+ All Categories
Home > Documents > Synthesis, Structure and Properties of Thiophene-fused BODIPYs and AzaBODIPYs … ·  ·...

Synthesis, Structure and Properties of Thiophene-fused BODIPYs and AzaBODIPYs … ·  ·...

Date post: 22-May-2018
Category:
Upload: phamnga
View: 227 times
Download: 2 times
Share this document with a friend
60
S1 Synthesis, Structure and Properties of Thiophene-fused BODIPYs and AzaBODIPYs as Near-infrared Agents Jun Wang, Jin Li, Na Chen, Yayang Wu, Erhong Hao,* Yun Wei, Xiaolong Mu, and Lijuan Jiao* The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China *To whom correspondence should be addressed. E-mail: [email protected] ; [email protected] Contents: 1. Crystal structure……………………………..……….………………..…………………....S2 2. Photophysical properties…………………………….……………………………………....S5 3. Table S2………………………………….…………..………….…..……..……………….S14 4. Copies of 1 H and 13 C NMR spectra.……………..…..………………………………….S15 5. High resolution mass spectroscopes for all new compounds………………..………….S51 Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016
Transcript

S1

Synthesis, Structure and Properties of Thiophene-fused BODIPYs and AzaBODIPYs

as Near-infrared Agents

Jun Wang, Jin Li, Na Chen, Yayang Wu, Erhong Hao,* Yun Wei, Xiaolong Mu, and Lijuan Jiao*

The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of

Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University,

Wuhu, 241000, China

*To whom correspondence should be addressed. E-mail: [email protected]; [email protected]

Contents:

1. Crystal structure……………………………..……….………………..…………………....S2

2. Photophysical properties…………………………….……………………………………....S5

3. Table S2………………………………….…………..………….…..……..……………….S14

4. Copies of 1H and 13C NMR spectra.……………..…..………………………………….S15

5. High resolution mass spectroscopes for all new compounds………………..………….S51

Electronic Supplementary Material (ESI) for New Journal of Chemistry.This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

S2

1. Crystal Structure

  

Figure S1: X-ray structures of 1f. C, light gray; H, gray; N, blue; B, dark yellow; F, light green; S, yellow; O, red.

  

 

Figure S2: Intermolecular crystal packing of 1f through H-bonding (dotted line). C, light gray; H, gray; N, blue; B, dark yellow; F, light green; S, yellow; O, red. 

     

S3

 

 Figure S3: X-ray structures of 2b. C, light gray; H, gray; N, blue; B, dark yellow; F, light green; S, yellow; O, red.  

 

 Figure S4: Intermolecular crystal packing of 2b through H-bonding (dotted line). C, light gray; H, gray; N, blue; B, dark yellow; F, light green; S, yellow; O, red.  

     

S4

Table S1. Selected geometrical parameters of compound 1e and 2b obtained from crystallography

  

 

  1f 2b

the B-N bond distances (A) 1.5655(74) 1.5684(84)

1.5500(43) 1.5578(78)

the intramolecular F-H Hydrogen bond distances (Å) 2.4463(34) 2.6514(23)

the intermolecular F-H Hydrogen bond distances (Å) 2.7922(35) 2.5344(17)

2.8216(19) dihedral angles of two thiophene rings (deg) 5.278(178) 7.958(85)

dihedral angles of two pyrrole rings (deg) 2.634(220) 8.943(116)

dihedral angles between thiophene ring and phenyl ring

Pa (deg)

18.799(210) 38.981(170)

27.547(109) 32.340(87)

dihedral angles between thiophene ring and phenyl ring

Pb (deg)

57.820(174) 75.174(182)

64.115(141) 88.247(140)

dihedral angles between pyrrole ring and phenyl ring

Pc (deg)

24.564(222) 33.697(191)

34.699(104) 40.286(117)

               

S5

2. Photophysical Properties

600 700 8000.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Abs

orba

nce Chloroform

Cyclohexane DMSO Acetonitrile Toluene

Wavelength (nm)  

750 800 850 9000.0

0.2

0.4

0.6

0.8

1.0 Chloroform Cyclohexane DMSO Acetonitrile Toluene

Nor

mal

ized

Flu

ores

cenc

e In

tens

ity

Wavelength (nm)  

Figure S5: Absorption (top) and emission (bottom) spectra of compound 1e recorded in different solvents. Excited at 720 nm.        

