+ All Categories
Home > Documents > SYNTHETIC ENDEAVOURS TOWARDS NEW SINGLE MOLECULE MAGNETS...

SYNTHETIC ENDEAVOURS TOWARDS NEW SINGLE MOLECULE MAGNETS...

Date post: 01-Sep-2018
Category:
Upload: lethuan
View: 215 times
Download: 0 times
Share this document with a friend
113
M. Verdaguer, Emeritus Professor Chimie Inorganique et Matériaux Moléculaires, C.N.R.S. Unit 7071 Université P. et M. Curie, Paris, France [email protected] SYNTHETIC ENDEAVOURS TOWARDS NEW SINGLE CHAIN MAGNETS NEW SINGLE MOLECULE MAGNETS and International Workshop on « Physics on Nanoscale Magnets », Kyoto, 1-4 December 2003 NAREGI Project, Kyoto Garden Palace Hotel
Transcript

M. Verdaguer, Emeritus ProfessorChimie Inorganique et Matériaux Moléculaires, C.N.R.S. Unit 7071

Université P. et M. Curie, Paris, [email protected]

SYNTHETIC ENDEAVOURS TOWARDS

NEW SINGLE CHAIN MAGNETS

NEW SINGLE MOLECULE MAGNETS and

International Workshop on « Physics on Nanoscale Magnets », Kyoto, 1-4 December 2003NAREGI Project, Kyoto Garden Palace Hotel

SYNTHETIC ENDEAVOURS TOWARDS

Recents Results, Promises, Problems and Prospects

NEW SINGLE CHAIN MAGNETS

NEW SINGLE MOLECULE MAGNETS and

Coworkers and CollaboratorsV. Marvaud1, M. Julve2, F. Villain1, W. Wernsdorfer3

F. Tuyèras1, R. Lescouezec2, J.M. Herrera1, L.T. Marilena2, R. Tiron3

N. Galvez1, R. Garde1, M. Hernandez1

1) CIM2, CNRS Unit 7071, Université Pierre et Marie Curie, Paris, France2) Departament de Quimica Inorganica, Universitat de Valencia, Burjassot, Spain

3) Laboratoire Louis Néel, CNRS, Grenoble, France

• Introduction :- molecular magnetism- the molecular approach to nanosystems

• What a chemist must & can control ?• From High Spin Molecules to SSM

- a systematic, rational, approach- the photomagnetic way …

• Single Chain Magnets• Conclusions

Outline

Chemistry …

• Science of matter’s transformation

• A way to transform the world …

Reactants Products

A + B CT, P, Solvent,pH …

M. Noyori, Hanoi, october 2003:

To daythe chemist is able

to synthesizeany molecule

at will

Chemistry …

How to choose A and B ?

or : which target C ?

A + B C

Chemistry …

which target C ?A + B C

-1- to make money … (not always rewarding …)

-2- to follow your supervisor … (not always recommendable …)

-3- to answer questions of physicists ! or others …… (sometimes amazing and useful)

-4- to achieve a synthetic challenge !… (difficult but worth of the candle)

-5- Many more …

a scientific discipline that conceivesdesigns synthesizesstudies and uses new molecular magnetic materials …

Molecular Magnetism

One possible answer comes from

In a multidisciplinary way …

One of the nests of Molecular Magnetism

« Olivier Kahn was one of those who allowed to switch from magnetochemistry to molecular magnetism »

D. Gatteschi, Lausanne, �2001

Answering questions of physicists …

the strange and successful story of Haldane gap …

Synthesis

Properties

Theory

Idea

NewMaterials

NewFunctions

NewConcepts

… Haldane gap

Conjecture(1983)

« Dynamic mass generation by the Néel magnon is predicted … »

Very clear and useful indication for synthesis …

« Dynamic mass generation by the Néel magnon is predicted … »

Synthesis

Properties

Theory

Idea

NewMaterials

NewFunctions

NewConcepts

… Haldane gap Energy Gap in AF Integer spins 1D

Uniform Ni(II), S=1 AF Chains

NENP TMNINNINAZ… many others

Conjecture(1982)

« Translation » :

J.P. Renard et al., Europhys. Letters, 1987

One of the central questions …

Is it possible to use molecules(isolated metal complexes)

to build magnets … ?

Achieving a synthetic challenge …

a ferrimagnetic bimetallic molecule-based magnet

at 4.6 K…

M. Verdaguer et al., Coord. Chem. Reviews, 1998,

Overcome entropic and kinetics hindrances …

A-L-B-L-[A-L-B]n-

Synthesis

Properties

Theory

Idea

NewMaterials

NewFunctions

NewConcepts

Synthetic challenge : feasibility of a bimetallicmolecule-based magnet ?

