+ All Categories
Home > Documents > System Reliability-Based Design and Multiresolution ... · System Reliability-Based Design and...

System Reliability-Based Design and Multiresolution ... · System Reliability-Based Design and...

Date post: 25-Jan-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
55
1 Dissertation Defense System Reliability-Based Design and Multiresolution Topology Optimization Tam H. Nguyen Advisors: Glaucio H. Paulino & Junho Song Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign 07/16/2010
Transcript
  • 1

    Dissertation Defense

    System Reliability-Based Design and

    Multiresolution Topology Optimization

    Tam H. Nguyen

    Advisors: Glaucio H. Paulino & Junho Song

    Department of Civil and Environmental Engineering

    University of Illinois at Urbana-Champaign

    07/16/2010

  • 2

    Introduction

    Multiresolution Topology Optimization (MTOP)

    Improving Multiresolution Topology Optimization (iMTOP)

    System Reliability-based Design Optimization (SRBDO)

    System Reliability-based Topology Optimization (SRBTO)

    Summary and Conclusions

    Contents

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 3

    Topology Optimization

    Classical structural design optimization: the optimal sizes or shapes

    for a given layout and connectivity

    Topology optimization: the best topology, shape, size under a given

    domain and boundary conditions

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

    size optimization

    shape optimization

  • 4

    Topology Optimization Applications

    Skidmore, Owings & Merrill, LLP (SOM)

    (www.altair.com)

    Airbus Wing box rib

    500 kg reduction/wing

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 5

    F1 F2F3

    30×10×10 B8180×60×60 B8

    Coarse mesh Fine mesh

    ~ 1.0 mil. unknowns

    Fast solver, PC, C++

    Run time: ~ 45.7 hours

    Question 1: How to obtain high resolution with affordable computational cost?

    Large-scale Topology Optimization

    Wang, de Stuler, and Paulino, (2007), IJNME

    Computationally

    expensive

    An example using Matlab code

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

    Low

    resolution

  • 6

    Reliability-Based Design Optimization

    High probability

    of failure

    Low probability

    of failure

    ( , )f Xd μ

    Safe

    Objective function increase

    B

    A Unsafe

    Deterministic Optimization

    Reliability-Based Design

    Optimization (RBDO)

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 7

    System Reliability-Based Design Optimization

    Component RBDO

    ,min ( , )

    . . ( , ) 0 =1,...,

    ,

    t

    i i

    L U L U

    f

    s t P g P i n

    X

    Xd μ

    X X X

    d μ

    d X

    d d d μ μ μ

    System RBDO

    ,

    sys

    min ( , )

    . . ( )= g ( , ) 0

    ,

    k

    t

    i sys

    k i C

    L U L U

    f

    s t P E P P

    X

    Xd μ

    X X X

    d μ

    d X

    d d d μ μ μ

    ?

    Question 2: How to handle system probability in RBDO?

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 8

    1. To obtain high resolution with affordable

    computational cost in topology optimization.

    2. To handle system probability in Reliability-

    Based Design Optimization (RBDO).

    3. To apply RBDO framework in topology

    optimization (RBTO).

    Objectives

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 9

    Multiresolution Topology

    Optimization

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 10

    Topology Optimization Procedure

    Problem formulation

    Solid and Isotropic Material

    with Penalization (SIMP)

    0( ) ρ( ) pE Eψ ψ

    T

    ρ

    min

    min (ρ, )

    . . : (ρ)

    (ρ) ρ( )

    0 ρ ρ( ) 1

    d d

    d

    s

    C

    s t

    V dV V

    u f u

    K u f

    ψ

    ψ

    Optimizers

    Optimality Criteria (OC)

    Method of Moving Asymptotes

    (MMA)

    Finite Element Analysis

    Objective Function & Constraints

    Converged?