S6

 

600 700 8000.0

0.2

0.4

0.6

0.8

1.0 Chloroform Cyclohexane DMSO Acetonitrile Toluene

Nor

mal

ized

Abs

orba

nce

Wavelength nm.  

750 800 8500.0

0.2

0.4

0.6

0.8

1.0 Chloroform Cyclohexane DMSO Acetonitrile Toluene

Nor

mal

ized

Flu

ores

cenc

e In

tens

ity

Wavelength (nm)  

Figure S6: Absorption (top) and emission (bottom) spectra of compound 1f recorded in different solvents. Excited at 720 nm.

       

S7

 

550 600 650 700 7500.0

0.2

0.4

0.6

0.8

1.0N

orm

aliz

ed A

bsor

banc

e

Wavelength (nm)

Chloroform Cyclohexane DMSO Acetonitrile Toluene

650 700 750 8000.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Flu

ores

cenc

e In

tens

ity

Wavelength (nm)

Chloroform Cyclohexane DMSO Acetonitrile Toluene

 

Figure S7: Absorption (top) and emission (bottom) spectra of compound 2a recorded in different solvents. Excited at 630 nm        

S8

 

550 600 650 700 7500.0

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)

Chloroform Cyclohexane DMSO Acetonitrile Toluene

Nor

mal

ized

Abs

orba

nce

650 700 750 8000.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Flu

ores

cenc

e In

tens

ity

Wavelength (nm)

Chloroform Cyclohexane DMSO Acetonitrile Toluene

 

Figure S8: Absorption (top) and emission (bottom) spectra of compound 2b recorded in different solvents. Excited at 630 nm

       

S9

 

600 700 8000.0

0.2

0.4

0.6

0.8

1.0 Chloroform Cyclohexane DMSO Acetonitrile Toluene

Nor

mal

ized

Abs

orba

nce

Wavelength (nm) 

750 800 8500.0

0.2

0.4

0.6

0.8

1.0 Chloroform Cyclohexane DMSO Acetonitrile Toluene

Nor

mal

ized

Flu

ores

cenc

e In

tens

ity

Wavelength (nm) 

Figure S9: Absorption (top) and emission (bottom) spectra of compound 2c recorded in different solvents. Excited at 660 nm.

       

S10

  

500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0N

orm

aliz

ed A

bsor

banc

e

Wavelength (nm)

Chloroform Cyclohexane DMSO Toluene

 

650 700 750 800 8500.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Flu

ores

cenc

e In

tens

ity

Wavelength (nm)

Chloroform Cyclohexane Toluene

 

Figure S10: Absorption (top) and emission (bottom) spectra of compound 3a recorded in different solvents. Excited at 610 nm.

    

S11

  

500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0N

orm

aliz

ed A

bsor

banc

e

Wavelength (nm)

Chloroform Cyclohexane DMSO Toluene

650 700 750 800 8500.0

0.2

0.4

0.6

0.8

1.0 Chloroform Cyclohexane Toluene

Nor

mal

ized

Flu

ores

cenc

e In

tens

ity

Wavelength (nm) Figure S11: Absorption (top) and emission (bottom) spectra of compound 3b recorded in different solvents. Excited at 610 nm.

S12

300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Abs

orpt

ion

Wavelength(nm)

0S

60S

 

Figure S12. Absorption spectra of DPBF (5× 10-5 mol/ L) upon irradiation in the

presence of 1e (5× 10-6 mol/ L) for 60s. (a) 0 s to (b) 60s (recorded at 10s interval)

under broad band light ( >590 nm) in chloroform.