Bimetallic chains

AF Exchange Interactionbetween different spins

BUT …

IT WORKS !

MnCu(dto)2•7.5H2O

OCu

O S

S O

OS

S

2-

O

O

O

N

C

N

O O

O

H X

Cu

OH2

2-

MnCu(pba)•2H2O

OO

H2O OMn

OH2

OH2

CuO S

S

OO

OH2

Mn

OH2

OH2

O

OS

S n

O

O

O

N

C

N

O O

O

H X

Cu

O

O

Mn

OH2

OH2OH2 n

Mn

A. Gleizes et al. JACS 1981 et 1984, 3277Y. Pei et al. JACS 1986,

Synthesis

Properties

Theory

Idea

NewMaterials

NewFunctions

NewConcepts

Bimetallic planes

AF between ChainsAfter Displacement

MnCu(pba-OH)•2H2O

O

O

O

N

C

N

O O

O

H X

Cu

O

O

Mn

OH2

OH2OH2 n

Mn

NOW …

Y. Pei et al., J. Am.Chem.Soc., 1988, 782

Molecular Engineering vs Crystal Engineering

O

O

O

N

C

N

O O

O

H OH

Cu

OH2

2-

Cu(pba-OH)

Catena µ-[Cu(II)(pba-OH)Mn(II)(H2O)2] Chain

Y. Pei et al. J. Am. Chem. Soc. 1988, 110, 782 ;

Molecular Engineering vs Crystal Engineering

Ferrimagnetic Bimetallic Chains

Hydrogen bonding Interchain Interactions (af)

Magnet atTC = 4.6K

O

O

O

N

C

N

O O

O

HHO

CuO

O

MnOH 2

H 2 OOH 2

MnO

N

C

N

O

OHH

Cu

OH2

O

OO

O

Mn

OH 2

OH 2

O

O

O

NH

C

NH

O O

O

HO H

CuO

O

MnOH 2

OH 2

OH 2

MnO

NH

C

NH

O

OHH

Cu

OH2

CH3

CH3O

O

MnOH 2

OH 2

O

O

O

N

C

N

O O

O

HO H

CuO

O

MnH 2 O

OH2

OH 2

MnO

N

C

N

O

OHH

Cu

OH2

O

OO

O

MnOH 2

OH 2

Catena µ-[Cu(II)(pba-OH)Mn(II)(H2O)2] Chain

Y. Pei et al. J. Am. Chem. Soc. 1988, 110, 782 ;

Molecular Engineering vs Crystal Engineering

Ferrimagnetic Bimetallic Chains

Hydrogen bonding Interchain Interactions (af)

Magnet atTC = 4.6K

O

O

O

N

C

N

O O

O

HHO

CuO

O

MnOH 2

H 2 OOH 2

MnO

N

C

N

O

OHH

Cu

OH2

O

OO

O

Mn

OH 2

OH 2

O

O

O

NH

C

NH

O O

O

HO H

CuO

O

MnOH 2

OH 2

OH 2

MnO

NH

C

NH

O

OHH

Cu

OH2

CH3

CH3O

O

MnOH 2

OH 2

O

O

O

N

C

N

O O

O

HO H

CuO

O

MnH 2 O

OH2

OH 2

MnO

N

C

N

O

OHH

Cu

OH2

O

OO

O

MnOH 2

OH 2

Achieving a synthetic challenge …

a brief story of a molecule-based magnet …at room temperature

M. Verdaguer et al., Coord. Chem. Reviews 1998, 190, 1023 & Phil.Trans.A, 1999, 357, 2959.

a confidence problem …

NB : no long range order in 1DLet us go to 3D …

Synthesis

Properties

Theory

Idea

NewMaterials

NewFunctions

NewConcepts

Synthetic challenge : feasibility of a room temperature molecule-based magnet ?

Prussian Blue analogues

V4[Cr(CN)6]8/3•n H2O… and many others

Exchange Interaction(1975, 1976)

TC = 315K

QuickTime™ et un décompresseurDV - PAL sont requis pour visualiser

cette image.

Blossoming of the discipline …

O. Kahn Eds. K. Itoh M. Kinoshita

Eds. J. MillerM. Drillon

Eds. W. LinertM. Verdaguer

from magnetochemistry to molecular magnetism …

Synthesis

Properties

Theory

Applications

Switchable SystemsMolecular Magnets

Multifunctional materials« Single Molecule » Magnets

Single Molecule Magnet

Remains oriented after withdrawing of the field(slow relaxation of the magnetisation …)

WITHOUTInteraction between the molecules

Phenomenon strictly molecular !

WHY ?

