+ All Categories
Home > Documents > System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be...

System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be...

Date post: 17-Apr-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
47
LiJ System-Level Sensitivity Results and Alternative Conceptual Models in TPA 3.2 Richard B. Codell (301) 415-8167 [email protected] Performance Assessment and HLW Integration Branch Division of Waste Management Office of Nuclear Materials Safety and Safeguards U.S. Nuclear Regulatory Commission Contributors: S. Mohanty (CNWRA), M. Byrne (USNRC), J. Weldy (CNWRA), R. Janetske (CNWRA), Y. Lu (SWRI) For presentation at the NRC/DOE Technical Exchange on Total System Performance Assessment, Center for Nuclear Waste Regulatory Analyses, San Antonio Texas May 25-27, 1999 ,/x~ X. y .' a' , -, - .;
Transcript
Page 1: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

LiJSystem-Level Sensitivity Results and

Alternative Conceptual Models in TPA 3.2

Richard B. Codell(301) [email protected]

Performance Assessment and HLW Integration BranchDivision of Waste ManagementOffice of Nuclear Materials Safety and SafeguardsU.S. Nuclear Regulatory Commission

Contributors: S. Mohanty (CNWRA), M. Byrne (USNRC), J. Weldy (CNWRA), R. Janetske (CNWRA), Y. Lu (SWRI)

For presentation at the NRC/DOE Technical Exchange on Total System Performance Assessment,Center for Nuclear Waste Regulatory Analyses, San Antonio Texas May 25-27, 1999

,/x~ X. y .' a' , -, - . ;

Page 2: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Motivation for Sensitivity Analysis at Total System Level

* TPA code is complicated, and cannot be understood piecemeal.

* Sensitivity results point out the relative importance of subsystems, andpossible errors or weaknesses in analyses.

* Focuses staff reviews of DOE TSPAs on those factors most significant tototal system performance.

* Continues to improve staff's capability for reviewing a possibleapplication at the Yucca Mountain site.

2

Page 3: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Purpose of Presentation

* Show sensitivities of performance measures to input parameters.

* Show sensitivities of performance measures to alternative conceptualmodels and scenarios.

* Determine some measure of relative importance of technical areas to theperformance of the repository.

3

Page 4: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Sensitivity Analyses on Base Caseand Disruptive Scenarios

"Base case" defined here as:

- Alloy C-22 for inner overpack- Carbon steel outer overpack- No cladding protection- Bathtub model for release rate- No matrix diffusion- No backfill- Includes effects of seismicity- 20 Km receptor group- 50,000 year maximum time- No volcanism or faulting

* Volcanism Scenario

* Faulting Scenario

4

Page 5: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Sensitivity Analyses on Base Case

* Used a wide variety of statistically based and non-statistical methods toextract sensitivity information from the TPA results.

* Statistical Sensitivity Analysis Includes:

- Compartmental analysis for most important radionuclides- "Classical" regression and statistical techniques- FAST method- Parameter Tree method

* Non-statistical sensitivity techniques include- Differential analysis- Morris method

5

Page 6: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

<D

TMCo

rv

LO

r-

Co

to

Peak Mean Dose for 10,000 Years by Radionuclide, Rem

U -*0-_ __

Tot Cm245 Am241 Np237 Pu239 U234 Th230 1129

Radionuclide

Tc99 C14 Se79 C136

6

Page 7: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Peak Mean Dose for 50,000 Years by Radionuclide, Rem

C0

cT

0

600-

06

o000o

0

O

0 -06

00C06N

00 -06

06

I_ _

Tot Cm245 Am241 Np237 Pu239 U234 Th230 1129 Tc99 C14 Se79 C136

Radionuclide 7

Page 8: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Boxplot, peak doses for 10,000 years, base case

m~00 063

2

uiw

crn00co,

c'.0oa6

a006

4-

0

=0C3 aFH F- H H HH

Tot Cm245 Am241 Np237 Pu239 U234 Th230 1129 Tc99 C14 Se79 C136

8

Page 9: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Dose for 50,000 years (400 vector run)

'tTo

:

C,)0

U)0c

06

C'4C6

0

06

r"

U1)

CZ

z

F- F-A

Tot Cm245 Am241 Np237 Pu239 U234 Th230 1129 Tc99 C14 Se79 C1369

Page 10: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

"Classical" Statistical Sensitivity Analysis

Advantage: Well-proven methods for statistical analysis of Monte Carlosimulations have been used since the earliest performanceassessments. Several enhancements to the standard array ofregression analyses have improved results.

* Careful application of variable screening and multiple linear regressiondetermined 18 significant variables for 10,000 year Time Period of Interest(TPI) and 20 significant variables for 50,000 year TPI.

