+ All Categories
Home > Documents > Synthesis of 3D Hexagram-like Cobalt-Manganese Sulfides ...

Synthesis of 3D Hexagram-like Cobalt-Manganese Sulfides ...

Date post: 14-Nov-2021
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
8
1 / 8 Supporting Information for Synthesis of 3D Hexagram-like Cobalt-Manganese Sulfides Nanosheets Grown on Nickel Foam: A Bifunctional Electrocatalyst for Overall Water Splitting Jingwei Li 1 , Weiming Xu 1 , Jiaxian Luo 1 , Dan Zhou 1 , Dawei Zhang 1 , Licheng Wei 1 , Peiman Xu 1 , Dingsheng Yuan 1, * 1 School of Chemistry and Materials Science, Jinan University, Guangzhou 510632, People’s Republic of China * Corresponding author. E-mail: [email protected] 1. Faradic Efficiency Two-electrode water electrolysis was operated by chronopotentiometry measurement at a constant current of 10 mA cm -2 . 1.0 mol L -1 KOH solution was used as the electrolyte. The oxygen and hydrogen bubbles were collected by a water splitting apparatus continuing for 180 min. The theoretical volume of O2 and H2 were calculated by the following method, VO2 mL = Q C ×22.4 L mol -1 ×1000 / (F C mol -1 ×4) VH2 mL = Q C ×22.4 L mol -1 ×1000 / (F C mol -1 ×2) where Q is the cumulative charge (C), F is the Faraday constant (C mol -1 ) [1].
Transcript
Page 1: Synthesis of 3D Hexagram-like Cobalt-Manganese Sulfides ...

1 / 8

Supporting Information for

Synthesis of 3D Hexagram-like Cobalt-Manganese Sulfides Nanosheets Grown on

Nickel Foam: A Bifunctional Electrocatalyst for Overall Water Splitting

Jingwei Li1, Weiming Xu1, Jiaxian Luo1, Dan Zhou1, Dawei Zhang1, Licheng Wei1, Peiman Xu1, Dingsheng

Yuan1, *

1School of Chemistry and Materials Science, Jinan University, Guangzhou 510632, People’s Republic of

China

* Corresponding author. E-mail: [email protected]

1. Faradic Efficiency

Two-electrode water electrolysis was operated by chronopotentiometry measurement at a constant current

of 10 mA cm-2. 1.0 mol L-1 KOH solution was used as the electrolyte. The oxygen and hydrogen bubbles

were collected by a water splitting apparatus continuing for 180 min. The theoretical volume of O2 and H2

were calculated by the following method,

VO2 mL = Q C × 22.4 L mol-1 × 1000 / (F C mol-1 × 4)

VH2 mL = Q C × 22.4 L mol-1 × 1000 / (F C mol-1 × 2)

where Q is the cumulative charge (C), F is the Faraday constant (C mol-1) [1].

Page 2: Synthesis of 3D Hexagram-like Cobalt-Manganese Sulfides ...

2 / 8

2. Figures

10 20 30 40 50 60 70 80

(22

0)

(20

0)(1

11

)

(11

3)

(11

0)

(01

8)

(01

5)

(01

2)

(00

6)

(003)

Ni (JCPDS: 65-0380)

CoMn-LDH (JCPDS: 40-0216)Iten

sity

(a

.u.)

2 Theta (deg.)

Fig. S1 XRD pattern of CoMn-LDH/Ni

Fig. S2 a XRD patterns of CMS/Ni, Co9S8/Ni, and MnS/Ni. b-d EDS patterns of CMS/Ni, Co9S8/Ni, and

MnS/Ni, respectively

10 20 30 40 50 60 70 80

MnS

Co9S

8

CMS

Co9S

8 (JCPDS: 02-1459)

MnS (JCPDS: 65-2919)

Binding Energy (eV)

In

ten

sity

(a

.u.)

(a)

0 2 4 6 8 10

Elem CoK MnK SK CuK

Atom

ic %40.16 4.46 44.98 10.40

Con

ten

ts

Cu

Cu

Co

Co

Mn

kev

S

CoMn

Mn

(b)

0 2 4 6 8 10

Co

nte

nts

Co

Co

SElem CoK SK

Atomic

%53.76 46.24

kev

Co

(c)

0 2 4 6 8 10

Mn

Mn

S

Con

ten

ts

Elem MnK SK

Atomic

%50.24 49.76

kev

Mn

(d)

Page 3: Synthesis of 3D Hexagram-like Cobalt-Manganese Sulfides ...

3 / 8

Fig. S3 SEM image for the precursor of a Co9S8/Ni and b Co9S8/Ni. SEM images for the precursor of c

MnS/Ni and d MnS/Ni

Fig. S4 a-c SEM images of CoMn-LDH/Ni in different magnifications

Page 4: Synthesis of 3D Hexagram-like Cobalt-Manganese Sulfides ...