Synthesis

Properties

Theory

Idea

NewMaterials

NewFunctions

NewConcepts

… Single molecule magnets Giant Molecular Clusters

Mn4and many others

High Spin + Anisotropy? E = DSz

2 Mn12Fe8

Top down

Nanosystems• Nice Chemistry• Single molecule magnets

• Applications (far …)• Recording• Quantum computing

Fragments Threads

Dots

• New Physics• Quantum / Classical• Quantum tunneling

Bottom up

Giant Molecular Clusters

0D, Molecules

3DMetalsOxydes

Nanomagnets : How ?Molecular Clusters

• No dispersion in size, in shape and in orientation

• Systems well characterised : structure, magnetic parameters

• Control of parameters by synthesis

• Solubility• Biocompatibility

Single molecule magnetswithout interaction between the molecules !

High Spin Anisotropic Molecules

z

yx

Magnetisation reversal

Anisotropy Barrier DSz2

and D < 0

Single molecule magnetsz

yx

E

- Sz

Sz+Sz

0

DSz2

0-2-4 +2 +4

Anisotropy Barrier

Tunneling

ThermalActivation

DSz2 = 400K ? |D| = 1K

S = 20(D < 0)

Remark : if DGS > 0

D>0

- Sz Sz+Sz0-2-4 +2 +4

DSz2

Sz=0

Within the ground state, Sz=0 state is at the lowest energy

No more SMM behaviourDGS<0 is necessary for SMM …

E/K

Contro also transversal anisotropy E : mixing of M levels Contro also transversal anisotropy E : mixing of M levels in Fe8 and central for Quantum tunnelingin Fe8 and central for Quantum tunneling

From D. Gatteschi, Florence

H = DSz2 + E(Sx

2 -S2y) + Terms(S4)

• Introduction : molecular magnetism- the molecular approach to nanosystems

• What a chemist must & can control ?• From High Spin Molecules to SSM

- a systematic, rational, approach- the photomagnetic way …

• Single Chain Magnets• Conclusions

Outline

• Introduction : molecular magnetism- the molecular approach to nanosystems

• What a chemist must can control ? & can !• From High Spin Molecules to SSM

- a systematic, rational, approach- the photomagnetic way …

• Single Chain Magnets• Conclusions

Outline

For the chemistParameters to Control

J = Exchange ConstantIntramolecular interaction

zJ’ = Intermolecular interaction

E

- Sz

Sz+Sz

0

DSz2

0-2-4 +2 +4

Anisotropy Barrier

Tunneling

ThermalActivation

J’J

S = SpinD, E = Anisotropy

Synthetic “Strategy” in Paris

Hexacyanometalate “Heart”Lewis Base

Mononuclear ComplexLewis Acid

Polynuclear Complex

Valérie Marvaud, A. Scuiller, F.Tuyèras, R. Garde, (T. Mallah)

Flexibility of the Synthetic Parameters :

3-

+ 6

2+ 9+

Metallic Cations, Polydendate ligands, Counter-ions, Solvents, Stoichiometry …

Control of the ground spin state• Nuclearity

Control of the intermolecular interaction J ’

Control of the anisotropy

• Electronic anisotropy (nature of the ions)

• Exchange interaction J (F or AF) : Symmetry• Nature of the paramagnetic ions

• Molecular (and Crystal) Structure : Symmetry

• Bulky ligands• Charged complexes and counterions

• Dilution in an diamagnetic matrix

• Introduction : molecular magnetism- the molecular approach to nanosystems

• What a chemist must & can control ?• From High Spin Molecules to SMM

- a systematic, rational, approach- the photomagnetic way …

• Single Chain Magnets• Conclusions

Outline

Control of the ground spin state

• Nuclearity

• Exchange interaction J (F or AF) : Symmetry• Nature of the paramagnetic ions

Hexacyanochromate complex

x

z t2g² oct

t2g

eg

Cr(III), d3

[CrIII(CN)6]3-

Orbital Approach

Magnetic Strategy : 1) FERROMAGNETISM

M-C≡N-M'

M C N

M'C N

S = 0, JF = 2k

π σ

Bridge : LargeOverlap DensityJF = 2k, large

Example :

Cr(III) (t2g)3 JF

Ni(II),(eg)2

Cr(III)Ni(II)6S= 3/2 + 6x1

S = 15/2

Magnetic Strategy : 2) FERRIMAGNETISM

M-C≡N-M'

Cr(III)Mn(II)6S= |-3/2 + 6 x 5/2|

S = 27/2

π

π

Sab ° 0, JAF ∝ Sab√(² 2-δ2)