10

Page 11: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Preliminary Screening of Input Variables

Preliminary screening of 246 input variables was used to determine a short listof likely important variables for further analysis using the followingtechniques:

* Single-variable regression with t-test (test that slope significantly differentfrom zero)

* Stepwise multiple linear regression

* Tests performed on:- Normalized variables- Log of normalized variables- Variables normalized with scaled power law

* Non-parametric tests- Kolmogorov-Smirnov test- Sign test

11

Page 12: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

C)CD -Cl

C)

T -

Stepwise Regression, Example 10,000 Time Period of Interest

*WP-Def%/

*AAMAIaS

*Fow'

*Fmuilt

*VD-Angle

*SFWt%C5

*MKDUFZRa

*SFWtS41

*ARDSAVSe*Solbl-Am

-

V)a)(aI

CD4-

0

E:3CO)

cn._Cn

C)

(0

0C1to

0

0

0

CM

CT-

0

0

0

.

.

.

0 5 10 15 20

Number of Parameters Included in Fit

25 30

Page 13: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Transformation of Variables in Statistical Analysis

Variables were often transformed to improve nature of statistical analysis:

* Rank Transformation - Reduce variable to its rank in a sorted list.

* Normalization - Divide by variables by the mean of the list.

* Logarithmic transformation - Take the logarithm of the normalizedvariable.

* Scaled Power Transformation - Find power law transform that bestreduces influence of tails of distribution.

13

Page 14: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Presentation of Sensitivities

Sensitivity results can be presented several ways to emphasizedifferent attributes:

* Sensitivities based on normalized variables

- Weight all results equally

- Generally give poorer fits (i.e., R 2)

* Log-Normalized Sensitivities

- Log transformation gives equal weights to the logs, whichoverestimates the smaller doses.

- Gives better fit (R 2) because TPA model is generally multiplicativerather than additive.

14

Page 15: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Presentation of Sensitivities (Cont'd)

* Standardized Sensitivities variables place proper emphasis on range ofinput variables

* Xi x-

i - -

6x

Standardized Variables derived fromSensitivities; i.e.

Normalized or Log-Normalized

ay *ax *

17xii= T

yx.i

15

Page 16: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Differential Analysis

Advantage: Differential analysis gives exact values of sensitivities at localpoints in parameter space. However, sensitivities are local only, and requireone simulation for each sensitivity coefficient.

* Perturb independent variables one at a time around a "base point" in theparameter space (Used 7 base points in current study)

* Use finite difference to get sensitivity:

6D D(xj+Ax)-D(xi)

6xi Axi

16

Page 17: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Morris Method

Advantage: Economic way of conducting differential analysis for a largenumber of independent variables.

* Uses a "Design Matrix" to reduce number of runs needed by half.

17

Page 18: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Fourier Amplitude Sensitivity Test (FAST) MethodAdvantage: Useful for nonlinear computational models with multiple

interactions among the independent variables

* Allows influence of all input parameters at same time (unlike differential orMorris method).

* Limited to small number of independent variables.

- Used screening technique (Morris Method) to estimate 10 inputparameters considered to be most influential.

18

Page 19: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Parameter Tree Method

Advantage: Examines total system output relative to groups of inputparameters.

* Uses large bin of Monte Carlo runs (4000)

* Parameter tree partitions input parameters into bins based on a branchingcriterion:

- "+" or "-" partitioning depending on whether independent variable isgreater than or less than the criterion (e.g., mean)

- Procedure determines 2 bins, where M is number of important variablesdetermined by screening.

19

Page 20: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Parameter Tree Method

10 I Fow I WPdef I Fmult PR2 0 A B C D

++

Parameter valuefor realization

greaterthan median (+)

4,000 _

Realizations

Parameter valuefor realization

lessthan median (-)

124/124 6.59E-05

100/102 1.30E-0482/90 4.31 E-05

110/118 5.90E-0584/102 2.81E-0599/109 4.39E-0574/109 1.44E-0579/111 1.96E-05

102/137 1.86E-05126/145 5.19E-0566/134 5.51E-0682/141 1.13E-0566/135 6.78E-0689/150 1.12E-0523/145 1.71 E-0645/148 3.73E-06

84/153 1.55E-05100/140 3.17E-0557/145 6.93E-06

63/138 9.55E-0654/133 5.69E-0679/154 8.67E-0629/148 2.97E-0639/124 5.92E-06

30/95 4.11 E-0642/103 7.1 OE-0617/115 1.23E-06

17/120 1.13E-0617/111 1.53E-0615/107 1.60E-06

21124 3.23E-07

4/90 7.70E-07

0.11090.18010.05260.09440.03890.06490.02130.02950.03450.10210.01000.02160.01240.02280.00340.0075

0.03210.06010.01360.01790.01030.01810.00600.01000.00530.00990.0019

0.00180.00230.00230.0005

0.0009

3.58

7.062.373.201.532.380.781.061.012.82

0.300.610.370.610.09

0.200.841.720.380.520.310.470.160.320.220.390.67

0.060.080.090.02

0.04

Page 21: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Sensitivities for Base Case, 10,000 years

