 1 7 6

0 . 1 7 6

0 . 1 7 6

0 . 1 7 6

0 . 1 7 6

0 . 1 7 6

0 . 1 7 6

0 . 1 7 6

0 . 1 7 6

0 . 1 7 6

0 . 1 7 6

C le aving Agent

- - - -

Py · H I

Py • H I

Py · H I

Py · H I

H I gas

5 7% HI

Py · H I Fe C 12 · 4H2 0

Py • H I FeS 2

FeS

Py • H I FeS

Li I · JH 2 0

. Amount Area of Area of W t . o f Re c ove red C . A . S tandard · E the r S tandard E the r

( mmol ) ( mg ) ( mmol )

- - - - - 1 3 1 7 07 1 98 575 45 0 0 . 1 6 9 -

0 . 3 0 0 87 07 J 14J 1 2 0 0 0 . 1 8 1

0 . 3 00 5 02 8 8 8 8 941 4 0 0 0 . 1 7 8

0 . 6 0 0 J 646 8 - 1 22 86 8 2 0 0 0 . 1 6 9

0 . 6 0 0 6 01 5 3 987 01 4 0 0 0 . 1 65

J -hr 3 9667 1 3 1 7 1 8 2 0 0 0 . 1 66 b ubb ling

7 , 6 0 1 6645 8 4 0 2 8 07 2 0 0 0 . 1 2 2

0 . 3 0 0 8JJ 82 27 87 93 2 0 0 0 . 1 6 8

O . J O O 57 066 1 98 847 2 0 0 0 . 1 75 0 . 04 0

0 . 0 9 0 1 5 3 2 1 7 24 15 Lr o 45 0 0 . 1 7 9

o . 3 0 0 93 3 1 9 . 1 4 6 95 9 45 0 0 . 1 7 9 0 . 0 9 0

O . J O O 1 27 2 07 1 93 07 1 45 0 0 . 1 7 2

41

Tab le I I Q uanti tative Analys i s o f Naphthyl E ther Prod uc t Mixture by HPLC ( c ont • d )

E xp . E the r Amount C leaving N o . E ther Age nt

( mm o l )

1 3 I I I 0 . 1 7 6 Py • H I

l l1, I 0 . 1 7 6 1f¥11��s 1 5 ' I 0 . 1 7 6 Py . HI

ext . c oal

1 6 I 0 . 1 7 6 ext . c oal

-i� l /5 a l iq u o t was analyz e d

Amount Area of Area of W t . of C . A . S tandard E the r S tandard

( mm ol ) ( mg )

0 . 3 0 0 1 2 62 3 2 1 05 8 2 2 6 0 . Qi�

0 . 3 0 0 1 9 96 1 8 6 01 2 87 5 • Q-!H� 0 . 1 3 0

0 . 3 0 0 1 74 2 7 8 1 1 2 075 2 0 , Q-!Hf- * 0 . 5 0 g

0 . 5 0 g 1 6 1 3 6 0 1 02 8 6 0 2 0 , 0* -lH�

-lH:- 1 /5 a l i qu o t was analy z e d , naph thalene used as inte rnal s tandard

1HH0 1 /5 0 a l iq u o t was analyzed ,

Re c ove r e d E th e r

( mm o l )

0 . 1 7 9

0 . 1 65

0 . 1 65

o. 1 63

4 2

Tab le I I I C le aving agents , s o lvent , tempe rature , reac ti on

time and e ther re c ove ry f or c leavage re ac ti ons

inv o lv i ng o -anis i c ac id and re late d e thers * *

Exp E ther C le aving S olvent Time Temp % E the r % C lvg* N o . Age nt ( days ) ( oc ) Re c overy Prod uc t

A q -anis i 6 ; acid Py · H I Pyridine 3 85 ° 8 0 1 0

B o -anis i c - ac i d Py · H I Pyridine 3 1 1 5 ° 1 0 8 6

c o -ani s i c ac i d Py . H I Pyridine 3 1 1 5 ° 1 8 7 6

D o -ani s i c ac id K I Pyridine 3 1 1 5 ° 3 3 5 8

E o -ani s i c a c i d Li I · 3H2 0 Pyridine 3 8 5 ° 44 54

F o -anis ic ac i d Py · H I CH3 CN 4 75 ° 9 9

G o -anis i c ac i d K I in 1 8 - CH3 CN 4 7 5 ° 94 c -6 e th e r

H o -ani s i c ac i d Py · H I DMS O 4 7 5 ° 94

I o - e th oxy - Py · H I Pyridine 3 1 1 5 ° 84 1 8 be nz oic ac i d

J p-ani s i c .ac id Py • H I Pyridine 3 1 1 5 ° 96

K o -phe noxy- Li I · .3H 2 0 Pyridine 5 9 0 ° 94 benz oic ac id

L o -phenoxy- Py · H I Pyrid ine 3 1 1 5 ° 1 01 benz o i c ac id

I * The c le avage prod uc t de te c te d was sali cyli c ac id .

-i"* The ave rage f or mass : · bji.lNce:::;> is 96 .± 37; .

4J

Tab l e I V Q ua n t i tat ive Ana lys i s of o -Ani s i c A c i d an d R e la te d E the r R e a c t i ons b y HPLC

E x p . N o .