M C N

M'C N

² δ

Overlap = antiferromagnetism

Cr(III) (t2g)3

JAF

Mn(II) (t2g)3

Example

CrCu6S = 9/2

CrNi6S= 15/2

CrMn6S = 27/2

Hexagonal R -3a = b = 15,27 Å; c = 78,56 Åa = b= 90°; g = 120°; V = 4831 Å3

Hexagonal R -3a = b = 15,27 Å; c = 41,54 Åa = b= 90°; g = 120°; V = 8392 Å3

Hexagonal R -3a = b = 23,32 Å; c = 40,51 Åa = b= 90°; g = 120°; V = 19020 Å3

Heptanuclear Complexes

Marvaud, Chemistry, 2003, 9, 1677 and 1692

F AFF

K. Vostrikova, P. Rey et al., JACS 2000, 122, 718

2nd generation

NCM

NC CN

CN

C

CN

N

NCM

NC CN

CN

C

CN

N

NCM

NC CN

CN

C

CN

N

Spin = 2 = Ni(II)(Rad°)2

= Ni(II)(tetren)Spin = 1

Rad°

1rst generation

Complex

Decurtins, Angewandte, 2000Hashimoto, JACS, 2000

Marvaud, Chemistry, 2003, 9, 1677 y 1692

Rey, JACS 2000, 122, 718

Some examples …

S = 27/2

S = 39/2 (AF), 51/2(F)

S = 14/2

Fe2(Ni-R•2)3

Anisotropy A rational control is more difficult !

Two aspects :

- Structural- low symmetry of the cluster- one anisotropy axis : Cnv, Dnh,…

- Electronic- local anisotropy of the magnetic ions Di- exchange anisotropy Di,j

Control of the anisotropy …

• Isolated Ion Anisotropy Di

• Dipolar Interaction• Anisotropic Exchange Di,j

D = ? i ci Di + ? ci,j D i,jCan be computed (“Genio” Programme, D. Gatteschi)

CoNi5

CoNi3

CoCo3

CoCu3

CrNi 5/2

CrNi2

CoCo2 CoNi2CoCu2

7/2

Marvaud et al., Chemistry, 2003, 9, 1677 and 1692 Ariane Scuiller, Caroline Decroix, Martine Cantuel, Fabien Tuyèras …

CrNi2CoCo2

CoCu6

CrNi

CoNi5CrNi3

CoNi2

CoNi3CrNi3

CoCo6

CoCu2

CoCo3CrCo3

CoCu35/2

7/2

9/2

27/2

Anisotropy

High spin

V. Marvaud

CrMn6

CoMn6

CrNi6

15/2

CrCu6

[CrIII(CN)4{CN-NiII(tetren)}2]+Cl- or [BF]4-

« CrNi2 » complexes : molecules

[CrIII(CN)4{CN-NiII(dienpy2)}2]+Cl-

+

+

CrIII, d3, t2g ; NiII , d8, eg

Orthogonality : FerroSpin : 2x1 + 3/2 = 7/2Structural anisotropy

S = 7�/2Anisotropic molecular GdIII …

One of the most difficult problem :

Control of INTERmolecular interactions J’

i.e. crystal engineering

« CrNi2 » complexes : cell packing

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5

1/ch

i (1/

T)

T (K)

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2

1/ch

i (1/

T)

T (K)

Magnetism : µ-SQUID MeasurementsMagnetic Susceptibility

Easy axisF

Hard axisAF

Coll. W. Wernsdorfer, R. Tiron See R. Tiron et al., Polyhedron, 2002,22, 2247

Simplified scheme of unit cell[Cr(CN)4{CN-Ni(tetren)}2]Cl

H // easy axis

-1

-0.5

0

0.5

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.04K0.4K0.5K1K2K3K7K

M/M

s

µ0H (T)

-1

-0.5

0

0.5

1

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

0.05K0.6K1K2K4K7K

M/M

s

µ0H (T)

Hysteresis loops vs temperature

H // hard axis

-1

-0.5

0

0.5

1

-0.4 -0.2 0 0.2 0.4

M/M

s

µ0H (T)

Happ

Happ

Happ

-1

-0.5

0

0.5

1

-0.4 -0.2 0 0.2 0.4

M/M

s

µ0H (T)

Happ

Happ Happ

Happ

-1

-0.5

0

0.5

1

-0.4 -0.2 0 0.2 0.4

M/M

s

µ0H (T)

Hysteresis loops vs direction of H

H // easy axis H // hard axisIntermediate

Hysteresis loopsfor 3 samples

H // hard axis

Cr{Ni(tetren)}2

Cr{Ni(tetren)}2 *

[Cr{Ni(dienpy2)}2

Formally, the « same » molecules CrNi2

And slightly different properties …

Mn12(p-MeBz) Mn12(p-MeBz)H2O

Two Isomeric Mn12

D.N. Hendrickson, G. Christou et al.