    Result

    Sensitivities Analysis

    Update Material Distribution

    Initial guess

    Yes

    No

    Filtering (Projection) Technique

    P

    computationally

    expensive

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 11

    Large-scale (high resolution) TOP

    Large number of finite elements

    Computationally expensive

    Existing high resolution TOP

    Parallel computing (Borrvall and Petersson, 2000)

    Fast solvers (Wang et al. 2007)

    Approximate reanalysis (Amir et al. 2009)

    Adaptive mesh refinement (de Stuler et al. 2008)

    High Resolution Topology Optimization

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 12

    Parallel computing:

    Domain decomposition

    TOP (1): Parallel Computing

    A stool (884,736 B8/U)

    96x96x96

    40x120x120

    A cross-shaped section (320,000 B8/U)

    Borrvall and Petersson, (2000), IJNME

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 13

    Fast iterative solvers

    Use precondition Krylov subspace methods with recycling

    Reduce computational time for FEA

    TOP (2): Fast Solvers

    Coarse mesh: 32x12x12

    Fine mesh: 180x60x60

    Configuration

    Solution on a PC with approx. 1 million unknowns

    Wang, de Stuler, and Paulino, (2007), IJNME

    p

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 14

    Reduce the number of FEA solutions

    FEA at an interval of iterations

    Approximate at other iterations

    Efficiency factor: 1 ~ 5 times

    TOP (3): Approximate Reanalysis

    MBB: 60x20 Q4/UCantilever: 48x16x16 B8/U

    Finite Element Analysis

    or

    Approximate the Displacement

    Objective Function & Constraints

    Converged?

    Result

    Sensitivities Analysis

    Update Material Distribution

    Initial guess

    Yes

    No

    Filtering (Projection) Technique

    Amir, Bendsoe, and Sigmund, (2009), IJNME

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 15

    AMR TOP

    Refine the solid and surface regions

    Reduce the total number of FEs

    Obtain resolution as fine uniform mesh (efficiency factor 3)

    TOP (4): Adaptive Mesh Refinement

    Configuration: 2:1:1 Uniform mesh: 128x64x64

    524,288 B8/U

    AMR: initial mesh 64x32x32

    initial 65,520 B8/U

    final 228,692 B8/U

    de Stuler, Wang, and Paulino, (2008), IASS-IACM

    P

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 16

    Large-scale TOP

    Fine mesh: Large number of finite elements

    FEA cost increases

    Remarks on High Resolution TOP

    Existing approaches:

    Powerful computing resources: many processors

    Reduce cost associated with FEA:

    • Fast solvers

    • Approximate reanalysis

    • Adaptive mesh refinement

    Same discretization for analysis and design

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 17

    Conventional element-based approach (Q4/U)

    Same discretization for displacement and density

    Proposed Multiresolution TOP (MTOP)

    Displacement Density/design variable

    Proposed MTOP approach (Q4/n25)

    Different discretizations for displacement and density/design variables

    Displacement Density Design variable

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 18

    Stiffness matrix

    MTOP: Integration of Stiffness Matrix

    Te

    e

    dK B DB

    Numerical integration

    1

    nT

    e ii

    i

    AK B DB

    SIMP model

    T

    0

    1 1

    ( ) ( )n nN N

    p p

    e i e e i i iiii i

    AK B D B I

    i

    iA

    Vi

    i

    Sensitivity

    1 1

    (ρ )ρ ρ ρ

    (ρ )ρ ρ

    nNp

    j j

    j pe e i i ii i

    n i n i n n

    pd d d d

    IK K

    I

    Q4/n25

    B8/n125

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 19

    Compute density from design variables

    Minimum length-scale (Guest et al. 2004, Almeida et al. 2009)

    MTOP: Projection (filtering)

    ( )i nf d

    ( )

    ( )

    i

    i

    n nin S

    i

    mim S

    d w r

    w r

    minmin

    min

    if ( )

    0 otherwise

    mimi

    mi

    r rr r

    rw r

    ρ ( )

    ( )i

    i ni

    n mim S

    w r

    d w r

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 20

    MTOP Examples: 2D Cantilever Beam

    Configuration MTOP Q4/n25 FE mesh 48x16

    (C=208.23)

    Q4/U FE mesh 48x16

    (C=205.57)

    Q4/U FE mesh 240x80

    (C=210.68)

    Convergence history

    Objective: minimum compliance

    Constraint: volfrac = 0.5

    Length scale: rmin = 1.2

    16

    48

    Nguyen, Paulino, Song, and Le, (2010), JSMO

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 21

    MTOP Examples: 2D Michell Truss

    Domain (3:2) Analytical solution

    Sigmund solution (Sigmund, 2000) MTOP: 180x120 Q4/n25 elements

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 22

    MTOP: 3D Cross-shaped Section

    Borrvall & Petersson (2000)

    320,000 B8/U elements

    MTOP

    5,000 B8/n125 elements

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 23

    MTOP: 3D Bridge Design

    Configuration

    MTOP B8/n125

    36,000 elements

    10x120x30

    Existing design

    (http://www.sellwoodbridge.org)

    6L

    q

    L

    2L/3

    L

    L

    L

    non-designable layer Non-designable layer

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 24

    Can MTOP’s efficiency be improved?

