+ All Categories
Home > Documents > Systems Theoretic Process Analysis Applied to Air Force...

Systems Theoretic Process Analysis Applied to Air Force...

Date post: 15-Oct-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
184
Systems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements Development by Sarah E. Summers Major, United States Air Force B.S. Aerospace Engineering, Oklahoma State University, 2005 B.S. Mechanical Engineering, Oklahoma State University, 2005 M.S. Aeronautical Engineering, Air Force Institute of Technology, 2011 M.S. Flight Test Engineering, Air Force Test Pilot School, 2014 Submitted to the System Design and Management Program in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Management at the Massachusetts Institute of Technology February 2018 ã 2018 Sarah E. Summers All rights reserved The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author_____________________________________________________________ Sarah E. Summers System Design and Management Program December 1, 2017 Certified by____________________________________________________________________ Nancy G. Leveson, Ph.D., Professor Department of Aeronautics and Astronautics Thesis Supervisor Accepted by___________________________________________________________________ Joan Rubin Executive Director, System Design and Management Program
Transcript
Page 1: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

Systems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements Development

by

Sarah E. Summers Major, United States Air Force

B.S. Aerospace Engineering, Oklahoma State University, 2005

B.S. Mechanical Engineering, Oklahoma State University, 2005 M.S. Aeronautical Engineering, Air Force Institute of Technology, 2011

M.S. Flight Test Engineering, Air Force Test Pilot School, 2014

Submitted to the System Design and Management Program in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

at the

Massachusetts Institute of Technology

February 2018

ã 2018 Sarah E. Summers All rights reserved

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part

in any medium now known or hereafter created.

Signature of Author_____________________________________________________________

Sarah E. Summers System Design and Management Program

December 1, 2017 Certified by____________________________________________________________________

Nancy G. Leveson, Ph.D., Professor Department of Aeronautics and Astronautics

Thesis Supervisor

Accepted by___________________________________________________________________ Joan Rubin

Executive Director, System Design and Management Program

Page 2: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

2

This Page Intentionally Left Blank

Page 3: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

3

Disclaimer The views expressed in this document are those of the author and do not reflect the official

position or policies of the United States Air Force, Department of Defense, or Government.

Page 4: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

4

This Page Intentionally Left Blank

Page 5: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

5

In memory of all of those who have given their life for our country, in particular:

Jolly 38:

Captain Gregg Lewis Captain Philip Miller

Master Sergeant Matthew Sturtevant Staff Sergeant Keven Brunelle Staff Sergeant Kenneth Eaglin Senior Airman Jesse Stewart

Jolly 39:

Lieutenant Colonel William Milton Captain Carl Youngblood

Second Lieutenant Michael Harwell Technical Sergeant Jeffrey Armour

Senior Airman Adam Stewart Senior Airman Justin Wotasik

and

Captain Michael Geragosian

“These things we do that others may live”

Also in memory of Major Lee Berra.

Page 6: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

6

This Page Intentionally Left Blank

Page 7: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

7

SystemsTheoreticProcessAnalysisAppliedtoAirForceAcquisitionTechnicalRequirementsDevelopment

By

SarahE.SummersMajor,UnitedStatesAirForce

SubmittedtotheSystemDesignandManagementProgramon1December2017inpartialfulfillmentoftherequirementsforthedegreeofMasterofScienceinEngineeringand

Management

AbstractTheAirForceexperienced12ClassAaviationmishapsin2016,whichresultedin16fatalitiesand9destroyedaircraft.Sofarin2017,TheAirForcehasagainexperienced12ClassAmishapswith5fatalitiesand7destroyedaircraft.(1)Inadditiontothesemishaps,developmentofnewaircraftormodificationstoaircraftoftentakewellovertheplannedduration.Developmentaltestidentifiesdesigndeficienciesthatmustbeaddressedbeforetheaircraftisfielded,whichrequiresexpensiveandlengthyredesigncycles.Asystemsapproachtodesignwithhumansincludedaspartofthesystemcanimproveboththedevelopmentprocessandaviationsafety.SuchanapproachwascreatedbyProfessorNancyLevesonatMITandiscalledSystemsTheoreticProcessAnalysis(STPA).STPAisshowntobeapplicabletotheAirForceacquisitionsprocessthroughouttheproductlifecycle.STPAisalsocompliantwiththeairworthinesshandbook,MIL-HDBK-516C,andSTPAdocumentationisbeneficialtotheairworthinesscertificationinspectors.STPAisappliedtotwousecases.OneisaconceptualJSTARSaircraft,andtheotherisanunmannedaerialvehicle(UAV)thatwasmodifiedfromageneralaviationaircraft.TheAirForceiscurrentlyinsourceselectionforareplacementtotheJSTARSaircraft.Thehigh-levelSTPAanalysisisforafunctionalreplacementtotheJSTARSaircraft,aswouldbeneededearlyintheacquisitionsprocess.Additionally,accidents,hazards,andasafetycontrolstructurearedevelopedfortheJSTARSsupportsystem.TheUAVanalysisismoredetailed,andprovidesinformationthatisnecessaryduringtheTechnologyMaturation&RiskReductionphaseofanacquisitionprocess.ThesisSupervisor:NancyG.LevesonTitle:ProfessofAeronauticsandAstronauticsandEngineeringSystems

Page 8: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

8

This Page Intentionally Left Blank

Page 9: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

9

AcknowledgementsIwouldliketoacknowledgeProfessorNancyLevesonfortakingmeonasathesisadvisee.Ihavelearnedanincredibleamountinthelast18months,andIamappreciativeofyourtimeandsupport.IwouldalsoliketothankDr.JohnThomasandtherestoftheSystemEngineeringResearchLab.Yourhelpandinsightsduringthisjourneyhasbeenincredible.ThankyoutotheSDMfacultyandstaffforthisamazingopportunitytocometoMITandlearnwhatitmeanstobeasystemsthinker.Thisprogramhasopenedmyeyestoabiggerpictureandgivenmethetoolstounderstanditandmakeadifference.TheSDM2016CohorthastaughtmejustasmuchastheMITfaculty.ThankyoutoallthosethathavesharedtheirknowledgeandmadethisexperienceatMITevenbetter.Thankyoutoallthosewhoarecurrentlyservinginharm’sway.Theselflessnessandprofessionalismofmyfellowservicemembersinspiremetodomybesteveryday.Thankyoutomyfamilyandfriendswhohavesupportedmethroughoutmylife.You’vecheeredmeonduringlife’sgoodtimesandgivenmeashoulderduringthehardtimes.Youstimulatemycreativityandencouragemetocontinuetoquestionandlearn.Mostofall,thankyoutomywonderfulwife.ThankyouforstickingbymysidewhileIdragyoufromcoasttocoast(tocoast).Yourendlesssupporthasenabledmetosucceedinthisendeavor.EverydayIstrivetobethepersonyoudeserve,andIamabetterpersonforit.IlookforwardtomanymoreadventureswithyouwherevertheAirForcesendsus.

Page 10: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

10

This Page Intentionally Left Blank

Page 11: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

11

ContentsAbstract.................................................................................................................................7

Acknowledgements................................................................................................................9

TableofFigures.....................................................................................................................13

TableofTables......................................................................................................................13

Introduction..........................................................................................................................14Motivation.....................................................................................................................................14Objectives......................................................................................................................................14ThesisStructure.............................................................................................................................14

HazardAnalysisMethods......................................................................................................15FaultTreeAnalysis.............................................................................................................................15FailureModesandEffectAnalysis(FMEA)........................................................................................16HAZOP................................................................................................................................................18DrawbacksofTraditionalHazardAnalyses........................................................................................20STAMP...............................................................................................................................................22

AirForceAcquisitionsandSystemsSafety.............................................................................30AirForceAcquisitionsProcess........................................................................................................30STPAImplementationwithintheAirForceAcquisitionProcess......................................................34

STPAintheAcquisitionsProcess.......................................................................................................34STPAStudyExecutionandPersonnelComposition...........................................................................35

SystemSafetyProcess....................................................................................................................37AirForceAirworthinessProcess.....................................................................................................39STPAandAirworthiness.................................................................................................................40ReliabilityandRedundancy............................................................................................................42Riskmatrices..................................................................................................................................43SystemsThinkingintheAF:Effects-BasedApproachtoOperations...............................................43

JSTARSAnalysis.....................................................................................................................46JSTARSSystemDefinition...............................................................................................................46JSTARSSystemMishaps,Hazards,andHigh-LevelSafetyConstraints.............................................46JSTARSSafetyControlStructure.....................................................................................................47JSTARSStep1:UCAGeneration......................................................................................................47JSTARSStep2:ScenarioGeneration...............................................................................................51JSTARSSTPASummary...................................................................................................................51JSTARSSupportSTAMPAnalysis.....................................................................................................52

JSTARSSupportMishaps...................................................................................................................52JSTARSSupportHazards....................................................................................................................52JSTARSSupportSafetyControlStructure..........................................................................................52

UAVSTPAAnalysis................................................................................................................54UAVSystemDefinition...................................................................................................................54UAVAccidents,Hazards,andHigh-LevelSafetyConstraints............................................................54UAVSafetyControlStructure.........................................................................................................55

Page 12: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

12

STPAStep1:UCAGeneration.........................................................................................................57STPAStep2:ScenarioGeneration.................................................................................................61UAVSTPASummary.......................................................................................................................64

Conclusions...........................................................................................................................69

AcronymListing.....................................................................................................................70

Appendix1:JSTARSSTPAAnalysis.........................................................................................72

Appendix2:UAVSTPAAnalysis............................................................................................85

Appendix3:STPACompliancewithMIL-HDBK-516C...........................................................163

Bibliography........................................................................................................................183

Page 13: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

13

TableofFiguresFigure1FaultTreeforPowertotheFirePump(2)......................................................................16Figure2FMEAExampleConceptualDesignReviewforFlightControlSystem(3)......................17Figure3FMEAExamplePreliminaryDesignReviewforFlightControlSystem(3)......................18Figure4TheHAZOPStudyProcedure(5).....................................................................................20Figure5HazardAnalysisTimeline................................................................................................21Figure6ExampleofaHierarchicalSafetyControlStructure(7)..................................................23Figure7SimpleControlStructure(7)...........................................................................................24Figure8ControlFlawsLeadingtoHazards(7).............................................................................25Figure9AnExampleofSTPAStep2:ScenarioGeneration(7)....................................................28Figure10STPATopDownAnalysis..............................................................................................29Figure11AcquisitionsProcess(9)................................................................................................30Figure12SEActivitiesinMaterielSolutionAnalysisPhase(10)..................................................31Figure13SEActivitiesinTechnologyMaturationandRiskReductionPhase(10).......................32Figure14SEActivitiesinEngineeringandManufacturingDevelopmentPhase(10)..................32Figure15SEActivitiesinProductionandDeploymentPhase(10)..............................................33Figure16AcquisitionsProcesswithSTPA....................................................................................34Figure17RiskAssessmentMatrix(14).........................................................................................38Figure18UpdatedRiskMatrix(18)..............................................................................................40Figure19JSTARSSafetyControlStructure...................................................................................47Figure20SimpleJSTARSSupportSafetyControlStructure.........................................................53Figure21UAVSafetyControlStructure.......................................................................................56Figure22ScenarioTypesonControlStructure............................................................................62Figure23Safety-guideddesign(7)...............................................................................................68

TableofTablesTable1BasicGuidewords(5).......................................................................................................19Table2ExampleUCATable(8)....................................................................................................27Table3JSTARSUCAs....................................................................................................................48Table4JSTARSUCAsandSafetyConstraints...............................................................................49Table5UAVOperatorUCAs.........................................................................................................57Table6UAVVMSUCAs................................................................................................................60Table7ExampleofSafetyConstraintsDerivedfromUCAs.........................................................60Table8JSTARSScenarios.............................................................................................................72Table9UAVOperatorSafetyConstraints....................................................................................85Table10UAVVMSSafetyConstraints.........................................................................................90Table11UAVOperatorScenarios................................................................................................93Table12UAVVMSScenarios.....................................................................................................144

Page 14: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

14

IntroductionMotivationOn2September,1998,twelvemembersofthe66thRescueSquadron,flyingwiththecallsignsJolly38andJolly39,werekilledinamidaircollisionatNellisAirForceBase.Myfatherwastheirsquadroncommander.Onthatday,aweekaftermy16thbirthday,IdecidedtojointheAirForcewhenIturned18.TheAirForcerescuemottois“Thesethingswedothatothersmaylive”.WhileIamnotamemberoftherescuecommunity,Iservewiththatmottoandthosethathavediedlivingthatmottoinmyheart.Thesafetyofourmenandwomenthatserveincombatisthemotivationbehindmyserviceandthisthesis–thatothersmaylive.Aslongasthereisarmedconflict,therewillbemilitarymenandwomenthatdieincombat.Everydeathisatragedytofamily,friends,andtheirfellowservicemembers.Thosemenandwomenwhoarekilledincombatmadeachoicetoserveandtheirsacrificeshouldbehonored.Servicemembersarealsooftenkilledduringnoncombatincidents.Theseincidentshaveanadditionalelementoftragedyinthattheyaremostoftenpreventable.Militarymembersshouldnotdiebecausetheirequipmentdoesnotoperateasintendedortheoperatinginstructionsdonotprovidecorrectinformation.Asaflighttestengineer,Itestednewaircraftandmodificationstoexistingaircrafttoensurethatthefieldedproductissafetooperateandoperatesasdesigned.Weoftenfindinteractionsbetweentheoperatorandproductorbetweenthemodificationsandbaseaircraftaredeficientforuseinthefield.SystemsTheoreticProcessAnalysis(STPA)hasthepotentialtopredicttheseinteractionsduringthedevelopmentprocessinordertodesignouttheflawsthatcanleadtoaccidents.IbelievethatSTPAcanalsosavethelivesofflighttestprofessionalsandourmenandwomenwhoutilizethesesystemsincombat.ObjectivesTheobjectiveofthisthesisistodeterminethefeasibilityofimplementingSTPAwithintheAirForceacquisitionsprocess.Therearetwomaincomponentsofthethesis.OneistoconductcasestudiestoillustratethepoweroftheSTPAanalysistoimplementcomponentsoftheacquisitionprocess.ThesecondcomponentistoinvestigatehowtheSTPAprocesscanbestbeintegratedintocurrentAirForceacquisitionprocesses.ThesisStructureTraditionalhazardanalysismethodswillberesearched,followedbyanexplanationofSTAMPandSTPA.ThehazardanalysissectionisfollowedbyexplaininghowSTPAcouldbeimplementedintotheAFacquisitionandairworthinessprocessesandconclusions.Then,twocasesstudiesusingSTPAarepresented.ThefirstcasestudyisanexampleofaJSTARSusedtomanagebattlesthatincludesgroundandairforces.ThesecondcasestudyisofageneralaviationaircraftmodifiedtobecomeaUAV.

Page 15: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

15

HazardAnalysisMethodsFaultTreeAnalysisFaulttreeanalysis(FTA)isatopdownrootcausehazardanalysistoolthatcanbeusedforprobabilisticriskassessments.Faulttreeanalysiswasdesignedintheearly1960sforuseontheMinutemansystem,andhasbeenadoptedbyseveralindustriesoverthelast50yearsincludingaerospace,nuclear,chemicalprocessing,andsoftware.FTAcanbeusedthroughoutthedesignandlifecycleofthesystemtoinformdesign,operations,andmodificationstothesystem.Theanalysisbeginswithanundesiredevent,andafaulttreeisdevelopedtodeterminewhatlower-levelevents(failuresorfaults)orcombinationofeventscouldcausetheundesiredevent.Therelationshipbetweenthelower-leveleventsaredefinedusinglogicgates.Oncethemodelisdeveloped,probabilitiesofeacheventarecombinedusingBooleanlogicandsimplereliabilitycalculationstocomputethesystemreliability.(2)Themodelalsoutilizescutsets,whichareauniquesubsetofallthelower-leveleventsthatwouldcausetheundesiredeventtotakeplace.Theremaybeseveralcutsetsforeachundesiredevent,andevaluatingeachallowsthedesignertofocusonspecificdesignchangestoavoidtheundesiredeventalongwithcalculatingaprobabilityforeachcutset.Becausethefocusisonprobabilityandreliability,thedesignchangessuggestedofteninvolveaddingredundancysothatthereliabilitycalculationsareincreased.AnexampleofFTAisshowninFigure1.TheFTAisforafirepump,whichprovideswatertofiresprinklersystems.ThequestionthatnecessitatedtheFTAbelowiswhetherornotthefirepumprequiresemergencypower,suchasagenerator,orifitcanusepowerfromtheutilityprovider.(3)

Page 16: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

16

Figure1FaultTreeforPowertotheFirePump(3)

AtthetopoftheexampleinFigure1,theundesiredeventis‘nopowertofirepump’.Thiscouldoccuriftheutilitypowerandgeneratorfails,oriftheautomatictransferswitch(ATS)fails.Therearetwopathsbelowtheutilitypowerandgeneratorfailelementforeachpowersource,andbasiceventsthatwouldcauseeachpathtofailarelistedinthebottomblock.Probabilitiesforeachbasiceventareestimated,whichallowstheusertodeterminetheprobabilityoftheundesiredevent.FTAisapowerfultoolthatcanallowanalysisofsystemreliabilitybyevaluatingcomponentfailures,howevernotallundesiredeventsoccurduetoacomponentfailure.Humanandsoftware-relatedsysteminteractionswillnotbecapturedusingFTA,norcanprobabilitiesbeassignedtosuchcases.Additionally,thistypeofanalysisassumesthateachofthefailuresareindependentfromeachother.Thisassumptionmaynotalwaysbeappropriate,andtheresultsoftheanalysiswillbeinaccurateiftheassumptionismadewhenitshouldnotbe.FailureModesandEffectAnalysis(FMEA)FMEAisabottomuphazardanalysistool.Ratherthanstartwithanundesiredevent,aswithFTA,theanalysisbeginswithacomponent.Eachcomponentorsubsystemisanalyzedforpotentialfailures.Theeffectofthefailuremustbedetermined,andfailuredetectionmethods

Page 17: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

17

andmitigationsaredetermined.(4)Componentfailuresmaybedeterminedbyengineeringjudgementorstatisticalanalysis.AnexampleofFMEAisshowninthefigurebelow.

Figure2FMEAExampleConceptualDesignReviewforFlightControlSystem(4)

Ascanbeseenfromthefigure,thetableisbrokenintosystems,inthiscasethepitchcontrolsystem,andfurtherbrokendownbyfunction,whichismechanicallinkagefunctionforpilotinputcontrolmotions.Differentpossiblefailuresarethenlistedforeachfunction,alongwithwhatmightcausethefailure(assumedfailurecase),effectonthesystem,effectontheaircraft,anyactionsduringflighttocompensateforthefailure,andfinallythefailureclasswithIbeingthemostdangerous.Thefailurescanthenbemitigatedthroughdesignchanges.Thefigurebelowshowsthesamesystematpreliminarydesignreview.

