+ All Categories
Home > Documents > Systematic Design of Operational Amplifiers -...

Systematic Design of Operational Amplifiers -...

Date post: 13-Apr-2018
Category:
Upload: trandung
View: 225 times
Download: 1 times
Share this document with a friend
54
Willy Sansen 10-05 061 Systematic Design of Operational Amplifiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium [email protected]
Transcript
Page 1: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 061

Systematic Design of Operational Amplifiers

Willy SansenKULeuven, ESAT-MICAS

Leuven, [email protected]

Page 2: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 062

Table of contents

• Design of Single-stage OTA

• Design of Miller CMOS OTA

• Design for GBW and Phase Margin

• Other specs: Input range, output range, SR, ...

Ref.: Sansen : Analog design essentials, Springer 2006

Page 3: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 063

Single-stage CMOS OTA : GBW

12

3

VDD

VSS

vOUT

CL

M1 M2

M3 M4

M7

+-

IBv v

Av =ro

if ro2 = ro4 = ro

gm1 2

BW = 1

2π (CL+Cn1)ro2

GBW = 2π (CL+Cn1)

gm1

Page 4: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 064

CMOS OTA : Maximum GBW

vOUT-

CL

+-

IBv v

GBW = 2π CL

gm1

vOUT+

gm1 =

GBWmax = 2π CL

1

IB

IB

IB = 10 µA CL = 1 pF GBWmax ≈ 10 MHz

VGS1-VT

VGS1-VT

FOM = GBW.CL

IB= 1000

CL

[8]

[800]

0.2 V

MHzpF/mA

Page 5: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 065

Single stage CMOS OTA : fnd

12

3

VDD

VSS

vOUT

CL

M1 M2

M3 M4

M7

+-

IBv v

GBW = 2π (CL+Cn1)

gm1

fnd = gm3

2π Cn2

Cn2 ≈ 2CGS3+ CDB3+ CDB1

≈ 4 CGS3

fnd ≈ fT34

Page 6: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 066

Simple CMOS OTA : fnd

12

3

vOUT

M1 M2

M3 M4

M5

+-

Cn2fnd =

gm3

2π Cn2

-90o

0o

Av

f

f

fnd 2fnd

2x

PM = 90o - arctan + arctan ≈ 85oGBWfnd

GBW2 fnd

2x

Page 7: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 067

Single stage CMOS OTA : Design 1

GBW = 100 MHz for CL = 2 pF

Techno: Lmin = 0.35 µm; K’n = 60 µA/V2 & K’

p = 30 µA/V2

IDS ? W ? L ?

gm = GBW 2π CL = 1.2 mS

IDS = gm VGS-VT

2 = gm10 = 0.12 mAVGS-VT = 0.2 V

WL =

IDSK'(VGS-VT)2 =100

Lp = Ln = 1 µmWp = 100 µm; Wn = 50 µm

GAIN !

Page 8: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 068

Table of contents

• Design of Single-stage OTA

• Design of Miller CMOS OTA

• Design for GBW and Phase Margin

• Other specs: Input range, output range, SR, ...