300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Abs

orpt

ion

Wavelength(nm)

0S

60S

Figure S13. Absorption spectra of DPBF (5× 10-5 mol/ L) upon irradiation in the

presence of 2c (5× 10-6 mol/ L) for 60 s. (a) 0 s to (b) 60 s (recorded at 10 s interval)

under broad band light ( >590 nm) in chloroform.

S13

300 400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

60S0S

Abs

orpt

ion

Wavelength(nm)  

Figure S14. Absorption spectra of DPBF (5× 10-5 mol/ L) upon irradiation in the

presence of 3a (5× 10-6 mol/ L) for 60 s. (a) 0 s to (b) 60 s (recorded at 10 s interval)

under broad band light ( >590 nm) in chloroform.

0 20 40 600.0

0.2

0.4 1e 2c 3a

Abs

orba

nce

Cha

nges

Irradiation time (s)

Figure S15. Comparative DPBF (initial concentration at 4 × 10-5 M) degradation

profiles (absorption changes at 415 nm) in chloroform by 1e (black), 2c (red) and 3a

(blue) (5 × 10-6 M). Filtered light > 590 nm was used.

S14

3. Table S2: Photophysical properties of 1e-f, 2a-c and 3a-b in different solvents at room temperature (DMSO: Dimethyl sulfoxide).

BODIPYs solvents λabsmax

(nm) λem

max (nm) logεmax

a φc Stokes Shift (cm-1)

1e

cyclohexane 746 778 5.22 0.02 551 toluene 757 798 4.97 0.02 679

chloromethane 757 796 5.22 0.02 647 DMSO 761 806 5.19 0.01 734

acetonitrile 745 788 5.18 0.01 732

1f

cyclohexane 757 792 5.21 0.05 584 toluene 767 795 5.18 0.07 459

chloromethane 767 803 5.21 0.05 585 DMSO 756 812 5.14 0.01 912

acetonitrile 771 802 5.14 0.01 501

2a

cyclohexane 661 687 5.19 0.86 573 toluene 668 692 5.15 0.76 519

chloromethane 670 694 5.20 0.85 516 DMSO 664 695 5.08 0.61 672

acetonitrile 655 683 5.18 0.68 626

2b

cyclohexane 671 694 5.17 0.85 494 toluene 678 702 5.17 0.76 504

chloromethane 677 700 5.26 0.82 485 DMSO 679 710 5.10 0.52 643

acetonitrile 665 697 5.16 0.56 690

2c

cyclohexane 735 769 5.07 0.001 602 toluene 718 788 5.10 0.002 1237

chloromethane 730 783 5.08 0.002 927 DMSO 732 793 5.01 0.001 1051

acetonitrile 721 779 5.09 0.001 1033

3a

cyclohexane 626 692 4.76 0.002 1524 toluene 635 693 4.73 0.001 1318

chloromethane 628 709 4.73 0.001 1819 DMSO 630 -c 4.68 - -

acetonitrile - - - - -

3b

cyclohexane 618 697 4.70 0.01 1834 toluene 623 708 4.71 0.004 1927

cyclohexane 618 697 4.70 0.01 1834 DMSO 626 - 4.65 - -

acetonitrile - - - - - aMolar extinction coefficients are in the maximum of the highest peak. bFluorescence quantum yields of 1e-f were calculated using ICG (φ = 0.12 in DMSO), 2a-c were calculated using 1,7-diphenyl-3,5- di(p-methoxyphenyl)-azadipyrromethene (φ = 0.36 in chloroform), 3a-b were calculated using 1,3,5,7-tetraphenyl-azadipyrromethene (φ = 0.34 in chloroform). c“-” means no data available due to poor solubility or very low emission.

S15

4. Copies of 1H NMR and 13C NMR spectra

1H NMR spectrum of Compound 8a in CDCl3 solution.   

S16

 

 13C NMR spectrum of Compound 8a in CDCl3 solution.