E th e r

A o -an i s i c ac i d

B o -an i s i c a c i d

C o -an i s i c a c id

D o :... an i s i c ac i d E o -an i s i c ac i d

F o -an i s i c ac i d

· c o -an i s i c ac id

H o - a n i s i c ac i d I o - e th oxy ­

b e n z o i c ac i d J p -an i s i c ac i d

Am o un t E th e r

( mm o l )

0 . 1 75

0 . 1 75

0 . 1 75

0 . 1 73

0 . 1 75

0 . 1 75

0 . 1 75

0 . 1 75

0 . 1 6 2

0 . 1 7 9

K o - phe n ox y b e n z o i c 0. 1 75 ac i d

L o - ph e n oxybe n z o i c 0 1 75 ac i d

C l e av i ng Age nt

Py · H I

Py · H I

Py . H I

Am o un t C . A .

( mm o l )

O . J J J

O . J 1 0

O . J O O

K I O . J J J

Li I · JH2 0 O . J 7 0

Py • H I O . J O O

KI in 1 8 - O . J O O c -6 e the r 0 . 0 6 0

Py . H I

Py • H I

Py • H I

O . J O O

O . J O O

O . J O O

Li I · JH2 0 O . J O O

Py • H I 0 . J O O

* The i nte rnal s tandard was ph tha l i c a c i d ,

-1H< 1 /5 a l i q u o t was ana l y z e d .

Are a of Are a o f S tandard E th e r

2 7 91 7 2

25 885 8

25 6JJ 6

2 64846

1 85 9J 6

1 J45 J 2

1 2 03 86

1 J 7 035

6 2 3 04

3 2 8 846

1 0 2 9 74

1544 97

2 1 8 0 8 0

2444 8

4J 1 0 7

8J 1 4 7

4J 6 6 2

1 1 1 5 08

942 14

1 08246

2 0 84 8 8

2 7 891 0

1 4 9 8 0 0

2 02 0 2 0

W t . o f * * * S tandard ( mg )

3 2 • Q-IH�

J 2 • Q-IH

3 2 ' Q-IH�

J 2 . 0* *

J O O . O

2 0 . Q-1< 2 0 . 0-1<

2 0 . 0-1< * 1 , Q-IH<

J O O . 0* * * -1� 2 0 . Q-1<

5 . Q�-1<

E the r R e c ov e re d ( mm o l )

0 . 1 4 0

0 . 0 1 7

O . OJ 2

0 . 05 7

0 . 0 77

0 . 1 74

0 . 1 64

0 . 1 65

0 . 1 3 6

0 . 1 7 2

0 . 1 6_5

0 . 1 7 6

* * * U n l e s s s p e c i f i e d o th e rw i s e , th e inte rna l s tandard u s e d was hydr o c innam i c a c i d .

* * * * 1 /1 0 a l i q u o t wa s ana ly z e d .

44

D I S CUS S I ON

The ana ly t i c a l pr o c e d ur e f or the HPLC q uan t i ta t ive ana ly -

s i s was d one i n th e f o l l owing way : A me th od c a l le d 2 -p o i n t

c a l ibrat i on wa s u s e d . D up l i c a t e d e t e rmina t i on of tw o s o l u t -

i on s c onta i n i ng d i f f e r e n t c onc e ntra t i or.s of s tandard c omp o und s

and inte rna l s tandard w e r e i n j e c te d into the HPLC . S inc e the

2 s o l ut i ons c on ta i n known am o un t s of e ac h c omp one nt and the

a r e a s und e r th e p e ak s are int e gra t e d , a r e s p on s e fac t or c an

b e c a l c ula t e d ·. I n c a l ibra t ing aga ins t an inte rna l s tandard ,

a p l o t o f the c,on c e ntra t i on o f s ample/c onc e n tra t i on o f inte rna l

s tandard v s . are a of s�mp le/area of inte rnal s tandard w o ul d

y i e ld th e s l op e (�Y/�X ) calle d F1 and t h e Y - i n te rc e p t ( Y 0 )

called F 2 .

C one . of sample C one . of int e rna l s td .

I <l y I I

Area of sample A r e a o f inte rna l s t d .

c� x c . 1 - cA x c . z F � 1 8 • l S

1 = C . 1 x C . 2 ( A�/A . 2 - A4/A1. 8i) 1 8 1 8 4 1 8 .£,;

c 1 c onc e ntra t i on of s tan dard s amp l e 1

c 2 c onc e n tra t ion of s tandard s amp l e 2 c . 1 1 8 c onc e ntra t i on o f i nt e rnal s tandard

c . l S 2 c onc e ntra t i on o f inte rna l s tandard

Al p e ak are a of s tandard s amp l e 1

A2 p e ak are a of s tand ard s amp le 2 A . l S 1 p e ak are a of i n t e rna l s tandard in

A . 2 p e ak are a l S of i n t e rna l s tandard in

C 2 F A2 -- - 1 x --c . 2 A . 2 1 8 l S

i n s tandard sample

in s tandard s amp l e

s tandard s amp l e 1

s tandard s amp l e 2

W i th the re s p ons e f a c t or f or th e c omp o und o f in t e r e s t

d e t e rm i ne d , i f a kn own am o unt o f inte rna l s tandard j s n ow

a d d e d t o a r e a c t i on mix ture , th e c onte nt of the m i x ture c an

b e c a l c u l a t e d :

ws p

l = ( Fl . x A . /A . + F2 . ) x w . l l l S l l S

Wh e r e :

A . = are a of s amp l e l

A i s = ar e a o f i nt e rna l s tand ard

Fl . = re s p ons e l fac t or f or s l ope

F2 . = r e s p ons e l fac t or f or j n t e r c e p t

W i s = we i gh t o f i n t e rna l s tandard

w = we i gh t of ma t e r i a l i n th e s amp l e s p l

I t s h o 11l.d b e n o t e d tha t th e ab s o l u. t e we i gh t of th e

m a t e r j a l in �h e s amp J e can be c a l c u la t e d d i r e c t ly e ven th o ugh

1

2

4 6

the calibrat i on was d one in te rms of c onc e ntrati on be cause

b o th the c ompound of inte re s t and the in te r�a l s tandard we re

in the same volume of re ac ti on mixture and th u s the fac t or

f or v olume c ance l.S out in the c omputati on .