Page 18: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

18

Figure3FMEAExamplePreliminaryDesignReviewforFlightControlSystem(4)

InFigure3,thefirst4columnsarethesame,butnoweffectonsystem,effectonaircraft,compensatingprovisionshaveallchanged.Additionally,thefailureclassesforallofthefailuretypeshasbeenreducedtoIIorIII.ThemaindrawbacktoFMEAisthatitrequirestheengineertoexamineeverycomponentandpotentialfailuretodetermineifthereisasafetyhazardassociatedwiththatfailure.Itcanbecomeincrediblytimeconsumingcomparedtoothermethods.Additionally,justaswithFTA,onlysinglecomponentfailuresareconsideredinthisanalysis.FTAconsiderscomponentinteractiontosomedegree,howeverFMEAdoesnotatall.Thecasewheretwofailuresarerequiredtoproduceaneffectarenotincluded.Theoreticallytheycouldbe,buttheamountofeffortinvolvedwouldbeprohibitiveexceptfortheverysimplestofsystems.Additionally,thisanalysisdoesnotconsiderthehuman,excepttoassumethehumancanenactthecompensatingprovisionsduringflight,asseeninFigure1forthebrokenfeelspring.HAZOPHazardandoperabilitystudy(HAZOP)wasdevelopedinthe1960sbyImperialChemicalIndustries.(5p.1)itis“astructuredanalysisofasystem,process,oroperationforwhichdetaileddesigninformationisavailable,carriedoutbyamultidisciplinaryteam.”(5p.2)HAZOPsystematicallygoesthrougheachofthesystemparametersandusesasetof

Page 19: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

19

guidewordstodeterminewhetheroranotadeviationoftheparameterwouldleadtoasafetyhazard.Studiesarecarriedoutwithaclientandafacilitator.(5p.44)ThefacilitatorisanexpertinHAZOP,andtheclientisanexpertintheparticularsystemthattobestudied.AccordingtotheBritishStandardonHAZOP,thekeyfeaturesofaHAZOPanalysisare:

- Theexaminationisacreativeprocess- Theexaminationiscarriedoutundertheguidanceofatrainedandexperiencedstudy

leader- Theexaminationreliesonspecialistsfromvariousdisciplines- Theexaminationshouldbecarriedoutinaclimateofpositivethinkingandfrank

discussion- Solutionstoidentifiedproblemsarenotaprimaryobjective(6)

TheHAZOPprocess,asshowninFigure4,isbrokenintofourmainsteps.DefinitionandPreparationaresimilarstepsforanygroupbasedactivity.Step3,Examination,beginswithdividingthesystemintoparts.ThedivisionallowstheHAZOPteamtomorespecificallydefinethedesignintentofeachpart.Accordingtothestandard,themorecomplexthesystem,andthehigherthestandard,thesmallerthedividedpartswillbe.Eachpartisthenbrokenintoelements,whichcanrangefromstepsorprocessstagestocomponents.(6)Theelementsallhavecharacteristicsassociatedwiththem,suchasmaterialproperties,rates,orinformation.Eachelementisthenexaminedusingguidewords.ThegenericlistofguidewordsareshowninTable1.

Table1BasicGuidewords(6)

Theseguidewordsareusedtoencouragethestudyparticipantstothinkcreativelyabouttheelementsandpartsunderexamination.

Page 20: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

20

Figure4TheHAZOPStudyProcedure(6)

DrawbacksofTraditionalHazardAnalysesOnedrawbacktoHAZOP,FaultTrees,andFMEA,isthesystemmustalreadyhaveadetaileddesign(6).Ifhazardsareidentified,significantdesignreworkmayberequiredtomitigateoreliminatethehazards.Reworkcoststimeandmoney,andthereisapossibilitythatprogramslackingoneorbothofthosemaychoosenottoimplementallofthemitigations.Additionally,

Page 21: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

21

solutionstohazardsarenotidentifiedintheseanalyses,whichmeansaseconddesignstudywouldberequiredtodeterminethebestwaytomitigateorreducetheidentifiedhazards.Theseanalysesalsofocusoncomponentfailure,whichisnottheonlycauseofmishaps.ManymishapssuchastheEuropeanSpaceAgency’sSchiaparellimishaponMars,arenotcausedbycomponentfailure,butratherbysoftwareinteractionsduetodesignerrors.(7)Othermishapsarecausedduetohumaninteractionwithinthesystemduetopoordesign.Noneoftheseanalyseswillidentifythesetypesofmishapcauses.Theanalysesonlylookatdeviationsfromdesignintent,whichassumesthatdesignintentissafe.Asdiscussedintheparagraphabovethisassumptionmaynotbevalid,leadingtounidentifiedhazardsassociatedwiththedesignintentitselfthatwillgointoproduction.Thereasontheseanalysesaredeficientformoderntechnologiesisbecausetheywerecreatedduringatimewhensystemsweremainlyelectromechanicalsystemswithnosignificantcomputersorsoftware.AsthetimelineinFigure5shows,thetraditionalhazardanalyseswereallcreatedbeforeManwalkedonthemoon.Sincethen,humanityhasexperiencedagiantleapindigitaltechnologies.Effortstoadapttraditionalmethodstoidentifyhazardsnotcausedbyacomponentfailurecannotbesuccessful,astheunderlyingtheoryfortheseanalyseswerenotbasedonmoderntechnologies.

Figure5HazardAnalysisTimeline

1949-FM

EA

1962-FTA

1963-HA

ZOP

1969–Ap

ollo11

1974–F-16FirstFlight

1997–F-22FirstFlight

2003-STAM

P2006–F-35AFirstFligh

t

1943–FirstDigitalC

omputer1940 19601950 2000199019801970 2010

Page 22: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

22

Anewhazardanalysisisneededthatisdesignedtocapturebothfailurerelatedandnon-failurerelatedhazards.Theanalysisshouldbeabletoconsiderhumansandsoftwareaspartofthesysteminadditiontotheelectromechanicalcomponentstraditionallyevaluated.STAMPSystems-TheoreticAccidentModelandProcess(STAMP)isbuiltonunderlyingsystemstheoryandthreeconcepts,“safety,constraints,ahierarchicalsafetycontrolstructure,andprocessmodels.”Systemsare‘viewedasinterrelatedcomponentskeptinastateofdynamicequilibriumbyfeedbackcontrolloops.”(8)Accidentsoccur,therefore,duetoaviolationofthesafetyconstraints.Safetyconstraintsareinitiallydefinedatthesystemlevel,andarethenbrokendownto“sub-requirements”asthedesignprogressesandsubsystemsandcomponentsaredeveloped.Thenextconcept,hierarchicalsafetycontrolstructure,isbasedoffofhierarchicalstructuresinsystemstheory.Thelowerlevelsareconstrainedbycontrolprocessesfromthehigherlevels.Inturn,thelowerlevelsprovidefeedbacktothehigherlevels“abouthoweffectivelytheconstraintsarebeingsatisfied.”(8)AnexampleofahierarchicalsafetycontrolstructureisshowninFigure6.Theleftsideissystemdevelopment,andtherightsideisoperations.Thisparticularsafetycontrolstructurehasalargescopethatincludeslegalbodies,regulators,andcompanymanagement.Safetycontrolstructurescanbescopedbasedontheobjectivesoftheanalysis.Animportanttakeawayfromthisparticularsafetycontrolstructureisthatamishapmayoccurwithintheoperatingprocess(bottomrightcornerofthefigure),howevertheinadequatesafetyconstraintsthatledtothemishapcouldbewelloutsideofthesmalloperatingprocessscope.Inadequate(missing,inappropriate,orunenforced)safetyregulations,forexample,couldbeafactorinamishap.Noneoftheotherhazardanalysesdescribedinthissectionexaminehazardsthatarisefromoutsideofthesystemunderdesign.Thecontextinwhichthesystemoperatesshouldbeinputintothedesign.Contextcanincludeoperatingenvironment,companyobjectivesandoperatingpractices,orregulatoryrequirements.Ifthesecontextualinputschange,astheycertainlywillthroughoutthelifecycleofaproduct,theassumptionsthatwentintothedesignarenolongervalid.Asystemthatmayhavebeensafewhenitwasfirstfieldedbecomesunsafe.ThisiswhyLeveson’ssixthnewassumptionis:“Systemswilltendtomigratetowardsstatesofhigherrisk.”(8)Ifthecontextwasnotincludedasaninputtothedesign,thesystemmaybeunsafefromthestart.Becausethecontextofadesignedsystemwillchangethroughoutitslifecycle,feedbackinFigure6isjustasimportantastheconstraintsthatareappliedtothelowerlevels.Forexample,problemreportsprovidedbythecontrollersmustbereportedtoboththesystemdevelopmentandsystemoperationschains.Theoperationsmanagementmayhavetoalterworkinstructionsorsendouttemporarynoticesregardingtheproblemreports.Theprojectmanagerswillevaluatetheproblemreportsandtakeactiontoresolvetheproblem.

Page 23: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

23

Figure6ExampleofaHierarchicalSafetyControlStructure(8)

Oftenproblemsarenotreportedforavarietyofreasons.Theresultisasystemthatisnotoperatingasitshould,operatorscreatingworkaroundsbythemselvesoroverlookingtheproblem,nohazardanalysistounderstandthesafetyimplicationsoftheproblem,andnosystemredesign.Feedback,therefore,isessentialtothesafetyofthesystemalongwiththesafetyconstraints.

Page 24: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

24

ThelastmajorcomponentofSTAMPisprocessmodels.Thepurposeoffeedbackistoinformthecontrollerofthestateoftheprocess,whichisacomponentoftheprocessmodel.Theprocessmodel,asdescribedbyLeveson,isa“modelusedtodeterminewhatcontrolactionsareneeded,anditisupdatedthroughvariousformsoffeedback.”Forexample,anautopilotissettomaintainaheading.Theautopilotmustreceivethecurrentheading,aircraftattitude,andailerondeflections.Figure7illustratestheprocessmodelwithinacontrolstructure.Thecontrollerthenusestheprocessmodeltodeterminethecontrolaction.

Figure7SimpleControlStructure(8)

Evenwithaccurateandadequatefeedback,thecontrollerstillmaynotprovideasafecontrolaction.Therefore,asLevesonsaid,“processmodelsplayanimportantrole(1)inunderstandingwhyaccidentsoccurandwhyhumansprovideinadequatecontroloversafety-criticalsystemsand(2)indesigningsafersystems.”Levesonstatesthat“systemsareviewedasinterrelatedcomponentskeptinastateofdynamicequilibriumbyfeedbackcontrolloops.”Safetyisthen“achievedwhenappropriateconstraintsonthebehaviorofthesystemanditscomponentsaresatisfied.”(8)Accidentsoccurwhenthoseconstraintsareviolated.Theviolationsareoneormoreof:

1. Thesafetyconstraintswerenotenforcedbythecontroller.a. Thecontrolactionsnecessarytoenforcetheassociatedsafetyconstraintateach

levelofthesociotechnicalcontrolstructureforthesystemwerenotprovided.b. Thenecessarycontrolactionswereprovidedbutatthewrongtime(tooearlyor

toolate)orstoppedtoosoon.c. Unsafecontrolactionswereprovidedthatcausedaviolationofthesafety

constraints.2. Appropriatecontrolactionswereprovidedbutnotfollowed.(8)

LevesonillustratescontrolflawswithrespecttothesafetycontrolstructureinFigure8below.

Page 25: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

25

Figure8ControlFlawsLeadingtoHazards(8)

Therearegenerallymultiplecontrollersineachhierarchicalcontrolstructuresthateitherprovidecontrolinputstolowerlevelcontrollers(1),orprovidecontrolactionstothecontrolledprocessitself(controller2).Withinthecontrolledprocess(4),componentfailureswillbeidentified.Feedbackandcontrolactionscanbedisruptedoralteredbyphysicalfailuresaswell(suchasactuatororsensorfailures).Thesetypesoffailuresarewhatotherhazardanalysespreviouslydescribedmayidentify.Thereare,however,manyothercausalfactorsbeyondcomponentfailuresinFigure8thatwillnotbeidentifiedbythetraditionalhazardanalysistechniques.STPA(SystemTheoreticProcessAnalysis)isahazardanalysistechniquebuiltontheSTAMPfoundation.Itstartswithdefining“accidentsorlosses,hazards,safetyrequirementsandconstraints,andthesafetycontrolstructure.”(8)

Page 26: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

26

Anaccident(ormishapinmilitaryterminology)isdefinedas“Anundesiredorunplannedeventthatresultsinalossincludinglossofhumanlifeorhumaninjury,propertydamage,environmentalpollution,missionloss,etc”(8)Theprojectstakeholdershoulddeterminewhattherelevantlossesarefortheparticularsystembeingdesigned.Ahazardisdefinedas“Asystemstateorsetofconditionsthat,togetherwithaparticularsetofworst-caseenvironmentalconditions,willleadtoanaccident(loss).”(8)Eachhazardshouldtracetoanaccident.Asanexample,ananalysisofanewaircraftwilllikelyincludetheaccidentof“lossoflife”.Ahazardmightbe“aircraftviolatesminimumseparationrequirements.”Ifanaircraftviolatesminimumseparationrequirements,itcouldcauseamidaircollision,whichwouldpossiblyresultinlossoflife.Therefore,thehazardwouldtracetotheaccidentlossoflife.Next,safetyrequirementsaredevelopedfromthehazards.Inthecaseoftheexampleabove,therequirementmaybe“aircraftmustnotviolateminimumseparationrequirements.”Oncethehigh-levelconstraintshavebeendeveloped,thesafetycontrolstructureiscreated.Thecontrolstructuremustbedesignedbasedontherequirementspreviouslydefined,alongwithanyotherconstraintsassociatedwiththeorganizationsthataredesigningandoperatingthesystem,operationalconstruct,andlogisticssupport.STPAhastwosteps.Thefirststepistoidentifyunsafecontrolactions(UCAs).Thesafetycontrolstructureidentifieseachcontrollerandtheirassociatedcontrolactions.Eachcontrolactionisthenevaluatedtodetermineunderwhatcircumstancesthatcontrolactionmayleadtoahazardousstate.InSTAMP,UCAshappenbecause:

1. Acontrolactionrequiredforsafetyisnotprovidedornotfollowed.2. Anunsafecontrolactionisprovided.3. Apotentiallysafecontrolactionisprovidedtooearlyortoolate,atthewrongtimeorin

thewrongsequence.4. Acontrolactionrequiredforsafetyisstoppedtoosoonorfortoolong.(8)

TheseUCAsareoftenputintoatablewiththecontrolactioninthefirstcolumnandthefourtypesofUCAsinthenext4columns.AnexampleoftheUCAtablecanbeseenbelow.

Page 27: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

27

Table2ExampleUCATable(9)

Inthetableabove,thecontrolactionis“opentraindoors”.NotethattherearenoUCAsinthe“Stoppedtoosoonorappliedtoolong”category,whichonlyappliestocontinuousactions.DiscreteactionswillnothaveUCAsinthiscolumn.ThesecondstepisdetermininghowtheUCAmightoccur.Thisistypicallyaccomplishedbyevaluatingthecontrollooprelatedtotheparticularcontrollerandcontrolactionthatisbeingexamined.Thecausalscenariosthataregeneratedinthisstepwillprovideinformationnecessarytoeliminatethehazard,orifeliminationisimpossibletocontrolthehazard.Thisinformationiswrittenasasafetyrequirementorconstraintthatshouldbeincludedindesignrequirementsoroperationalprocedures.LevesongivesanexampleofhowtodothisinEngineeringaSaferWorld,whichcanbeseeninFigure9.Figure9isamodifiedversionofFigure8forahigh-powerinterlock.Theinterlockshouldcausethepowertobedisruptedwhenadoorisopen,sothatsomeonecanworkintheareawithoutbeingshocked.Whenthedoorisclosed,powerflowstothesystemagain.

Page 28: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

28

Figure9AnExampleofSTPAStep2:ScenarioGeneration(8)

Figure9showsgeneralscenarios,suchas“detectiondelayed.”Thesescenariosarenotyetdetailedenoughtodeterminehowtoeliminatethehazard.Onemustdeterminewhythedetectionisdelayed.Maybevibrationsintheenvironmentcausesthesensitivedetectortogivefalsedooropenfeedback,sothesensorisprogrammedtoonlyprovidefeedbackoncethedetectorindicatesthedoorisopencontinuouslyforacertainperiodoftime.Ifthisisthecase,thesafetyconstraintmightread“Thedetectormustprovidedooropenfeedbackwithin0.1secondsofopening”,asanexample.“Spuriousfeedback”isanothergeneralscenario.Alongthelinesofthepreviousexample,themoredetailedinformationmightread“Thedetectorissensitiveanddetectssmallmovementsofthedoor,sendingfalseopendoorfeedback.”Asafetyconstraintmaybe“Thedetectormustonlydetectthedooropening,notdoormovementwhilestillintheclosedposition.”Now,designengineerscanevaluatehowtosolvethespuriousfeedback,whichwillinturnsolvetheneedforadelayindetectionfeedback.Whilethismayseemobvioustothereader,systemdesignsareoftenadjustedto‘fix’issuesbyresolvingthesymptomsoftheissueratherthancorrectingaflaweddesign.Thefinaldesignbecomesapatchworkof‘solutions’,insteadofathoughtfulandcohesivedesign.Theauthorhaspersonallyseenthistypeofpatchworkengineeringresultinmishapscostingtensofmillionsofdollars.STPAisatopdownanalysis,meaningthatitstartswithahigh-levelgoal(accidentsthatneedtobeprevented),andtheanalysisprogressesdownintolow-leveldetails.Thetopdownnatureof

Page 29: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

29

STPAcanbeseeninFigure10.Ahandfulofhigh-levelaccidentsarefollowedbyaslightlylargernumberofhazardsthatcaneachbetracedtooneormoreaccidents.Oncethesafetycontrolstructureiscreated,andthecontrolactionsinthesystemareunderstood,theUCAscanbeexamined.EachUCAisalsotraceabletooneormorehazards.ScenariosforeachUCAarethencreated.Becausetheanalysisbeginsatthetop,onlyscenariosthatcanactuallycauseanaccidentareinvestigated.Additionally,bystartingwithhigh-levelaccidentsandhazardsandworkingdownintothedetail,onecanmoreeasilytellifanaccidentorhazardismissing.Largelistsofhazardsarenearlyimpossibletoinspectforcompleteness.

Figure10STPATopDownAnalysis

Thetraceabilityofananalysisisakeycomponentofanysystemapproach.Thetraceabilityprovidesmultiplefunctions.First,whentheanalysisyieldsasafetyconstraintitisveryeasytounderstandtheoriginoftheconstraintandtheeffectiftheconstraintisnotconsideredinthedesign.Traceability,therefore,servestodocumenttheanalysisandjustifythefindings.Thisallowstheanalysistobequicklyunderstoodbyothers,andprovidesdocumentationofthesafetyapproachwhenthesystemrequiressafetycertification.Second,ifthedesign,associatedsupportsystem,oroperationalcontextchanges,updatingtheanalysisbecomesmucheasier.

Page 30: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

30

AirForceAcquisitionsandSystemsSafetyAirForceAcquisitionsProcessAsimplifiedversionoftheAirForceacquisitionsprocessisshowninFigure11.Theprocessconsistsof6phases.

Figure11AcquisitionsProcess(10)

ThefirstphaseistheMaterialSolutionAnalysisphase.Inthisphase,anAnalysisofAlternativesisconductedtodeterminetheconcept,ormaterielsolution,forthesystem.TheactivitiesinMSAanddocumentsareshowninFigure12.

Page 31: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

31

Figure12SEActivitiesinMaterielSolutionAnalysisPhase(11)

ThesecondphaseistheTechnologyMaturationandRiskReductionphase.Thisphase’spurposeisto“reducetechnology,engineering,integration,andlifecyclecostrisktothepointthatadecisiontocontractforEngineeringandManufacturingDevelopment(EMD)canbemadewithconfidenceinsuccessfulprogramexecutionfordevelopment,production,andsustainment.”(12)TheactivitiesassociatedwiththisphaseareshowninFigure13.

Page 32: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

32

Figure13SEActivitiesinTechnologyMaturationandRiskReductionPhase(11)

Duringthisphase,tradestudiestoexploredesignoptionsandreduceprogramriskareconducted.TheCapabilityDevelopmentDocument,SystemsEngineeringPlan,SystemRequirementsDocument,TestandEvaluationMasterPlan,RequestforProposalandotherdocumentsaredrafted.Thesedocumentsarecontinuallyrefinedthroughouttheacquisitionsprocess.Thepreliminarysystemdesignisdevelopedinthisphase,andsafetyengineersconductaFMECAstudyonthedesign.NeartheendofthephasethePreliminaryDesignReviewwilltakeplace.PDRistypicallyrequiredtoproceedtoMilestoneBandentertheEngineeringandManufacturingDevelopmentphase.DuringEMD,thedesignisfurtheradvancedandintegrated,andthemanufacturingprocessisdeveloped.TheCriticalDesignReviewoccursduringthisphase.AttheCDR,thePOdetermineswhetherornotthedesignmeetsrequirements,ifitisreadytobuildtestarticles,andifitisreadyforDTtobegin.TheseactivitiesareillustratedinFigure14.