Time necessary to relax 1% of MsatFe8

D > Fe8st > 57Fe8

0.1

1

10

100

1000

0 2 4 6 8 10

τ(s)

1/T (1/K)

Fe 8 with D

Fe 8 standard

Fe 8 with 57 Fe

from D. Gatteschi, R. Sessoli et al.

Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets

W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson & G. ChristouNature 416, 406 (28 March 2002)

QuickTime™ et un décompresseurGraphique sont requis pour visualiser

cette image.

�S = 9/

�S = 9/

J

To get high spin and anisotropic

molecules :some work in progress

To get high spin and anisotropic molecules :some working directions

-I- Tetra or Hexanuclear Complexes CrNi3, CrNi5

-II- Anisotropic Ions Co(II), Mn(III)

-III- Heterotrimetallic Complexes CrNi2Mn4

-IV- Anisotropic Hearts

Octacyanometalates

Fe(II)(phen)(CN)4

Well insulated :-V- Dilution in a dia/paramagnetic matrix

CrNi2 in CoNi2-VI- Interaction with light

V. Marvaud

Synthetic Strategy I

Cr(III)Ni(II)3, Tetranuclear Complex, C3v axis

CrNi3, S=9/2

- Isostructural with CoNi3

Caracterisation :

- Mass Spectrometry : M = 1712.98

Magnetic Properties • Ferromagnetic Interaction

Hexagonal R 3a = b = 18,343 Å; c = 23,394 Å

V = 6818 Å3 , Z = 3

• S = 9/2

• J = +9.7�0 cm -1, D = -0.095 cm-1

• Hysteresis at 30 mK

V. Marvaud, F. Tuyèras

C3v

Using Anisotropic Ions, Co(II) and Mn(III) (large D)

Monoclinic C 2/ma = 17,821 Å; b = 14,275 Å; c = 8,602 Å

b = 99,206°;

Magnetic Properties

• Antiferromagnetic Interaction

• S = 5/2

• J , D in progress

Cr(III)Mn(III)2

Synthetic Strategy II

Cristallographic Structure

V. Marvaud, F. Tuyèras

Hetero tri metallic Complexes , Cr(III)Ni(II)2Mn(II)4

+

Trigonal R -3a = b = 23,26 Å; c = 20,35 Å

α = β = 90°; γ = 120°; V =9510 Å3

Synthesis Cristallographic Structure

NiII NiII MnIICrIII

Synthetic Strategy III

V. Marvaud, F. Tuyèras

S=1 S=3/2 S=1 S = 5/2

0

2

4

6

8

10

12

14

0 1 104 2 104 3 104 4 104 5 104 6 104 7 104

M (

MB

)

H / Gauss

CrNi2Mn4 : magnetic properties

S = (4 x 5/2) - 3/2 - (2 x 1) = 13/2

Cr-Ni FCr-Mn AF

22

24

26

28

30

32

34

36

0 50 100 150 200 250 300

Chi

*T

T(K)

Collaboration: R. Sessoli & D. Gatteschi

Hexagonal R -3a = b = 23,26 Å; c = 20,35 Åa = b= 90°; g = 120°; V =9510 Å3

V. Marvaud, F. Tuyèras

CrNi2Mn4 : High Field EPR

-0,003

-0,002

-0,001

0

0,001

0,002

0,003

0,004

8 8,5 9 9,5 10 10,5 11 11,5

inte

nsité

Champ

-0,004

-0,003

-0,002

-0,001

0

0,001

0,002

0,003

6 6,5 7 7,5 8 8,5 9 9,5 10

inte

nsité

champ

CrNi2 CrMn6

-0,002

-0,0015

-0,001

-0,0005

0

0,0005

0,001

0,0015

6,5 7 7,5 8 8,5 9 9,5 10

inte

nsité

Champ

CrNi2Mn4

Coll.A.L. Barra & D. Gatteschi

285 GHz10 K

230 GHz15 K

230 GHz15K

V. Marvaud, F. Tuyèras

CrNi2Mn4 : « Genio » Calculations

Collaboration: D. Gatteschi

CrNi2Mn4 CNi = 0,00833 CMn = 0,11096CCr = 0,025

D = ciDi

i∑ + cijDij

ij∑

V. Marvaud

Looking for the best Hetero-Tri-Metallic Systems

Cr{NiL}2 {NiL’}4 predicted to be a « Single Molecule Magnet »

Heterotrimetallic Complexes

+

+

CrNi2Mn4

CrNiMn5

And others !