    MTOP approach

    Density/design variable:

    same fine mesh

    FE mesh: coarse

    Reduce cost (ρ) d K u f

    Finite Element Analysis

    Objective Function & Constraints

    Converged?

    Result

    Sensitivities Analysis

    Update Material Distribution

    Initial guess

    Yes

    No

    Filtering (Projection) Technique

    MTOP

    ???Improving MTOP efficiency?

    Different discretizations for

    density & design variable?

    Q4/n25

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 25

    MTOP approach (Q4/n25) or (Q4/n25/d25)Displacement Density Design variable

    Proposed iMTOP approach (Q4/n25/d9) and (Q4/n25/d16)

    Displacement Density Design variable

    Q4/n25/d16Q4/n25/d9

    Improving Multiresolution Topology Optimization (iMTOP)

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 26

    ρi

    iV

    jd jd

    B8/n125/d8 B8/n125/d15

    jd

    jd

    ρi

    iV

    TET4/n64/d8 TET4/n64/d10

    Displacement Density Design variable

    ρi

    iV

    di

    B8/n125

    MTOP iMTOP

    ρi

    iV

    di

    TET4/n64

    Improving Multiresolution Topology Optimization (iMTOP)

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 27

    Compute density from design variables

    Minimum length-scale (Guest et al. 2004, Almeida et al. 2009)

    iMTOP: Projection (Q4/n25/d9)

    ( )i nf d

    ( )

    ( )

    i

    i

    n nin S

    i

    mim S

    d w r

    w r

    minmin

    min

    if ( )

    0 otherwise

    mimi

    mi

    r rr r

    rw r

    ρ ( )

    ( )i

    i ni

    n mim S

    w r

    d w r

    Displacement

    Design variable

    Density

    rmin

    rni

    in

    Si

    w(r)

    1

    rni

    rmin

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 28

    iMTOP: MBB Beam

    300x100 Q4/U 60x20 Q4/U

    60x20 Q4/n25/d25 60x20 Q4/n25/d16

    60x20 Q4/n25/d9 60x20 Q4/n25/d4

    20 40 60 80 1000

    200

    400

    600

    800

    1000

    Iteration

    Com

    pli

    ance

    conventional (60x20 Q4/U)

    iMTOP (60x20 Q4/n25/d4)

    iMTOP (60x20 Q4/n25/d9)

    iMTOP (60x20 Q4/n25/d16)

    MTOP (60x20 Q4/n25)

    conventional (300x100 Q4/U)

    1 2 3 4 5 60

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    norm

    aliz

    ed c

    om

    puta

    tional

    tim

    e

    1: conventional (60x20 Q4/U)

    2: iMTOP (60x20 Q4/n25/d4)

    3: iMTOP (60x20 Q4/n25/d9)

    4: iMTOP (60x20 Q4/n25/d16)

    5: MTOP (60x20 Q4/n25)

    6: conventional (300x100 Q4/U)

    convergence

    Efficiency

    ?

    60x20

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

    Messerschmitt-Bolkow-Blohm (MBB) beam

  • 29

    iMTOP: A Cube with Concentrated Load

    MTOP B8/n125/d125

    (C=29.04)

    iMTOP B8/n125/d64

    (C=29.06)

    iMTOP B8/n125/d27

    (C=29.08)

    iMTOP B8/n125/d8

    (C=29.33)

    LP

    L

    L=24

    24x24x24

    convergence

    1 2 3 40

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    no

    rmal

    ized

    co

    mp

    uta

    tio

    nal

    tim

    e

    1: iMTOP B8/n125/d8

    2: iMTOP B8/n125/d27

    3: iMTOP B8/n125/d64

    4: MTOP B8/n125

    10 20 30 40 500

    50

    100

    150

    200

    Iteration

    Co

    mp

    lian

    ce

    iMTOP B8/n125/d8

    iMTOP B8/n125/d27)

    iMTOP B8/n125/d64)

    MTOP B8/n125)

    Efficiency

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

    Nguyen, Paulino, Song, and Le, (submitted), IJNME

  • 30

    Why Adaptive MTOP?