Linear Model Linear Model Differential Morris ParameterRank Normalized Lo norm Analysis Method Tree Method

1 MAPM@GM MAPM@GM ARDSAVTc CritRHAC AAMAI@S

2 MATI@GM AprsSAV FOCTR-R YMR-TC Fow

3 WPRRG@20 WPRRG@20 Fow Chlorid WP-Def% /

4 WP-Def% Fow ARDSAVI SSMO-RE Fmult

5 AAMAI@S WP-DEF% SFWt%13 H20-FThk SbArWt%

6 Fmult Fmult WP-Def% Fow

7 SbArWt% SbArWt% ARDSAVSe Fmult

8 SSMOV501 AAMAI@S SbArWt% FOCTR-R

9 SFWt%46 ARDSAVI Fmult FOC-R

10 SFWt%I1 InitRSFP FOC-R WPRRG@20 ,

21

Page 22: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Sensitivities for Base Case, 50,000 Years

Linear Model Linear Model Differential Parameter TreeRank Normalized Log Norm Analysis Morris Method Method

1 SbArWt% ARDSAVTc ARDSAVNp ARDSAVNp

2 AAMAI@S SbArWt% Fow WPRRG@20

3 InitRSFP WPRRG@20 OO-CofLC AA_2_ 1

4 SbGFRATF AAMAI@S AA_2 1 MAPM@GM

5 Aprs SAV Aprs SAV SbArWt% AAMAI@S

6 WPRRG@20 ARDSAVNp ARDSAVTc APrsSAV l

7 SSMOV206 InitRSFP Fmult Fow

8 SSMO-JS5 SSMO-JS5 WPRCG@20 SbArWt%

9 SFWt%C2 SbGFRATF APrs-SAV Fmult

10 SFWt%C3 ARDSAV I ARDSAVI OO-CofLC

22

Page 23: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Standardized Sensitivities

Standardized sensitivities are significantly different from sensitivity coefficients.

Top 10 most-sensitive standardized variables for 10,000 Year TPIfrom Statistical Analysis

Normalized Variables Log-Normalized Variables

WP-Def% Fow

Fow WP-Def%

SbArWt% SbArWt%

F-Mult F-Mult

ARDSAVTc AAMAI@S

WPRRG@20 ARDSAV_I

AAMAI@S ARDSAVTc

SFWt%S46 WPRRG @20

SFWt%1l ARDSAVNp

Fprm BFw MAPM@GM

23

Page 24: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

10 Most-Sensitive Standardized Variables from Statistical Analysisfor 50,000 Year TPI

Normalized Variables Log of Normalized VariablesSbArWt% ARDSAVNpAAMAI@S SbArWt%

WPRRG@20 AAMAI@SARDSAVNp ARDSAVUSSMO-RPR ARDSAVTc

nitRSFP InitRSFPSSMOV206 MKDCHvNpSbGFRATF AprsSAVSFWt%C2 ARDSAV I

ARDSAV U SbGFRATF

24

Page 25: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Ranking of Standardized Sensitivities for Disruptive EventsVolcanism

Rank Regression normalized Regression Lognormr Differential Analysis1 Windspd Windspd Ve-Power2 ABMLFVDC ABMLFVDC ABMLFVDC3 VEROI-Tn VC-Dia VE-Durat4 VE-Durat VE-Durat VEROI-Tn5 VE-Power VE-Power VC-Dia6 VC-Dia VEROI-Tn Windspd7 AshMnPLD AshMnPLD AshMnPLD

Faulting Scenario (Differential analysis only)Rank 10,000 yr 50,000 yr__

1 FEROI-Tn none2 SFWt%FO none

3 NEFZnW none

25

Page 26: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Insights from Sensitivity Analyses

* Several of the methods gave widely different results for sensitivitycoefficients:

At the 10,000 year TPIStatistical, Parameter tree, and Differential analysis gave highimportance to water infiltration and fuel contact parameters.

Morris Method gave high importance to corrosion and refluxparameters.

At the 50,000 year TPI, there was more agreement among the methods on theimportant parameters.

* Logarithmic transformations gave better fits in terms of reduction invariance, but may distort results for higher dose categories.

* Standardized sensitivity coefficients must be used to correctly rankimportant variables.