Figure14SEActivitiesinEngineeringandManufacturingDevelopmentPhase(11)

Page 33: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

33

Duringthisphase,theairworthinesscertificationbasis,whichconsistsofthesuitableMIL-HDBK-516Ccriteria,mustbeapprovedbytheTAA.Additionally,priortoDT,theTAAwillapprovethemilitaryexperimentalflightrelease(13).NeartheendofEMD,theProductionReadinessReviewisconductedtodetermineifthesystemisreadyforproduction.AftertheMilestoneCreview,theprogramenterstheProductionandDeploymentphase.Inthisphase,low-rateproductionbeginsandDTandOTperformthemajorityoftheirtesting.TheFullRateProductionDecisionismadeinthisphase,whichwillmarkthebeginningoffullproduction,asshowninFigure15.InitialOperationalCapabilityistypicallydeclaredduringthisphase,whichindicatesthatthesystemhasreachedaminimumoperationalcapability.TheMilitaryTypeCertificate,issuedbytheTAA,mustbeobtainedbeforeOT&Ebeginsorbeforethefirstdeliveryofaircraftforoperationaluse.

Figure15SEActivitiesinProductionandDeploymentPhase(11)

ThelongestphaseoftheacquisitionsprocessisOperationsandSupport.Inthisphase,FullOperationalCapabilityisdeclared,indicatingthattheoperationalunitshavereceivedthesystemandareabletooperateandmaintainthesystem.Ifthesystemrequiresupgradedcapabilities,theacquisitionsprocesswillbeinitiatedfortheoperationalrequirement.TheairworthinessprocessisrepeatedforsystemupgradesoranyothermodificationtoincludeissuinganupdatedMEFRfortestingandMTCforfielding.ThelastphaseistheDisposalphasewhenthesystem.Thisphaseincludesdemilitarizingtheaircraft(removingweaponsandhazardousmaterials),andeitherstoringordestroyingthem.

Page 34: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

34

STPAImplementationwithintheAirForceAcquisitionProcessSTPAintheAcquisitionsProcessSTPAcaneasilyfitintothisacquisitionsprocessasitiscurrentlyconducted.Figure16showstheacquisitionsprocessagain,withnumbersindicatingwhereanSTPAanalysiswouldfitintotheprocess.Belowisadiscussionofeachnumber.

Figure16AcquisitionsProcesswithSTPA

(1)DuringtheMSA,conceptoptionscanbeevaluatedusingSTPA.Theconceptofoperationsisoneoftheaspectsoftheconceptstobeevaluatedandwillincludetheoverarchingfunctionandtheoperationalcontext,whichareinputstoanSTPAanalysis.STPAwouldgeneratesafetyconstraintsforeachoftheconceptoptions.Thesafetyconstraints,coupledwithotheraspectsoftheAoAwillbeusedtosupporttheMilestoneAdecision.(2)AfterMilestoneA,intheTechnologyMaturationandRiskReductionphase,thesystemisfurtherdefinedinmoredetail.TechnicalrequirementsfortheRFParedeveloped,andsourceselectionbegins.Asthetechnicalrequirementsforthesystemaredetermined,soshouldthesafetyrequirements.ContinuingtheSTPAanalysiswillprovidehigh-levelsafetyconstraintsforinputintotheRFP.STPAwillalsoprovideinputstotheTEMP,SRD,andSEPduringthisphase.(3)Onceacontractisawardedandthecontractorbeginsthedesignprocess,theywillcontinuetheSTPAanalysisforthesystemandguidethedesign.ThePOshouldalsobeginSTPAanalysisonsupportfunctions,suchasmaintenance,logistics,infrastructure,technicalorders,andtraining.Currentairworthinessstandardsrequirethatthesupportfunctionsdonotdetractfromthesafetyoftheairframe,thereforethesefunctionsshouldalsoundergotheanalysis.Theseanalyseswillalsobecontinuouslyrefinedasthebasing,maintenance,andlogisticconstructsaredetermined.(4)InEMD,asthesystemisintegrated,designstoachievesafetyconstraintsidentifiedbySTPAwillbeverifiedbytest.Someconstraintsmaybetestedinlabenvironments,suchassoftwareinthelooporhardwareintheloopfacilities.However,becausethesafetyconstraintsarebasedonthesystemasawhole,someconstraintswillrequiretheintegratedsystem,andmayevenrequirethesystemintheoperationalenvironmentforverification.Thismeansthatasthetestplanisdeveloped,eachconstraintwillneedtobecategorizedbyhowitwillbeverified.Optionsforthesecategorizationsmayinclude:inspectionofdesign,softwareintheloop,

Page 35: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

35

hardwareintheloop,groundtesting,developmentalflighttesting,oroperationalflighttesting.Ifasafetyconstraintisverifiedearlyinthedevelopment,suchasinasoftwareintheloopfacility,thecontractormustensurethatfurtherdesignchangesdonotaffectthesafetyconstraint,otherwisethetestingwillhavetoberedone.Asthedesignischanged,theSTPAanalysismustbeupdatedtoensurethatconstraintsarestillvalidandidentifynewconstraintsassociatedwiththedesignchange.(5)STPAcanalsobeusedtoassistinmanufacturingplanningtoensurethatthedesigncanbesafelymanufactured,butalsotoensurethatthecommunicationbetweenthemanufacturingteamanddesignteamisadequate.(6)InProductionandDeployment,thedesignisfixedunlessDTorOTfindsunacceptabledeficiencies.Shouldsuchdeficienciesbeidentified,thedeficienciesshouldbeaddedintheSTPAanalysis,whichwillhelpguidetheredesign.(7)OncetheprogramreachestheOperationsandSupportphaseandthesystemisFOC,theMAJCOMswillrequestcapabilityupgradesordecidetousethesysteminnewenvironmentsorindifferentwaysthandesigned.ThePOwillmaintaintheSTPAproductsandwillmodifytheanalysiswiththeupgradestoguidethedesign.TheSTPAanalysiscanalsobemodifiedwiththedifferentenvironmentorutilizationinformationtoensurecontinuedsystemsafety.(8)IfamishapoccursduringO&S,itmeansthatasafetyconstraintwaseithermissingornotenforced.MishapinvestigatorscanusetheSTPAanalysisonthesystem,alongwithevidencefromthemishap,todeterminewhatconstraintsweremissingorunenforcedandmakechangesasappropriate.Thistypeofinvestigationismorepowerfulthancurrentsafetyinvestigations,asitnotonlypreventstheparticularmishapfromreoccurring,butitalsoupdatesthesafetyconstraintstoavoidmishapsingeneral.Methodologytodothisalreadyexists.LevesonbuiltuponSTAMPtocreateCausalAnalysisbasedonSTAMP,whichisusedtoinvestigatemishapsfromasystemsperspectiveandimplementconstraintstoavoidfuturemishaps.(8)IntegratingtheSTPAanalysisperformedduringdesignwithmishapinvestigationanalysiswouldallowtheAirForce,whichalreadyhasanoutstandingsafetyrecord,topreventevenmoremishapsfromoccurring.Applyingmoreresourcestothecurrentsafetypracticeswillhaveminimalreturns–thesafetyrecordisasgoodasitcangetwithoutsubstantialchange.Asystemtheory-basedapproachshouldbethatchange.InadditiontothefactthatSTPAcoversmorescenariosthanjustcomponentfailure,STPAisrelativelylowcostandtakeslesstimecomparedtotraditionalhazardanalyses.IfSTPAreplacesFMECAinthedevelopmentprocesstheprogramwillsavetimeandmoneyandimprovesafety.STPAStudyExecutionandPersonnelCompositionSTPAstudieswillvaryslightlybythepurposeofthestudyandphaseoftheprogram.ThedescriptionbelowisfortheMSAandTMRRphasesbeforethecontractorsareinvolved.

Page 36: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

36

AnSTPAstudycanbeperformedsimilartotheHAZOPstudywithafacilitatorandaclient.MembersofAFLCMC,whethertheycomefromairworthiness(AFLCMC/EZ),orsystemsafety(AFLCMC/SES),shouldbetrainedontheSTPAprocessandactasfacilitators.ThesefacilitatorswouldchairtheSTPAstudyandguidetheSTPAprocessforprogramswithinLCMC.Theprogramofficeswouldactastheclient.ThemembersthatshouldtakepartintheSTPAstudyare:

- Engineersfromeachrelevantengineeringdiscipline- Systemsafetyengineers- Systemoperators(eitherfromwithinthePO,orfromtheMAJCOM)- RepresentativesfromDT- RepresentativesfromOT- Airworthinessengineers- Supportfunctions,suchasmaintenance,logistics,facilities,etc

Thestudyshouldbebrokenintothefollowingcomponents:

- Projectpreparation:o Facilitatorassignedo POdevelopsaccidentlistswithcustomer

- Studyintroductiono IntroductiontoSTPAbyfacilitatoro POintroducesproject

- Hazarddevelopmento Facilitatorleadsgrouptodevelophazards

- Safetycontrolstructuredevelopmento Groupwillcreateahigh-levelsafetycontrolstructureo Safetycontrolstructurewillinclude:

§ Operationalcontext§ Systemfunction§ High-levelsysteminteractions(e.g.othersystemsitwillinterfacewith)

- UCAdevelopmento GroupwillcreateUCAtablebasedonsafetycontrolstructure

- UCAscenarioso Initialmeetingstartsscenariogenerationeffortasagroupo Eachleadreviewsscenariosaftertheinitialmeetingtoensurecoverageand

determineassociatedconstraintso Conductafinalmeetingtoensureeveryoneagreeswiththescenariosandsafety

constraints- STPAOutbrief

o DuringMSA,summaryofsafetyconstraintsforeachalternativeshouldbepresentedalongwithrecommendations

o DuringTMRR,thesafetyconstraintswillbeincludedintheRFP§ Resolveanysafetyconstraintsthatconflictwithtechnicalrequirements

Page 37: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

37

WhiletheSTPAanalysissetuptobelinear,itisofteniterative—asthestudyproceeds,thegroupmayfindthattheyneedtoupdatetheirhazardlist,safetycontrolstructure,orUCAsaftertheyhavefinishedthatparticularportionofthestudy.Additionalmeetingsmayberequiredasnecessarytoupdatepreviouslycompletedsteps.Oncethecontractisawarded,thecontractorwillberesponsibleforcontinuedanalysisofthesystem.Theyshouldtakethehigh-levelanalysiscomposedbythePOanddevelopitfurtherduringtheirdesignprocess.SystemSafetyProcessSystemsafetyisdefinedas“applicationofengineeringandmanagementprinciples,criteriaandtechniquestoachieveacceptableriskwithintheconstraintsofoperationaleffectivenessandsuitability,timeandcostthroughoutallphasesofthesystemlifecycle.”(14)AFI91-202,TheUSAirForceMishapPreventionProgram,mandatesthateachprogramofficemustinitiateandmaintainaSystemSafetyProgramthattrackshazards,mitigaterisks,andformallyacceptsresidualrisks.(14)ThedocumentthatdefinesthesystemsafetyprocessisMIL-STD-882E,DoDStandardPracticeforSystemSafety.MIL-STD-882E“identifiestheDepartmentofDefense(DoD)SystemsEngineering(SE)approachtoeliminatinghazards,wherepossible,andminimizingriskswherethosehazardscannotbeeliminated.”(15)MIL-STD-882Eidentifieseightelementswithinthesystemsafetyprocess(15):

1. DocumenttheSystemSafetyApproach2. IdentifyandDocumentHazards3. AssessandDocumentRisk4. IdentifyandDocumentRiskMitigationMeasures5. ReduceRisk6. Verify,ValidateandDocumentRiskReduction7. AcceptRiskandDocument8. ManageLife-CycleRisk

Thesystemsafetyapproachconsistsofdescribingtheriskmanagementeffortandhowitisintegratedintotheprogrammanagementstructure.Additionally,ahazardtrackingsystemisdeveloped.(15)Hazardsareidentifiedanddocumentedinthehazardtrackingsysteminthesecondelementoftheprocess.Thestandardstatesthat“Hazardsareidentifiedthroughasystematicanalysisprocessthatincludessystemhardwareandsoftware,systeminterfaces(toincludehumaninterfaces),andtheintendeduseorapplicationandoperationalenvironment.”Itgoesontosaythat“mishapdata;relevantenvironmentalandoccupationalhealthdata;userphysicalcharacteristics;userknowledge,skills,andabilities;andlessonslearnedfromlegacyandsimilarsystems”canalsobeusedtoinformthehazardidentification.Hazardsarethencategorizedbyrisk,whichisdefinedbyseverityandprobability.RisksarethenassessedusingtheRiskAssessmentMatrix,asshowninthefigurebelow.

Page 38: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

38

Figure17RiskAssessmentMatrix(15)

Elementfourinvolvesidentifyingpotentialriskeliminationormitigationoptionsforeachidentifiedhazardusingsystemsafetydesignorder.Oncepotentialoptionsareidentified,elementfiveistoselectandimplementtheriskeliminationormitigationoptionsforeachhazard.Next,theriskmitigationisverifiedanddocumentedinelementsix,andanyresidualriskleftoverisacceptedanddocumentedinelementseven.Finally,theprogramofficeshouldcontinuetomanagetheriskthroughoutthelifecycleofthefielded.Withineachoftheseelementsthereareasetoftasks,whichmustbecompletedtobeincompliancewiththestandard.Task201fallsunderelementtwo,“IdentifyandDocumentHazards”.ItrequiresthecompilationofaPreliminaryHazardList(PHL)shortlyafterthematerielsolutionanalysisbegins.ThePHLisbasedonhistoricalandsimilarsystems,andthesystemconcept.Task202isPreliminaryHazardAnalysis(PHA).ThePHAconsistsofidentifyinghazards,assessingtheinitialrisks,andidentifyingpotentialmitigationmeasures.(15)TheriskmatrixshowninFigure17isusedwhencompletingthistask.Recently,LevesonwroteapapershownhowSTPAiscomplaintwithMIL-STD-882E.Inherconclusion,shestates“STPAistotallycompliantwithMIL-STD-882and,infact,wascreatedexplicitlytosupportthetasksinvolvinganalysisinthisstandard.”ShegoesontosaythatSTPA“isatop-down,systemhazardanalysisthatcanbeusedforthehazardanalysistasks(Tasks201-209).”(16)

Page 39: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

39

ItisimportanttonotethatwhileMIL-STD-882Eprescribesaprocesstoconductsystemsafety,itdoesnotprescribewhattoolsormethodstousetoaccomplishthetasks.MIL-STD-882Edoescallforprobabilisticriskassessments,whichSTPAdoesnotdo.Therearehazardsthatareimpossibletoprovideaprobabilityofoccurrence.Forinstance,arecentF-16Cmishapwascausedbyanimproperlyassembledengine.Twocomponentsweremissingfromtheenginewhenitwasbuiltupatthemaintenancedepot.(17)Thereissimplynowaytoassesstheprobabilitythatsuchaneventmayoccur.Additionally,theprobability,ifevaluatedbasedonhistoricaldata,maybesosmallthatitisdiscountedorgivenalowerriskassessmentthatisacceptedratherthanmitigated.However,anSTPAanalysisofthemaintenanceorganizationandprocessesmayhavedeterminedthepotentialhazardofimproperlyassemblingtheengine,anddesignedthesafetycontrolstructuretoavoidthehazard.Theairworthinessprocessisasubsetofthesystemssafetyprocess,andisdiscussedinfurtherdetailinthenextsection.

AirForceAirworthinessProcessAirworthinessisdefinedas“theverifiedanddocumentedcapabilityofanairsystemconfigurationtosafelyattain,sustain,andterminateflightinaccordancewith(IAW)theapprovedaircraftusageandoperatinglimits.”(13)TheAirForceairworthinessprocessisdeterminedbybothAirForceInstruction(AFI)62-601andAirForcePolicyDirective(AFPD)62-6.ThesedocumentsestablishaTechnicalAirworthinessAuthority(TAA)appointedbytheAirForceMaterielCommander.(18)ThispositionisresponsibleforissuingMilitaryTypeCertificates(MTC),MilitaryExperimentalFlightReleases(MEFR),MilitaryRestrictedFlightReleases(MRFR),andspecialflightreleases.MTCsareissuedwhencomplianceofthecertificationcriteriaaremet.MEFRsareissuedtoallowdevelopmentalflighttestwithinaspecifiedtimeperiodandflightenvelope.MRFRsareissuedforparticularaircraftunderspecificconditionswhenthereisacompellingmilitaryneedandtheAFcannotobtaindesigninformationinordertoconductanairworthinessassessment.(13)Specialflightreleasesareissuedwhenthecertificationcriteriaarenotmet,buttheprogrammanagersprovethattheaircraftisrequiredforoperationalpurposes.TheTAAchairstheAirworthinessBoard(AB),whichiscomprisedof“seniorengineeringfunctionalorganizationrepresentatives,anAirForceSafetyCenter(AFSC)representative,andarepresentativefromtheowningAFMCengineeringorganizations(asrequestedbytheTAA).”(13)TheboardisresponsibleforprovidingairworthinessadviceandrecommendationstotheTAA.Theprogramofficeisresponsibleforensuringthatthesystemmeetsairworthinesscriteria.AirworthinessplanningisincludedintheLifeCycleManagementPlan,SystemEngineeringPlan,andIntegratedMasterPlan.(13)inadditiontoprovidingcertification,theTAAprovidestheguidanceandstandardprocessestotheprogramofficesforairworthiness.MilitaryHandbook516C(MIL-HDBK-516C),maintainedbyairworthinessoffice,containstheairworthinesscriteriathatmustbemetinordertobeissuedtheMTC.Programofficesdohave

Page 40: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

40

thelatitudetotailorwhichcriteriaapplytotheirsystembyapplyingforanexemptionfromthecriteriathatarenotapplicable.(13)EachmajorsectionofMIL-HDBK-516Ccoversaspecificdiscipline,suchassystemsengineering,structures,propulsion,avionics,maintenance,andothers.TheriskmatricesinMIL-STD-882EandMIL_HDBK-516Cwereupdatedinanairworthinessbulletin(AWB-150)forairworthinessassessments.(19)TheupdatedriskmatrixisshowninFigure18.