    Further improve the efficiency

    Reduce the number of density elements and design variables

    during optimization process?

    Adaptive MTOP

    Adaptive MTOP (e.g. Q4/U & Q4/n25/d4)

    Q4/n25/d4 requires more computational cost than Q4/U

    Q4/n25/d4 provides higher resolution

    Use Q4/n25/d4 where and when needed only, otherwise Q4/U

    Unchanged the Finite Element Mesh during optimization process

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 31

    Adaptive MTOP Procedure

    No

    Element type array

    A(i,j) = 1

    (all Q4/U elements)

    if k < L or U < k , k=1,25

    Q4/U Q4/n25/d4

    A(i,j) = 1

    if L < < U

    A(i,j) = 25

    Q4/U Q4/n25/d4

    A(i,j) = 25 A(i,j) = 1

    Q4/U

    Q4/n25/d4

    A(i,j) = 1

    A(i,j) = 25

    Finite Element Analysis

    Objective Function & Constraints

    Converged?

    Result

    Sensitivities Analysis

    Update Material Distribution

    Initial guess

    Yes

    Filtering (Projection) Technique

    Check & update element type array

    Element type

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 32

    Optimal topologies by iMTOP and adaptive MTOP

    Adaptive MTOP: 2D Cantilever

    2L

    L

    P

    Configuration 160x80 Q4/U 32x16 Q4/U

    initial iteration intermediate iteration final iteration

    Q4/U Q4/n25/d4

    Mesh (element types)

    Topology

    32x16 Q4/n25/d4 32x16 - adaptive

    Q4/n25/d4 & Q4/U

    Adaptive MTOP optimization process

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 33

    Adaptive MTOP: 3D Cantilever Beam

    Configuration 24x12x12

    B8/U

    24x12x12

    B8/n125/d8

    L

    2L

    L

    P

    24x12x12

    B8/n125/d8 & B8/U

    Adaptive MTOP optimization process

    Initial iteration

    (3,456 B8/U)Intermediate iteration

    (2,288 B8/U & 1,168 B8/n125/d8)

    Final iteration

    (2,072 B8/U & 1,384 B8/n125/d8)

    (FE mesh : 24x12x12 unchanged)

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 34

    System Reliability-Based

    Design/Topology Optimization

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 35

    RBDO Formulation

    Component RBDO

    ,min ( , )

    . . ( , ) 0 =1,...,

    ,

    t

    i i

    L U L U

    f

    s t P g P i n

    X

    Xd μ

    X X X

    d μ

    d X

    d d d μ μ μ

    System RBDO

    ,

    sys

    min ( , )

    . . ( )= g ( , ) 0

    ,

    k

    t

    i sys

    k i C

    L U L U

    f

    s t P E P P

    X

    Xd μ

    X X X

    d μ

    d X

    d d d μ μ μ

    ?

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 36

    Matrix-based System Reliability (MSR) Method

    Convenient: matrix-based procedures for c and p; easy SRA calculation (inner product)

    General: uniform application to series, parallel, and any general systems

    Flexible: inequality-type information; incomplete information (“LP bounds” method)

    Efficient: no need to re-compute “p”; replace “c” for SRA of a new event

    Common Source Effect: can account for statistical dependence between components

    Decision Support: parameter sensitivities, component importance measure; inferences

    Song and Kang, (2009); Structural Safety

    e1e3

    e8

    e4e6

    e5

    e2

    E3

    E2

    E1

    e7

    mutually exclusive and collectively

    exhaustive events (MECE)

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 37

    Proposed approach: SRBDO using MSR

    Adopt a single-loop RBDO (Liang et al. 2007)

    Use MSR method to compute Psys and its gradients

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

    Single-loop RBDO Double-loop RBDO

    Approx. MPP

    1st constraint

    Karush–Kuhn–Tucker (KKT) optimality conditions

    Objective

    function

    Approx. MPP

    nth constraintReliability eval.

    1st constraint

    Objective

    function

    Reliability eval.

    nth constraint

    MSR method

    Single-loop PMA

    1, , ,...,

    T

    T

    min ( , )

    . . ( , ( )) 0 =1,...,

    ( ) ( ) dependent

    indepdendent

    t tnP P

    t

    i i

    t

    sys

    syst

    sys

    f

    s t g i n

    f d PP

    P

    X

    Xd μ

    S

    s

    d μ

    d X U

    c p s s s

    c p

  • 38

    Proposed approach: SRBDO using MSR (contd.)