Attempte d C le avage of Naphthyl E thers I and I I I with Pyridine

Hydri odide and Other Cleaving Agents

Reac t i ons of naphthyl e thers were c onduc te d to unders tand

the re s ults of Mayo e t a11 0 who had sh own that pyridine hydr­

i od ide in pyridine at room temperature d e c re ased . . the mole c ular

we ight and inc rease.cl the pheno lic - OH c ontent of an I llinoi s

N o . 6 asphalt o l frac ti on . Pyrid ine hydri od ide in pyridine at

5 0 ° reduc e d the mole c ular we ight of an I llinoi s N o . 6 asphaltol

frac ti on t o the same exte nt as s od i um in liqui d ammonia . In

b oth c as e s it i s be lieved that the e ther l i nkage s in c oal are

be ing c le ave d .

Experiment N o . 1 s e rve d as a c ontrol e xperirr.e nt whe re no

c le aving age nt was adde d . W i th e the r I in pyr i d i ne f or 5 days

at 9 0 ° , re c ove re d e ther after work-up was 96% .

In e xperiment 2 , e ther I was reac te d wi th pyridine hydr ­

i od ide in pyrid ine at 85 ° f or 6 days , I n experiment J , the

temperature was rai s e d t o 1 0 0 ° but the re ac t i on t ime shorte ne d

t o 3 days . N o e ther c le avage was de te c te d i n b o th runs , e the r

re c ove ry be ing 1 03 % --and 1 01% re s pe c t ive ly .

In e xperiment 4 and 5 , c le avage wi th pyr i d ine hydri od i de

was attemp te d in o the r s o lve nts s uch as 95 ;:; pyr i d i ne /5% water

o r ac e toni tri le . In the se s o lvents , no c le avage pr oduc ts were

47 f o und and e ther re c ove ri e s we re 96% and 94% re spe c tive ly .

In e xperime nt 6 , H I gas was b l e d into a pyrid ine s o lut-

i on of e ther I f or 3 hours , then the reac ti on was allowed to

proc e e d at 5 9° f or 3 days . E ther re c ove ry was 94% ,

Hydroi od i c ac id i s known as a s tandard c leaving agent of

alkyl e th e rf 0 . In exper iment 7 , aque ous H I i s te s te d in c le av ­

ing e the r I , the reac ti on was c arr i e d o u t at 1 35 ° f or 3 hours ,

e ther re c ove re d was 6 9% and 1 3% be ta-naphth o l was de te c te d .

Th i s run sh owed e ther I undergoe s c le avage und e r s tandard

e ther c le aving c onditi on&.

I t i s rep orted that I llino i s N o . 6 c oal c ontains about 2 1 0 . 9% Fe . Exper iment 8 was d one t o f ind out if the iron pre -

s e nt in c oa l may aid pyrid ine hydr i odide in c leaving e ther

l i nkage s . Ether I w a o reac te d wi th Py · H I and Fe C 12 . 4H 2 o in

pyri d ine a t 95 ° f or 6 days , re c overe d e ther was 95% and no

c le avage prod uct d e te c te d . S ulfur i s anoth e r e lement pre s ent

in s igni f i c ant amounts in c oal , a typical I llino i s N o . 6 c oal

c onta ins ab out J . 5% s 2 1 . FeS 2 was te s te d as a p os s ible cat­

a lys t for e ther c le avage wi th Py · H I . FeS 2 wi th Py · H I was reac t ­

e d wi th e ther I in pyridine at 95 ° f or 4 days i n run 9 , no e ther

c le avage was obs e rve d and e ther re c ove ry was 99% . 2 2 Kamiya e t al reporte d that c oa l a s h , s pe c ifi c ally s i li c a -

alumina and i r on s ulfide , /e nhanc e s the d e c ompc s i ti on o f mode l

e th e r s at 4 o o 0 . E�pQ rime n t 1 0 was d one t o che c k if iron s u l-

f i d e maybe ac t ing as an e ther c le aving agent . N o c l e avage was

obs e rved wh e n thi s reage nt was reac t e d w i th e ther I a t 90 ° f or

5 days and e th e r re c ove ry wa s 1 02% . I n experime nt 1 1 , its

poss ible func t i on in a j d i ng Py · H I in e ther c leavage was als o

48

te s te d . Whe n e ther I was reac ted w i th Py ' H I and FeS in pyrid ­

ine at 9 0° f or 5 days , no c le avage re s ulted and e the r re c overy

was 1 02% .

In e xperiment 1 2 , Li I · 3H2 o wa s used as a c leaving agent .