Figure18UpdatedRiskMatrix(19)

PriortoAWB-150,thereweredifferentprobabilityscaleswithdifferentexposureperiods,whichgreatlyalteredtheseveritycategoryassignedtothehazard.Thestandardizedexposureperiodswillensurethattheprobabilisticriskassessmentsrepresentthesameamountofriskinallprograms,whichinturnensuresthattheresidualriskisacceptedattheappropriateleadershiplevel.JustaswithSTAMP,inordertoperformanairworthinessassessment,engineersmustunderstandthesystembeinganalyzedandthecontextinwhichthesystemwillperform.Thecontextmayincludeflightenvelope,operatinglocationssuchasimprovedorunimprovedrunways,andlogisticssupport.Aninitialairworthinessassessmentwillbeprovidedtoaprogramforanewsystem,howeverasthesystemisupgradedoroperationalcontextchanges,sowilltheassessment.Airworthinessisthereforenotaone-timedeterminationofthesafetyoftheaircraft,butrathercontinuouslyevolving.STPAandAirworthinessSTPAprovidesaprocessthatcomplieswiththesystemsengineeringandsystemssafetyprocessesasdefinedinMIL-HDBK-516C.Itisanapproachthatachievesthe‘completesystems

Page 41: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

41

view’andcoversarangeofcriteriaandexpectations.AnanalysisofSTPA’scompliancewithChapters4and14ofMIL-HDBK-516CcanbefoundAppendix3:STPACompliancewithMIL-HDBK-516C.Thissectionreviewstheoverarchingideasandconclusionsfromtheanalysis.Throughoutthehandbook,theverificationofmethodofcomplianceislistedas“inspection.”STPAprovidesastep-by-stepprocessforanalysisthatwillaidtheinspectionprocess.Otherwise,itisnotpossibletodeterminewhetheraninspectionprocessiscompleteoradequate.Whethertheinspectioniscompleteandadequateisbasedonengineeringjudgementorchecklistsestablishedbypreviousexperience,whichmaybeincorrectbasedontheexperienceoftheengineerwiththeparticularsystemthatisundergoinganairworthinesscertification.Additionally,newairframesormodificationsmaybedifferentenoughfromlegacysystemsthatbasinginspectiononhistoricdatadoesnotproduceacompletesafetyanalysisorinspection.Whilethisdocumentonlycoverssystemsengineeringandsystemssafety,STPAprovidesdatafortheentiretyofthesystem.Itprovidesaconstructwithinwhichtoconductspecifictechnicalsafetyanalysessuchasmaterialsorelectromagneticinterferencetesting.STPAwillnottelladesignerthatamaterialisappropriateforaparticularcomponent,butitwillguidethedesignertofocustheirenergiesonflightsafetycriticalcomponentsandprovidesafetyconstraintsasaninputtothecomponentorsubsystemdesign.Itgivessystemdesignerstheabilitytoevaluatetheirsystemasawholeduringthedesignphaseandeliminatehazardsthatotherwisemaynotbeidentifieduntilintegrationandtesting.STPAwillalsoprovidesafetyconstraintsnotassociatedwithcomponentfailuresatall,butratherhowthehumanandsoftwarecontrollersinteractwiththesystem.Animportantaspectofairworthinesscertificationisthatitmustbemaintainedthroughoutthelifecycleofthesystem,astheoperationalemploymentofthesystemchangesandmodificationsaremadetothesystem.STPAprovidesaconstructtoevaluatechangesandensuretheydonotintroducehazardstothesystem.Ifsafetyconcernsareintroducedbythemodification,STPAwillprovidesafetyconstraintsforthedesignofthemodificationandintegrationwiththebaselinesystem.STPAalsocoversthesupportstructureassociatedwiththesystemtoensurethathazardsarenotintroducedbyfactorsoutsideofthesystemdesign.System-basedanalysisallowstheusertodefinescopeofthesystem:itmaybethespecificaircraftbeingdesigned,theoperationalenvironmentwhereitwillbefielded,themaintenancedepotthatconductsprogrammedmaintenance,orotheroptions.Theusercan‘zoom’intospecificsubsystemsand‘zoom’outtolookathowthesystemwillfitintothecurrentoperationalandsupportstructure.Thesystemanalysisismeanttostarthigh-levelandworkdeeperintodetail.WhenaprogramofficeisdeterminingtechnicalrequirementstobeincludedinanRFP,ahigh-levelSTPAmaybecompletedtoprovidehigh-levelsafetyconstraintsthatmustbeincludedinthedesign.Oncethecontractbidisawardedandthedesignprocessbegins,theSTPAshouldbeconductedaspartofthedesignprocesstoassistindecision-makingaboutsafety.Asthedesignbecomes

Page 42: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

42

moredetailed,sodoestheSTPAanalysis.Theresultisasystemdesignthatwasguidedbysafetyanddocumentationtoshowtheairworthinesscertificationinspectorsthattheaircraftissafetooperate.ReliabilityandRedundancyOftenwhenminimizingtheriskassociatedwithacomponentfailure,redundanciesareaddedsuchthatevenifonecomponentfailstheotherwillperformthesafetycriticalfunction.Takeforexampleacomponentthathasa20%probabilityoffailureoveraperiodoftime.Thereliabilityofthatcomponentis:

𝑅 = 1 − 𝐹WhereRistheprobabilitythecomponentwillnotfail,andFistheprobabilityoffailure.Therefore,Ris80%.Ifthecomponentisflightcritical,thedesignteammayelecttouseredundancytoincreasereliability.Inthiscase,reliabilityis:

𝑅 = 1 − (𝐹')(𝐹))Whichbringsreliabilityupto96%.Whilethisappearsonthesurfacetobealogicalandstraightforwardmethodology,onemustconsidertheassumptionsthatgointothisanalysis.Inparticular,theassumptionofindependence:thecomponentsmustbecompletelyindependentofeachotherinorderfortheanalysistobevalid.Theauthorflewonatestmissionwhenahydraulicpumpfailedinflight.Theparticularaircrafthadtwohydraulicsystemsthatwereusuallytiedtogetherandincludesfourenginedrivenpumps.Thesystemscanbeisolatedwhenrequired.Thehydraulicpump’sfailurecouldcausemetalcontaminationofthehydraulicsystem;therefore,thesystemswereisolatedinresponsetothefailuretopreventtheadditionalpumpsfromfailing.Inthiscase,thepumpsarenottrulyindependent,asthepilotsmusttakeactiontopreventthefailureofonepumpfromcausingtheotherpumpstofail.Thereareotherdependenciesbetweenthepumpsaswell.thesystemwasservicedbythesamehydraulicmule,whichifcontaminated,wouldaffectallthepumps.Thesamemaintenancepersonnelinspect,repair,andreplacethepumps,thereforeifthereisadeficiencyinthemaintenancepracticesallpumpscouldbeatrisk.Ifthecomponentsareexposedtoharshenvironmentssuchashumidity,sand,orsaltwatertheywillalldeteriorate.Finally,ifthereisamanufacturingdefectorincorrectspecificationbeingused,allcomponentsfromtheaffectedlotsmayhavethesameproblem.So,infact,thereliabilitywouldnotbe96%inthecaseshownabove,butrathersomethingless.Whatthatsomethingiswouldbedifficultifnotimpossibletoquantify,asmaintenanceerrors,manufacturingdefects,andotherdependenciesarenotprobabilisticallydetermined.Therefore,usingFMEAorFMECAcutsetstodeterminetheprobabilityofafailurewillnotyieldaccurateinformation.Ifdesigndecisionsaremadebasedontheprobabilisticassessmenttheywillmostlikelybeflawed.STPA,ontheotherhanddoesnotrelyonprobabilities,makingtheresultsofSTPAmoreactionable.

Page 43: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

43

Inaddition,softwareflawsaredesignerrors.Redundancyofflaweddesignsorsoftwarecreatedfromthesameflawedrequirementsisnotgoingtoimproveeitherreliabilitynorsafety.Whataircrafttodayarenotbuiltwithextensivesoftwarecomponents?Itshouldbenotedthatredundancycanbeusedtocreateasafedesign,howeveritcanbeperformedinmorepowerfulwayssuchasdissimilarredundancies(i.e.powerthroughbatteriesandanalternator),moreaccuratelyensuringtrueindependenceofthecomponents,andbynotassumingthatthereliabilitycalculationsabovewillyieldanaccurateanswerthatcanbeusedtodeterminetherisklevelofthesystem.Butalloftheseapproachesapplyonlytohardwareandignorethesoftwareandthehumansinthedesign.Softwarediversitydoesnotwork.(20)AnSTPAanalysisofthedesignwillyieldsafetyconstraintsthatwillminimizehazardsassociatedwithcomponentfailure,andalsothosecreatedthroughdesignflawsandbyunsafeinteractionsamongcomponentsthathavenotfailed.RiskmatricesThetwocomponentsofriskmatricesareprobabilityofoccurrenceandseverity.Thesectionabovediscusseswaysinwhichprobabilityofoccurrenceisnotcorrectforredundantcomponents.Thereareotherreasonswhyprobabilityofoccurrenceisimpossibletopredict:componentinteractionsthatarenotfailures,softwarerelatederrors,andhumaninteractionrelatederrorsallcannotbedeterminedprobabilistically.Theyaredependentonthequalityofrequirementsdevelopment,howwellthecomponentsaredesignedtoworktogether,andhowwellthesystemisdesignedforhumaninteraction.ThisiswhySTPAissoimportant–itprovidessafetyconstraintstobetterinformrequirementsanddesign.WhatmakesSTPAunpalatableforsomedecisionmakersisthereisnowaytoquantifyresidualriskthatisacceptedaspartofthesystemdesign.Peopleintechnicalfieldssuchasengineeringandacquisitionsdesirequantitativemethodstomakedecisions.However,ifthecalculatedvaluesarewrongandleadtomisunderstoodresidualrisk,thedecisionwillnotresultinasafesystem.UsingSTPAratherthanriskmatriceswillrequireaparadigmshift,butitwillresultinamoreaccurateunderstandingofthehazardsassociatedwiththedesign.SystemsThinkingintheAF:Effects-BasedApproachtoOperationsThegreatestbenefitofSTPAisprovidingasystematicframeworkforevaluatingtheproblemathandthat,ifdoneright,iscompleteandconsiderstheproblemasawhole.Itcannotbereduceddowntoachecklist.DoingsowillnegativelyaffectthebenefitsofSTPA,anditwillnotwork.ThismeansthatconductingSTPAacrossalarge,diverse,anddynamicworkforceindozensofdifferentprogramofficespresentsachallenge.WhenthinkingabouthowthatchallengecanbeaddressedintheAirForce,itwasrealizedthatsystemsthinkingalreadyexistsintheAirForceintheformofEBAO.EBAOprovidesasystematicframeworktoconsidertheproblemofdesigningcombatstrategies.Annex3-0OperationsandPlanningdiscussesEBAO.Intheopeningparagraph,inboldletters,

Page 44: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

44

thedocumentstates,“EBAOisnotaplanningmethodology;itisawayofthinkingaboutoperationsthatprovidesguidancefordesign,planning,execution,andassessmentasanintegralwhole.”(21)STPAinthisregard“providestheinformationanddocumentationnecessarytoensurethesafetyconstraintsareenforcedinsystemdesign,development,manufacturing,andoperations,includingthenaturalchangesintheseprocessesthatwilloccurovertime.”(8)Safetyisanexampleofanemergentproperty.(22)Justbecausetwocomponentsbythemselvesappearsafe,doesnotmeanthatwhenyouputthetwotogetheraspartofasystemtheirinteractionwillbesafe.Strategistsunderstandtheconceptofemergentproperties.Anemergentpropertyisapropertythat“arisefromtheinteractionsamongthecomponents.”(22)Annex3-0referstothisconceptas‘additivity’andsays,“Additivitymeansthatthewholeequalsthesumofitsparts,butthisisnottrueoflivingsystems,whicharemorecomplexandoftengreaterinoutputthanthesumoftheircomponents,justasthejointforceworkingasanintegratedwholeismoreeffectivethanitscomponentsworkingindependently(“synergy”).Thebehaviorofinteractivelycomplexsystemsoftendependsmoreuponthelinkagesbetweencomponentsthanuponthecomponentsthemselves.Infact,system-widebehavioroftencannotbededucedfromanalysisofthecomponentparts.”Annex3-0states,“Reductionismisthecommonscientificmethodofanalyzingsystems,by“pullingthemapart”conceptuallyandexamininghoweachcomponentoperatesseparatelytodetermineoverallsystembehavior.Ithasbeenthemaintechniquebehindmachinedesignforcenturies,aswellas“nodal”methodsof“systemsanalysis.”However,reductionistmethodsmayyieldlessinsightthanwaysofexaminingsystemsasawhole—analyzinghowthesystembehavesinrelationtoothersystemsinitsenvironment,aswellashowcomponentsofthesysteminteract,andthentryingtoanticipatehowtheinteractionofthesesystemsmaycausecertaintypesofbehavior,orallownewbehaviorstoemerge.Breakingacomplexproblemintoconstituent,structurallycomplexpartsandsolvingeachpartwillnotnecessarilysolvetheoverarchingproblem,justaswinningeverybattledoesnotguaranteewinningawar.”ThedesignersofEBAOalsorecognizedthatlinearcauseandeffectrelationshipscannotbeappliedtostrategicplanning,stating“However,causesandeffectsareoftenhardtotraceandhardertodemonstrate,sincecommon“linear”rulesfrequentlydonotapply—especiallyincasesinvolvinghumanwill”(21)Similarly,inEngineeringaSaferWorld,ProfessorLevesonsaysofreduction,“Thisassumptioninturnimpliesthatthecomponentsoreventsarenotsubjecttofeedbackloopsandothernonlinearinteractionsandthatthebehaviorofthecomponentsisthesamewhenexaminedsinglyaswhentheyareplayingtheirpartinthewhole.”(8)Therefore,whenreductionandlinearcauseandeffectanalysesareusedtoanalyzeacomplexsystem,suchasanaircraft,componentinteractionsaremissed,whichmeanssafetyconstraints

Page 45: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

45

forthesystemarenotcomplete.STPAwaspurposelydesignedtoanalyzeemergentproperties.AnothercommonalitybetweenEBAOandSTPAisthat“EBAOfocusesonbehavior,notjustphysicalchanges.”(21)Inotherwords,theanalysismustbebasedonfunctionality.StrategiststhatemployEBAOseektoaffectthefunctionofopposingforces,justasSTPAseekstocontrolthebehaviorofadesignwithinspecificsafetyconstraints.Thesesystems-basedideasencompassingEBAOareacceptedthroughoutalllevelsofAirForceleadership,andaretaughttoallofficersinAirForceprofessionaleducation.EBAOisanintegralcomponentofAirForcestrategy,andaffectsthewaytheAirForcetrainsandexecutescombatoperations.SystemengineeringmethodsareusedbyPOsandcontractorstodesignforemergentproperties,suchassafety,performance,reliability,ormaintainability.YettheAFstillspendsadecadeormoreofdevelopmentaltestingsimplytounderstandwhatwebuilt,whichcausesscheduledelays,costoverruns,andoccasionallytragiclossoflife.Theprogramofficesfindthemselvesinafly-fix-flyloopuntiltheaircraftperformsinamannerthatisdeemedacceptableenoughtobefielded.ThisindicatesthatthereismoretobedoneinthewaythattheAFappliessystemsengineeringwithinprograms.ThepowerofSTPAisthatitcanleadtoatransformationofhowacquisitionsprofessionalsthinkabouttheirsystems,justasEBAOtransformedthewaytheAirForcetargetsenemyforces.Systemengineerscannotbetheonlypeopleinaprogramthatthinkoftheproductandrelatedsupportstructureassystems.Otherengineersdon’tnecessarilyneedtobeformallyeducatedinSE,buttheydoneedtolearnSEconceptsinordertomakethoughtfuldesigndecisionsthatconsidertheirprogramasawhole.Theyshouldalsounderstandhowemergentpropertiesarisefromthedesign–andmoreimportantlyinformthedesigntocreatetheweaponsystemrightthefirsttime.InordertodemonstratetheuseofSTPAintheacquisitionsprocess,twoexamplesareprovidedofSTPAanalysisalongwithdescriptionsofhowtheinformationobtainedcanbeusedinacquisitions.Thefirstexampleisofahigh-levelJSTARSanalysisasmightbecompletedduringconceptdevelopment.ThesecondisofaUAVfurtherinthedesignphaseinTM&RR.

Page 46: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

46

JSTARSAnalysisJSTARSSystemDefinitionTheE-8CJSTARS,orJointSurveillanceTargetAttackRadarSystemprovidesmultiplefunctions,toincludeairbornebattlemanagement,commandandcontrol,intelligence,surveillance,andreconnaissance.(23)AccordingtotheUSAF’sfactsheet,theprimarymissionoftheJSTARSis“toprovidetheatergroundandaircommanderswithgroundsurveillancetosupportattackoperationsandtargetingthatcontributestothedelay,disruptionanddistractionofenemyforces.”(23)TheJSTARSisequippedanAN/APY-7sensorthatincludesaside-looking,phasedarrayradar,movingtargetindicator,andsyntheticapertureradarmodes.(24)TheJSTARScollectsdatausingthissensor,andthenprovidesthatdatatogroundpersonnelandaircraftsupportingthegroundwar.TheUSAFiscurrentlyintheprocessofrecapitalizingthefleet,astheE-8CsareagingBoeing707-basedaircraft.Theintentistoacquireanaircraftthatfunctionallyreplacesthecurrentfleet,butwithmoderntechnologiesthatwillreduceoperationalcost.(25)Thisanalysisthereforeexaminesafunctionthatisthesameasthecurrentaircraft.JSTARSSystemMishaps,Hazards,andHigh-LevelSafetyConstraintsThemishapsassociatedwiththissystemare:M1.LossoflifeM2.LossofpropertyM3.LossofmissionThehazardsforthesystem,whicharealltraceablebacktoamishap,are:H1.Aircraftviolateminimumseparationrequirements(M1,M2)H2.Friendlygroundtroopstargeted(M1,M2)H3.Unacceptablecollateraldamage(M1)H4.Friendlyforcesnotprovidedactionabledata(M3)H5.Aircraftengagedbyenemydefenses(M1,M2,M3)H6.Aircraftviolatesminimumaltituderequirements(M1,M2)H7.Supportaircraftcannotprovidesupporttogroundtroops(M1,M3)Eachhazardhasanassociatedsafetyconstraint:SC1.AircraftmustnotviolateminimumseparationrequirementsSC2AircraftandgroundtroopsmustnottargetfriendlygroundtroopsSC3.AircraftandgroundtroopsmustnotcauseunacceptablecollateraldamageSC4.JSTARSmustprovideactionabledataSC5.AircraftmustnotbeengagedbyenemydefensesSC6.Aircraftmustnotviolateminimumaltituderequirements

Page 47: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

47

SC7.SupportaircraftmustprovidesupporttogroundtroopsJSTARSSafetyControlStructureThesafetycontrolstructureisbasedonthefunctionalitydiscussedinthesystemdescription.

Figure19JSTARSSafetyControlStructure

TheAirOperationsCenter(AOC)isresponsibleforplanningtheairwarandprovidingairassetswiththeirtasking,knownasanAirTaskingOrder(ATO).JSTARSandotherassetscanprovidefeedbacktotheAOCinorderfortheAOCtounderstandtheeffectivenessoftheirplanningandadjustasnecessary.TheJSTARS,aspreviouslydescribed,providestargetcoordinatesandairspacedeconflictiontothesupportaircraftintheJSTARSareaofresponsibility.ThesupportaircraftconfirmsthemessagesreceivedfromtheJSTARSandwillengagetargetsasdirected.Groundtroopswillrequesttargetinformation,andusetargetinformationprovidedbytheJSTARStoengagetheenemy.JSTARSStep1:UCAGenerationThecommandsshowninthesafetycontrolstructurearethenusedtotheUCAtableshownbelow.