4 / 8

Fig. S5 a Co 2p XPS spectra of Co9S8/Ni; b Mn 2p XPS spectra of MnS/Ni

Fig. S6 a LSV curves of CMS/Ni and CoMn-LDH/Ni for HER. b A and A’ are corresponding to the onset

overpotentials of CMS/Ni and CoMn-LDH/Ni for HER, and B and B’ are corresponding to the overpotentials

of CMS/Ni and CoMn-LDH/Ni to achieve a current density of 50 mA cm-2. c LSV curves of CMS/Ni and

CoMn-LDH/Ni for OER. d A and A’ are related to the onset overpotentials of CMS/Ni and CoMn-LDH/Ni

for OER, and B and B’ are related to the overpotentials of CMS/Ni and CoMn-LDH/Ni to reach a current

density of 50 mA cm-2.

As summarized in Fig. S6, the onset overpotentials and overpotentials of CMS/Ni to achieve a current

density of 50 mA cm-2 for HER and OER are both lower than the CoMn-LDH/Ni, indicating improvement of

electrocatalytic activities.

810 800 790 780 770

Co9S

8

**

Co2+

Co2+

Binding Energy (eV)

Inte

nsi

ty (

a.u

.)

(a)

660 655 650 645 640

MnS

*

Mn2+

Mn2+

Binding Energy (eV)

In

ten

sity

(a

.u.)

(b)

-1.2 -0.9 -0.6 -0.3 0.0-350

-300

-250

-200

-150

-100

-50

0

Potential (V) vs. RHE

CMS/Ni

CoMn-LDH/Ni

(a)

Cu

rren

t D

ensi

ty (

mA

cm

-2)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.90

50

100

150

200

250

300 CMS/Ni

CoMn-LDH/Ni

Potential (V) vs. RHE

Cu

rren

t D

ensi

ty (

mA

cm

-2)

(c)

0

100

200

300

400

500

(b)

180

314

88

165

B'BA'A

Overp

ote

nti

al

(mV

) vs

. R

HE

0

100

200

300

400

500

600

(d)

233

346

187

265

B'BA'A

Overp

ote

nti

al

(mV

) vs

. R

HE

Page 5: Synthesis of 3D Hexagram-like Cobalt-Manganese Sulfides ...

5 / 8

0.0 0.5 1.0 1.5 2.0 2.50.0

0.4

0.8

1.2

1.6

2.0

Zre ()

-Zim

(

)

CPE

Rs

Rct

CMS/Ni

Co9S

8/Ni

MnS/Ni

Fig. S7 EIS of CMS/Ni, Co9S8/Ni, and MnS/Ni analyzed at a static potential of -0.33 V

Fig. S8 Cyclic voltammograms of a CMS/Ni, b Co9S8/Ni and c MnS/Ni tested at different scan rates of 5, 10,

15, 20, 30, and 50 mV s-1, respectively

0.14 0.16 0.18 0.20 0.22

-2

-1

0

1

2

3

Potential (V) vs. RHE

Cu

rren

t D

ensi

ty (

mA

cm

-2) 30 mV/s

50 mV/s

5 mV/s

10 mV/s

15 mV/s

20 mV/s

CMS/Ni

(a)

0.14 0.16 0.18 0.20 0.22

-1.0

-0.5

0.0

0.5

1.0

1.5

Potential (V) vs. RHE

(b)

Cu

rren

t D

ensi

ty (

mA

cm

-2) 30 mV/s

50 mV/s

5 mV/s

10 mV/s

15 mV/s

20 mV/s

Co9S

8/Ni

0.14 0.16 0.18 0.20 0.22

-1.0

-0.5

0.0

0.5

1.0

Potential (V) vs. RHE

Cu

rren

t D

ensi

ty (

mA

cm

-2)

(c) 30 mV/s

50 mV/s

5 mV/s

10 mV/s

15 mV/s

20 mV/s

MnS/Ni

Page 6: Synthesis of 3D Hexagram-like Cobalt-Manganese Sulfides ...

6 / 8

Fig. S9 a SEM images of CMS/Ni after HER and b OER stability tests

Fig. S10 Photographs of CMS/Ni//CMS/Ni device driven by a 1.5 V dry battery. The white bubbles of H2 can

be obviously observed in cathode, while the O2 has not enough bubbles simultaneously, attributing to its

kinetically sluggish four-electron transfer process

H2 bubbles H2 bubbles

Page 7: Synthesis of 3D Hexagram-like Cobalt-Manganese Sulfides ...

7 / 8

Table S1 Comparison of catalytic activity of CMS/Ni to recently reported bifunctional materials for OER,

HER, and overall water splitting

HER OER Two-electrode system

Ej=10 mA cm-2

(V vs. RHE)

Electrolytes

( KOH) Ref.