Li th i um i od ide c le aved 2 -me th oxynaphthalene in c ollidine at

1 7 2 ° 23 . A t 9 0 ° f or 5 days in pyrid ine h oweve r , e ther I d oe s

not undergo c le avage wi th thi s reagent , e ther re c overy be in g

98% . In e xper iment 1 3 , naphthyl e ther I I I was s ub j e c ted t o

c le avage reac t i on wi th pyridine hydri odide in pyridine at 1 1 5 °

f or 3 day s . N o c le avage was obs e rved and re c overy was 1 02% .

In experiment 1 4 , phenyl s ulfide was te s te d f or i ts catalytic

ac tivi ty with Py • H I i n c le aving e ther I . The reac ti on was run

in pyridine a t 1 1 5 ° f or 3 days , no c le avage was observed and

e ther re c ove ry was 94% .

The s e reacti ons are interpre ted t o mean the general inert­

ne s s of benzylic naphthyl e thers t o mi ld c le aving agents s uch

as Py . H I . I t sh ould be recalle d that Py • H I in pyrid ine at

r o om temperat ure d e c re as e s the mole c ular we ight and increases

the phenolic - OH c ontent of an asphaltol fracti on , h oweve r ,

th i s same re agent in pyrid ine d o e s not c le ave benzylic naph ­

thyl e thers at 1 15 ° , therefore , one can safe ly c onc lude that

the se s imple e th e r linkage s are not re spons ible for the change s

obs e rved by Mayo e t a1 1 0 .

The e nvir onme nt ins ide the c oa l matrix may be c ond uc ive

f or e ther c le avage . In e xpe rime n t 1 5 and 1 6 , the e ffe c t of '

c oal on e th e r c le avage reac ti ons we re te s te d , In expe rime nt

1 6 , extrac te d c oa1 1 6 ( pyrid ine ins oluble frac ti on ) was reac ted

w i th e ther I i n pyrid ine a t 1 1 5 ° f or 7 days , no c leavage was

ob s e rve d and e th e r r e c ove ry wa s 93% . In e xp e r im e nt 1 5 , e th e r I

wa s r e a c t e d w i th Py · H I and e x tra c te d c oa l a t 1 15° f or 7 days ,

n o c l e avage r e s u l t e d and e th e r re c ove r e d was 94% . Th e r e are

s e ve ra l th ings t o me n t i on ab ou t th i s ob s e rve d re s u l t of e th e r

r e a c t i on of Py . H I i n c oa l . F i r s t , the re i s a lways th e p o s s i -

b i l i ty tha t e th e r I and Py ' H I we re n o t drawn i n s i d e th e c oa l

ma t r i x e v e n af t e r r e p e a t e d ly we t t ing the c oa l wi th the e th e r

s o l u t i on , h e n c e t h e r e a c t i on d i dn ' t re a l ly o c c ur ins i d e the

c oa l . S e c ond , onc e e th e r I ge t s i ns i d e th e c oa l matrix , i t

may i n t e r c a la t e w i th in the c oa l s truc t u r e and th u s r e nd e r i n g

c l e avage r e a c t i o n wi th Py • H I e ve n hard e r t o o c c ur . Th ird ,

Py . H I d o e s n o t c le ave e th e r I e v e n i ns i d e th e c oa l ma trix .

C le ava2_ e R e a c t i ons of o -Ani s i c A c i d and R e l a t�_sLA c i d s wi th

Pyr i d i ne H yd r i o d i d e and O the r C le av i n��p t s

The s tandard i za t i on o f o -an i s i c a c i d and s a l i c y l i c ac i d

aga i ns t hydr o c i nnam i c a c i d w a s d one twi c e . I t wa s ob s e rve d

tha t the f ir s t c a l i bra t i on was m ore a c r nra t e in q uan t i ta t i ng

o -an i s i c a c i d r e c ove ry wh i le the s e c ond c a l i b ra t i on was m or e

s e ns i t ive t o s a l i c y l i c ac i d . Th u s , a c omb ina t i on of the 2

c a l i bra t i ons was u s e d . A ls o , i t i s hard to ge t r i d o f th e

las t tra c e s o f pyr i d ine e v e n a f t e r the w o rk - up , wh i c h.

sh owe d

up a s a sma l l p e ak a t o r ne ar the i n t e rna l s tandard p e ak .

H e n c e , a c or r e c t i on o f the i n t e rna l s tandard p e ak has be �

d one t o c or r e c t f or the pyr i d i ne 1 1ac kgr o und . 'I'y p i c a lly , the

i n te rna l s tand ard h a s an area of J 0 0 , 0 0 0 un i ts whi l e the

pyri d i n e p e 2 k re £" i s t e r s ci.n ::n · f a o f J O , 0 0 0 L:ni t s . ,_, .

50

A l i t e ra ture s e ar c h on c l e ava ge r e a c t i o n s o f o -a�i s i c ac i d

and r e la t e d a c i d s wa s c ond uc t e d , �IJ R oy e r .U tlc:. .- s h ow e d tha t

p -an i s j c ac i d i s c J e av e d b y pyridine hydrochloride a t 22 0° to

p -hydr oxy b e n z o i c a c i d i n 7 0% yi e ld . Mc Carthy e t a 1 2 5 r e por t e d

that NaCN in D MSO c le ave s the f o l l owing :

C ompound Prod uc t Time TemJ� Yie ld -�-- - --( hrs-:- ) ( O C ) (% )

2 -me thoxynaphthal e ne 2 -naphth ol 24 1 8 0 7 7

1 -me th oxynaph thalene 1 -naphthol c:. 1 8 0 7 7 _,

o -ani s ic acid salicylic ac id 8 1 8 0 8 9

2 6 2 7 . Mc Omie and Pre s s ' rep orte d that b oron tribromide c le ave s

the s e following e thers a t room tempe rature :