Page 9: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 069

Miller CMOS OTA

12

34

5

VDD

VSS

vOUT

CL

M1 M2

M3 M4

M5

M6

M7

+- Cc

1 : B

vv

Cn1

Two nodes

with highImpedance

causetwo poles

split by Cc

1 4

RL

Page 10: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0610

Miller CMOS OTA : small-signal

12

34 vOUT

ZLM1 M2

M3 M4 M6

+-Ccvv

Cn1

go24 Cn1gm1 CLn4 = 10.2 pFgLo6

1 4Cc

gm6

GBW= 1MHzCL = 10 pF

gm1 = 7.5 µSgo24 = 0.03 µS

gm6 = 246 µS

Cn1 = 0.37 pF

Cc = 1 pF

RL = 10 kΩ

gLo6 = 120 µS

IDS1 = 1.1 µA IDS6 = 25 µA

Page 11: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0611

Miller CMOS OTA : GBW

12

34

5

vOUT

CL

M1 M2

M3 M4

M5

M6

M7

+- Cc

1 : B

vv

Cn1

RL GBW = 2π Cc

gm1

fnd ≈ gm6

2π CLn4

Av1 = go24

gm1

gLo6

gm6

BW = 2π Av2Cc

go24

1Cn1

Cc1+

Av2 =

Page 12: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0612

Miller CMOS OTA : poles and zero

1k 1M Hz

1k 1M

1pF

0.1pF

Cc

|Av|10fF

1

10

100

1000

f

f

fd

fnd

fz

Av0

Cct Av2

Cn1≈Cct

BWGBW

Pole splittingstarts at

0.1

but is sufficientfor Cc = 1pF

≈ 20 fF

Cc = 1pF

Cc = 0

fz = 2π Cc

gm6

Page 13: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0613

Table of contents

• Design of Single-stage OTA

• Design of Miller CMOS OTA

• Design for GBW and Phase Margin

• Other specs: Input range, output range, SR, ...

Page 14: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0614

Miller CMOS OTA: Design plan

GBW = 100 MHz and CL = 2 pFGBW = 2π Cc

gm1

fnd ≈ gm6

2π CLn4

1Cn1

Cc1+

Two equations forThree variables gm1, gm6 and Cc ?!?

Solution : choose gm1 or gm6 or Cc !!!

Page 15: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0615

What is wrong with

choosing Cc = 1 pF ?

Page 16: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0616

Miller CMOS OTA: Design vs Cc

GBW = 2π Cc

gm1

gm6

2π CLn4

11.3

3GBW ≈

Choose Cc ≈ 3 Cn1

gm6

Ccgm1≈ 4 CL

GBW = 100 MHz and CL = 2 pF

Choice Cc = 1 pF gives gm1 = 0.6 mS and gm6 = 4.8 mS

Choose Cn1 < Cc < CL

Page 17: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0617

Miller CMOS OTA: Design vs Cc

Cc

gm1

gm6

gm6min

gm

Ccopt

gm6min =

3 GBW (2π CL)

≈ 4 CL

Page 18: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0618

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.01 0.1 1 10 100

1 MHz Miller CMOS OTA: Design vs Cc

gm6

pF Cc

2gm1

mS

gmtot

Cn1 ~ gm6

Cn1 ct

Cn1 = 0.4 pF

GBW = 1 MHz

CL = 10 pF

Cn1 = 0.4 pF

K’ = 20 µA/V2

VGS-VT = 0.2 V

L = 10 µm

Page 19: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0619

Miller CMOS OTA : Design vs IDS6

gm6

Area M6

Area Cc

gm6min

Area gm6min =

3 GBW (2π CL)

gm6opt ≈ 1.3 gm6min

+ 30 %

Page 20: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0620

Miller CMOS OTA : Design vs IDS1

gm1

Area M6

Area Cc

Area

CL

Page 21: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0621

Optimum design for high speed Miller OTA - 1

CGS = kW k = 2 10 -11 F/cm

GBW =2π Cc

gm1

fnd =2π CL

gm6

1 + Cn1/Cc

1

CL = α Cc α ≈ 2

Cc = β Cn1 = β CGS6 β ≈ 3

fnd = γ GBW γ ≈ 2

GBW =fnd

2π CL

gm6

γ (1 + 1/ β)

=

CL = α Cc = α β Cn1 = α β CGS6 = α β kW6 W6 if CL

Page 22: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0622

Optimum design Miller for high speed OTA - 2

gm =W

L 1 + 2.8 104 L /VGST

17 10-5

W, L in cm

L in cm

Elimination of CL yields

GBW =2π kW6

gm6

α β γ (1 + 1/ β)

1

1 + 2.8 104 L6 / VGST6

8.5 106GBW =

2π L6

1

α β γ (1 + 1/ β)

1

GBW is not determined by CL, only by L (and VGST) !!fT is also determined by L !!!

fT6

Page 23: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0623

Optimum design Miller for high speed OTA - 3

If VGST = 0.2 V, vsat takes over for L < 65 nm (If 0.5 V for L < 0.15 µm)

fT =1L 1 + 2.8 104 L / VGST

1.35

L in cmfT in MHz

Substitution for fT yields

GBW =α β γ (1 + 1/ β)

fT6

GBW is not determined by CL, only by fTfT is determined by L (and VGST) !!!