Page 48: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

48

Table3JSTARSUCAs

JSTARSNotProvidingCausesHazard

ProvidingCausesHazard IncorrectTiming/Order

StoppedTooSoon/AppliedTooLong

TargetCoordinatestoSupportAircraft

JSTARSdoesnotprovidetargetcoordinatestosupportaircraftwhenthetargetneedstobeengaged(H4)

JSTARSprovidestargetcoordinates,butthecoordinatesarenotwheretheenemyislocated(H2,H3)JSTARSprovidestargetcoordinatestosupportaircraftthatarewithincontestedairspace(H6)

JSTARSprovidestargetcoordinatesbeforetheenemyforcesareseparatedfromcivilians(H3)JSTARSprovidestargetcoordinatesaftertheenemyleavesthetargetlocation(H2,H3)JSTARSprovidestargetcoordinatestosupportaircraftafterfriendlyforceshavemovedtowardsandengagedenemyforces(H2)JSTARSprovidestargetcoordinatestosupportaircraftaftersupportaircraftexpendsweapons(H7) N/A

AirspaceDeconfliction

JSTARSdoesnotprovideairspacedeconflictionwhensupportaircraftareco-altitudeinthesameairspace(H1)

JSTARSprovidessupportaircraftdeconflictioninstructionsthatcreateaconflict(H1)JSTARSprovidesairspacedeconflictionwhentheinstructioncausestheaircrafttoflytooclosetoterrain(H5)JSTARSprovidesairspacedeconflictionwhentheinstructioncausestheaircrafttoenterintocontestedairspace(H6)

JSTARSprovidesaircraftdeconflictionbeforesupportaircraftchangesradiofrequencytoJSTARSfrequency(H1)JSTARSprovidesaircraftdeconflictioninstructionsafteramidaircollision(H1)

JSTARSprovidespartialaircraftdeconflictioninstructions(H1)

Page 49: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

49

TargetCoordinatestoGroundTroops

JSTARSdoesnotprovidetargetcoordinatestogroundtroopswhenatargetneedstobeengaged(H4)

JSTARSprovidestargetcoordinates,buttheyarenotwheretheenemyislocated(H2,H3)

JSTARSprovidestargetcoordinatesaftertheenemyleavesthetargetlocation(H2,H3)JSTARSprovidestargetcoordinatestogroundtroopsafterfriendlyforceshavemovedtowardsandengagedenemyforces(H2) N/A

OncetheUCAsaregenerated,safetyconstraintscanbedevelopedtopreventthehazards.Table4JSTARSUCAsandSafetyConstraints

UCADesignator UCA Hazards Constraint

J1

JSTARSdoesnotprovidetargetcoordinatestosupportaircraftwhenthetargetneedstobeengaged(H4) H4

JSTARSmustprovidetargetcoordinatestosupportaircraftwhenthetargetneedstobeengaged

J2

JSTARSprovidestargetcoordinates,butthecoordinatesarenotwheretheenemyislocated(H2,H3) H2,H3

JSTARSmustprovidetargetcoordinateswheretheenemyislocated

J3

JSTARSprovidestargetcoordinatestosupportaircraftthatarewithincontestedairspace(H6) H6

JSTARSmustnotprovidetargetcoordinatesthatarewithincontestedairspace

J4

JSTARSprovidestargetcoordinatesbeforetheenemyforceshaveseparatedfromcivilians(H3) H3

JSTARSmustnotprovidetargetcoordinatesiftheenemyisincloseproximitywithcivilians

J5

JSTARSprovidestargetcoordinatesaftertheenemyleavesthetargetlocation(H2,H3) H2,H3

JSTARSmustnotprovidetargetcoordinatesaftertheenemyleavesthetargetlocation

J6

JSTARSprovidestargetcoordinatestosupportaircraftafterfriendlyforceshavemovedtowardsandengagedenemyforces(H2) H2,H3

JSTARSmustnotprovidetargetcoordinatestosupportaircraftafterfriendlyforceshavemovedwithincloseproximityofenemyforces

Page 50: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

50

J7

JSTARSprovidestargetcoordinatestosupportaircraftaftersupportaircraftexpendsweapons(H7) H7

JSTARSmustprovidetargetcoordinatestosupportaircraftwiththeappropriateweaponspayload

J8

JSTARSdoesnotprovideairspacedeconflictionwhensupportaircraftareco-altitudeinthesameairspace(H1) H1

JSTARSmustprovideairspacedeconflictionwhensupportaircraftareco-altitudeinthesameairspace

J9

JSTARSprovidessupportaircraftdeconflictioninstructionsthatcreateaconflict(H1) H1

JSTARSmustnotprovidedeconflictioninstructionsthatcreateaconflict

J10

JSTARSprovidesairspacedeconflictionwhentherouteistooclosetoterrain(H5) H5

JSTARSmustnotprovideairspacedeconflictionwhentherouteistooclosetoterrain

J11

JSTARSprovidesairspacedeconflictionwhenthenewrouteisthroughcontestedairspace(H6) H6

JSTARSmustnotprovideairspacedeconflictionwhenthenewrouteisthroughcontestedairspace

J12

JSTARSprovidesaircraftdeconflictionbeforesupportaircraftchangesradiofrequencytoJSTARSfrequency(H1) H1

JSTARSmustnotprovideaircraftdeconflictionbeforesupportaircraftchangesradiofrequencytoJSTARSfrequency

J13

JSTARSprovidesaircraftdeconflictioninstructionsafteramidaircollision(H1) H1

JSTARSmustprovideaircraftdeconflictiontoaircraftwhentheaircrafthastimetotakeaction

J14JSTARSprovidespartialaircraftdeconflictioninstructions(H1) H1

JSTARSmustprovidecompletedeconflictioninstructions

J15

JSTARSdoesnotprovidetargetcoordinatestogroundtroopswhenatargetneedstobeengaged(H4) H4

JSTARSmustprovidetargetcoordinatestogroundtroopswhenatargetneedstobeengaged

J16

JSTARSprovidestargetcoordinates,buttheyarenotwheretheenemyislocated(H2,H3) H2,H3

JSTARSmustprovidetargetcoordinateswheretheenemyislocated

J17

JSTARSprovidestargetcoordinatesaftertheenemyleavesthetargetlocation(H2,H3) H2,H3

JSTARSmustnotprovidetargetcoordinatesaftertheenemyleavesthetargetlocation

Page 51: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

51

J18

JSTARSprovidestargetcoordinatestogroundtroopsafterfriendlyforceshavemovedtowardsandengagedenemyforces(H2) H2

JSTARSmustnotprovidetargetcoordinatestosupportaircraftafterfriendlyforceshavemovedwithincloseproximityofenemyforces

JSTARSStep2:ScenarioGenerationFinally,thescenariosforeachUCAaredeveloped.ThetableofallscenarioscanbefoundinAppendix1.SeveralsafetyconstraintsidentifytheneedforinteroperabilitybetweenJSTARS,supportaircraft,andgroundtroops.Interoperabilityamongstjointforceshasbeenanissueinpreviousprogramacquisitions,thereforehighlightinginteroperabilityearlyisincrediblyimportant,especiallyforaprogramsuchasJSTARS.OtherscenariosindicatedtheneedfordatathatJSTARSitselfmaynotbeabletodetect,suchaslocationofallaircraftwithintheareaofresponsibility,andlocationofenemythreats.Thedatawouldthenhavetocomefromothersources.ThesesourcesmustbeidentifiedearlysothattheinputsintotheJSTARSsystemarewellunderstoodandincorporatedintothedesign.AnotherimportantsafetyconstraintthatwasdiscoveredistheneedforcommunicationwithintheJSTARSaircrew.Atthisearlystageofdevelopment,thenumberandfunctionofaircrewlikelyhasnotbeendecided.Criticalcrewcommunicationconstraintsmustbeconsideredinthedesignofthesystemanddeterminationofaircrewcomplement.JSTARSSTPASummaryThisanalysiswascompletedwithaconceptoffunctionandoperationalcontext.Thereisnodetailabouttheactualsystemunderdesign.ThistypeofanalysiswouldoccurduringconceptdevelopmentintheMSAphaseoftheacquisitionsprocess.ItcanalsobeusedtoprovidesafetyconstraintstobeincludedintheRFPintheTMRRphase.Recently,itwasannouncedthattheJSTARSRecapitalizationprogrammaynotgoforwardasexpected.TheAirForceisconsideringwhetherornotwereallyneedanaircrafttodothismissionatall,orifitcouldbeaccomplishedthroughadistributednetworkofsensorswiththebattlemanagerslocatedawayfromthewar.(26)TheAirForceisconcernedthatJSTARSwouldnotsurviveinalarge-scalewaragainstanenemywithsignificantanti-aircapabilities.AlargeaircraftsuchastheJSTARSmaynotsurvivehighlycontestedairspace,whereasotheraircraftaredesignedforsurvivabilityincontestedenvironments.TheAirForceisattemptingtodetermineif,ratherthanputanexpensiveassetwithrelativelyfewnumbersinharm’sway,anon-airborneJSTARSreplacementsystemcouldreceivedatafromairborneassetsandperformthefunctionofthecurrentJSTARS.Theanalysisperformedaboveismostlyagnostictosuchdecisions.ItdoesnotmatteriftheJSTARSisairborneintheaterorinabuildinglocatedintheUS.Thefunctionwillremainthesame.Whereonefindsadifferencebetweenairborneand

Page 52: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

52

non-airborneanalysesisinthescenarios.Forinstance,non-airborneJSTARSreplacementwouldbeentirelydependentonassetsexternaltotheJSTARSsystemforsensordataandcommunications.AirborneJSTARSmissionsarelimitedindurationbasedonfuelandcrewdutydayandlimitedinrangebytheairfieldlocationandenemythreats.Scenariosbasedonthesedifferencescouldbedevelopedtodeterminewhatconstraintsarerequiredgiventhetwooptions.Inthisway,differentconceptsoralternativesmaybeevaluatedearlyintheacquisitionprocess.JSTARSSupportSTAMPAnalysisEarlyintheacquisitionprocess,theprogramofficewillbegindeterminingthesupportstructurerequiredforthefieldedsystem.Thiswillincludethemaintenanceandsupplystructure,requiredgroundequipment,suitableairbasestobaseoperations,aircrewandmaintenanceproceduresandtraining,technicalordersupport,andothers.STPAcansupportthisdecisionaswell.JSTARSSupportMishapsM1.LossoflifeM2.LossofJSTARSorotherpropertyM3.LossofmissionJSTARSSupportHazardsH1.JSTARSisnotmissioncapable(M3)H2.JSTARSmaintenanceproceduresareunsafe(M1,M2,M3)H3.JSTARSoperationalproceduresareunsafe(M1,M2,M3)H4.JSTARSaircraftdoesnotmeetoperationalrequirements(M3)JSTARSSupportSafetyControlStructureThesafetycontrolstructureshowninFigure20isnotallinclusive,butitgivesthereaderanideaofwhatthesupportstructuremightlooklikefortheJSTARS.

Page 53: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

53

Figure20SimpleJSTARSSupportSafetyControlStructure

Therearecriticaldecisionswithinthissupportstructurethattheprogramofficemustdecideupon.Forinstance,whoisresponsibleforrepairingunserviceableparts?ItcouldbeatasustainmentcenterbyAirForcepersonnel,oritcouldbeacontractedservice.Whowillberesponsibleforansweringengineeringtechnicalrequestsandmaintainingtechnicaldata?Again,itcouldbeAirForceengineersorthecontractor.Eachdecisionhasramificationstomaintainingthesafetyofthesystem,andanSTPAanalysisofsafetycontrolstructuresdefinedbythepotentialchoicesassiststheprogrammanagerinthedecision.Anysafetyconstraintsidentifiedbytheanalysisofthewinningsolutionmustbeincorporatedintoprogramplanning.STPAStep1and2werenotcompletedforthisexample,asthepurposewastoillustratehowSTPAisusedindecision-makingbeyondthedesignofthesystemitself.

Page 54: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

54

UAVSTPAAnalysisUAVSystemDefinitionRecently,agroupmodifiedageneralaviationaircrafttocreateanunmannedaerialvehicle(UAV).Themodificationsincludedavehiclemanagementsystem(VMS)withautopilotlinkedtoactuatorswhichcontroltheenginethrottleandcontrolsurfaces,anenginecontrolmodule,alternators,alipstickcameratoallowtheoperatortoseeinfrontoftheUAV,andradioandpayloadadditions.TheoperationalcontextfortheUAVisatakeoff,climb,andcruiseataltitudeforseveralhoursbeforereturningtotheairfield.AgroundstationattheairfieldcontrolstheUAVusinglineofsight(LOS)communications.OncetheUAVisatcruise,thegroundstationoperatorwilltransitiontheUAVtobeyondlineofsight(BLOS)communications.TheBLOSgroundstationisnotlocatedattheairfield,andcommunicateswiththeUAVviasatellite.TheUAVdoesnottaxiduringgroundoperations.Itistowedtotheenginerun-uparea,totherunwayfortake-off,andofftherunwaytoparkingafterlanding.LostlinkproceduresaresetsuchthatwhenthelinkislosttheUAVwillcontinuealongthepathforacertainperiodoftime.Ifthelinkisnotreestablished,theUAVwillreturntotheairfieldviathelatestlostlinkprocedureprovidedtotheUAV.UAVAccidents,Hazards,andHigh-LevelSafetyConstraintsTheaccidentsfortheUAVoperationare:A1.Lossoflife/injuryA2.LossofordamagetoUAVaircraftA3.LossofmissionThehazardsfortheUAVoperationare:H1.UAVtooclosetoground/building/person(A1,A2)H2.UAVviolatesminimumseparationrequirements(A1,A2)H3.UAVdoesnotcompletemission(A3)H4.UAVdepartscontrolledflight(A1,A2)H5.UAVdepartsapron,taxiway,orrunwayduringgroundoperations(A1,A2)H6.LossofUAVairframeintegrity(A1,A2)Eachhazardistraceablebacktoanaccident.Eachhazardhasanassociatedhigh-levelsafetyconstraint:SC1.UAVaircraftmustnotcollidewiththeground,buildings,orpeople(H1)SC2.UAVaircraftmustnotviolateminimumseparationrequirementswithotheraircraft(H2)SC3.UAVmustcompleteassignedmission(H3)SC4.UAVmustnotdepartcontrolledflight(H4)

Page 55: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

55

SC5.UAVmustnotdeparttheapron,taxiway,orrunwayduringgroundoperations(H5)SC6.UAVmustnotloseairframeintegrity(H6)Eachofthesehigh-levelsafetyconstraintswillbeachievediflowerlevelsafetyconstraintsareachieved.ThelowerlevelsafetyconstraintswillbeexploredduringStep1andStep2ofSTPA.UAVSafetyControlStructureTheUAVsafetycontrolstructureisshowninFigure21.Thegroundstationconsistsoftheoperatorandtheuserinterface(UI).Theuserinterfaceisloadedontoacomputer,andcommunicateswiththeUAVviaradios.TheoperatorprovidescommandsthroughinteractionwiththeUI.FeedbackregardingthestateoftheUAVisdisplayedontheUI.

Page 56: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

56

Figure21UAVSafetyControlStructure

TheaircraftconsistsoftheVMS,payloads,controlsurfaces,engine,andairdatasystem.TheVMSisapassthroughforthepayloadpowerandenginestart/stopcommands:itprovidesthecommandwhentheoperatorsendsthecommandtotheVMS.Thepitch,roll,yaw,andthrottlesettingcommandsaredeterminedbytheVMSbasedontheGPSwaypointaltitude,andairspeedcommandsgivenbytheoperator.TheVMSuseslocationdata,engineparameterdata,andairspeedandaltitudedatatodeterminetheappropriatepitch,roll,yaw,andthrottlecommands.

Page 57: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

57

STPAStep1:UCAGenerationThefirststepoftheanalysisistodefinetheUCAsandtheassociatedrequirements.Asstatedpreviously,controlactionsarehazardousif:

1. Acontrolactionrequiredforsafetyisnotprovidedornotfollowed.2. Anunsafecontrolactionisprovided.3. Apotentiallysafecontrolactionisprovidedtooearlyortoolate,atthewrongtimeorin

thewrongsequence.4. Acontrolactionrequiredforsafetyisstoppedtoosoonorfortoolong.(8)

TheUAVUCAsweredividedintooperatorUCAsandaircraftUCAs.TheUCAsarenotwritteninsentenceformatinTable5andTable6,buttheycanbewritteninsentenceformatusingtheinformationinthetable.Forinstance,thefirstUCAinrow2,column2inTable5iswrittenas“TheoperatordoesnotprovidetheGPSwaypointsduringprelaunchoperations.”Table5UAVOperatorUCAs

OperatorNotProvidingCausesHazard

ProvidingCausesHazard

IncorrectTiming/Order

StoppedTooSoon/AppliedTooLong

GPSWaypoints

…duringprelaunchoperations(H3)…whenmissionchanges(H3)

…whenGPSwaypointsdonotalignwiththemission(H3)…whenthewaypointspresentaconflictwithotheraircraft(H2)…whentheroutelengthexceedsthefuelonboard(H4)...whentherouteisoutsideofLOSradiusandBLOSisnotbeingused(H3,H4)

…afterLOSislost,butbeforeBLOSradiolinkisestablished(H3,H4)…aftertheUAVreachesbingofuel(H4)

…whenthenumberofwaypointsexceedthestoragecapacityoftheautopilot(H3)…whenthelistofwaypointsisnotcompletefortheentiremission(H3)

Page 58: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

58

Altitude

…whentheGPSwaypointsareupdated(H1,H2,H3)

…whenthealtitude,coupledwiththeprogrammedwaypointsarenotaboveminimumobstacleclearancealtitude(MOCA)(H1)…whenthealtitudeconflictswithothertraffic'saltitudeblocks(H2)…whenthealtitudeisaboveicinglevelandtheUAVfliesthroughclouds(H4)

…afterLOSislostduetoterrainmasking,butbeforeBLOSradiolinkisestablished(H3)

…whenthealtitudeassignmentsexceedthenumberofGPSwaypoints(H3)…whentherearefeweraltitudeassignmentsthanwaypointsanditdoesnotincludetheentiremission(H3)

Airspeed

…duringachangeinflightorenvironmentalconditions(H1,H4,H6)

…whentheairspeedprovidedisatorbelowstallspeed(H4)…whentheairspeedisaboveVNE(H6)…whenflightplanningfueldurationwasbasedonauto(maxendurance)airspeed,butahigherairspeedisset(H3,H4)…withanairspeedvaluethatwillcreateaconflictwithotheraircraft(H2)

…aftertheUAVstalledduetoslowflight(H4)…afterstructuraldamagefromflyingaboveVNE(H6)

…whentheairspeedassignmentsexceedthenumberofGPSwaypoints(H3)…whentheairspeedassignmentsarefewerthanthenumberofGPSwaypoints(H3)

EngineStart

…duringprelaunchenginerun-up(H3)…duringbeforetakeoffprocedure(H3)…whentheenginefailsinflightandtheengineneedstoberestarted(H4)

…whengroundpersonnelarenearthepropellers(H1)

…whentheenginefailsinflight,butaftertheUAViscommittedtolanding(H1) N/A

Page 59: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

59

LaunchNow

…duringtakeoff(H3)

…whentherunwayisnotclear(H2)…whentheUAVisnotontherunway(H5)

…beforegroundpersonnelhaveclearedthearea(H1)…aftertheUAVisairborne(H4) N/A

LandNow

…whentheUAVisinthepatternandatminimumfuel(H4)…whentheUAVisattheairfieldandotheraircraftareattemptingtoenterthepattern(H2)

…whentherunwayisnotclear(H2)…whentheUAVisnotattheairfield(H1)

…beforetheUAVcompletestheairfieldarrivalprocedure(H1,H2) N/A

LostLinkProcedure

…duringflightoperations(H1,H2)

…whenthelostlinkprocedurewaypointsconflictwithotheraircraft(H2)…whenthelostlinkprocedureisnotatoraboveMOCA(H1)

…beforeterrain,conflictingtraffic,orweathernecessitatealostlinkprocedureupdate(H1,H2)

…whenthewaypointsexceedthestoragecapacityoftheautopilot(H1,H2)

PayloadPowerOn

…whenUAVisoverthetargetarea(H3)

…whenthealternatorfails(H4) N/A N/A

PayloadPowerOff

…whenthealternatorfails(H4)

…whentheUAVisoverthetargetarea(H3) N/A N/A

Page 60: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

60

Table6UAVVMSUCAs

VehicleManagementSystem

NotProvidingCausesHazard

ProvidingCausesHazard

IncorrectTiming/Order

StoppedTooSoon/AppliedTooLong

Roll,Pitch,Yaw

…whentheUAVisoffcourse(H1,H2,H3)

…whentheroll,yaw,orpitchcommandexceedsaircraftattitudelimits(H4)…whentheroll,pitch,yawcommandsteerstheUAVoffcourse(H1,H2,H3)

…whenthethrottleisreducedinordertodescend,butthesubsequentpitchdowncommandisdelayed(H4)…whenthethrottleisincreasedforaclimb,butthesubsequentnoseupcommandisdelayed(H6)

…theactuatordisplacementisnotbroughtbacktoneutralwhentheaircraftreachesthetargetheading/descent/ascent(H1,H2,H3)…theactuatordisplacementisbroughtbacktoneutralbeforetheUAVreachesthetargetheading/descent/ascent(H1,H2,H3)

ThrottleSetting

…whenenvironmentalconditionschange(H4,H6)…whentheUAVisinasustainedturn,whichreduceslift(H1,H2)

…whenthethrottlesettingisnotenoughtomaintainanairspeedabovestallspeed(H4)…whenthethrottlesettingacceleratestheaircraftaboveVNE(H6)

…reducesthrottletoolateaftertheUAVflaresforlanding(H1,H5)

…whentheacceleratestoatargetspeed,butthethrottleisnotreducedbeforereachingVNE(H6)…whentheUAVdeceleratestoatargetspeed,butthethrottleisnotincreasedbeforereachingstallspeed(H4)

OncetheUCAtablesarepopulated,safetyconstraintstopreventeachoftheUCAsmustbeidentified.AnexampleofthesafetyconstraintsfortheGPSwaypointscontrolactionareshowninTable7.TheentiretableofsafetyconstraintscanbefoundinAppendix2.Table7ExampleofSafetyConstraintsDerivedfromUCAs