C ompound Produc t Yi e ld ( % )

1 -me thoxynaphthalene 1 -naph tho l 14

2 -me thoxynaphthalene 2 -naphthol 6 7

o -anis i c ac i d sali c ylic ac id 94

p -anis i c ' ac i d p -hydroxybenz o i c ac i d 92

p -e thoxybenz o i c ac id p -hydroxyben z oi c ac id 94

A s ye t , n o e the r c l e avage w i th pyr i d �ne hydri odi de has

b e e n r e p or te d . A l s o , the re s ult s of e ther c l e avag e w i th p yr i d ­

i ne h ydr i o d i d e i n pyr i d ine w i l l he lp u s ga i n a b e t t e i under-

s tand ing o f M a y o ' s w o r k o n c oa l w i th p yr i d ine h yd r i o d i d e .

I n e x pe r im e n t A , o -ani s i c a c i d wa s r e a c te d w i th pyr i d ine

h yd r i c d i d e i n pyr i d i ne at 85 ° f or 3 days , 10% s a � i c y l i c ac i d

5 1

was d e te c te d and 8 0% e th e r · was re c ov e red . In e xp e r ime n t s E

and C , o - ani s i c ac id was r e a c te d w i th pyr i d ine hydri o d i d e in

p yr i d ine at 1 15 ° f or 3 days , ave rage of the 2 r uns showe d 8 1%

c le avage and 14% e ther re c ove ry .

R e a c ting KI with o -an i s i c a c i d in pyr i d i n e at 1 15 ° f or

3 days in e xp e r ime nt D , re s ul te d in 5 8% c le avage and 3 3% re c -

ove re d e the r . Li th i um i od i d e i s known t o c le ave 2 -me thoxy -

naph tha l e ne in c ollidine at 1 7 2 ° 23 Thi s re agent was te s te d

i n c le aving o -ani s i c ac id i n pyrid ine a t 85 ° f or 3 days in

e xp e r ime nt E , 54% c le avage and 44% re c overy was obs e rve d .

In e xperiment F , o -ani s ic ac i d was reac te d wi th Py · H I in ace to ­

ni tri le f or 4 days a t 75 ° , no c le avage was obs e rve d and re c ov­

e ry of o -ani s i c ac id was 99'fa . In expe r iment G , o -anis i c ac id

was reac te d wi th KI and 1 8 -c r own-6 e the r in CH3

CN at 7 5 ° f or

4 day s , n o c le avage re s ulte d and e ther re c overe d was 94% .

In e xperiment H , o -ani s i c ac id was rea c t e d w i th Py . HI in DMS O

a t 75 ° f or 4 day s , e ther re c overy was 94% and no c le avage was

obs e rve d . In expe riment I , o -e th oxybe nz o i c ac i d was reac ted

wi th pyrid ine hydr i od i de in pyr i d ine a t 1 1 5 ° f or 3 days , 1 8%

c le avage was obs e rve d and e ther re c overe d was 84% . In exper­

iment J , p -anisi c ac i d was re ac te d with Py • HI in pyridine at

1 1 5 ° f or 3 day s , no c leavage re s ulte d and p - ani s i c ac id re c ov­

e re d was 96% .

In e xp e r ime nt K and J , o �phe n oxyb e n z o i c a c i d was te s t e d

f or c le avage w i th li thi um i od i d e o r Py . H I . Wi th Li l ·)H 2 o in

pyr i d i ne at 9 0 ° for 5 days , no c le avage occurred and 94% e the r

was r e c ove re d . In pyr idine w i th Py . H I a t 1 1 5 ° f or 3 days , 1 01%

e ther was re c overed and no c leavage was ot s e rve d ,

Bas e d o� the s e re sults , the f o l l ow img are n o te d :

o -Ani s i c ac id und e rgoe s more exte ns ive c leavage ( 81% ) than

o -e thoxybe nz o i c a c i d ( 1 8% ) wi th Py . H I und e r s imi lar c ondi ti or.s ,

wh i le o -pEe n oxyben z o i c a c i d i s not c le ave d at all . Thi s i s

s ugge s tive of a n SN2 me chani sm : the e thyl group i s re lative ly

hind e re d c ompare d · t o the me thy l group f or a backs ide attac k

by an i odide i cn . S tre i twie s e r2 9 re p orte d that the me thyl

group undergoe s SN2 re ac t i on fas t e r than the ethyl group by

a re lative rate of J O : 1 in s imple sys tems . The phenyl group

d oe s not undergo SN2 reac ti on , hence the ine r tne s s of o-phenoxy­

benz o i c a c i d t o • Py · H I .

Can interna l pro t onati ori of the e ther oxygen of o -ani s i c

ac id occur ? W i l l i od ide i on be e qually , e ffe c tive i n c le aving

e the r A as we l l as e ther B ?