2πCGSfT =

gm

Page 24: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0624

Maximum GBW versus channel length L

VGS-VT ≈ 0.2 VGBWGHz

0.1

1

10

1 µm100 nm10 nm L

K’

vsat α ≈ 2β ≈ 3γ ≈ 2or 16 x

GBW ≈fT6

16

Page 25: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0625

Design optimization for high speed Miller OTA

• Choose α β γ

• Find minimum fT6 for specified GBW• Choose maximum channel length L6 (max. gain)

for a chosen VGS6-VT

• W6 is calculated from CL ,

and determines IDS6• Cc is calculated from CL through α

• gm1 and IDS1 are calculated from Cc

• Noise is determined by gm1 or Cc

Page 26: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0626

Design Ex. for GBW = 0.4 GHz & CL = 5 pF

• Choose α β γ 2 3 2 • Minimum fT6 for GBW = 0.4 GHz fT6 = 6.4 GHz• Maximum channel length L6 L6 = 0.5 µm

for a chosen VGS6-VT = 0.2 V• L6 is taken to be the minimum L• W6 is calculated from CL , W6 = 417 µm

and determines IDS6 (K’n = 70 µA/V2) IDS6 = 2.3 mAand determines Cn1 (k = 2 fF/µm) Cn1 = 0.83 pF

• Cc is calculated from CL through α Cc = 2.5 pF • gm1 and IDS1 are calculated from Cc IDS1 = 0.63 mA

Page 27: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0627

Optimum design Miller for low speed OTA

GBW =α β γ (1 + 1/ β)

fT6

GBW is not determined by CL, only by fTfT is determined by L and i !!!

=fTfTH

i (1 - e - i )

fTH = 2 µ kT/q2π L2

≈ i for small i

Page 28: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0628

Design optimization for low speed Miller OTA

• Choose α β γ

• Find minimum fT6 for specified GBW• Choose channel length L6 (max. gain), which gives fTH6

• Calculate i6• W6 is calculated from CL ,

and determines IDST6 and IDS6

• Cc is calculated from CL through α

• gm1 and IDS1 are calculated from Cc

• Noise is determined by gm1 or Cc

Page 29: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0629

Design Ex. for GBW = 1 MHz & CL = 5 pF

• Choose α β γ 2 3 2 • Minimum fT6 for GBW = 1 MHz fT6 = 16 MHz• Maximum channel length L6 L6 = 0.5 µm

gives fTH6 fTH6 = 2 GHz• Inversion coefficient i is i = 0.008 • W6 is calculated from CL , W6 = 417 µm

and determines IDST6 (K’n = 70 µA/V2) IDST6 = 0.33 mAand determines IDS6 IDS6 = 2.7 µA

and determines Cn1 (k = 2 fF/µm) Cn1 = 0.83 pF• Cc is calculated from CL through α Cc = 2.5 pF • gm1 and IDS1 are calculated from Cc IDS1 = 1.6 µA

Page 30: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0630

Table of contents

• Design of Single-stage OTA

• Design of Miller CMOS OTA

• Design for GBW and Phase Margin

• Other : SR, Output Impedance, Noise, ...

