+ All Categories
Home > Environment > Synthesis of Biobased Terephthalic Acid: Enabling Manufacture of 100% Renewable PET

Synthesis of Biobased Terephthalic Acid: Enabling Manufacture of 100% Renewable PET

Date post: 07-Jan-2017
Category:
Upload: michigan-state-university-research
View: 185 times
Download: 0 times
Share this document with a friend
24
Synthesis of Biobased Terephthalic Acid: Enabling Manufacture of 100% Renewable PET 1 Sebastien Thueillon Kelly Miller Yukari Nishizawa-Brennen Karen M. Draths John W. Frost Funding: National Science Foundation The Coca-Cola Company Michigan Bioeconomy Institute Holland, MI February 10, 2016
Transcript

Synthesis of Biobased Terephthalic Acid: Enabling Manufacture of 100% Renewable PET

1  

Sebastien ThueillonKelly Miller

Yukari Nishizawa-BrennenKaren M. DrathsJohn W. Frost

Funding:National Science Foundation

The Coca-Cola Company

Michigan Bioeconomy Institute Holland, MI

February 10, 2016

Poly(ethylene terephthalate)

OHHO

O

O

HO OH

terephthalic acid

ethylene glycol

PTAH2O

OO

O

O

O

npoly(ethylene terephthalate)

Manufacture of Terephthalic Acid

BTX

parafinnic oilnaphthenic oil

Pt/Re on Al2O3 SiO2

H2

400-500oCliquid-liquid extraction UOP Parex

Toray Aromax

Manufacture of Terephthalic Acid

Production Volume: 50 x 109 kg/yPrice: $1.00/kg

HO

O

O

O

OCO2H

CO2H

OHO

O

H2

CO2

HO

OH

OH

OHOH

OH

a b

c

d

e

f

gh

i

j

kl

Biobased Terephthalic Acid

CO2R

RO2C

HO2CCO2H

CO2H

HO2C

CO2CH3

CH3O2C

O

ORO

RO R = HR = CH3

ORO2C

O

CO2CH3

HO2CCO2H

OH

R=CH3 R=H

R=HR=CH3

O

OHO2C

CO2H

OHO

O

CO2CH3

CH3O2C O

O

2

2

a

b

c

d H2 H2O

HO

OH

d

e

f

g

h

CO2H

CO2H

i

j

k

l

H2

•  p-Xylene intermediacy - 4 routes •  No p-xylene intermediacy – 6 routes•  No p-xylene/Amoco MidCentury – 2 routes•  No p-xylene/no Amoco MidCentury/esterification/hydrolysis – 2 routes

Alder Reaction Sequence

Alder, K.; Dortmann, H. A. Chem. Ber. 1952, 85, 556-565.

•  No esterification followed by ester hydrolysis•  Solvent-free cycloaddition reaction•  Enables access to both terephthalic acid and isophthalic acid

Cahiez, G.; Rivas-Enterrios, J.; Clery, P. Tetrahedron Lett. 1988, 29, 3659-3662.

(a) cycloaddition; (b/b’) aromatization; (c/c’) oxidation

CO2H

CO2H CO2H

a

CO2H CO2H

b c

b' c'

HO2C

CO2H

HO2C CO2H

para

meta

Bridgestone - Ajinomoto Goodyear - Dupont (the former Genencor)Michelin - Amyris

http://www.icis.com/blogs/green-chemicals/2012/06/ajinomoto-bridgestone-in-bio-i.html

Biobased Isoprene:

Biobased Acrylic Acid:Dow - OPX bio

http://www.slideshare.net/opxbio/opxbio-dow-renewable-route-to-acrylic-acidBASF - Cargill - Novozyme ArkemaMyriant

Starting Materials

Cycloaddition

Lewis Acid Catalysis:•  Increase reaction rate by stabilizing the

LUMO of acrylic acid.•  Increase para selectivity by perturbing the

orbital coefficients of acrylic acid.-or-

Lewis Acid Catalysis:•  Lewis-acid promoted Brønsted acidity of

acrylic acid.•  Acid-catalyzed polymerization of isoprene

OH

OMClx OH

OMClxδδ

Cu(OTf)2 Catalyzed Cycloaddition

Miller, K. M.; Zhang, P.; Nishizawa-Brennen, Frost, J. W. ACS Sustainable Chem. Eng. 2014, 2, 2053-2056.

TiCl4-Catalyzed Cycloaddition

TiO

ClClO

O

OTi Cl

ClO

O

O

O H

OH

OH

O TiCl42 mol%neat neat

O

OH

89%para

meta

OH

O4%

?

BOB-Catalyzed Cycloaddition

OB

O

O OB

O

OO

O

O

0.5

0.5

0.5

0.5OHB

HO OH O

O O 110oC

BOB(OAc)4

•  Cycloaddition rates 2x faster for BOB(OAc)4 vs. TiCl4.

•  BOB(OAc)4 is halide-free.

•  BOB(OAc)4 is a crystalline solid.