0 i i ©eol,

...... . ·· 0 " c H 3

A B

K ovi e t alJ O mea s ured the s uc c e s s ive pKas of sali cylic acid

on going from c oncentrate d ac i d t o c onc e n trated base s o luti ons ,

b o th in the ground and exc i te d s tate s :

rArC�� H l8-lok

][

5 3

The y c on c lud e d that the pa th g o ing from I � I I � I I I �vr occurs

in the gr o und s tate whi le the path fr om I - Iv - V -"'> V I o c c ur s

i n the exc i te d s tate .

v I I I

A the ore ti cal c alc ulati on of the ta u t ome r ism of V � I I I

(s i n c e both d on ' t c o-e xis t in the gr o und state ) ba s e d on the

given pKas showe d I I I as the pre d omi nant t a u t o�e r , w ith a

re la tive pKa = - 6 . 5 , or J . 2 x 1 06 ta utome r i c form I I I p e r

m o l e c u l e o f V . In c ons i d e ra t i on of thi s the ore t i c a l basi s ,

thi s type of i nte rnal pr o tonati on appe a r s l i ke l y in the gr o und

sta t e :

D

On the o ther hand , Paul and S chulman2 8 ob s e rv e d that n o

s uch intramole c ular or inte rmole c ular ph o t o tautome ri sm o c c urs

with p -hydroxyben z o i c ac id .

of p -hydroxybe·nz o i c

© HO, ,,,_ o H c "

c¢J 0 Ii

- H +-� �

pkq = - 7. (,

ac i d in

O H

The y measure d the s uc c e s s ive pKas

the gr ound s ta te :

0 0 0 o , " c-::;::- ti c..� o

- H + © f�3© � �

fKa " 4 .s Of-\ oe

o-Ani s i c ac i d may be more s us c e ptible to SN2 - type displace ­

ment by an i odide i on . Whe the r in the tautomer C ( where the

me th oxy group is hydrogen bonde d by the carb oxyli c hydroge n )

o r i n the tautomer D ( where intram o le c ular hydr ogen transfer . .

t o ok pla c e ) , the e the ric oxygen i s rendere d e le c tropos i tive

and thereby fac i l i tating an SN2 attack by the i od ide i on .

0 @�.,,o h :; - . � . · �

_ .· - C l\ �l 0 "

�-t J' C k'l A:/ � I.-

N o intramo le c ular hydr oge n b onding i s po s s ib l e in p-ani s i c

a c i d , henc e an S N 2 a t tack is n o t fac i l i ta te d . I n view of

55

the s e arg ume n t s , it i s appare n t wh y o -ani s i c ac i d is c le av e d

b y P y · H l b ut p -ani s i c a c i d i s n o t .

Why d oe s the re ac t i on oc c ur only in pyrid ine and not in

ac e t on i tri le or d ime thyl s ulf ox id e ?

The re are seve ra l pos s ible explanati ons : B o s and Dahmen3 1

reported that whi le benz oic ac id has a pKa = 4 , 0 in wate r at

25 ° , it has a pK = 1 1 in pyrid ine , wh i c h me ans that normally a weak ac ids are even we ake r in pyr i d ine . o -Ani s i c a c i d , wi th

pKa = 4 , 2 in wat e r at 25 ° , i s e s tima te d t o show a pKa .-v 1 1

in pyridine , In othe r words , the carb oxyl hydrogen of o-ani s i c

ac i d i s not transferre d i n pyridine and thus c an par t i c ipate

in hydrogen b ond ing with the me thoxy group .

A more s ub s tantial argument would be to find the e qu i l ibri um

c ons tant of thi s reac t i on :

+

0 1 1 c--� K ei

J.I __ \ : r---6 ' c " 3

Thi s expre s s i on can be broken d own into 2 e quat i ons , the val ue s

of which are re ad i ly avai lab le in li te rat ure 3 Z , 3 3 .

__ \ � +

K, = 1 . 6 x 1 0 - 9 D

The e qui l ibruim c ons tant of th i s re ac ti on in water at

25 ° can thus be calc ulate d , The c a lc ulated Ke q howeve r , i s

f or e q ui libruim oc c uring i n water s oluti on and hence i ts

val ue may be t o o sma l l f or the ac tua l Ke q in pyrid ine , henc e

the value i s to be taken only as a r ough e s timation of the

ac tual K , e q

+ �© �t.J-1-\ +

The smallne s s of the value of Ke q s ugge s t that intermole c ular

pro t on transf e r be twe e n o -ani s i c ac id and pyri d ine d oe s not

take s plac e to any appre c iable extent in water at 25 ° , Which

means that in the pre sence of pyridine , the c arb oxyli c hydrogen

of o -ani s i c ac i d i s available f or inte rnal hydrogen bonding

or protonati on w i th the ad jacent me th oxy gro up .

Ware �t a 134 , in the ir work wi th hydroxynaphtho i c ac id

and pyridine , be l i eve d that pyrid ine f orms a c omplex wi th the

ac id ic pro t on of the c arb oxyl group :

0

��/oH �c· ....... i t

+

0 II 0 ( ........ ........ i-1 - · • • • Py

In the proce s s , -pyri-dine might be we akening the carb oxyl 0 - H

b ond , ac ting as pro t on transfer agent and fac i li tating intra ­

mole c ular hydr ogen trans fer . Thi s e ffe c t i s abs e nt in e i ther

DW.S O or ac e toni tr i le be cau se ne i the r of the s e 2 s olvents i s

5 7

inv o lve d in c omplex f ormati on .

I t i s known that c arb oxylic acids d imeri z e in s oluti ons35 .