S17

1H NMR spectrum of Compound 8b in CDCl3 solution.

S18

13C NMR spectrum of Compound 8b in CDCl3 solution.

S19

1H NMR spectrum of Compound 2a in CDCl3 solution.

S N N SB

F F

S20

13C NMR spectrum of Compound 2a in CDCl3 solution.

S N N SB

F F

S21

1H NMR spectrum of Compound 2b in CDCl3 solution.

S N

O

O

O

N SB

F F

O

O

O

S22

13C NMR spectrum of Compound 2b in CDCl3 solution. 

S N

O

O

O

N SB

F F

O

O

O

S23

1H NMR spectrum of Compound 6e in CDCl3 solution.

S

NH

OEt

O

Br

S24

13C NMR spectrum of Compound 6e in CDCl3 solution.

S

NH

OEt

O

Br

S25

1H NMR spectrum of Compound 7e in CDCl3 solution.

S

NHBr

S26

13C NMR spectrum of Compound 7e in CDCl3 solution.

S

NHBr

S27

1H NMR spectrum of Compound 2c in CDCl3 solution.

S N N S

Br

BF F

Br

CF3

S28

13C NMR spectrum of Compound 2c in CDCl3 solution.

S29

1H NMR spectrum of Compound 1e in CDCl3 solution.

S N SN

N

BF F

Br Br

S30

 13C NMR spectrum of Compound 1e in CDCl3 solution.

S31

1H NMR spectrum of Compound 6f in CDCl3 solution.

NH

S

OEt

O

MeO

S32

13C NMR spectrum of Compound 6f in CDCl3 solution.

NH

S

OEt

O

MeO

S33

1H NMR spectrum of Compound 7f in CDCl3 solution.

NH

S

MeO

S34

13C NMR spectrum of Compound 7f in CDCl3 solution.

NH

S

MeO

S35

1H NMR spectrum of Compound 1f in CDCl3 solution.

N

N

NB

F F

SS

O O

S36

13C NMR spectrum of Compound 1f in CDCl3 solution.

N

N

NB

F F

SS

OMeMeO

S37

1H NMR spectrum of Compound 10 in CDCl3 solution.

S38

13C NMR spectrum of Compound 10 in CDCl3 solution

S39

 1H NMR spectrum of Compound 11a in CDCl3 solution

S40

 13C NMR spectrum of Compound 11a in CDCl3 solution.

S41

 1H NMR spectrum of Compound 11b in CDCl3 solution.  

NH

S COOEt

O

O

O

S42

 

 13C NMR spectrum of Compound 11b in CDCl3 solution.

NH

S COOEt

O

O

O

S43

1H NMR spectrum of Compound 12a in CDCl3 solution.

S44

13C NMR spectrum of Compound 12a in CDCl3 solution.

S45

1H NMR spectrum of Compound 12b in CDCl3 solution.

S46

13C NMR spectrum of Compound 12b in CDCl3 solution.

S47

1H NMR spectrum of Compound 3a in CDCl3 solution.

S48

13C NMR spectrum of Compound 3a in CDCl3 solution.

S49

1H NMR spectrum of Compound 3b in CDCl3 solution.  

S50

  

 13C NMR spectrum of Compound 3b in CDCl3 solution.

S51

5. High resolution mass spectroscopes for all new compound 20150429_APCI+f-8 #10 RT: 0.15 AV: 1 NL: 2.58E6T: FTMS + c APCI corona Full ms [200.00-2000.00]

534 536 538 540 542 544 546 548 550 552 554 556 558 560 562 564 566 568m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100R

elat

ive

Abu

ndan

ce548.29773

549.30096

551.50293

552.50641537.53510 565.56635535.54474 553.50977547.40247540.53528 561.56061 568.09729542.77216 556.53088 558.49945