26

Page 27: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Alternative Conceptual Models

* Define alternative models of performance of waste package, waste formand geosphere

* Compare alternative models to base case

* Restrict to 250 vectors per run for relative comparison

* Consider 20 Km receptor group

* Look at two TPIs:

- Less than 10,000 years

- Less than 50,000 years

27

Page 28: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Alternative conceptual models (Cont'd)

* Base - 250 vector base case for comparison to other conceptual models.20 Km critical group, 50,000 year maximum time, alloy C-22 innercontainer, no backfill, no matrix diffusion, bathtub model, no claddingprotection

The following runs differ from the Base Case:

* NoRet No retardation for Pu, Am and Th

* Model 1 Fuel dissolution model based on carbonate water

* Matdif Matrix diffusion in legs with fracture flow

* Flowthru The flow-though option for source term model

* Focflow Four times the flow to 1/4 the number of wetted wastepackages

28

Page 29: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Alternative conceptual models (Cont'd)

* Clad-Mi Cladding credit of 99.5% for Model 1 fuel dissolution

* Natan Radionuclide release rate tied to observed release rate fromnatural analog at Pena Blanca site.

* Schoepite Release rate depends on dissolution rate of secondarymineral, schoepite.

* Graini Grain size U02 model with carbonate water dissolution

29

Page 30: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Peak Mean Dose for 1 0,000 Years, Rem

NoRet

Flowthru

Grain1

Modell

Focflow

I-

Base

Matdif

Clad-Mi

Natan

Schoepite

Legend (in 10,000 year order)

NoRetFlowthruGrainlModel 1FocflowBaseMatdifClad-MiNatanSchoepite

No Retardation for Pu, Am and ThThe flow-through option for source term modeModel 1 dissolution plus U0 2 grain-size distributionFuel dissolution model based on carbonate waterFour times the flow to 1/4 the number of wetted waste packagesThe base caseMatrix diffusion in pathway analysisCladding credit of 99.5% with Model 1 Fuel dissolution modelRelease rate from fuel based on Pena Blanca natural analogRelease rate from fuel based on solubility of schoepite

0.0 0.00001 0.00002 0.00003 0.00004

Peak Mean Dose, Rem

Page 31: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Peak Mean Dose for 50,000 Years, Rem

NoRet

Flowthru

Grain1

Modell

Focflow

Base

Matdif

Clad-Mi

Natan

Legend (in 10,000 year order)

NoRetFlowthruGrainlModel 1FocflowBaseMatdifClad-MiNatanSchoepite

No Retardation for Pu, Am and ThThe flow-through option for source term modeModel 1 dissolution plus U0 2 grain-size distributionFuel dissolution model based on carbonate waterFour times the flow to 1/4 the number of wetted waste packagesThe base caseMatrix diffusion in pathway AnalysisCladding credit of 99.5% with Model 1 Fuel dissolution modelRelease rate from fuel based on Pena Blanca natural analogRelease rate from fuel based on solubility of schoepite

Schoepite

0.00

0.02 0.04 0.06 0.08

Peak Mean Dose, Rem

Page 32: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Peak Mean Dose for 10,000 Years, MilliRem

AIIDOE

DOEDiI

Rel k

AIIDOEAlIclad

Cladd

Short

Fixed

DOEDil

RelK

Allclad

Cladd

Short

Fixed

DOE's values for dilution, alluvium Rd's for Np, I, Tc, release rate of 0.001/yr,0.125 clad credit (0.0125), all wet

DOE's values for dilution and alluvium Rd's for Np, I, Tc

DOE's values for dilution, alluvium Rd's for Np, I, Tc, and Release rate of 0.001

DOE's values for dilution, alluvium Rd's for Np, I, Tc,release rate of 0.001/yr, and cladding credit (0.0125)

DOE's values for dilution, alluvium Rd's for Np, I, Tc, and Cladding Credit (0.0125)

Expected dose for nominal case using NRC's values, and DOE's short list of radionuclides

Expected dose for nominal case using DOE's short list of radionuclides, and revisions foralluvium Rd for Cm, well pumping, blanket removal, invert, gap fraction, fault, wet climate.

. .~~~~~~~~~~~~~~~~~~~~~~~~~~~~r

0.0 0.02 0.04 0.06

Peak Mean Dose, MilliRem

0.08 0.10 0.12

Page 33: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Peak Mean Dose for 50,000 Years, MilliRem

AIIDOE

DOEDil

Rellk

Allclad

Cladd

Short I

Fixed

0 10 20 30 40 50 60Peak Mean Dose, MilliRem

Page 34: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Comparison of NRC Model with DOE Inputs

Compare NRC's base case model to variants using DOE's inputs with NRCTPA3.2 code.

* ReiK

* AIIDOE

* DOEDil

* Allclad

DOE's values for dilution, alluvium Rd's for Np, I, Tc andRelease rate of 0.001

DOE's values for dilution, alluvium Rd's for Np, 1, Tc andRelease rate of 0.001, 0.0125 clad credit, all wet.