    Sensitivity w.r.t. design variables d, x}

    sys T

    1 2

    T

    1 2

    ( )= ( )

    θ θ

    ( ) ( ) ( )ˆ= ( ) ( ) ... ( ) ( )θ θ θ

    ( ) [ ( ) ( ) ( )]

    n

    n

    Pf d

    P P P

    S

    s

    p sc s s

    p s P s P sp s p s p s P s

    P s s s s

    Sensitivity w.r.t. component failure probability Pit

    ( ) ( ) β ( ) 1

    β β φ( β )

    i i i i

    i i i i i

    P P P

    P P

    s s s

    Use probabilities and sensitivities by component reliability analysis (FORM)

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 39

    SRBDO of Truss System

    1 6

    1 2 3 4 5 6 { ,..., }

    15

    sys

    1

    1 2 3 4 5 6

    min ( ) 2( )

    . . = g ( , ) 0 0.001

    ( , ) 0.707 1, 2

    0.500 3,...,6

    , , , , ,

    k

    A A

    t

    i sys

    k i C

    i i i A

    i i A

    f A A A A A A

    s t P P P

    g A F F i

    A F F i

    A A A A A A

    dd

    d X

    d X

    0

    Minimize total weight of the

    system

    Definition of system failure: at

    least two members fail (cut-set

    systems): effects of load re-

    distributions NOT considered

    L

    FA

    L

    4

    1 2

    53

    6

    Random Variables

    (Gaussian distribution)Mean Std Dev

    Member strength Fi , i=1,..6 (Mpa) 745 62Applied load FA (kN) 4450 45

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 40

    SRBDO of Truss System (contd.)

    Members

    Area: Ai (×103 mm2) Reliability Index: i

    McDonald &

    MahadevanSRBDO/MSR

    McDonald &

    MahadevanSRBDO/MSR

    1 18.43 17.89 2.89 2.67

    2 18.27 17.89 2.83 2.67

    3 13.51 13.20 3.16 2.99

    4 13.44 13.20 3.12 2.99

    5 13.33 13.20 3.06 2.99

    6 13.09 13.20 2.92 2.99

    f(x) 105.24 103.36

    Better optimal design (i.e. less total weight) and symmetric results

    Monte Carlo simulations (c.o.v. = 0.03, 106 times) on the system

    failure probability: Psys = 0.00107 (cf. MSR gives 0.001)

    4

    1 2

    53

    6

    >

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 41

    SRBDO of Truss System (contd.)

    T

    T

    ( ) 'CIM = ( | )=

    ( )

    i sys

    i i sys

    sys

    P E EP E E

    P E

    c p

    c p

    0.00

    0.25

    0.50

    0.75

    1.00

    1 2 3 4 5 6

    CIM

    Components

    4

    1 2

    53

    6

    Conditional probability Importance Measure (CIM)

    Relative contribution of components to the system failure

    probability (can be computed efficiently by MSR method)

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 42

    SRBDO of Truss System (contd.)

    6

    1 2 2 4

    1 2

    5 3

    2 30

    27 28

    29 1 2 2

    35

    32 33

    34

    11

    1 2 9

    7

    8

    16

    1 2 2 14

    12

    10 15 20

    26

    1 2 2

    22 23

    25

    5

    13

    17 18

    19

    21

    31

    36 24

    Effects of load re-distributions (sequential failures)

    Effects of correlation between random variables and between

    components

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 43

    Discrete structures

    Mogami et al. (2006)

    Truss examples

    Existing SRBTO Approaches

    11

    1 2

    1 1 11

    ( ) ( ) ( ) ( 1) ( )n n n n

    n

    sys i i i j n

    i i j ii

    P E P E P E P E E P E E E

    1 2 3 1 2 3( ) ( ) ( ) ( )P E E E P E P E P E

    Continuum structures

    Silvia et al. (2010)

    Limit-states: statistically independent

    DTO SRBTO

    Ground structure Optimal structure

    Objective: SRBTO for continuum structures with dependent limit-states?