V. Marvaud

CrNi4 …

2 - Bidendates TRANS 3 - Trisdendates FAC y MER

4 - Tetradendates CIS 6 - Hexadendates 8 - Octadendates

Synthetic Strategy IVAnisotropic “Hearts”

Monoclinic P 21/ na = 14,581 Å; b = 29,044 Å; c = 18,679 Å

b = 103,708°;

Fe(II)(phen)Cu(II)4

Fe(II), S = 0 !

Monoclinic P 21/ aa = 14,245 Å; b = 14,584 Å; c = 16,261 Å

b = 111,323°;

Fe(II)Cu(II)4

Ni(II) square planar, S = 0 !

Polynuclear Complexes with Anisotropic Hearts

Fe(III) reduced to Fe(II) …

Synthetic Strategy VDilution in a dia/paramagnetic matrix

CrNi2 diluted in a CoNi2 matrix

Cr(III) or Co(III)

NB : Co(III), d6, diamagnetic

-1

-0.5

0

0.5

1

-0.8 -0.4 0 0.4 0.8

0.04 K0.10 K0.12 K0.14 K

M/M

s

µ0 H (T)

dH/dt = 0.035 T/s

0

-0.2 -0.1 0 0.1 0.2

0.04 K0.10 K0.12 K0.14 K

M/M

s

µ0 H (T)

dH/dt = 0.035 T/s

CrNi2 diluted in a CoNi2 matrix

Sigmoïdal signal is from matrix • Quick Relaxation at H=0 ; • Steeper magnetisation rise at lower T

Hope : tunneling effect at H = 0 : SMM ?

WIVCuII6

MoIVCuII6

WIVNiII6MoIVNiII6

Monoclinic P na = 24.89 Å; b = 14,39 Å; c = 30,11 Å

a = g = 90°; b = 108.81°;

Monoclinic a = 22.03 Å; b = 28,39 Å; c = 22,01 Å

a = g = 90°; b =99.48°;

Monoclinic C ca = 25.39 Å; b = 15,22 Å; c = 30,72 Å

a = g = 90°; b = 111.45°;

WIVMnII6

MoIVMnII6

Heptanuclear Complexesfrom octacyanometalate precursors

V. Marvaud, J.M. Herrera, work in progress

WIVCuII6

MoIVCuII6

WIVNiII6MoIVNiII6

Monoclinic P na = 24.89 Å; b = 14,39 Å; c = 30,11 Å

a = g = 90°; b = 108.81°;

Monoclinic a = 22.03 Å; b = 28,39 Å; c = 22,01 Å

a = g = 90°; b =99.48°;

Monoclinic C ca = 25.39 Å; b = 15,22 Å; c = 30,72 Å

a = g = 90°; b = 111.45°;

WIVMnII6

MoIVMnII6

V. Marvaud, J.M. Herrera, work in progress

Synthetic Strategy VInteraction with light

Octacyanometalate Precursors

Heptanuclear Complexes

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

Emu

Time (h.mn)

T = 10 KH = 20 kOe

0.00 2.00 4.00 6.00 8.00 10.00

Magnetisation (H=2T) at T= 10K as f(irradiation time)

MoIVCuII6 : photomagnetic molecule !

M / u.a.

Time / min.

Collaboration: C. Mathonière, ICMC Bordeaux

6 x (S = 1/2) S = 3

Photo-excitation MoIVCu6 MoVCuII5CuI ?

MoIVCuII6 MoVCuI

1CuII5

MoV, d1 , S=1/2Ferro interaction …MoIV, d2 , S=0

No exchange6 isolated S=1/2

Photo-induced electron transfer

MoV CuI

+5

MoIV CuIIhν

+5

S=3

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300

xT before hv

xT after hv

χ MT / emu mol

-1 K

T / K

χMT = f(T) before irradiation and after irradiation

MoIVCuII6

χ MT

before

afterhν

280 K

hν (405 nm), 19 h, 5 K

0

1

2

3

4

5

0 10000 20000 30000 40000 50000

simulationM after hvM before hvM after cycling T

M / N

β

Field / Oe

MoIVCuII6 : further data

Magnetisation vs H at T= 10K : Experiment and simulation

Fully reversible !

° Before irradiation-- After cycling at

Room T

• After irradiation-- Simulation (S=3)

• Introduction : molecular magnetism- the molecular approach to nanosystems

• What a chemist must & can control ?• From High Spin Molecules to SSM

- a systematic, rational, approach- the photomagnetic way …

• Single Chain Magnets• Conclusions

Outline

Anisotropic precursor

[Fe(III)(bipy)(CN)4]-

R. Lescouëzec, M. Julve, Valencia, Spain D. Gatteschi, W. WernsdorferAngewandte Chem. 2003, 142, 1483-6

Feasibility of « Molecular nanowires » ?