DOE's values for dilution, alluvium Rd's for Np, 1, Tc

DOE's values for dilution, alluvium Rd's for Np, 1, Tc andRelease rate of 0.001, and 0.0125 cladding credit

32

Page 35: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Comparison of NRC's Model with DOE inputs (Cont'd)

* Cladd

* Short

* Fixed

DOE's values for dilution, alluvium Rd's for Np, 1, Tc and0.0125 cladding credit

Expected dose for base case using NRC's values and DOE'sshortened list of radionuclides

Expected dose for base case using DOE's short list ofradionuclides and revisions for alluvium Rd for Cm, wellpumping, blanket removal, invert model, gap fraction,faulting and wet climate evolution

33

Page 36: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Other Sensitivity Studies

* Models for colloids and the glass waste form absent from TPA 3.2, andmay need to be added to it.

* Analyses represents scoping studies by NRC staff, which may befollowed by a more-thorough analysis by CNWRA.

Effect of glass waste form

* Used DOE's model from TSPA-VA to adjust input parameters for TPA 3.2.

* Model assumptions include:- Relative dose for spent fuel and glass is proportional to the

inventories of largest contributing radionuclides.Relative dose is related, but not proportional to, release rate.Temperature of the glass and spent-fuel waste forms is sameThe glass waste form wetted in same way as spent fuel

36

Page 37: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Effect of Glass Waste Form (Cont'd)

- Conservatively conclude largest dose increase to be:

- 15% for 10,000 year TPI

- 5% for 50,000 year TPI

These are minor differences, but more thorough analysis may be necessarybefore glass source term can be ignored.

37

Page 38: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Effect of Colloids

* Simple dilution analysis

Used average value of 300 pCi/ml Pu from DOE laboratory data onplutonium release from spent fuel samples, assumed 100% colloidal

7760 waste packages, 2.5 liter/yr/waste package at 10,000 years

No pathway retardation

Total quantity release rate enters user well at 20 km with averagepumping rate of 8,750,000 gallons per day

* Dose from Pu in drinking water 1.25 millirem

* Would increase less than factor of 10 by including other radionuclides like Amand other dose pathways

* Literature survey of colloid transport shows many instances of large removalfraction by filtration.

38

Page 39: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Summary and Conclusions

Sensitivity Analysis

* Staff explored a number of sensitivity techniques to analyze theimportance of variables in the TPA 3.2 code.

* There is a sometimes wide discrepancy among the results from thedifferent sensitivity approaches, not all of which can be explained.

* The statistical regression analysis, differential analysis and parametertree methods gave similar results, emphasizing the importance of waterinfiltration parameters and fuel wetting, especially at the 10,000 yr TPI.

* The Morris method emphasized the importance of corrosion and refluxparameters at 10,000 year TPI.

* Agreement among sensitivity methods was more consistent at the50,000 yr TPI.

39

Page 40: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Summary and Conclusions (Cont'd)

Alternative Conceptual Models

* Largest impacts for both 10,000 yr and 50,000 yr TPI's came fromassumption of zero retardation for Pu, Am and Th.

* No alternative conceptual models showed non-compliance with proposedstandard at 10,000 yr TPI.

* Importance of assumptions about waste form dissolution, claddingprotection and wetting models demonstrated.

* Doses were very small for source term models based on natural analogand reasonable alternative models for secondary minerals.

* Results of NRC models with DOE input parameters point out widediscrepancy about basic assumptions for source-term and transportparameters.

40

Page 41: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Summary and Conclusions (Cont'd)

Sensitivity analyses have directed staff into areas of model and codeimprovement:

* Initial indications are that colloid modeling and glass source term may nothave a large impact on doses at 10,000 years.

* Most significant input variables relate to infiltration, fuel wetting, andretardation of key radionuclides (Np, I and Tc) in the alluvium.

41

Page 42: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Backup Figures

42

Page 43: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Scaled Power Transformation

* Based on principal that regression works best when tails of distributionsof variables do not have undue influence

* One way of accomplishing this objective is to "scale" the distribution tomake in more normal. For a variable v and power p (p not equal to 0), thescaled power transformation is:

V(P)= (VP - 1)P

Chose value of p to make transformed distribution losest to a normaldistribution. Use the Lilliefors test for normality

43

Page 44: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Use of t-Test in Regression

* Estimate confidence level that an estimated sensitivity (slope of aregression) is different from zero:

The t statistic of the slope of a single-variable regression line is defined:

_ 2

Si,x

wheret- -statistic for regression coefficient iM- estimated value of regression coefficient (i.e., slope of the best-

fit line for dose verus the independent variable i)S - estimated standard deviation of doseSi, - estimated standard deviation of independent variable in number of samples

44

Page 45: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Scaled Power Transformation of Peak Dose at 10,000 years

.