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

    Mogami et al. (2006), JSMO

    Silvia et al. (2010), JSMO

  • 44

    Proposed Approach: SORM-based RBTO

    SORM-based CRBTO g , ( ) 0d X U

    KKT

    1U

    2U

    iU

    ˆ tiα

    ˆβt ti iα

    βtit

    iU

    *

    iU

    ( ) t k ti i

    T ( )

    ( )

    T ( )

    ( ) ( )( ; )

    t t

    syst

    sys t t

    SORM

    SORM

    SORM

    sys

    f d PP E

    P

    Ssc p s s s

    Pc p

    ( ) ( 1)

    ( 1)( )

    SORM

    t

    t k t ki

    i it k

    i

    T

    T

    ( ) ( )( ; )

    t t

    syst

    sys t t

    sys

    f d PP E

    P

    Ssc p s s s

    Pc p

    At the k-th step

    SORM-based SRBTO

    Enhance the accuracy in RBTO

    First-Order Reliability Method (FORM) inaccurate for nonlinear limit-states

    Propose to use Second-Order Reliability Method (SORM) to improve the accuracy

    At the k-th step

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 45

    SRBTO of a Stool

    F1

    L

    F1F3

    F3F2

    F2

    L=12

    L

    Objective: minimize volume V( )

    Limit-states:

    Random loads: : F ~ (F1,F2,F3) ~

    N(100,10), N(0,30), N(0,40)

    Load cases:

    ( , ) 120 ( , ), 1,2i i i ig C iρ F ρ F

    1 1 2( , ),F FF 2 1 3( , )F FF

    Constraints

    Deterministic TO (DTO):

    Component RBTO (CRBTO):

    System RBTO (SRBTO):

    ( , ) 0, 1,2ig iρ f

    ( ( , ) 0) , 1,2ti i iP g P iρ F

    ( ( , ) 0) ti i sysP g Pρ F

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 46

    Optimal Topologies

    DTO CRBTO

    volfrac = 24.4%

    ( F=10)

    SRBTO

    volfrac =22.3%

    ( F1=10)

    SRBTO

    volfrac =23.9%

    ( F1=20)

    volfrac = 6.3%

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 47

    Improve Accuracy by Second-Order Reliability Method

    10 20 30 40 50 600.2

    0.3

    0.4

    0.5

    0.6

    0.7

    standard deviation (F1)

    op

    tim

    al v

    olu

    me

    frac

    tio

    n

    FORM-based CRBTO

    SORM-based CRBTO

    10 20 30 40 50 600.022

    0.024

    0.026

    0.028

    0.030

    standard deviation (F1)

    com

    po

    nen

    t p

    rob

    abil

    ity

    MCS on FORM-based

    MCS on SORM-based

    constraint on P1(C

    1)

    10 20 30 40 50 600.022

    0.024

    0.026

    0.028

    0.030

    standard deviation (F1)

    com

    po

    nen

    t p

    rob

    abil

    ity

    MCS on FORM-based

    MCS on SORM-based

    constraint on P2(C

    2)

    10 20 30 40 50 600.2

    0.3

    0.4

    0.5

    standard deviation (F1)

    vo

    lum

    e fr

    acti

    on

    FORM-based SRBTO

    SORM-based SRBTO

    10 20 30 40 50 600.044

    0.046

    0.048

    0.050

    0.052

    standard deviation (F1)

    syst

    em p

    rob

    abil

    ity

    MCS on FORM-based

    MCS on SORM-based

    constraint on Psys

    Component RBTO

    System RBTO

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

    Nguyen, Song, and Paulino, (submitted), JSMO

  • 48

    SRBTO of a Building Core

    Objective: minimize volume V( )

    Limit-states:

    Random loads: F ~ (P1,P2,P3,q1 ,q2,q3)

    Load cases:

    0( , ) ( , )i i i i ig C Cρ F ρ F

    ( , )i i iP qF5L

    LL

    P

    L

    L

    P

    q/2

    q

    P2,q2 Load

    case 2

    P2,q2 P2,q2

    P2,q2

    4 symmetry axes

    P1,q1 P1,q1

    P1,q1P1,q1

    Load

    case 1

    P3,q3

    Load

    case 3

    P3,q3 P3,q3

    P3,q3

    L/12L/12 10L/12

    Load

    Cases

    P q (at top)

    mean c.o.v mean c.o.v

    Case 1 70.71 0.30 2.82 0.15 250

    Case 2 50.00 0.15 2.00 0.30 125

    Case 3 50.00 0.20 2.00 0.15 125

    t

    iC

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 49

    Optimal Topologies of the Building Core

    DTO

    volfrac = 21.93%

    SRBTO

    volfrac =28.15%

    (Psys=0.05)