2 [FeIII(bipy)(CN)4]- + [CoII(H2O)6]2+

FeIII, d5

bas spinS = 1/2

CoII, d7

haut spinS = 3/2

Anisotropic precursor(Structure)

Anisotropic assembler(Electronic Structure)

Bimetallic Chain ! [{FeIII(bipy)(CN)4 }2CoII(H2O)2•�4H2O]n

Cristallographic Structure (along a axis)

MonoclinicP21/na =7,591Åb =15,190Åc =14,714Åß =92,92°

J. Vaissermann, Paris

Chain [{FeIII(bipy)(CN)4 }2CoII(H2O)2•�4H2O]n

Perspective View

J. Vaissermann

7.59 Å (a)

Chain catena-µ- [{FeIII(bipy)(CN)4 }2CoII(H2O)2•�4H 2O]n

Few and Weak Interchains contacts

Chain catena µ- [{FeIII(bipy)(CN)4 }2CoII(H2O)2•�4H 2O]n

View down axis a

Observe the angle between chains

Chain catena µ-[{FeIII(bipy)(CN)4 }2CoII(H2O)2•�4H2O]n

Magnetic Properties (powder)

5

10

15

20

25

30

0 50 100 150 200 250 300

χ MT

/ cm

3 mol

-1

T/K

Fe(bipy)(CN)4Co

poudre

0

10

20

30

40

50

60

0 50 100 150 200 250 300

Fe(bipy)(CN)4, poudre

1/χΜ

T / K

θ = +18.1 K

r = 0.99995 (30 < T < 300 K)

FERROMAGNETIC INTERACTION !

Orbital interpretation : Orthogonality of Magnetic orbitals

R. Lescouëzec, J. Cano

6

8

10

12

14

16

6 7 8 9 10 11 12 13

M / a. u.

T /

b

c

a

K

FCM plots along crystallographic axes a, b, c (H = 5000 Oe)

Chain catena µ-[{FeIII(bipy)(CN)4 }2CoII(H2O)2•�4H2O]n

0.80

1.0

1.2

1.4

1.6

1.8

0 60 120 180 240 300

theo

exp

M / a. u.

α

b

c

/ deg

Magnetisation in the bc plane (H = 5000 Oe ; T = 5 K)

Chain catena µ-[{FeIII(bipy)(CN)4 }2CoII(H2O)2•�4H2O]n

m1 m2

Mb

Mc

m1

m2

31o

59o

Scheme I

b

c

a

Co

FeOw

Magnetisation in the bc plane (H = 5000 Oe ; T = 5 K)

Chain catena µ-[{FeIII(bipy)(CN)4 }2CoII(H2O)2•�4H2O]n

0.0

0.5

1.0

1.5

2.0

3 4 5 6 7 8

χ" / a. u.

T /

1000100

1010.1

Kχ‘‘ vs. T plots along the b axis.

Chain catena µ-[{FeIII(bipy)(CN)4 }2CoII(H2O)2•�4H2O]n

Slow relaxation of the magnetisation !

Single crystal ac susceptibilityMeasurements(SQUID)

R. Lescouezec, F. Lloret

Chain catena µ-[{FeIII(bipy)(CN)4 }2CoII(H2O)2•�4H2O]n

Magnetisation on microSQUID (microcrystal)

Hx

12°

-20°

-32°

Hyeasy axis

minor species

easy axismajor species

50 µm

crystal

W. Wernsdorfer, LLN Grenoble

-1

-0.5

0

0.5

1

-0.8 -0.4 0 0.4 0.8

0.070 T/s0.035 T/s0.017 T/s0.008 T/s0.004 T/s0.002 T/s0.001 T/s

M/M

sµ0 H (T)

2.0 KH || b

Slow relaxation of the magnetisation

Constant TemperatureVarying Sweeping Rates

MicroSQUID Single crystal measurements // b axis

Chain catena µ-[{FeIII(bipy)(CN)4 }2CoII(H2O)2•�4H2O]n

W. Wernsdorfer, Grenoble

-1

-0.5

0

0.5

1

-1.2 -0.8 -0.4 0 0.4 0.8 1.2M

/Ms

µ0 H (T)

H || b

2.0 K

1.5 K

1.1 K

0.05 K0.002 T/s

7.0 K

W. Wernsdorfer, Grenoble

Constant Sweeping RateVarying Temperature

MicroSQUID Single crystal measurements // b axis

Chain catena µ-[{FeIII(bipy)(CN)4 }2CoII(H2O)2•�4H2O]n

Slow relaxation of the magnetisation

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000M

/Ms

t (s)

1.5 K

1.6 K

1.7 K

1.8 K

1.9 K

2.8 K

2.7 K

2.6 K

2.5 K 2.3 K

2.2 K

2.1 K

2.4 K

2.0 K

M vs. t plots along the b axis.