S

(0 0 CD,

F._..e..

a)0

0

S

S

1~~~~~~~~~~~~~~

So~~~~~~~~~~~~~~~~~

-2 0 2Quantiles of Standard Normal

0

CD00

'Oe)

X0C

I-

r-

0 -

as

I~~~~~~~~~~~~~~~~~~~

-2 0 2

Quantiles of Standard Normal

Page 46: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

Variable Names Used in TPA 3.2

1 AAMAt@S ArealAverageMeanAnnuallnfiltrationAtStart[mm/yr]2 MAPM@GM MeanAveragePrecipitationMultiplierAtGlacialMaximum3 MATI@GM MeanAverageTemperaturelncreaseAtGlacialMaximum[degCI4 FOC-R FractionOfCondensateRemoved[1/yr]5 FOCTR FractonOfCondensaterowardRepository(1/yrI6 FOCTR-R FractionOfCondensateTowardRepositoryRemoved[1/yr7 TempGrBI TemperatureGradientlnVicinityOfoiingIsotherm(K/mI8 YMR-TC ThermalConductivityofYMRock[W/(m-K)]9 CritRHAC CriticalRelativeHumidityAqueousCorrosion

10 H20-FThk ThicknessOfWaterFilm[m]11 InnOvrE( (nnerOverpackErp(ntercept12 AA_2_1 AA-2-1[C/m2/yr]13 OO-CofLC CoefForLocCorrOfOuterOverpack14 Chlorid ChlondeMultFactor15 SSMO-RE RockModulusOfElasticityforSEISMO[PaI16 SSMO-RPR RockPoissonRatioforSEISMOfl17 SSMO-JS1 SEISMOJointSpacingl [ml18 SSMO-JS2 SEISMOJointSpacing2[mj19 SSMO-JS3 SEISMOJointSpacing3[m]20 SSMO-JS4 SEISMOJointSpacing4(m]21 SSMO-JS5 SEISMOJointSpacing5[m]22 SSMOV201 VerticalExtentOfRockFall2_1 [m]23 SSMOV202 VerticalExtentOfRockFall2 2[m]24 SSMOV203 VerticalExtentOfRockFall2 3[m25 SSMOV204 VerticalExtentOfRockFall2_4[m]26 SSMOV205 VerticalExtentOfRockFali25[m]27 SSMOV206 VerticalExtentOfRockFall2 6[m]28 SSMOV207 VerticalExtentOfRockFail27[m]29 SSMOV208 VerticalExtentOfRockFall2 8[m]30 SSMOV209 VerticalExtentOtRockFall2 9[m]31 SSMOV210 Ve rtical ExtentOfRockFall2_ Ofm]32 SSMOV301 VeriicalExtentfRockFaIl3-1 [m)33 SSMOV302 VerticalExtentOfRockFall3_2[m]34 SSMOV303 VerticalExtentOfRockFall3_3[m)35 SSMOV304 VerticalExtentOfRockFal3_4[m136 SSMOV305 VerticalExtentOfRockFall3s51m]37 SSMOV306 VerticalExtentOfRockFall3-6[m]38 SSMOV307 VerticalExtentOfRockFall3_7[m]39 SSMOV308 VerticalExtentOfRockFall3_8[m]40 SSMOV309 VerticalExtentOfRockFall3_9[m]41 SSMOV310 VerticalExtentOfRockFall31 0[mI42 SSMOV40i VerticalExtentOtRockFall4_1 [ml

43 SSMOV402 VerticalExtentOfRockFall4_2[m]44 SSMOV403 VerticalExtentOtRockFali4_3[m]45 SSMOV404 VerticaiExtentOfRockFall44[m]46 SSMOV40S VerticalExtentOfRockFal4-5(m]47 SSMOV406 VerticalExtentOfRockFall4_6[mj48 SSMOV407 VerticalExtentOfRockFall4_7[m]49 SSMOV408 VerticalExtentOfRockFall4 8[m]50 SSMOV409 VerticalExtentOfRockFalI49[m]51 SSMOV410 VerticalExtentOfRockFaIl41 0[m]52 SSMOV501 VerticaIExtentOfRockFalIl51rr]53 SSMOV502 VerticalExtentOfRockFall5_2[m]54 SSMOV503 VerticalExtentOfRockFall5_3[m]55 SSMOV504 VerticaIExtentOfRockFalI54[m]56 SSMOV5OS VerticalExtentOfRockFalls55[m57 SSMOV506 VerticalExtentOfRockFall5_6[m]58 SSMOV507 VerticalExtentOfRockFall5_7[m]59 SSMOV508 VerticalExtentOfRockFall5_8[m]60 SSMOV509 VerticalExtentOfRockFall5_9[m]61 SSMOV510 VerticalExtentOfRockFall5 lOm)62 Fow' FowFactor63 Fmuit' FmultFactor64 SbArWth SubAreaWetFraction65 WP-Det% DefectiveFractionOfWPs/cell66 InitRSFP InitiaIRadiusOfSFPartide[m]67 SbGFRATF SubGrainFragmentRadiusAfterTransFracimI68 SolbI-Am SolubilityAmfkg/m3J69 SolbI-Np SolubilityNp[kg/m3]70 Solb)-Pu SolubilityPu[kg/rm3]71 SFWtlI1 SFWettedFractionInitial_172 SFWt%12 SFWettedFraction-lnitial_273 SFWt%13 SFWettedFractionjnitial_374 SFWtl/.14 SFWettedFraction-lnitial_475 SFWtl5 SFWettedFraction Initial5