Page 31: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0631

Miller CMOS OTA: Specifications 1

1. Introductory analysis1.1 DC currents and voltages on all nodes1.2 Small-signal parameters of all transistors

2. DC analysis2.1 Common-mode input voltage range vs supply Voltage2.2 Output voltage range vs supply Voltage2.3 Maximum output current (sink and source)

Page 32: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0632

Miller CMOS OTA: Specifications 2

3. AC and transient analysis3.1 AC resistance and capacitance on all nodes3.2 Gain versus frequency : GBW, …3.3 Gainbandwidth versus biasing current3.4 Slew rate versus load capacitance3.5 Output voltage range versus frequency3.6 Settling time3.7 Input impedance vs frequency (open & closed loop)3.8 Output impedance vs frequency (open & closed loop)

Page 33: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0633

Miller CMOS OTA: Specifications 3

4. Specifications related to offset and noise4.1 Offset voltage versus common-mode input Voltage 4.2 CMRR versus frequency4.3 Input bias current and offset4.4 Equivalent input noise voltage versus frequency4.5 Equivalent input noise current versus frequency4.6 Noise optimization for capacitive/inductive sources4.7 PSRR versus frequency4.8 Distortion

Page 34: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0634

Miller CMOS OTA: Specifications 4

5. Other second-order effects5.1 Stability for inductive loads5.2 Switching the biasing transistors5.3 Switching or ramping the supply voltages5.4 Different supply voltages, temperatures, ...

Page 35: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0635

M C O : Other specifications

o Common-mode input voltage range

o Output voltage range

o Slew Rate

o Output impedance

o Noise

Page 36: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0636

Miller CMOS OTA

12

34

5

VDD

VSS

vOUT

CL

M1 M2

M3 M4

M5

M6

M7

+- Cc

1 : B

vv

GBW = 1 MHzCL = 10 pFRL = 10 kΩ

RL

gm1 = 7.5 µSIDS1 = 1 µA

gm6 = 246 µSIDS6 = 25 µA

Cc = 1 pF

go24 = 0.03 µS

Page 37: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0637

Miller CMOS OTA : CM Input Voltage Range

0 1V 2V 3V 4V

-2V

0V

-3V

1V

-1V

2V

3V

VDD = |VSS|

VDD

VSS VICMmin

VICMmax

VICM

VICM

±2.5V

Page 38: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0638

Miller CMOS OTA : Output Voltage Range

0 1V 2V 3V 4V

-2V

0V

-3V

1V

-1V

2V

3V

VDD = |VSS|

VDD

VSS VOUTmin

VOUTmax

VOUT

VOUT

±2.5V

Rail-to-rail output if no RL

4

VDD

vOUT

CL

M5

RL

Page 39: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0639

Miller CMOS OTA : Slew Rate - 1

12

34

5

VDD

VSS

vOUT

CL

M1

M3 M4

M5

M6

M7

+

- Cc

1 : B

v

v

RL

Switch input :

> 1

-v > 0

IB1

IB1

∆VOUT

Cc

SR = ∆t

IB1

SR =

Page 40: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0640

Miller CMOS OTA : Slew Rate - 2

vOUT

vIN

vOUT

vIN

t t

t t

VOUTmax

4TmaxVOUTmax ≈

4 fmax

SR

SRSR

SR

SR≈ 4

VOUTmaxfmax

SR

SR

Page 41: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0641

Miller CMOS OTA : Slew Rate - 3

0 0.2M 0.4M 1MHz0.6M

VOUTmax ≈4 fmax

SR

0.8M

0.5

1

1.5

2

0

VOUTVp

f

SR = 2.2 V/µs

Page 42: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0642

Design for GBW or SR ?

IDS1gm1

SR GBW

= 4πIDS1

gm1=

2VGS1-VT

IDS1

gm1=

qnkT

ICE1

gm1=

qkT

ICE1gm1

= q

kT(1 + gm1RE)

≈ 0.1 ... 0.3 V for MOST (si)

≈ 30 … 50 mV for MOST (wi)

≈ 26 mV for Bipolar trans.