Both ac and dcmeasurementsindicate thermally activated relaxation of the magnetisation:

ac: Ea= 142 K, τ0 = 6.10-11 sdc: Ea= 43 K, τ0 = 2.10-8 s

The different values of τ0and Ea are attributed to different relaxation processes.

Slow relaxation of the magnetisation …

W. Wernsdorfer, Grenoble

Slow relaxation of the magnetisation in 1D …

1) New phenomenon See Gatteschi et al. Angewandte Chemie, 2001See Miyazaka, J. Am. Chem. Soc. 2002 and this conference

2) Ising slow relaxing chains can be viewed as 1D nanomagnets or nanowires (or single chain magnets) …

3) Prospects :- mechanisms of the magnetisation reversal - local origin of the anisotropy (CoII, FeIII, CoII-FeIII ?)- applications for information storage ?

A flexible chemical system Substitutions (pure or doped systems) :

• Co(II) by Zn(II) (dia)• Fe(III) by Co(III) (dia)

Co(II) / Zn(II)Fe(III) / Co(III)

Slow relaxation of the magnetisation in 1D …

4) Active field in progress … - Search for quantum tunneling in 1D …

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8

M/M

s

µ 0 H (T)

2 K2.1 K

2.2 K2.3 K

2.4 K

2.0 K 1.9 K1.8 K

1.7 K

1.6 K

1.5 K

1.4 K1.3 K1.2 K

Is the regime becoming independentof temperature ?

• Introduction : molecular magnetism- the molecular approach to nanosystems

• What a chemist must & can control ?• From High Spin Molecules to SSM

- a systematic, rational, approach- the photomagnetic way …

• Single Chain Magnets• Conclusions

Outline

• Introduction :• What a chemist must & can control ?• From High Spin Molecules to SSM

- a systematic, rational, approach- the photomagnetic way …

• Single Chain Magnets

• Conclusions and acknowledgements

Everything possiblein molecular magnetism ?

NO, but …• Molecular engineering• Molecules in the solid : molecular engineering • Subtleties in structures and electronic properties• But new exciting fields :

- multifunctional materials- molecular electronics ; quantum computing

• We did the easiest • The most exciting is coming, for young scientists …

Prospects (long term)• Magnetic storage on ONE single molecule

Prospects (short term)

• Improved Instrumentation (microSQUID + …)

• Quantum computing

• New chemical systems with larger ? E

Magnetic TipHSM "up" HSM "down"

Surface

Next « device » ?Recording on one molecule !

Exciting joint venture between physicists and chemiststheoreticians and experimentalists

Molecular Approach to Nanomagnets and Multifunctional Materials

D. Gatteschi, Florence

6ème PCRD, NOEProposal

Scientific exchanges …Scientific exchanges …

Fuji-san, November 17, 2002

q To increase and to share new knowledges

q To improve mutual knowledgeq scientific …q cultural …

q To better understand and respect each other

Science for peace …(V. Balzani, Seeheim 2001)

q To develop friendship and to protect peace

Hiroshima, November 23, 2002

Kyoto November 14, 2002, TofukuKyoto November 14, 2002, Tofuku--ji gardenji garden

AcknowledgementsAcknowledgementsMy coworkersMy coworkers

Research groups quotedResearch groups quoted

French Ministery of Higher EducationFrench Ministery of Higher Education

C.N.R.SC.N.R.S

Tokyo Institute of Technology ProfessorTokyo Institute of Technology Professor EnokiEnokiNagoya University ProfessoNagoya University Professor Awagar AwagaOrganizers of the meeting Professor Miyashita eOrganizers of the meeting Professor Miyashita et aliit alii

European TMR Molnanomag and M3D, ESFEuropean TMR Molnanomag and M3D, ESF

and YOUand YOU

for kindfor kindattentionattention

Kyoto November 2002Kyoto November 2002Imperial Palace GardenImperial Palace Garden

Work partly done in Pierre & Marie Curie University

Acknowledgements to my coworkers

ChristopheCartier ditMoulin

FrançoiseVillain

AnneBleuzen

CyrilleTrain

Cédric Desplanches,Natividad Galvez, Ricardo Moroni, Raquel Garde

Virginie Escax, Juan Manuel Herrera, Fabrice PointillartFabien Tuyèras, Guillaume Champion, Mannan Seuleiman, Hayat Hanouti

V. GadetS. Ferlay

A. ScuillerR. Lescouëzec

ValérieMarvaud

Dante GatteschiChaire Blaise Pascal 2001


Recommended