76 SFWtl16 FWettedFractionjnitial-677 SFWt%l7 SFWettedFractionlnitia-778 SFWthFO SFWettedFractionFAULTO79 SFWt/.VO SFWettedFraction-lVOLCANO80 SFWt/.S11 SFWettedFractionSEISMO1_181 SFWt/0 S12 SFWettedFractionSEISMOt _282 SFWt%S13 SFWettedFractionSEISMO1 _383 SFWt%S14 SFWettedFractionSEISMO1_484 SFWt/ 0S15 SFWettedFractionSEISMO1_585 SFWthS16 SFWettedFractionSEISMO1_686 SFWt%SI7 SFWettedFractionSEISMO1_787 SFWt/ 0 S21 SFWettedFractionSEISMO2_188 SFWtS22 SFWettedFractionSEISMO2_289 SFWtS23 SFWettedFractionSEISMO2_390 SFWthS24 SFWettedFractionSEISM02_491 SFWtS25 SFWettedFractionSEISMO2_592 SFWtS26 SFWettedFractionSEISMO2_693 SFWtS27 SFWettedFractionSEISMO2_794 SFWt/0 S31 SFWettedFraction_SEISMO3_195 SFWt/hS32 SFWettedFractionSEISMO3_296 SFWt%S33 SFWettedFraction_SEISMO3_397 SFWt

0 /0 S34 SFWettedFrachonSEISMO3_498 SFWt

0 /0S35 SFWettedFractionSEISMO3_599 SFWt%/S36 SFWettedFractionSEISMO3_6100 SFWt/ 0S37 SFWettedFractionSEISMO3_7101 SFWt%/S41 SFWettedFraction_SEISMO4_1102 SFWt

0/0 S42 SFWettedFractionSEISMO4_2103 SFWt/S43 SFWettedFraction-SEISMO4-3104 SFWt%/S44 SFWettedFractionSEISMO4_4105 SFWt%S45 SFWettedFractionSEISMO4 5106 SFWtS46 SFWettedFractionSEISMO4_6107 SFWt%/S47 SFWettedFraction-SEISMO4-7108 SFWt

0/.C1 SFWettedFractionCorrosion_1109 SFWt%/C2 SFWenedFractionCorrosion_2110 SFWtC3 SFWettedFractionCorrosion_3111 SFWt

0/0 C4 SFWettedFractionCorrosion_4112 SFW%/.C5 SFWettedFractionCorosion_5113 SFWt

0/0 C6 SFWettedFractionCorrosion_6114 SFWt/kC7 SFWettedFractionCorrosion_7115 InvMPerm InvertMatrxPermeability[mA2]116 MKDTSwAm MatrixKD TSwAmfm3/kg]117 MKDCHvAm MatrixKDCHnvAm[m3/kg]118 MKDCHzAm MatnxKD CHnzAmm31kg]119 MKDPPwAm MatrixKDPPw Am(m3/kgJ120 MKDUCFAm MatnxKDUCF Amtm3kg121 MKOBFwAm MatrixKDBFw Amfm3/kgJ122 MKDUFZAm MatrixKDUFZAm[m3/kg]123 MKDTSwNp MatrixKDTSwNp[m3/kgj124 MKDCHvNp MatrxKD-CHnvNp[m3/kgl125 MKDCHzNp MatrixKDCHnzNp[m3/kgj126 MKDPPwNp MatrixKDOPPwNp[m3/kgl127 MKDUCFNp MatdxKD-UCF-Np[m3/kg]128 MKDBFwNp MatnxKDBFw Np[m3/kgJ129 MKDUFZNp MatixKDUFZ Np[m3lkg]130 MKDTSwU MatnxKD TSw U[m3/kg]131 MKDCHvU MatnxKD-CHnvU[m3/kg]132 MKDCHzU MatnxKDCHnzU[m3/kg]133 MKD_PPwU MatrixKDPPwU[m3/kg]134 MKD_UCFU MatrixKDUCF jUm3lkg135 MKDBFwU MatrixKDBFwUfm3tkgJ136 MKDUFZ_U MatrixKDUFZU[m3/kg]137 MKDTSwPu MatrixKDTSw-PuCm3/kgj138 MKDCHvPu MatnxKDCHnvPu[m3Acg]139 MKDCHzPu MatrixKDCHnzPu[m3/kg]140 MKDPPwPu MatrixKDPPwPu[m3/kg]141 MKDUCFPu MatrixKDUCF-Pu[m3/kg]142 MKDBFwPu MatrixKDBFwPu[m3tkg]143 MKDUFZPu MatrixKD-UFZPu[m3kg)144 MKDTSwTh MatrixKDTSwTh[m3/kgj145 MKDCHvTh MatnxKDCHnvThim3/kgJ146 MKDCHzTh MatrixKDCHnzTh[m3/kg]147 MKDPPwTh MatrixKDPPwThjm3Ikg]148 MKDUCFTh MatrixKDUCF-Th[m3/kg]149 MKDBFwTh MatnxKDBFw Th[m3fkg]150 MKDUFZTh MatnxKDUFZTh[im3/kg]151 MKDTSwSe MatdxKDTSw-Setm3kg]