UCADesignator UCA Hazards Constraint

C1TheoperatordoesnotprovidetheGPSwaypointsduringprelaunch

operationsH3

TheoperatormustprovideGPSwaypointsduringprelaunchoperations

Page 61: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

61

C2 TheoperatordoesnotprovideupdatedGPSwaypointswhenmission

changes

H3

TheoperatormustprovideGPSwaypointsduringthemissionwhenthemission

changes

C3TheoperatorprovidestheGPS

waypointswhentheydonotalignwiththemission

H3Theoperatormustnot

provideGPSwaypointsthatdonotalignwiththemission

C4 TheoperatorprovidestheGPSwaypointswhentheypresenta

conflictwithotheraircraft

H2

TheoperatormustnotprovideGPSwaypointsthatpresentaconflictwithother

aircraft

C5 TheoperatorprovidesGPSwaypointsandtheroutelengthexceedsthefuel

onboard

H4

TheoperatormustnotprovideGPSwaypointsforaroutethatexceedsthefuel

onboard

C6 TheoperatorprovidesGPSwaypointsthatcreatearouteoutsideofLOSradiusandBLOSisnotbeingused

H3,H4

TheoperatormustnotprovideGPSwaypointsthatcreatearouteoutsideLOSradiusifBLOSisnotbeing

used

C7TheoperatorprovidesGPSwaypointsafterLOSislost,butbeforeBLOS

radiolinkisestablishedH3,H4

TheoperatormustprovidewaypointswhiletheUAVisin

LOS

C8 TheoperatorprovidesGPSwaypointsaftertheUAVreachesbingofuel

H4

TheoperatorprovidesGPSwaypointstobringtheUAVbacktotheairfieldbeforethe

UAVreachesbingofuel

C9 TheoperatorprovidesGPSwaypointsandthenumberofwaypointsexceedthestoragecapacityoftheautopilot

H3

TheoperatormustnotprovideGPSwaypointsforaroutethatexceedsthefuel

onboardSTPAStep2:ScenarioGenerationThesecondstepofSTPAistogeneratethescenarios.Themajorityoftheactionabledatathatcanbeimplementedintothesystemdesignwillcomefromthisstep.Itisnotenoughtojustunderstandwhatcanhappen,buttounderstandhowitcouldhappen.Oncethe‘how’isknown,constraintsaredevelopedtopreventthehazardfromoccurring.ThescenariosweregeneratedusinganewmethodrecentlydevelopedbyDr.JohnThomas.Themethoddividesthescenariosintotypesbytheirlocationonthesafetycontrolstructure.Thefourtypesare:

1. Commandnotfollowedorfollowedinadequately

Page 62: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

62

2. Inappropriatedecision3. Inadequatefeedbackorotherinputs4. Inadequateprocessbehavior(27)

Figure22ScenarioTypesonControlStructure

Previously,whengeneratingscenarios,aperson(orpeople)wouldexaminethesafetycontrolstructureandcomeupwithscenarios,inabrainstormingtypeofmanner.Whilethisproducesgoodresults,itdoesnotnecessarilyensurecoverageoftheentirecontrolstructure.JustasbucketingUCAsintofourcategoriesensureseachtypeofUCAisconsidered,bucketingscenariosensurescoverageacrossthecontrolstructure.ThetypeofscenarioandcorrespondinglocationonthecontrolstructureisshowninFigure22.UCAV2states,“TheVMSprovidesroll,pitch,oryawwhenthecommandexceedsaircraftattitudelimits.”ThehazardassociatedwiththisUCAisH4“UAVdepartscontrolledflight.”Thefollowingscenariosweregeneratedusingthenewprocedure: V.2.1TheVMSdoesnotprovidetheroll,pitch,oryawcommand,buttheaileron,

elevator,andrudderreceivethecommand.Ashortedwireprovidespowertotheactuatorcausingtheaileron,elevator,orruddertomove.Theaileron,elevator,andrudderreceivethecommandeventhoughtheVMSdidnotcommandit.(Type1)

V.2.2TheVMSprovidestheroll,pitch,oryawcommandandexceedlimitsforthecurrentflightcondition.TheVMSwasprogrammedwithonesetofattitudelimits,ratherthanasetofattitudelimitsfordifferentflightconditions(altitude&speed).Thecommanddidnotexceedtheprogrammedlimits,butitdidexceedactuallimitsforthatparticularflightcondition.(Type2)

V.2.3TheVMSprovidesaroll,pitch,oryawcommandthatitbelieveswillresultinanattitudewithinlimits,howevertheattitudeisactuallyoutoflimits.Theaeromodelling

Page 63: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

63

ofthesystemwasnotvalidated,andthemagnitudeofthecommandistoolarge.Thecommandedattitudeisactuallyoutoflimits.(Type2)

V.2.4TheVMSprovidesaroll,yaw,orpitchinputtocorrectaninvalidattitudeindicationitisreceivingandexceedsattitudelimits.Theinvalidfeedbackisduetoavacuumpumpfailurethatrenderstheattitudeindicatorinoperative.Thecommandexceedsattitudelimits,buttheVMSdoesnotrecognizetheexceedenceduetotheinvalidattitudeindication.(Type3)

V.2.5TheVMSprovidesaroll,pitch,oryawcommandthatisappropriateforstayingwithintheUAVattitudelimits.Theactuatorwasconnectedtothecablesbackwards,andtheVMSinputhastheoppositeeffect(rollleftinputrollsUAVright).TheVMScontinuestocommandinthesamedirectioninanattempttocorrecttheattitudeeventuallyexceedingaircraftlimits.(Type4)

Notethat,justaswithUCAs,therecanbemorethanonescenarioforeachtype.Infact,thatshouldbeexpected.Intheexamplesabovetheitalicizedfontistherefinedscenarioandtheregularfontisthegeneralscenario.Thescenariotypeinformsthegeneralscenario.Therefinedscenarioisbasedonknowledgeofthesystemandtheoperationalcontext.Theremaybemorethanonerefinedscenariopergeneralscenario.DividingupthescenariosassistsfacilitationofanSTPAanalysis.AnSTPAexpertcanderivethegeneralscenarios,thenworkwiththesystemandoperationalexpertstodeterminetherefinedscenariosthatareapplicabletothespecificuseofthesystem.ThisprocessalsorevealsadditionalhazardsassociatedwiththeUCAsthatmightnotbeapparentduringUCAdevelopment.Intheexampleabove,theUCAisassociatedwiththehazardH4.ScenarioV.2.5isassociatedwithanadditionalhazard,H5,“UAVdepartsapron,taxiway,orrunwayduringgroundoperations.”In1995,amishapsimilartothisscenariooccurred.Thelongitudinalandlateralcontrolswerecrossed,resultinginpitchinputscausingrolloutputs.(28)Theaircraftwasunabletotakeoff,andranofftherunway,killingthepilot.Thescenariogenerationprocessservestohelpstimulateideaswhendevelopingscenarios,resultinginmorescenariosandcoverageacrossthecontrolstructure.TherestofthescenariosarefoundinAppendix2.Oncethescenariosaregenerated,safetyconstraintsmustbeidentifiedtopreventthescenariofromoccurring.Thesescenariosprovideactionableinformationthatcanbeimplementedintothesystemdesignoroperations/maintenanceprocedures.Thesafetyconstraintsforthescenariosshownaboveareasfollows:

SC.V.2.1Wiringmustbedesignedtowithstandtheflightenvironment,andinspectedbeforeflight.SC.V.2.2TheVMSmustbeprogrammedwithlimitsatallflightconditions.SC.V.2.3Theaeromodelmustbevalidatedfortheentireflightenvelopeandflightconfigurationstoincludeabnormalconfigurations

Page 64: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

64

SC.V.2.4AsecondaryattitudeindicatormustbeincludedintheUAVdesignasabackuptothemainattitudeindicator.TheVMSmustreceivefeedbackofavacuumpumpfailuresothatitcanswitchtothesecondaryattitudefeedbackSC.V.2.5Afteranycontrolsurfacerelatedmaintenance,acontrolscheckmustbeaccomplished.Acontrolscheckmustalsobeaccomplishedduringpreflight.Considerdifferentconnectorsforthedifferentdirectionssothatitcannotphysicallybeconnectedbackwards.

UAVSTPASummaryTheSTPAanalysisontheUAVresultedin211scenariosandassociatedsafetyconstraintsfortheoperator,and65scenariosandsafetyconstraintsfortheVMSforatotalof276scenarios.Severalofthesafetyconstraintsareapplicabletomorethanonescenario.Manyofthesafetyconstraintsarealsoalreadyimplementedintheprogramthroughoperationalproceduresordesigndecisions.Constraints,alongwiththeirassociatedUCAandscenario,thatmaybeofinteresttotheprogram.Thesescenariosarehighlightedtoillustratecoverageacrossdesign,testing,maintenance,andoperations.Designconstraints:V12.TheVMSprovidesareducedthrottlesettingtoolateaftertheUAVflaresforlanding. ScenarioV.12.3.TheVMSprovidedthecommandlateduetoincorrectsystem

feedback.Thelaseraltimeterismalfunctioningandprovidingincorrectaltitudedata.TheVMSbelievestheUAVistoohighforareducedthrottlesetting.

SafetyConstraintSC.V.12.3.TheUAVmustbedesignedtodetectlaseraltimetermalfunctions.Thelaseraltimetermustbeinspectedregularlyforproperfunction,andtheexteriormustbecleanbeforeflight.

V14.TheVMSprovidesathrottlesettingtodeceleratetoatargetspeed,butthethrottleisnotincreasedbeforereachingstallspeed. ScenarioV.14.5.TheVMSprovidedthecommandtoincreasethethrottleoncetarget

airspeedwasreached,howeverthethrottlewasnotincreased.Thepowersystemdidnotprovidepowertotheactuatorduetoapowersystemfailure.

SafetyconstraintSC.V.14.5.Flightcriticalcomponentssuchasactuatorsmusthavebackuppowersothattheaircraftmaybelandedafterapowersystemfailure.

TheUAVprogramhasexperiencedtwomishapsassociatedwithpowerloss.Thefirstmishapwasduetoanalternatorbeltfailure.TheUAVwasredesignedwithtwoalternatorstoprovideredundantpowerafterthemishap.Thesecondmishapwasduetoawiringerror.BothalternatorswerewiredtoasupplywirethatconnectedtotheVMS.Thesupplywireeitherbroke,orhadalooseconnectorwhichresultedinVMSpowerloss.TheUAVhasbeensinceredesignedagaintoprovideasupplywirefromeachalternatortotheVMS,andthebatterystoresenoughpowerfor5hoursofflightwithonlyflightessentialsystemspoweredon.Whilethisscenariodoesn’tdirectlydiscussthesespecificdesignissues,itdoescoverensuringthatflightcriticalcomponentsarepowered.Asthedetaileddesignisdeveloped,theSTPAanalysiswouldalsobecomemoredetailedandaddressthesespecificissues.

Page 65: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

65

Testingconstraints:V6.TheVMSprovidesaroll,pitch,oryawcommand,buttheaileron,elevator,orrudderisnotbroughtbacktoneutralwhentheaircraftreachesthetargetheading/descent/ascent ScenarioV.6.2.TheVMSprovidesacommandtoreturntheaileron,elevator,orrudder

backtoneutral,howevertheaeromodelisincorrectandtheaircraftdidnottakeaslongasexpectedtoreachthedesiredheading/descent/ascent.

SafetyconstraintSC.V.6.2.Theaeromodelmustbevalidatedfortheentireflightenvelopeandflightconfigurationstoincludeabnormalconfigurations.

ThemostrecentUAVmishapwasduetoanenginefailureaftertakeoff.TheUAVwasatanaltitudethatallowedtheoperatortoturntheUAVbacktowardstheairfieldforadeadsticklanding.Theautopilotdidnotaccountforthelackofthrustandwascommandingthrust(eventhoughthrustcommandshadnoeffect).Deadstickflightwasnevertested,thereforetheaeromodelwasnotvalidated.TheUAVlandedhard,resultinginrepairabledamage.Engineoutaeromodellingwasnevervalidatedbecauseoftheriskassociatedwiththetest.Itisrecommendedthatabnormalconditionsaretestedexactlybecauseoftheassociatedrisk.Itismuchbettertofindoutthattheaeromodelisincorrectincontrolledtestconditionsratherthanabusyoperationalairfieldwherethepotentialtostrikepeopleandequipmentisgreater.Itisnotnecessarytolandtheaircraftinanengineoutcondition.Rather,thetestshouldoccurhigheraltitudessothattheenginemayberestartedbeforelanding.Ifthereareotherabnormalconditionsthatwerenotvalidateditisrecommendedthattheprogramvalidatesthoseconditions.C11.TheoperatordoesnotprovidealtitudewhentheGPSwaypointsareupdated ScenarioC.11.4.TheoperatorprovidesanewaltitudeassignmentwiththeupdatedGPS

waypoints.ThealtitudeisnotattainedbytheUAV,howeverbecausetheadditionalalternatorsreducemaxengineRPM,thusdecreasingtheservicealtitudeoftheUAV.

SafetyconstraintSC.C.11.4.Simulationandflighttestmustbeaccomplishedtovalidatethelimitationsofthebaselineaircraftorvalidatenewlimitationsduetomodifications

Maintenanceconstraints:V6.TheVMSprovidesaroll,pitch,oryawcommand,buttheaileron,elevator,orrudderisnotbroughtbacktoneutralwhentheaircraftreachesthetargetheading/descent/ascent. ScenarioV.6.1.TheVMSprovidesacommandtoreturntheaileron,elevator,orrudder

backtoneutral,howeverthecommandwasnotreceivedduetoapowersystemfault.Wiringorconnectionstotheactuatorarebroken,keepingtheactuatorfromreceivingthesignal.Or,asystempowerfailure(suchasanalternatorfailure)occurs,andtheactuatorsarenotonbatterypower.

SafetyconstraintSC.V.6.1Wiringmustbeinspectedduringpreflightandmustbedesignedtowithstandvibrationsassociatedwithflight.Thepowersystemmustbedesignedsuchthatapowersystemfailuredoesnotresultinlossofactuatorpower

Page 66: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

66

Ifahazardisnotcontrolledbydesign,itmustbecontrolledthroughoperationsormaintenanceprocedures.Hence,anyflightcriticalcomponentssuchaswiringmustbeinspectedbeforeflight. ScenarioV.6.4.TheVMSprovidedacommandtoreturnthecontrolsurfaceactuatorto

neutral,howeverthecontrolsurfacedidnotmoveasexpected.Theactuatorlinkageorcableisbroken,andtheaileron,elevator,orrudderisnolongercontrollable

SafetyconstraintSC.V.6.4.Actuatorsandcablelinkagesmustbeinspectedonaregularbasisandduringpreflightinspections.

Operationalconstraints:C1.TheoperatordoesnotprovidetheGPSwaypointsduringprelaunchoperations. ScenarioC.1.1.TheoperatorprovidestheGPSwaypoints.AsecondUAVsortieis

beginningatthesametime,andtheGPSwaypointsaresenttothewrongUAV.TheintendedUAVdoesnotreceivethewaypoints

SafetyconstraintSC.C.1.1.EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbeverifiedtoensureitiscorrect.

Currentoperationsmaynotbeofahighenoughtempothatmorethanoneaircraftisoperatedatatime,howeverconsiderationsforhighertempooperationsareimportanttoidentifyinordertoeasilyandsafelyscaleupifitisrequired.Theinterferencemayalsocomefromanaircraftorgroundstationundergoingmaintenancecheckoutsortraining,sothoseoperationsmustalsobeaccountedfor.Additionally,otherUAVprogramsusingsimilarequipmentmayinterferewiththisUAV’soperation.Currently,theoperatorverifiesthattheyarelinkedtothecorrectUAVbyusingautopilotidentification.Therefore,theprogrammustalsoconsiderthepossibilityofmaintenancereplacingtheautopilot,orswitchingittoanotheraircraftfortroubleshooting,andnotdocumentingitcorrectly.C31.Theoperatorprovidesenginestartcommandwhentheenginefailsinflight,butafterthe

UAViscommittedtolanding. ScenarioC.31.3.Theenginequitsbecausetheoperatordoesnotswitchfueltanks,and

thecurrentlyselectedfueltankisempty.Theoperatorattemptstorestarttheengine,butisunsuccessful.Duringthelandingsequence,theoperatorrealizesthefuelfeederror,switchestanks,andsuccessfullyrestartstheengine.However,theUAVistooclosetotheground,andtheautopilotdoesnottransitionsafelyfromengineoffperformancetoengineonperformance.

SafetyconstraintSC.C.31.3.TheoperatormustverifyfuelstateandswitchtanksduringenginefailureemergencyproceduresiftheUAVisabovesaferestartaltitude.TheUAVautopilotmustbedesignedtotransitionsmoothlybetweenengineoffandengineonperformance.

Inmostgeneralaviationaircraftthatrequirethepilottoswitchbetweentanks,engineoutemergencyprocedurescallforswitchingthefueltanktoensurethatfuelstarvationwasnota

Page 67: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

67

causeoftheenginefailure.ThisUAV’smanualdoesnothaveasuchastep.Itisrecommendedthattheprograminvestigatesaddingthesteptotheiremergencychecklist. ScenarioC.31.4.Theoperatorattemptstorestarttheengine,buttheenginedoesnot

restart.Theoperatorcontinuestoattemptarestartastimepermits,inaccordancewiththechecklist.TheUAVisflyingfarfromtheairfield,andtheexactheightabovegroundisnotknown.Theoperatorcontinuestoattemptrestartandfinallydoesrestarttheengine,buttheUAVdescendedtoolowandimpactsterrain

SafetyconstraintSC.C.31.4.Duringmissionplanning,operatorsmustdetermineminimumrestartattemptaltitudesforeachlegoftheroutethatisbasedonasafepressurealtitude,sinceexactaltitudeabovegroundmaynotbeknown.Thelaseraltimetermustbeonbatterypowerforusetodetermineheightaboveterrain.

TheemergencyproceduresappeartoassumethattheoperatorwillalwaysbeawareoftheUAV’sheightabovethegroundinordertomakeadeterminationofwhethertocontinuetorestarttheengine,orbeginditching/landingoraerodynamicterminationprocedures.However,whentheUAVisoveruneventerrain,suchashillsormountains,farawayfromtheairfieldthatinformationmightnotalwaysbereadilyavailable.Therefore,itisrecommendedthatduringmissionplanningtheoperatorschoosesomeminimumaltitudewheretheywillstopattemptingarestartforeachlegoftheroute.Thealtitudewouldbebasedonthehighestobstaclewithintheparticularleg.

C41.Theoperatordoesnotprovidelostlinkproceduresduringflightoperations. ScenarioC.42.2Theoperatordoesnotbelievethatthelostlinkprocedureneedstobe

updatedbecausetheprocedurewasrecentlyupdatedperaregularschedule.However,terrain,weather,orconflictingtrafficbetweentheUAVandairfieldhavechangedalongtheroutesincethescheduleupdate.Theoperatordoesnotprovidethelostlinkproceduresbecauseitisn’ttime,yet.

SafetyConstraintSC.42.2.ThelostlinkproceduresmustbeupdatedbasedonrouteoftravelandobstaclesbetweentheUAVandtheairfieldratherthantiming.Iftimingremainsthepreferredmethod,considercontinuingtherouteofflighttoapointknowntobefreeofobstaclesandthenreturntotheairfield–timingforlostlinkupdates&timingforreturntobasedoesn’twork.Oneneedstobebasedongeography/obstacles.

Thecurrentproceduresrequiretheoperatortoupdatelostlinkproceduresatregulartimeintervals.IftheUAVisflyingoveruniformlylowterrainfortheentireflightwithnootherobstaclessuchasconflictingtrafficorweatherbetweentheUAVandtheairfield,timeintervalsmaybeappropriate.However,foranysituationwhereterrain,traffic,andweatherareconsiderationsforlostlinkproceduresitisnotappropriate.Recommendreevaluatinglostlinkflightplanningproceduresbasedonthesafetyconstraintabove.AfulllistofthesafetyconstraintsisfoundinAppendix2.