HRMS for 8a

HRMS for 8b

S52

HRMS for 2a

HRMS for 2b

S N N SB

F F

S N

O

O

O

N SB

F F

O

O

O

S53

HRMS for 6e

HRMS for 7e

S54

20160314_HESI+W3 #6 RT: 0.10 AV: 1 NL: 3.41E5T: FTMS + c APCI corona Full ms [400.00-1800.00]

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100R

elat

ive

Abu

ndan

ce1059.20190

1060.20483

1061.20105

1058.20703

1057.20605

1062.20251

1056.207641055.227911063.20227

HRMS for 2c

HRMS for 1e

S N N S

Br

BF F

Br

CF3

S55

HRMS for 6f

HRMS for 7f

20130809_APCI+W7 #8 RT: 0.10 AV: 1 NL: 4.00E9T: FTMS + c APCI corona Full ms [100.00-2000.00]

510 520 530 540 550 560 570 580 590 600 610m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100R

elat

ive

Abu

ndan

ce566.27142

568.27661

552.25726520.23029 579.53271540.22089

572.16077560.47266

607.56451510.20932 614.40082588.25262533.24792

S56

HRMS for 1f

HRMS for 10

S N SN

N

BF F

OMeMeO

S57

20150126_HESI+W1 #10 RT: 0.16 AV: 1 NL: 2.84E5T: FTMS + c ESI Full ms [100.00-1000.00]

592.0 592.5 593.0 593.5 594.0 594.5 595.0 595.5m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100R

elat

ive

Abu

ndan

ce592.32281

593.32617

594.32898

595.37994592.49756593.50189 594.58075592.79987

HRMS for 11a 20150126_HESI+W2 #7 RT: 0.11 AV: 1 SB: 3 0.01-0.04 NL: 9.34E5T: FTMS + c ESI Full ms [100.00-1000.00]

513.6 513.8 514.0 514.2 514.4 514.6 514.8 515.0 515.2 515.4 515.6 515.8 516.0 516.2 516.4 516.6 516.8m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

514.16711

515.17047

516.17365

514.50909 515.38324 515.56793514.66986

HRMS for 11b

NH

S COOEt

O

O

O

S58

HRMS for 12a

HRMS for 12b

S59

20160325_HESI+W1 #7 RT: 0.11 AV: 1 NL: 1.33E5T: FTMS + c APCI corona Full ms [400.00-1200.00]

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100R

elat

ive

Abu

ndan

ce1165.57214

1166.57605

1167.58313

1164.577511168.57178

1169.727171168.80078

HRMS for 3a 20160314_HESI+W2 #6 RT: 0.10 AV: 1 NL: 2.96E5T: FTMS + c APCI corona Full ms [400.00-1800.00]

1007 1008 1009 1010 1011 1012m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

1009.25824

1010.26233

1008.26190

1011.26874

HRMS for 3b

S60

References:

(1) (a) A. Gorman, J. Killoran, C. O’ Shea, T. Kenna, W. M. Gallagher, D. F. O’Shea,

J. Am. Chem. Soc., 2004, 126, 10619. (b) R. C. Benson, H. A. Kues, Phys. Med. Biol.,

1978, 23, 159.

(2) J. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer-Verlag:

New York, 2006.

(3) SAINT V 6.01 (NT) Software for the CCD Detector System, Bruker Analytical

X-ray Systems, Madison, WI (1999).

(4) G. M. Sheldrick, SHELXS-90, Program for the Solution of Crystal Structure,

University of Göttingen, Germany, 1990.

(5) SHELXL-97, Program for the Refinement of Crystal Structure, University of G¨

ottingen, Germany, 1997.

(6) SHELXTL 5.10 (PC/NT-Version), Program library for StructureSolution and

Molecular Graphics, Bruker Analytical X-ray Systems,Madison, WI (1998).

(7) S. Soth, M. Farnier, C. Paulmier, Can . J. Chem., 1978, 56, 1429.

(8) Y. Wu, C. Cheng, L. Jiao, C. Yu, S, Wang, Y. Wei, X. Mu, E. Hao, Org. Lett.,

2014, 16, 748;

 


Recommended