Page 47: System-Level Sensitivity Results and Alternative ... · * TPA code is complicated, and cannot be understood piecemeal. * Sensitivity results point out the relative importance of subsystems,

152 MKDCHvSe MatrxKD-CHnvSefm3/kg]153 MKDCHzSe MatrixKD CHnzSe[m31kg]154 MKDPPwSe MatrixKDPPwSe[m3/kg]155 MKDUCFSe MatrixKDUCFSe[m3/kg]156 MKDBFwSe MatnxKDBFwSe[m31kg]157 MKDUFZSe MatrixKDUFZSe[m3/kg]158 MPrm TSw MatrixPemmeabilityTSw_[m2]159 MPrnCHv MatrixPermeabilityCHnv[m2]160 MPmCHz MatrixPermeability_CHnzm2]161 MPrmPPw MatrxPermeabilityPPw_[m2]162 MPrmUCF MatrixPermeabilityUCF[m2]163 MPrmBFw MatnxPermeabilityBFw_[m2]164 MPrmmUFZ MatrixPermeabilityUFZ [m2]165 FPrm TSw FracturePermeability-TSw_[m2]166 FPrmCHv FracturePermeabilityCHnv[m2]167 FPrmCHz FracturePermeabilityCHnzfm2]168 FPrm PPw FracturePermeabilityPPwjm2]169 FPrmUCF FracturePermeabilityUCFJm2]170 FPrmBFw FracturePermeabilityBFw_[m2]171 FPrmUFZ FracturePermeabilityUFZj[m2]172 FPrsTSw FracturePorosityTSw_173 FPrsCHv FracturePorosityCHnv174 FPrsCHz FracturePorosityCHnz175 FPrs PPw FracturePorosityPPw_176 FPrs UCF FracturePorosityUCF_177 FPrs BFw FracturePorosityBFw_178 FPrsUFZ FracturePorosityUFZ_179 ARDSAVAm AlluviumMatrixRDSAVAm180 ARDSAVNp AlluviumMatrixRDSAVNp181 ARDSAVI AlluviumMatrixRDSAV 182 ARDSAVTc AlluviumMatrixRDSAVTc183 ARDSAVU AlluviumMatrixRDSAV-U184 ARDSAVPu AlluviumMatrixRDSAVPu185 ARDSAVTh AlluviumMatxRDSAV Th186 ARDSAVSe AlluviumMatrixRDSAVSe187 FPrsSTF FracturePorositySTFF188 APrs SAV AlluviumMatnxPorositySAV189 WPRRG@10 WellPumpingRateAtReceptorGrouplOkmfgalldayI190 WPRRG @20 WellPumpingRateAtReceptorGroup20kmfgal/dayI191 PlumeTh5 PlumeThickness5km[m]192 AqThick5 AquiferThickness5kmfm]193 MixZnT20 MixingZoneThickness20km[m]194 FEROI-Tn TimeOfNextFaultingEventinRegionOfInterest[yr]195 WPFD-ThD ThresholdDisplacementforFaultDisruptionOfWP[m]196 FEROI-X XLocationOfFaultingEventInRegionOfInterest[m]197 FEROI-Y YLocabonOfFaultingEventInRegionOflnterest[m]198 FO-Rn#Sd RNtoDetermineFaultOnentation199 NWFZnW NWFaultZoneWidth[m]200 NEFZnW NEFaultZoneWidth[m]201 NWLCDAmt NWAmountOfLargestCredibleDisplacement[m]202 NELCDAmt NEAmountOfLargestCredibleDisplacement[m]203 VEROI-Tn TimeOfNextVolcanicEventinRegionOfinterest[yr]204 VEie-R# RNtoDeterminelfExtrusiveOrlntrusiveVolcanicEvent205 VD-Angle AngleOfVolcanicDikeMeasuredFromNorthClockwiseldegrees)206 VD-Lengt LengthOfVolcanicDike[m]207 VD-Width WidthOfVolcanicDike[m]208 VC-Dia DiameterOfVolcanicConelm]209 WindSpd WindSpeed[cm/s]210 VE-Durat VolcanicEventDuration[s211 VE-Power VolcanicEventPower[W]212 AshMnPLD AshMeanParticeLogDiameterdin-cmI213 ABMLFVDC AirbomeMassLoadForVolcanismDoseCalculation[gIm3]


Recommended