OB

O

O OB

O

OO

O

O

0.5

0.5

0.5

0.5OH

O2 mol%neat

BOB(OAc)4neat

O

OH

91%para

meta

OH

O5%

Aromatization

Alder 1952, Tong 2014:

CO2H CO2H

para

H2SO4100oC

SO2 79%

a)  Alder, K.; Dortmann, H. A. Chem. Ber. 1952, 85, 556-565.b)  Wang, F; Tong, Z. RSC Adv. 2014, 4, 6314-6317.

H2SO4 Aromatization

After quenched ice. After purification.

H2SO4 Aromatization

Pd(0) Aromatization

CO2H CO2H

para

H2SO4100oC

SO2 79% meta

H2SO4100oC

SO2 9%CO2H CO2H

CO2H CO2H

para77%

H2

Pd on C 240oC, 0.11bar CO2H

9%

CO2H

12%

Alder 1952, Tong 2014:

meta 69%CO2H CO2H

H2

Pd on C 240oC, 0.11 bar

13%CO2H

10%CO2H

Frost 2014:

Miller, K. M.; Zhang, P.; Nishizawa-Brennen, Frost, J. W. ACS Sustainable Chem. Eng. 2014, 2, 2053-2056.

Pd(0) Aromatization

Management of H-Pd-H:

CO2H

CO2HPdH

CO2HH PdH

Pd(0)

CO2H

cyclohexane byproduct

CO2H

p-toluic acid

H Pd H Pd(0)Pd(0) -H2

+H2H H

Dis$lling  bulb  

Plug    reactor  

Receiver  bulbs  

To  water  aspirator  pump  

Pneuma$c  actuator  

-­‐78  °C  cold  trap  

Vapor Phase Aromatization

Oxidation

Alder 1952, Tong 2014:

CO2H

HO2C

CO2HKMnO4

95%

CO2H

HO2C

CO2HMn(OAc)2, Co(OAc)2N-hydroxysuccinimide

O2, HOAc, 100oC94%

Frost 2014:

CO2H HO2C CO2H88%

Mn(OAc)2, Co(OAc)2N-hydroxysuccinimide

O2, HOAc, 100oC

Alder Route to Biobased Terephthalic Acid

Cycloaddition: solvent-free, 2 mol% catalyst, highly selective

Aromatization: solvent-free, vapor-phase, high mass balance

Oxidation: 0.5 mol% catalyst, highly selective

Enabling: Synthesis of both terephthalic and isophthalic acid

CO2H CO2HTiCl489%

CO2HPd/C

H277%

HO2C

CO2H

O2

Co2+/Mn2+

94%

Miller, K. M.; Zhang, P.; Nishizawa-Brennen, Frost, J. W. ACS Sustainable Chem. Eng. 2014, 2, 2053-2056.

Frost, J. W. WO2014144843, March 15, 2013.

Biobased Terephthalic Acid: Scale-Up

CO2H CO2HTiCl4CO2HPd/C

H2

HO2C

CO2H

O2

Co2+/Mn2+

580 g 580 g 400 g 100 g

CO2H90 wt%

3 wt%O

H

CO2H

7 wt%

HO2C

CO2H

99.995 wt%Purified Terephthalic Acid

PTA

Biobased Terephthalic Acid: Next Steps

CO2H CO2H CO2H CO2H

petro petro petro bio bio petro bio bio

Step #1 Step #2 Step #3 Step #4

CO2H

acrylicacid

isoprene

O

OHOH

OHOH

HO

a

a'

(a,a') microbial biocatalysis

3 CH4

3 H2O

9 H2

3 CO6 H2

3 CH3OH1.5 O2

H2O3 H2Ob c d e

(b) steam reforming (c) MeOH synthesis(d) MTO catalysis (e) catalytic oxidation (f) Philips Triolefin Process (g) cracking

7 CH4

7 H2H2

b,c,d f g

•  95% probability of 9.5-13 billion people by 2100.

•  Annually, the U.S. will turn 5 billion bushels of corn into ethanol, which is enough food to feed 412 million people for an entire year.

Biobased Terephthalic Acid: Glucose

•  In 2013, the U.S. produced 0.69 x 1012 m3 of methane.•  In 2013, the U.S. consumed 0.72 x1012 m3 of methane. •  In 2014, the U.S. had 10 x 1012 m3 of proven methane reserves.•  In 2014, the U.S. had 81 x 1012 m3 of estimated methane reserves.•  The U.S. has 1,500 x 1012 m3 of estimated methane hydrate reserves. •  In 2013, first marine extraction of methane hydrate (Nankai Trough).

•  In 2013, U.S. biogas production was 0.012 x 1012 m3 annually.•  Near-term, U.S. biogas production could reach 0.060 x 1012 m3 annually.•  U.S. chemical industry consumes 0.046 x1012 m3 of methane.•  Methane (wt/wt) has a 25-fold greater impact relative to CO2 on climate

change over a 100-year period.

Biobased Terephthalic Acid: Methane

Thermogenic/Biogenic Methane

Renewable Biogas

Biobased Terephthalic Acid: Methane

Michigan State University South Campus Anaerobic Digester


Recommended