Materials ŋj=100 mA cm-2

(mV vs. RHE)

ŋj=100 mA cm-2

(mV vs. RHE)

CMS/Ni 217 292 1.60 1 mol L-1 This

work

Zn-Co-S/TMa >330 >340 1.66 1 mol L-1 [2]

PCPTFb >430 >330 / 1 mol L-1 [3]

Co@Co3O4-NCc >320 >391 2.00 1 mol L-1 [4]

Ni3FeN-NPsd >260 >320 / 1 mol L-1 [5]

NiCo2S4@NiFe LDH/NFe >220 <292 1.60 1 mol L-1 [6]

SrNb0.1Co0.7Fe0.2O3- >300 >350 1.68 1 mol L-1 [7]

CP/CTs/Co-Sf >252 >296 ~1.74 1 mol L-1 [8]

CoP3 CPsg >217 >343 / 1 mol L-1 [9]

CoP-MNAh >252 >300 1.62 1 mol L-1 [10]

Co@CoO/NGi >217 >315 1.58 1 mol L-1 [11]

FeCoNi >220 >325 ~1.69 1 mol L-1 [12]

Ni2P 215 393 1.58 1 mol L-1 [13]

Ni12P5 295 360 1.64 1 mol L-1 [13]

a Zn0.76Co0.24S/CoS2 on Ti mesh; b porous Co phosphide/phosphate thin film; c N-carbon; d Nanoparticles, e

Ni foam; f carbon paper/carbon tubes/cobalt-sulfide sheets; g concave polyhedrons; h mesoporous nanorod

arrays; i N-doped graphene.

References

[1] G.-F. Chen, T.Y. Ma, Z.-Q. Liu, N. Li, Y.-Z. Su, K. Davey, S.-Z. Qiao, Efficient and stable bifunctional

electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 26, 3314-3323

(2016). doi:10.1002/adfm.201505626

[2] Y. Liang, Q. Liu, Y. Luo, X. Sun, Y. He, A.M. Asiri, Zn0.76Co0.24S/CoS2 nanowires array for efficient

electrochemical splitting of water. Electrochim. Acta 190, 360-364 (2016).

doi:10.1016/j.electacta.2015.12.153

[3] Y. Yang, H. Fei, G. Ruan, J.M. Tour, Porous cobalt-based thin film as a bifunctional catalyst for

hydrogen generation and oxygen generation. Adv. Mater. 27, 3175-3180 (2015).

doi:10.1002/adma.201500894

[4] C. Bai, S. Wei, D. Deng, X. Lin, M. Zheng. Q. Dong, A nitrogen-doped nano carbon dodecahedron with

Co@Co3O4 implants as a bi-functional electrocatalyst for efficient overall water splitting. J. Mater.

Chem. A 5, 9533-9536 (2017). doi:10.1039/c7ta01708a

Page 8: Synthesis of 3D Hexagram-like Cobalt-Manganese Sulfides ...

8 / 8

[5] X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, T.

Zhang, Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an

efficient overall water splitting electrocatalyst. Adv. Energy Mater. 6, 1502585 (2016).

doi:10.1002/aenm.201502585

[6] J. Liu, J. Wang, B. Zhang, Y. Ruan, L. Lv, X. Ji, K. Xu, L. Miao, J. Jiang, Hierarchical NiCo2S4@NiFe

LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity. ACS Appl.

Mater. Interfaces 9, 15364-15372 (2017). doi:10.1021/acsami.7b00019

[7] Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen, Q. Zhong, M. Liu, Z. Shao, A perovskite nanorod as

bifunctional electrocatalyst for overall water splitting. Adv. Energy Mater. 7, 1602122 (2017).

doi:10.1002/aenm.201602122

[8] J. Wang, H.X. Zhong, Z.L. Wang, F.L. Meng, X.B. Zhang, Integrated three-dimensional carbon

paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano

10, 2342-8 (2016). doi:10.1021/acsnano.5b07126

[9] T. Wu, M. Pi, X. Wang, D. Zhang, S. Chen, Three-dimensional metal-organic framework derived porous

CoP3 concave polyhedrons as superior bifunctional electrocatalysts for the evolution of hydrogen and

oxygen. Phys. Chem. Chem. Phys. 19, 2104-2110 (2017). doi:10.1039/c6cp07294a

[10] Y.-P. Zhu, Y.-P. Liu, T.-Z. Ren, Z.-Y. Yuan, Self-supported cobalt phosphide mesoporous nanorod arrays:

a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation.

Adv. Funct. Mater. 25, 7337-7347 (2015). doi:10.1002/adfm.201503666

[11] S. Zhang, X. Yu, F. Yan, C. Li, X. Zhang, Y. Chen, N-doped graphene-supported Co@CoO core-shell

nanoparticles as high-performance bifunctional electrocatalysts for overall water splitting. J. Mater.

Chem. A 4, 12046-12053 (2016). doi:10.1039/c6ta04365h

[12] Y. Yang, Z. Lin, S. Gao, J. Su, Z. Lun, G. Xia, J. Chen, R. Zhang, Q. Chen, Tuning electronic structures

of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting

activity. ACS Catal. 7, 469-479 (2017). doi:10.1021/acscatal.6b02573

[13] P.W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeiβer, M. Driess, Uncovering

the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall

water splitting. ACS Catal. 7, 103-109 (2016). doi:10.1021/acscatal.6b02666


Recommended