Page 68: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

68

ThisUAVusecaseillustrateshowSTPAwouldbeusedduringsystemdesign.Thesafetycontrolstructuredoesnotcontainallthedetailsofafinishedproduct,yetasignificantofamountinformationwasgenerated.Safetyconstraintscoveredareassuchasmaintenance,operations,design,andtest.Werethisprogramstillinthedesignphase,theconstraintswouldbeincorporatedinthesystemdesign,andtestandoperationsplanning.Oncethenextlevelofdesigndetailiscreated,theSTPAanalysisisextendedtoincludethatdetail.InEngineeringaSaferWorld,Levesonreferstothisprocessassafetyguideddesign.(8)Figure23showsthatdesigndecisionsfeedintothehazardanalysis,whichinturnfeedsbacksafetyconstraintstobeimplementedinthedesign.

Figure23Safety-guideddesign(8)

Themoretightlycoupledthisfeedbackloopis,thefasterdesignerswillidentifysafetyconstraintsthatmustbeincorporatedinthedesignrequiringlessrework.

Page 69: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

69

ConclusionsThisthesisshowsthatSTPAisnotonlyuseful,butthatamoredevelopedsystems-basedsafetyprocessisnecessarytoensurethatthesystemsprovidedtothewarfighteraresafe.Asystems-basedprocesstiesthesafetyanalysistogetherthroughtheentirelifecycleofthesystemfromconceptdevelopmenttooperations.Theprocessalsonotonlyinformsthedesignofthephysicalsystem,butalsooftheentiresystemtoincludesupportandoperationsconstructs.IfSTPAistohaveameaningfulimpactonaircraftsafetyintheAirForce,itcannotsimplybeimplementedontopofcurrentsafetyprocesses.Programofficesdonotneedmorework,astheyareverybusyasitis.Whattheyneedisacohesivesystems-basedsafetystrategythatpromotesthoughtfulsystemdesignandmaintainssafetythroughoutthelifecycleofthesystem.Initialadoptionmayprovechallenging.ItmaybedifficulttoconvinceAFLCMCtoswitchfromcurrentprobabilisticassessmentstoSTPA.Likely,STPAwillinitiallybedoneinconjunctionwithcurrentprocessesonatrialbasis.Intheshort-term,thismeansmoreworkforthePOthatdecidestotrySTPA.Inthelong-term,oncethenewapproachtosafetyisproven,thenworkloadwilldecrease.Infact,incomparisonswithfaulttrees,FMEAs,andothertraditionalhazardanalysistechniques,STPAhasbeenfoundineverycasetobeordersofmagnitudecheaper.OnemethodtointroduceSTPAtotheacquisitionsprocessisthroughairworthiness.Thesystemsafetyprocessflowsfromairworthinesscertificationrequirements.IftheairworthinessofficeacceptsSTPA,systemsafetyprocesseswilladjusttomatchthenewcertificationstandard.Infact,theFAAiscurrentlylookingintoallowingSTPAtobeusedasanalternativemethodtotheSAEARPstandards.Itisoftenthoughtthatsafetyisatoddswithdesignandprogramefficiency.However,thisisnotthecasewithSTPAbecauseitisasystems-basedanalysis.NotonlyisSTPAcheapertoperformthancurrenthazardanalysistechniques,butusingSTPAduringthedesignprocesswillsavesystemprogramofficestimeandmoneyinreworkthatisdiscoveredafterthedesignprocessiscompleteduringdevelopmentaltesting.

Page 70: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

70

AcronymListing AF–AirForceAoA–AnalysisofAlternativesBLOS–BeyondLineofSightCAST–CausalAnalysisbasedonSTAMPCDR–CriticalDesignReviewCOTS–CommercialofftheshelfDT–DevelopmentalTestEBAO–Effects-BasedApproachtoOperationsEMD–Engineering,Manufacturing,andDevelopmentFMEA–FailureModesandEffectsAnalysisFMECA–FailureMode,Effects,andCriticalityAnalysisFOC–FullOperationalCapabilityFTA–FaultTreeAnalysisGPS–GlobalPositioningSystemHAZOP–HazardandOperabilityStudyJSTARS–JointSurveillanceTargetAttackRadarSystemLOS–LineofSightLRIP–Low-RateInitialProductionMAJCOM–MajorCommandMEFR–MilitaryFlightReleaseMOCA–MinimumObstacleClearanceAltitudeMRFR–MilitaryRestrictedFlightReleaseMTC–MilitaryTypeCertificateOT–OperationalTestO&S–OperationsandSupportOT&E–OperationalTestandEvaluationPM–ProgramManagerPO–ProgramOfficeRFP–RequestforProposalSE–SystemsEngineeringSEP–SystemEngineeringPlanSRD–SystemRequirementsDocumentSTAMP–Systems-TheoreticAccidentModelandProcessesSTPA–SystemTheoreticProcessAnalysisTAA–TechnicalAirworthinessAuthorityTEMP–TestEvaluationMasterPlanTO–TechnicalOrderUAV–UnmannedAerialVehicleUCA–UnsafeControlActionUI–UserInterfaceVMS–VehicleManagementSystem

Page 71: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

71

VNE–VelocityNottoExceed

Page 72: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

72

Appendix1:JSTARSSTPAAnalysis Table8JSTARSScenarios

UCA Hazards Number Main Scenario Description Safety Constraint

JSTARS does not provide target coordinates to support aircraft when the target needs to be engaged (H4)

H4 J.1.1

JSTARS provides target coordinates, but the support aircraft did not receive them. The communication was jammed by enemy forces

JSTARS must be able to overcome communications jamming by enemy forces

J.1.2

JSTARS provides target coordinates, but the support aircraft did not receive them. The support aircraft does not have compatible communications capabilities

JSTARS must be designed to communicate with all potential support aircraft

J.1.3

JSTARS does not provide target coordinates to the support aircraft because JSTARS does not believe the target needs to be engaged. The JSTARS believes either the enemy does not currently pose a threat to friendly forces.

JSTARS must be able to determine threats to friendly forces and provide target coordinates to support aircraft to prevent the enemy from engaging friendly ground troops

J.1.4

JSTARS does not provide target coordinates to the support aircraft. The JSTARS does not know that the support aircraft has the appropriate munitions to engage the target

JSTARS must be provided weapons stores information for support aircraft in the area

Page 73: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

73

J.1.5

JSTARS does not provide target coordinates to the support aircraft. The JSTARS does not know that the support aircraft is in the area

JSTARS must be aware of support aircraft in the area

J.1.6

JSTARS does not provide target coordinates to the support aircraft. JSTARS cannot detect the location of enemy forces

The JSTARS must be able to detect enemy forces and determine their location

J.1.7

Ground troops requested that the target be engaged to the JSTARS controller coordinating with ground troops, but that message was not relayed to the controller coordinating with support aircraft

JSTARS must be designed to provide coordination between ground troops and support aircraft

J.1.8

JSTARS provides target coordinates, but the support aircraft does not engage the enemy. The support aircraft detects enemy air defenses that the JSTARS does not, and decides not to engage

JSTARS must either detect all enemy air defenses, or receive air defense data from other sources. JSTARS must then provide target coordinates to the support aircraft outside enemy air defense capabilities

JSTARS provides target coordinates, but the coordinates are not where the enemy is located (H2, H3)

H2, H3 J.2.1

The JSTARS provided accurate target coordinates via a datalink to the support aircraft, however enemy forces were able to corrupt the transmission

The JSTARS datalinks must be secured from enemy disruption

Page 74: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

74

J.2.2

JSTARS provides coordinates, but they are not were the enemy is located. JSTARS is unable to differentiate between enemy forces, friendly forces, and civilians in the area.

JSTARS must either be able to differentiate between enemy, friendly, and civilians or use other sources to provide target differentiation

J.2.3

The JSTARS sensor data is inaccurate, and the coordinates provided do not match the actual location of the enemy

JSTARS sensor data must be accurate in order to determine the location of the enemy

J.2.4

The JSTARS provided coordinates of an area to avoid, due to presence of civilians or friendly forces, but the support aircraft believed these were target coordinates

JSTARS must be able to provide areas to avoid without those areas being misinterpreted as target coordinates

JSTARS provides target coordinates to support aircraft that are within contested airspace (H6)

H6 J.3.1

The target is located on the edge of enemy air defenses. JSTARS provides coordinates and a vector to the target that will avoid the defenses, however the vector is 180 degrees off, causing the support aircraft to travel through contested airspace

JSTARS must ensure that vectors to target coordinates are such that the support aircraft will not travel through contested airspace

J.3.2

JSTARS provides target coordinates to support aircraft that are within contested airspace. JSTARS does not believe the radius of the air defenses is large enough to endanger support aircraft that engage the target

JSTARS must have accurate information regarding enemy capabilities

Page 75: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

75

J.3.3

JSTARS does not detect the enemy air defenses, and therefore does not recognize that the target coordinates are within contest airspace

JSTARS must either be able to detect enemy air defenses or be provided enemy air defense data prior to the operation

J.3.4

The air defenses were supposed to be disrupted, however they were not. JSTARS did not receive feedback that efforts to destroy/disrupt the defenses were unsuccessful and provided target coordinates to the support aircraft that are within contested airspace

Feedback must be provided to the JSTARS if efforts to disrupt enemy air defenses are unsuccessful

JSTARS provides target coordinates before the enemy forces have separated from civilians (H3)

H3 J.4.1

JSTARS provides target coordinates to a support aircraft with instructions to wait until the civilians are no longer in proximity of the enemy forces. The communication is disrupted, and the instruction to delay was not received

JSTARS must have undisrupted communications with support aircraft

J.4.2

JSTARS misinterprets the rules of engagement and believes that the collateral damage is acceptable and does not wait for the civilians to no longer be in proximity of enemy forces

JSTARS must understand the rules of engagement and must communicate questions regarding the rules to AOC if there are concerns regarding civilian safety

J.4.3

JSTARS is not aware of civilian presence, and therefore does not know to wait until enemy and civilians are not longer in proximity

JSTARS must either be able to detect a civilian presence near enemy forces or be provided the data from other sources

Page 76: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

76

J.4.4

After JSTARS provides target coordinates civilians move into proximity with civilian forces. JSTARS does not have time to call off the attack

JSTARS must monitor area around enemy forces and be able to determine if civilians may move into the area (for instance, driving on a road in the direction of enemy forces)

J.4.5

JSTARS provides target coordinates to a support aircraft, however that aircraft is unable to engage the target. The aircraft's wingman engages the target instead. The first aircraft had smaller munitions that would result in more localized damage, but the second aircraft had larger munitions with a larger effective radius that included the civilian position

If the original aircraft is unable to engage the target and a second aircraft is utilized, JSTARS must determine the suitability of the second aircraft's weapons before allowing the engagement to continue

JSTARS provides target coordinates after the enemy leaves the target location (H2, H3)

H2, H3 J.5.1

JSTARS provides target coordinates after the enemy leaves the target location. The JSTARS does not detect that the enemy has moved away from the target coordinates.

The JSTARS must be able to detect enemy forces and determine their location

J.5.2

JSTARS provides target coordinates while the enemy is still in the location, however the support aircraft is delayed in engaging the target due to maintenance issues.

JSTARS must be able to track target and provide the support aircraft with updated coordinates as the target moves

Page 77: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

77

JSTARS provides target coordinates to support aircraft after friendly forces have moved towards and engaged enemy forces (H2)

H2, H3 J.6.1

JSTARS provides target coordinates through datalink system. Due to the high volume of traffic across the links, the message was queued and receipt was delayed by the support aircraft

JSTARS must have capability to handle large amounts of communication traffic such that all messages are sent as soon as possible or prioritize high value information.

J.6.2

JSTARS cannot detect the movement of friendly forces, and does not recognize that they are within close proximity of enemy forces

JSTARS must be able to track friendly forces

J.6.3

JSTARS provides target coordinates before friendly forces have engaged the enemy, however the support aircraft is delayed in engaging the target due to maintenance issues

JSTARS must be informed of or able to track friendly positions and provide the support aircraft with updated instructions

JSTARS provides target coordinates to support aircraft after support aircraft expends weapons (H7)

H7 J.7.1

JSTARS does not receive feedback on weapons status of support aircraft, and does not realize that the support aircraft tasked to engage the enemy has expended weapons

JSTARS must receive feedback when support aircraft are out of weapons

J.7.2

The support aircraft has some weapons onboard, but not weapons that are appropriate for the task. JSTARS does not receive feedback on type of weapons loaded on the aircraft

JSTARS must receive feedback indicating what type of weapons the support aircraft are carrying

Page 78: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

78

JSTARS does not provide airspace deconfliction when support aircraft are co-altitude in the same airspace (H1)

H1 J.8.1 JSTARS provides deconfliction instructions to the support aircraft, however the communications are disrupted

JSTARS communications with support aircraft must be secure and not able to be disrupted

J.8.2

JSTARS believes that even though the aircraft are co-altitude, they are horizontally deconflicted. However their orbits intersect

If aircraft are in holding patterns awaiting instructions, those patterns must not intersect. JSTARS must be designed to assist JSTARS controllers with deconfliction

J.8.3 JSTARS does not receive feedback regarding the location and altitude of support aircraft

JSTARS must receive feedback regarding location and altitude of support aircraft in order to deconflict them

J.8.4

JSTARS provides deconfliction instructions to separate the aircraft at different altitudes, however one of the aircraft has not switched from airfield altimeter setting to the current altimeter setting in theater and the aircraft are still co-altitude

JSTARS must provide a standard altimeter setting for all aircraft that are in the JSTARS area of responsibility

JSTARS provides support aircraft deconfliction instructions that create a conflict (H1)

H1 J.9.1

JSTARS provides deconfliction instructions that do not conflict with other traffic, however the support aircraft aircrew either mishear or misread the instructions and fly a different route than instructed that causes a conflict

JSTARS must require instruction feedback to ensure oral instructions are understood. If instructions are given via a datalink the JSTARS must be designed to provide the data such that it can be directly input into the support aircraft system

Page 79: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

79

J.9.2

JSTARS provides support aircraft deconfliction instructions to one aircraft that puts it in conflict with another aircraft. Aircrew on the JSTARS are responsible for controlling different support aircraft and have no way of deconflicting instructions

JSTARS must be designed so to ensure mission deconfliction among multiple JSTARS controllers for both air assets and ground assets

J.9.3

JSTARS is not aware of all aircraft in the vicinity, and deconflicts support aircraft, but puts support aircraft in conflict with other aircraft

JSTARS must be aware of all aircraft in the area

J.9.4

JSTARS provides deconfliction instructions that do not conflict with other traffic, however the support aircraft also receive instructions from other controllers such as AWACS or ground controllers and follow those instructions

JSTARS must be designed to operate with other controlling functions to prevent conflicting instructions to support aircraft

JSTARS provides airspace deconfliction when the route is too close to terrain (H5)

H5 J.10.1 JSTARS does not provide a route too close to terrain, but the support aircraft receives the route from another source.

JSTARS must be designed such that communication between JSTARS and support aircraft is secure.

J.10.2 JSTARS is not provided with detailed terrain data, and does not realized that the route is too close to terrain

JSTARS must be designed to provide terrain data to controllers and warn controllers if a proposed route is too close to terrain

Page 80: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

80

J.10.3

JSTARS provides deconfliction instructions that are above the terrain, however the standard altimeter setting provided to the support aircraft was incorrect resulting in a lower altitude above ground than intended

JSTARS must provide a standard altimeter setting that is appropriate given the atmospheric conditions of the area at the time. The setting must be updated when conditions change

JSTARS provides airspace deconfliction when the new route is through contested airspace (H6)

H6 J.11.1 JSTARS does not provide a route through contested airspace, but the support aircraft receives the route from another source.

JSTARS must be designed such that communication between JSTARS and support aircraft is secure

J.11.2

JSTARS does not detect the enemy air defenses, and therefore does not recognize that the new route is through contest airspace

JSTARS must either be able to detect enemy air defenses or be provided enemy air defense data prior to the operation

J.11.3

JSTARS provides a route that is not through contested airspace, however the support aircraft's navigation is inaccurate or disrupted, causing the support aircraft to fly into contested airspace

JSTARS must either be able to detect the location of aircraft relative to contested airspace or be provided the information in order to correct the support aircraft's heading before it enters contested airspace

JSTARS provides aircraft deconfliction before support aircraft changes radio frequency to JSTARS frequency (H1)

H1 J.12.1

JSTARS instructed an aircraft to maintain an orbit near the entry point into the JSTARS controlled airspace. The incoming aircraft is being handed off to the JSTARS and switching frequencies when the deconfliction call is made

JSTARS must not instruct an aircraft to maintain an orbit near an identified entry point into the airspace.

Page 81: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

81

J.12.2

The combat operation is very busy, and JSTARS is overtasked. The JSTARS provides the deconfliction to the aircraft that just entered the airspace, but does not receive a response from the aircraft. Due to the high volume of radio calls, JSTARS does not realize they did not get a response from the aircraft

JSTARS must receive confirmation of instructions. The JSTARS must be designed to ensure safety-critical tasks such as airspace deconfliction are not overlooked

JSTARS provides aircraft deconfliction instructions after a midair collision (H1)

H1 J.13.1

JSTARS provides deconfliction instructions before the aircraft is involved in a midair, but communications were disrupted and the aircraft did not receive the instructions

JSTARS communications with support aircraft must be secure and not able to be disrupted

J.13.2

JSTARS did not recognize that in order for a support aircraft to engage a target it would travel through another aircraft's orbit until the aircraft was in proximity of the other aircraft

JSTARS must be designed to assist the controllers with airspace deconfliction and warn controllers when one aircraft's route will intersect with another aircraft's route or orbit

J.13.3

JSTARS provides aircraft deconfliction instructions to aircraft after it is involved in a midair collision. JSTARS does not receive timely positon reports from aircraft within the area of responsibility

JSTARS must receive real-time or near real-time feedback of support aircraft position and altitude

JSTARS provides partial aircraft deconfliction instructions (H1)

H1 J.14.1

JSTARS provides complete deconfliction instructions, however the communication is disrupted and the aircraft does not receive the entire procedure

JSTARS communications with support aircraft must be secure and not able to be disrupted

Page 82: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

82

J.14.2

JSTARS controllers are not aware of all aircraft within the airspace, and believe that just altitude or vectors are required to deconflict the aircraft, but both are actually needed due to multiple conflicting aircraft

JSTARS must be aware of all aircraft in the area

J.14.3

JSTARS controllers provide complete aircraft deconfliction instructions, however the support aircraft only comply with part of the instructions. The support aircraft pilot is unable to comply with the entire procedure

JSTARS must be designed to provide controllers with aircraft location information so that if an aircraft does not follow deconfliction instructions the JSTARS controllers may correct the situation

JSTARS does not provide target coordinates to ground troops when a target needs to be engaged (H4)

H4 J.15.1

JSTARS provides the target coordinates to ground troops, however the communication is disrupted or the ground troops do not have interoperable communications capability

JSTARS must communicate with ground troops, and the communication must be secure and not able to be disrupted

J.15.2

One JSTARS controller coordinates with ground troops and another coordinates with support aircraft. The ground troop controller believed that the support aircraft controller would have a support aircraft engage the target

JSTARS must be designed to provide communication and coordination between controllers

J.15.3

JSTARS does not provide target coordinates to ground troops when a target needs to be engaged. The JSTARS does not receive ground troop request for target coordinates

JSTARS must be designed to receive ground troops requests

Page 83: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

83

J.15.4

JSTARS provides target coordinates to ground troops, but they do not engage the enemy. They do not have capability to engage the enemy at the current distance

JSTARS must be aware of ground troops capability

JSTARS provides target coordinates to ground troops, but they are not where the enemy is located (H2, H3)

H2, H3 J.16.1 JSTARS provides accurate target coordinates, but the communication is disrupted and the ground troops receive incorrect data

JSTARS communication must be secure and not able to be disrupted

J.16.2

JSTARS detects personnel presence and determines the personnel are enemy forces, but misinterprets location data. JSTARS provides the information to ground forces, however the coordinates are incorrect

JSTARS must be designed to provide accurate coordinate information

J.16.3

JSTARS sensors detect personnel presence and movement, but cannot determine whether they are civilians, enemy forces, or friendly forces

JSTARS must be able to determine if personnel present are civilians, enemies, or friendlies, or JSTARS must be provided that data from other sources

J.16.4

JSTARS provides accurate target coordinates, but the ground troops misinterpret the coordinates and target a different location

JSTARS must be designed to provide target coordinates consistent with ground troop procedures and equipment so that they do not have to translate the data. JSTARS should be able to communicate directly with ground troop equipment.