� o .Q R- c

' O - H

�0 . . - · · · H - o , R- c c - R

\ I; 0 - H - · · · - o ·

Be cause of th i s d ime r i z a t i on , the re i s c ompe tition f or the

carb oxyl hydroge n ava i lable f or internal hydr ogen bonding or

internal pro t onati on of the ad j ace nt me thoxy group , henc e .the

numbe r of m o le c ule s pre s e nt as interna lly hydrogen b onde d

f orm i s dimini she d . B ut if pyridine i s avai lable t o c omplex

the carb oxyl hydrogen , d imeri zat i on is re d uc e d and most of the

o -ani s ic ac id i s pre s e nt in the reac tive f orm , i . e . ,

wi th thi s c omplex avai lab le , c leavage reac t i on may be more

fac i le .

In the order of increas ing c le avage reac t i on , the follow-

ing s e ri e s i n pyrid ine was obs e rve d :

KI < Py · H I ( LiI · JH2 o

The capac i ty of KI as a c leaving agent i s limit e d by i ts s ol ­

ub i l i ty in pyr i d ine . Whe reas li thi um i odide i s c omple te ly

s olub le in pyridine at 85 °, KI i s not c omp l e te ly s oluble in

pyrid ine e�e n at-1 i5 ° .

May o .e.±. ai1 0 rep orted that pyridine hydri od ide de creas ed

the mole c ular we ight and inc reas e d the phenolic - OH c on tent

of an I l lin o i s c oa l frac t i on at r o orr. tempe rature . Furthe rmore ,

5 8

they reported tha t l i th i um i odide i s e q ually e ffe c tive as

pyridine hydr i odide in reproduc ing the ab ove re s ults wi th

the c oal frac t i o� .

Naphthyl e thers , spe c ifically beta-me thylnaphthyl be ta­

naphthyl e ther and alpha -me thylnaphthyl alpha-naph thyl e the r ,

¥hen .reac te d wi th e i the r Py • H I or· Li I · 3H2 o in pyridine at 1 15 °

f or 3 days , no c le avage was de te c te d and quanti tative re c overie s

of the s tarting e thers we re obtaine d . On the o the r hand , when

o -ani s i c ac i d and o - e thoxybenz o i c ac id was reac ted with Py • H I

in pyrid ine a t 1 15 ° f or 3 days , 8 1% and 1 8% c le avage was obs ­

e rve d re spe c t ive ly . o -Ani s i c ac id wi th Li I · 3H2 o in pyridine

a t 85 ° f or 3 days re s u l t e d in 54% c le avage .

Th 1 . . t 1 4

. . b e s e re s u t s are c ons is tent wi h Lars e n ' s M o s s aue r

s tudy o f the t i n derivative o f I llinois N o . 6 C oal . He c onc lud ­

e d that almos t a l l o f the - OH i n I llino i s N o . 6 C oa l may· be in

hydrogen b ond e d f orm . F or o-ani s i c ac id and o -e thoxybenz oic

ac id , the firs t s te p in e ther c le avage , that i s , pro t onat i on

of the e ther oxygen , d oe s not require an external pro t on s ourc e

be caus e the ir e theric oxygens are already in hydrogen b onde d

f orm . F or the s e c ompounds , attack by an i odide i on on the

a lky l group i s s uff ic ie nt to c le ave the s e e thers , In d ire c t

c ontras t , p-an i s ic ac id , in whi c h no s uc h in tramole c ular

hydrogen b ond ing i s p o s s ible , showe d no c le avage with Py · HI

in pyrid ine at 1 1 5 ° f or 3 days .

The s e re s ul ts ind icate tha t e thers linke d t o aromati c r ings

whe re the ortho ring s ubs t i tuents are capab le of hydrogen . b ond ­

ing wi th the s e e thers maybe be t te r mode ls than e thers linked

t o monosub s t i tute d ring s ys tems f or th ose l inkage s pre sent in

c oal .

Re ferenc e s :

1 . Rubert o , R . G . , Cr onaner , D . C . , Jewe l l , D . M . and S e s h a d r i ,

K . S . , F u e 1 , 1 97 7 , 2..£ , 2 5 •

... 2 . Take gami , Y . , Ka j iyama , S . , and Yokokawa , C . , F ue l , 1 963 ,

42 ' 2 91 .

3 . Wach owaska , H . and Pawlak , W . , Ft.:.e l , 1 97 7 , 2..£ , 4 2 2 .

4 . Lars e n , J . W . , E d . , " Organi c Chemi s try of C oal " , ACS

Symp os i um S e ri e s , Washington , D . C . , 1 97 8 , p 1 2 6 .

5 . Berk owi t z , N . , "An I ntroduc t i on t o C oa l Te chnology " , Acad -

emic Pre s s Inc . , New Y ork , 1 97 9 , p 1 15 .

6 , Takemura , Y . , I t oh , H . and Ouchi , K . , Fue l , 1 981 , 6 0 , 3 7 9 .

7 , M obley , D . P . and Be ll , A . T . , F ue l , 1 97 9 , j§_ , 6 6 1 .

8 . Wach ows ka , H . , Nand i , B . N . and M ontgome ry , D . S . , F ue l ,

1 974 , .u.. 2 1 2 .

9 . Igna s iak , B . S . and Gawlak , M . , Fue l , 1 97 7 , 2..£ , 2 1 6 .

1 0 . May o , F . R . , Buchanan , D . H . , and Pave lka , L . A . , ACS D iv .

Fue l Pre prints , 1 98 0 , .£2 ( 2 ) , 1 82 .

1 1 . Odinokov , S . E . , Mashkovsky , A . A . and G la z unov , V . P . ,

S pe c trochimi ca A c ta , 1 97 6 , 3 2A , 1 355 .