≈ ... 0.5 V with RE

x10

Solomon, JSSC Dec 74, 314-332

Page 43: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0643

High SR by gm reduction

Ref. Schmoock, JSSC Dec.75, 407-411

VDD

VSS

vOUT

CL

M1 M2

M5 M6

v+v-

IB IB

n : 11 : n

M3 M4

2π GBW

SR

= x (n+1)

Page 44: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0644

External vs internal Slew Rate

1

4

VDD

VSS

vOUT

CL

M4

M5

M6

Cc

IBIDS5 Cc

IB

SRint =

IDS5

CLSRext = is larger !

gm6

Ccgm1

= 4 CL = IDS5

IDS1IDS5

CL≈ 2

2IDS1

Cc

Page 45: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0645

Slew Rate and settling

tSlew

tTOT = tSlew + t0.1

vOUT

vIN

t

tSR

t0.1

0.1 % tSlew =

t0.1 =

SRVOUTVOUT

ln (1000) ≈ 7

2π BW7

Page 46: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0646

Miller CMOS OTA Output Impedance

12

34

5

VDD

VSS

ZOUT

CL

M1 M2

M3 M4

M5

M6

M7

+- Cc

1 : B

vv

GBW = 1 MHzCL = 10 pF

RL

gm1 = 7.5 µSIDS1 = 1 µA

gm6 = 246 µSIDS6 = 25 µA

Cc = 1 pF

go24 = 0.03 µS

ZOUTCL

Page 47: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0647

Miller CMOS OTA : Output impedance ZOUT

f

ZOUT

1/gm6 ≈ 4 kΩ

1/go56 ≈ 0.5 MΩ

GBWfzfd

Av20

Av10Av

closed loop

fz =2πCc

go24

fz ≈ 4.8 kHz

with CL

fnd

open loop

Page 48: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0648

Miller CMOS OTA : Noise density 1

go24 Cn1

gm1vin

gLo6

1 4

Cc

gm6vn1

vOUT

vneq

vin vn1

dvin12

dvin12 dvin2

2

dvin22

≈ 4kT df4/3gm1

≈ 4kT df2/3gm6

CL

Page 49: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0649

Miller CMOS OTA : Noise density 2

fndGBW

dvin12

f

dvneq22

dvneq22 =

dveq2

dvin22

|Av1|2

Av10 = go24

gm1Av102

fz

fz =2πCc

go24

Dominant on linear frequency scale !

4kT df2/3gm6

Page 50: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0650

Miller CMOS OTA : Integrated Noise

GBWπ2

GBWn

f

A ∫vnieq2 =

dvnieq2

1 + (f/ GBW) 20

GBWvnieq

2 = 4kT GBW π2=

=kTCcCc = 1pF vRs= 74 µVRMS

1

4/3gm1

vnieq2 4

3

∫ dx1 + x 2

0

∞π2=

Page 51: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0651

Noise density vs integrated noise

BW BWn

f

A

∫vni2 =

dvni2

1 + (f/ BW) 20

∞=

4kT3Cc

dvni2 = 4kT df

Noise density (V2/Hz) ~ 1/gm (or RS)

Integrated noise (VRMS) ~ 1/Cc

4/3gm

Page 52: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0652

CMOS Miller OTA layout

IN+IN-

IB

VDD

VSS

OUT

GBW = 1 MHz

CL = 10 pF

SR = 2.2 V/µs

VDD = 5 V

ITOT = 27 µA

370 MHzpF/mA

Page 53: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0653

Miller CMOS OTA : Exercise

GBW = 50 MHz for CL = 2 pF : use min. IDS6 !

Techno: Lmin = 0.5 µm; K’n = 50 µA/V2 & K’

p = 25 µA/V2

CGS = kW (= CoxWL) and k = 2 fF/ µm

VGS -VT = 0.2 V

Find gm6 IDS6 W6 Cn1 = CGS6 Cc gm1 IDS1 dvineq

2 vinRMS

Page 54: Systematic Design of Operational Amplifiers - Springerextras.springer.com/2006/978-0-387-25746-4/Chapter_06.pdf · Systematic Design of Operational Amplifiers Willy Sansen KULeuven,

Willy Sansen 10-05 0654

Conclusion : Table of contents

• Design of Single-stage OTA

• Design of Miller CMOS OTA

• Design for GBW and Phase Margin

• Other specs: Input range, output range, SR, ...


Recommended