    0 0.2 0.4 0.6 0.8 10.200

    0.225

    0.250

    0.275

    0.300

    0.325

    target system failure probability

    opti

    mal

    volu

    me

    frac

    tion

    SRBTO (same

    =0.50, diff

    =0.25)

    DTO

    SRBTO

    volfrac =22.25%

    (Psys=0.85)

    volfrac v.s Psys

    P1 P2 P3 Psys

    same = 0.5

    diff = 0.25

    SRBTO 0.02731 0.02088 0.00539 0.05000

    MCS 0.02747 0.02101 0.00542 0.05023

    same = 0.5

    diff = 0.25

    SRBTO 0.26940 0.25973 0.20818 0.50000

    MCS 0.26977 0.26006 0.20800 0.50008

    same = 0.9

    diff = 0.45

    SRBTO 0.02812 0.02227 0.00625 0.05000

    MCS 0.02816 0.02242 0.00638 0.05017

    Probabilities: SRBTO/MSR v.s MCS

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

    Nguyen, Song, and Paulino, (submitted), JSMO

  • 50

    pattern repetition

    pattern symmetry

    Building Core with Pattern Repetition

    m=3 m=12m=6 m=10

    DTO

    1 3 6 10 120.20

    0.25

    0.30

    0.35

    0.40

    0.45

    number of pattern repetitions, m

    opti

    mal

    volu

    me

    frac

    tion

    DTO

    SRBTO (same

    =0.50, diff

    =0.25)

    SRBTO (same

    =0.90, diff

    =0.45)

    SRBTO

    LL

    http://www.som.com

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

    m

  • 51

    MTOP & iMTOP:

    Use three distinct displacement, density, and design variable fields

    Improve efficiency, apply to large-scale problems

    Adaptive MTOP:

    Use MTOP and iMTOP elements where and when needed

    Reduce the number of density elements and design variables

    SRBDO/MSR:

    Apply to general system including link-set, cut-set

    Address dependence between limit-states, provide sensitivity

    SRBTO

    Propose accurate single-loop SORM-based CRBTO & SRBTO approaches

    Include pattern repetition constraints

    Summary & Conclusions

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 52

    Optimal locations of design variables in MTOP

    MTOP approach in nonlinear and stress-based problems

    MTOP using Krylov subspace methods and recycling

    SRBDO with multi-scale MSR approach

    SRBDO with mixed continuous-discrete random variables

    Future Research Topics

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 53

    Nguyen, T. H., Paulino, G. H., Song, J., Le, C. H., (2010). "A computational paradigm for

    multiresolution topology optimization (MTOP)." Structural and Multidisciplinary Optimization

    41(4): 525-539.

    Nguyen, T. H., Song, J., Paulino, G. H., (2010). "Single-loop system reliability-based design

    optimization using matrix-based system reliability method: theory and applications." Journal

    of Mechanical Design 132(1): 011005.

    Sutradhar, A., Paulino, G. H., Miller, M. J., Nguyen, T. H., (2010). “Topological optimization

    for designing patient-specific large craniofacial segmental bone replacements.” Proceedings

    of the National Academy of Sciences 107(30) 13222-13227.

    Nguyen, T. H., Paulino, G. H., Song, J., Le, C. H., "Improving multiresolution topology

    optimization via multiple discretizations." International Journal for Numerical Methods in

    Engineering (submitted).

    Nguyen, T. H., Song, J., Paulino, G. H., "Single-loop system reliability-based topology

    optimization considering statistical dependence between limit states." Structural and

    Multidisciplinary Optimization (submitted).

    Contributions

    Intro. MTOP iMTOP SRBDO SRBTO Conclusions

    TOP RBDO Reviews MTOP Examples improving Examples Adaptive Examples MSR SRBDO//M Examples Existing Improved Examples Summary Future

  • 54

    Advisors:

    Glaucio H. Paulino & Junho Song

    Committee:

    Glaucio H. Paulino, Junho Song, Jerome F. Hajjar, C. Armando

    Duarte, Ravi C. Penmetsa, William F. Baker, Alessandro

    Beghini, Alok Sutradhar

    Financial Support:

    Vietnam Education Foundation

    National Science Foundation

    Computational Mechanics Group, Structural System Reliability Group

    and colleagues at UIUC

    Special thanks to my family

    Acknowledgements

  • 55

    Thank you for your attention !


Recommended