1 2 . R oye r , R . , B uis s on , J , P . and D e rmerseman , P . , Bull . S oc .

Ch im . Fr . , 1 97 1 , 8 , 43 62 .

1 3 . Che n , M . Y . , "Pyridine Hydrogen I odide as an E ther Cleav­

ing Age nt in C oal Chem i s try " , M . S . Th e s i s , E a s t e rn I ll i ­

n o i s Univers i ty , 1 98 1 , p 23 .

14 . Lars e n , J , W . , Nadar , P . A . , M ohamma d i , M . and M ontan o ,

P • A . , F u e 1 , 1 9 8 2 '· 6 1 , 8 8 9 •

1 5 , C o ok , O . , Can . J . Chem . , 1 96 1 , .12. , 2 0 0 9 .

1 6 . B a l lard , IVJ , L . , " Ana lys i s o f C oa l Frac t i ons U s i ng D i br om o -

tr i ph e ny lph o s ph orane " , M . S . Th e s i s , E a s t e rn I lli r" o i s Uni v s r -

s i ty , 1 98 1 , p 5 9 ,

1 7 . Chapman , N . B . and W i l liams , J . F . A . , J , Am . Chem . S oc . ,

1 9 5 2 ' 2± , 5 04 5 •

1 8 . King , F . E . and Henshe l l , T . , J . Chem . S oc . , 1 945 , 4 1 7 .

1 9 . D ' I nc an , E . and Vi out , P . , Te trahe dr on , 1 975 , J1. , 1 5 9 ,

2 0 . Voge l , A . I . , " Prac t i cal Organic Chemi s try " , Lowe and

·Bryd one Ltd . , Lond on , 1 95 6 , p J l 6 .

2 1 . Karr , C l�renc e Jr . , E d . , "Ana lytical Me th ods f or C oal and

C oa l Produc ts " , Academic Pre s s Jnc . , New Y ork , 1 97 9 , p J 6J . I

2 2 . Kamiya , Y . , Nage a , S . anp. Oikawa , S . , F ue l , 1 98J , 6 2 , J L

2 J . Harri s on , I . T . , Ch em . C omm . , 1 96 9 , 6 1 6 .

24 , R oye r , R . , Bache le t , J . P . f and Demers eman , P . , B ul l . S oc .

Chim . Fr . , 1 974 , 1 1 ( 2 ) , 2 6J 1 .

25 . Mc Carthy , J . R . , M o ore , J . L . and Cregge , R . J . , Te t t .

Le t t . , 1 97 8 , ,22._ , 5 1 8J .

2 6 . Pre s s , J . B . , Synth . C omm . , 1 97 9 , 2 ( 5 ) , 4 07 .

2 7 . M c Omi e , J .· F . W . , Wat ts , M . L . , and We s t , D . E . , Te trahe d ­

r on , 1 96 � , 24 , 2 2 8 9 . .

2 8 . Paul , W . L . and S chulman , S . G . , Ana l . Chim . Ac ta , 1 974

£2 , 1 95 .

? 9 · S tre i twe i s e r , A . Jr . , " S o lvolyti c D i s p laceme nt Re ac ti ons " ,

New Y ork , M c Graw -H i ll B o ok C ompany I nc . , 1 96 2 , p 1 ]: .

J O . K ov i , P . J . , M i l le r , C . L . and S ch ulman , S . G . , Ana l ,

Ch im . Ac ta . , 1 97 2 , .21_, 7 .

J l .. B·o s , · M �� D ahme n , E . A . , Ana l . Ch im . A c ta , 1 9 7 1 , 5 5 , 2 85 .

3 2 , Olm s t e ad , w . N . , Te trah e dr on , 1 97 1 , ..£2.. ( 1 3 ) , 2 7 1 3 ,

3 3 , F i s c h e r , A . , G a l l oway , w . J , and Vaughan , J . , J , Chem .

S o c , , 1 9 64 , 35 91 .

34 , Ware , W . R . , S h uk la , P . R . , S u l l ivan , P . J , and B r e mphi s ,

R . V . , J , Ch em . Phys . , 1 97 1 , 22. , 4 04 8 .

35 , Pa ta i , S . , E d . , " Th e C h e m i s try of Carb oxy l i c A c i d s and

E s te rs " , L o nd on , J ohn W i l e y and S ons , 1 96 9 , p 2 3 8 .

VI TA

Name : Jame s N i c o la s Ong S y .

Permanent A d d r e s s 5 1 6 N i c o d emus S t . , T ond o , M a n i l a , Ph i l .

D e gre e and d a t e t o be c onf e rre d M . S . Chemi s try , A ugus t 1 983

Date of B irth ' July 24 , 1 96 0

Pla c e o f B irth La oag C i ty , Ph i l ipp ine s

S e c ondary Educat i on S t . S te ph e n ' s H i gh S ch o o l .

C ollegiate I ns ti tuti ons A t te nded Date Degre e

Univers i ty of 'santo T omas { Ph i l . ) 6/7 7 -3/81 B . S . Chemi s try

Eas tern I l linois Univers i ty 6/82 - 8/83 M . S . Chemi s try

Ma j or Organi c Chemi� try

Pos i ti ons He ld

Re s e arch A s s i s tant

Graduate A s s i s tant

Date

6/8 1 -1 2/81

8/8 2 - 8/83

Ins t i t u t i o n

San M igue l C orpora t i on

Eas tern I l l ino i s Uni v .


Recommended