Page 84: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

84

JSTARS provides target coordinates after the enemy leaves the target location (H2, H3)

H2, H3 J.17.1

JSTARS provides the target coordinates to ground troops, however the communication is disrupted and delayed until after the enemy has moved

JSTARS communication must be secure and not able to be disrupted

J.17.2

JSTARS does not detect enemy movement, either due to the sensor scan rate or sensitivity of sensor, and therefore believes that the original target location is still accurate

JSTARS sensors must be able to detect enemy movement

J.17.3

JSTARS provides the target coordinates before the enemy leaves the target location, however the ground troops delay engagement of the enemy. JSTARS does not continue to monitor the enemy location due to other sensor requests and does not provide ground troops with updated information

JSTARS must be designed to be able to monitor known enemy locations while performing other sensor functions

JSTARS provides target coordinates to ground troops after friendly forces have moved towards and engaged enemy forces (H2)

H2 J.18.1

JSTARS provides target coordinates to ground troops before friendly troops have engaged enemy forces, however the communication is disrupted. JSTARS troubleshoots the problem and resends the coordinates, but by this time friendly forces have moved within close proximity of the enemy

JSTARS communication must be secure and not able to be disrupted. If communication is disrupted, JSTARS must have procedures in place to determine whether or not the commands are still appropriate once communications are reestablished

Page 85: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

85

J.18.2

JSTARS recognizes that friendly forces are moving towards the enemy forces in order to engage the enemy, but still provides target coordinates to the ground troops. JSTARS believes that the friendly forces are far enough away from the enemy to allow the ground troops to attack the enemy

JSTARS must be aware of ground ordnance radius and ensure friendly troops are not within that radius.

J.18.3

JSTARS provides target coordinates to ground troops after friendly forces have engaged the enemy. The friendly forces do not provide feedback to either JSTARS or the ground troops in contact with JSTARS indicating they are in proximity of enemy forces

JSTARS must be designed to detect friendly forces in order to prevent providing target coordinates that result in friendly fire. In addition, procedures must be in place to ensure ground troops inform JSTARS of troop movements.

Appendix2:UAVSTPAAnalysisTable9UAVOperatorSafetyConstraints

UCADesignator UCA Hazards Constraint

C1TheoperatordoesnotprovidetheGPSwaypointsduringprelaunchoperations

H3TheoperatormustprovideGPSwaypointsduringprelaunchoperations

C2TheoperatordoesnotprovideupdatedGPSwaypointswhenmissionchanges

H3TheoperatormustprovideGPSwaypointsduringthemissionwhenthemissionchanges

C3TheoperatorprovidestheGPSwaypointswhentheydonotalignwiththemission

H3TheoperatormustnotprovideGPSwaypointsthatdonotalignwiththemission

C4TheoperatorprovidestheGPSwaypointswhentheypresentaconflictwithotheraircraft

H2TheoperatormustnotprovideGPSwaypointsthatpresentaconflictwithotheraircraft

Page 86: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

86

C5

TheoperatorprovidesGPSwaypointsandtheroutelengthexceedsthefuelonboard

H4 TheoperatormustnotprovideGPSwaypointsforaroutethatexceedsthefuelonboard

C6

TheoperatorprovidesGPSwaypointsthatcreatearouteoutsideofLOSradiusandBLOSisnotbeingused

H3,H4

TheoperatormustnotprovideGPSwaypointsthatcreatearouteoutsideLOSradiusifBLOSisnotbeingused

C7

TheoperatorprovidesGPSwaypointsafterLOSislost,butbeforeBLOSradiolinkisestablished

H3,H4TheoperatormustprovidewaypointswhiletheUAVisinLOS

C8TheoperatorprovidesGPSwaypointsaftertheUAVreachesbingofuel

H4TheoperatorprovideGPSwaypointstobringtheUAVbacktotheairfieldbeforetheUAVreachesbingofuel

C9

TheoperatorprovidesGPSwaypointsandthenumberofwaypointsexceedthestoragecapacityoftheautopilot

H3 TheoperatormustnotprovideGPSwaypointsforaroutethatexceedsthefuelonboard

C10

TheoperatorprovidesGPSwaypoint,butthelistofwaypointsisnotcompletefortheentiremission

H3 TheoperatormustprovideacompletesetofGPSwaypointsfortheentiremission

C11TheoperatordoesnotprovidealtitudewhentheGPSwaypointsareupdated

H1,H2,H3

TheoperatormustprovideupdatedaltitudeassignmentswhentheGPSwaypointsareupdated

C12

Theoperatorprovidesaltitudewhenthealtitude,coupledwiththeprogrammedwaypointsarenotaboveminimumobstacleclearancealtitude(MOCA)

H1

TheoperatormustnotprovidealtitudesthatarebelowtheMOCA

C13

Theoperatorprovidesaltitudewhenthealtitudeconflictswithothertraffic'saltitudeblocks

H2 Theoperatormostnotprovidealtitudeassignmentsthatconflictwithotheraircraft

C14

TheoperatorprovidesaltitudewhenthealtitudeisaboveicinglevelandtheUAVfliesthroughclouds

H4 TheoperatormustnotprovideanaltitudeabovetheicingleveliftheUAVfliesthroughclouds

Page 87: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

87

C15

TheoperatorprovidesaltitudeafterLOSislostduetoterrainmasking,butbeforeBLOSradiolinkisestablished

H3 TheoperatormustprovideanaltitudeassignmentbeforeLOSislost

C16

TheoperatorprovidesaltitudewhenthealtitudeassignmentsexceedthenumberofGPSwaypoints

H3 Theoperatormustprovidethesamenumberofaltitudeassignmentsaswaypoints

C17

Theoperatorprovidesaltitudewhentherearefeweraltitudeassignmentsthanwaypointsanditdoesnotincludetheentiremission

H3 Theoperatormustprovidethesamenumberofaltitudeassignmentsaswaypoints

C18Theoperatordoesnotprovideairspeedduringachangeinflightconditionorenvironmentalconditions

H1,H4,H6 Theoperatormustprovideairspeed

duringachangeinflightphaseorenvironment

C19

Theoperatorprovidesairspeedwhentheairspeedprovidedisatorbelowstallspeed

H4 Theoperatormustnotprovideanairspeedbelowstallspeed

C20TheoperatorprovidesairspeedwhentheairspeedisaboveVNE

H6 TheoperatormustnotprovideanairspeedaboveVNE

C21

Theoperatorprovidesairspeedwhenflightplanningfueldurationwasbasedonauto(maxendurance)airspeed,butahigherairspeedisset

H3,H4

Theoperatormustmonitorthefuelstateandnotprovideairspeedsignificantlydifferentthantheflightplannedairspeedforsubstantialportionsofthecruisephase

C22Theoperatorprovidesanairspeedvaluethatwillcreateaconflictwithotheraircraft

H2Theoperatormustnotprovideanairspeedvaluethatconflictswithotheraircraft

C23TheoperatorprovidesairspeedaftertheUAVstalledduetoslowflight

H4TheoperatormustprovideanairspeedabovestallspeedbeforetheUAVdepartscontrolledflight

Page 88: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

88

C24 TheoperatorprovidesairspeedafterstructuraldamagefromflyingaboveVNE

H6

TheUAVairspeedmustneverexceedVNE.IfthereisanexcursionaboveVNE,theoperatormustprovideanairspeedbelowVNEassoonaspossibleandreturntobase.

C25

TheoperatorprovidesairspeedwhenthenumberofairspeedassignmentsexceedthenumberofGPSwaypoints

H3 Theoperatormustprovidethesamenumberofairspeedassignmentsaswaypoints

C26

TheoperatorprovidesairspeedwhenthenumberofairspeedassignmentsarefewerthanthenumberofGPSwaypoints

H3 Theoperatormustprovidethesamenumberofaltitudeassignmentsaswaypoints

C27Theoperatordoesnotprovideenginestartduringprelaunchenginerun-up

H3Theoperatormustprovidetheenginestartcommandduringprelaunchenginerun-up

C28Theoperatordoesnotprovideenginestartduringbeforetakeoffprocedure

H3Theoperatormustprovideenginestartcommandduringbeforetakeoffprocedure

C29

Theoperatordoesnotprovideenginestartcommandwhentheenginefailsinflightandtheengineneedstoberestarted

H4 Theoperatormustprovideenginestartcommandwhentheenginefailsinflight

C30

Theoperatorprovidestheenginestartcommandwhengroundpersonnelarenearthepropellers

H1 Theoperatormustnotprovidetheenginestartcommandwhengroundpersonnelarenearthepropellers

C31

Theoperatorprovidesenginestartcommandwhentheenginefailsinflight,butaftertheUAViscommittedtolanding

H1TheoperatormustnotprovidetheenginestartcommandwhentheenginefailsiftheUAViscommittedtolanding

C32Theoperatordoesnotprovidethelaunchnowcommandduringtakeoff

H3Theoperatormustprovidethelaunchnowcommandduringtakeoff

C33Theoperatorprovidesthelaunchnowcommandwhentherunwayisnotclear

H2Theoperatormustnotprovidethelaunchnowcommandiftherunwayisnotclear

Page 89: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

89

C34TheoperatorprovidesthelaunchnowcommandwhentheUAVisnotontherunway

H5TheoperatormustnotprovidethelaunchnowcommandwhentheUAVisnotontherunway

C35

Theoperatorprovidesthelaunchnowcommandbeforegroundpersonnelhaveclearedthearea

H1

Theoperatormustnotprovidethelaunchnowcommandbeforegroundpersonnelhaveclearedthearea

C36TheoperatorprovidesthelaunchnowcommandaftertheUAVisairborne

H4TheoperatormustnotprovidethelaunchnowcommandaftertheUAVisairborne

C37

TheoperatordoesnotprovidethelandnowcommandwhentheUAVisinthepatternandatminimumfuel

H4

TheoperatormustprovidethelandnowcommandwhentheUAVisabovetheairfieldandatminimumfuel

C38TheoperatordoesnotprovidethelandnowcommandwhentheUAVisattheairfieldandotheraircraftareattemptingtoenterthepattern

H2

TheoperatormustprovidethelandnowcommandwhentheUAVmustprovidethelandnowcommandwhentheUAVisinthepatternandotheraircraftareattemptingtoenterthepattern

C39Theoperatorprovidesthelandnowcommandwhentherunwayisnotclear

H2Theoperatormustnotprovidethelandnowcommandwhentherunwayisnotclear

C40TheoperatorprovidesthelandnowcommandwhentheUAVisnotattheairfield

H1TheoperatormustnotprovidethelandnowcommandwhentheUAVisnotattheairfield

C41

TheoperatorprovidesthelandnowcommandbeforetheUAVcompletestheairfieldarrivalprocedure

H1,H2

TheoperatormustnotprovidethelandnowcommandbeforetheUAVhascompletedtheairfieldarrivalprocedure

C42Theoperatordoesnotprovidelostlinkproceduresduringflightoperations

H1,H2Theoperatormustprovidethelostlinkproceduresduringflightoperations

C43

Theoperatorprovideslostlinkprocedure,andthelostlinkprocedurewaypointsconflictwithotheraircraft

H2 Theoperatormustnotprovidelostlinkproceduresthatareinconflictwithotheraircraft

Page 90: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

90

C44

Theoperatorprovideslostlinkprocedures,andthelostlinkprocedureisnotatoraboveMOCA

H1 TheoperatormustnotprovidelostlinkproceduresthatarebelowtheMOCA

C45

Theoperatorprovideslostlinkproceduresbeforeterrain,conflictingtraffic,orweathernecessitatealostlinkprocedureupdate

H1,H2Theoperatormustnotprovideupdatedlostlinkproceduresbeforeterrainandairspacechangesnecessitatetheupdate

C46

Theoperatorprovideslostlinkprocedureswhenthewaypointsexceedthestoragecapacityoftheautopilot

H1,H2 Theoperatormustnotprovidelostlinkproceduresthatcontainmorewaypointsthanthestoragecapacity

C47

TheVMSdoesnotprovidethepayloadpoweroncommandwhenUAVisoverthetargetarea

H3 TheVMSmustprovidepayloadpoweroncommandwhenUAVisoverthetargetarea

C48 TheVMSprovidesthepayloadpoweroncommandwhenthealternatorfails

H4

TheVMSmustnotprovidepoweroncommandwhenthereisnotenoughpowerforpayloadandVMSoperation

C49 TheVMSdoesnotprovidethepayloadpoweroffcommandwhenthealternatorfails

H4

TheVMSmustprovidepayloadpoweroffcommandwhenthereisnotenoughpowerforboththepayloadandVMS

C50TheVMSprovidesthepayloadpoweroffcommandwhentheUAVisoverthetargetarea

H3TheVMSmustprovidethepoweroffcommandwhentheUAVisoverthetargetarea

Table10UAVVMSSafetyConstraints

UCADesignator UCA Hazards Constraint

V1TheVMSdoesnotprovideroll,pitch,oryawcommandswhentheUAVisoffcourse

H1,H2,H3

TheVMSmustprovideroll,pitch,oryawcommandstocorrecttheUAVcoursewhenitisoffcourse

V2TheVMSprovidesroll,pitch,oryawwhenthecommandexceedsaircraftattitudelimits

H4TheVMSmustnotprovideroll,pitch,oryawcommandsthatexceedattitudelimits

Page 91: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

91

V3TheVMSprovidesroll,pitch,oryawwhenthecommandsteerstheUAVoffcourse

H1,H2,H3

TheVMSmustnotprovideroll,pitch,oryawcommandsthatsteertheUAVoffcourse

V4

TheVMSprovidesthepitchdowncommandwhenthethrottleisreducedinordertodescend,butthecommandisdelayed

H4TheVMSmustprovidethepitchdowncommandafterthethrottleisreducedforadescentbeforetheUAVdeceleratestostallspeed

V5

TheVMSprovidesapitchupcommandwhenthethrottleisincreasedforaclimb,butthecommandisdelayed

H6

TheVMSmustprovidethepitchupcommandafterthethrottleisincreasedforaclimbbeforetheUAVacceleratestoVNE

V6

TheVMSprovidesaroll,pitch,oryawcommand,buttheaileron,elevator,orrudderisnotbroughtbacktoneutralwhentheaircraftreachesthetargetheading/descent/ascent

H1,H2,H3

TheVMSmustprovidearoll,pitch,oryawcommandtoreturntoneutralsuchthattheaircraftattainsthetargetattitude

V7

TheVMSprovidesaroll,pitch,oryawcommand,buttheaileron,elevator,orrudderisnotbroughtbacktoneutralbeforetheUAVreachesthetargetheading/descent/ascent

H1,H2,H3

TheVMSmustprovidearoll,pitch,oryawcommandtoreturntoneutralsuchthattheaircraftattainsthetargetattitude

V8

TheVMSdoesnotprovideathrottlesettingcommandwhenenvironmentalconditionschange

H4,H6 TheVMSmustprovideathrottlesettingwhentheenvironmentalconditionschange

V9

TheVMSdoesnotprovideahigherthrottlesettingwhentheUAVisinasustainedturn,whichreduceslift

H1,H2 TheVMSmustprovideahigherthrottlesettingduringsustainedturnstomaintaintargetaltitude

V10

TheVMSprovidesathrottlesetting,butthethrottlesettingisnotenoughtomaintainanairspeedabovestallspeed

H4 TheVMSmustprovideathrottlesettinghighenoughtomaintainanairspeedabovestallspeed

V11TheVMSprovidesathrottlesettingthatacceleratestheaircraftaboveVNE

H6TheVMSmustprovideathrottlesettinglowenoughtomaintainanairspeedbelowVNE

Page 92: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

92

V12TheVMSprovidesareducedthrottlesettingtoolateaftertheUAVflaresforlanding

H1,H5TheVMSmustnotprovideareducedthrottlesettingtoolateaftertheUAVflaresforlanding

V13

TheVMSprovidesathrottlesettingtoacceleratetoatargetspeed,butthethrottleisnotreducedbeforereachingVNE

H6 TheVMSmustreducethethrottlesettingbeforereachingVNEduringanacceleration

V14

TheVMSprovidesathrottlesettingtodeceleratetoatargetspeed,butthethrottleisnotincreasedbeforereachingstallspeed

H4 TheVMSmustincreasethethrottlesettingbeforereachingstallspeedwhendecelerating

Page 93: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

93

Table11UAVOperatorScenarios

UCA Hazard Number MainScenarioDescription SafetyConstraint

TheoperatordoesnotprovidetheGPSwaypointsduringprelaunchoperations

H3 C.1.1

TheoperatorprovidestheGPSwaypoints.AsecondUAVsortieisbeginningatthesametime,andtheGPSwaypointsaresenttothewrongUAV.TheintendedUAVdoesnotreceivethewaypoints

EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbeverifiedtoensureitiscorrect

C.1.2

TheoperatorprovidestheGPSwaypointstotheUAV.Asignalinterfereswiththecommand,andtheUAVdoesnotreceiveit.

UAVoperatorsmustbeawareofEMusageinoperatingareaanddeconflictoperationstoavoidinterference.

C.1.3

TheoperatordoesnotsendtheGPSwaypointseventhoughtheyareneedtocarryoutthesortie.Theoperatoristoldthatanewcustomerrouterequestisforthcoming,andtheoperatordecidestowaitforthewaypointsandcontinueonwiththepreflight.TheoperatorforgetsthattheGPSwaypointswereneverprovidedtotheUAVafterthepreflightiscomplete.

Theoperatormusteitherdelaythesortieifnewcustomerrequirementsareexpected,orprovidethecurrentGPSwaypointswithaplantoupdatethemoncethenewrequestisprovided

C.1.4

TheoperatordoesnotsendtheGPScoordinates.TheoperatorreceiveswarningsfromtheUAVindicatingthereisaproblem.Thewarningsareinaccurate,andthesystemsareoperatingcorrectly,buttheoperatorstopsprelaunchoperationstotroubleshoottheproblem.

TheUAVmustnotprovidenuisancewarnings

Page 94: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

94

H2 C.1.5

TheoperatorsendstheGPSwaypointstotheUAV.Theywerenotsavedbytheautopilot,andolderwaypointsalreadyloadedwerenotoverwritten.

TheautopilotmustsavetheGPSwaypointsreceivedbytheUAV

TheoperatordoesnotprovideupdatedGPSwaypointswhenmissionchanges

H3 C.2.1TheoperatorprovidestheGPSwaypoints,buttheUAVdoesnotreceivethewaypointsduetointerferencealongtherouteofflight

UAVoperatorsmustbeawareofEMusageinoperatingareaanddeconflictoperationstoavoidinterference.

C.2.2

Theoperatorreceivesaccuratefuelstatefeedback,butincorrectlybelievesthefuelstateoftheUAVwillnotallowforthenewroutebecausetheoperatormiscalculatedthecurrentUAVfueldurationormiscalculatedthedurationoftheupdatedroute.TheoperatordoesnotprovidetheGPSwaypointstotheUAVtoavoidrunningoutoffuel.

Theoperatormustbeabletoquicklyandaccuratelycalculatefueldurationandroutedurationtomakethecorrectdeterminationforroutechangesinflight

H2 C.2.3

Thecustomerrequestforaroutechangeduringthesortiewasnotbroughttotheoperatoratthegroundstation.Therequestwasdeliveredtotheoperator'sunit,whichisnotcollocatedwiththegroundstation.TheoperatordoesnotprovidetheGPSwaypointstotheUAVbecausetheoperatorisunawareofthemissionchange

Customerchangerequestsduringthemissionmustbedeliveredasquicklyaspossible.Considerhavingthechangerequestsdelivereddirectlytothegroundstation

H2 C.2.4

TheoperatorsendstheGPSwaypointstotheUAV.Theywerenotsavedbytheautopilot,andolder

TheautopilotmustsavetheGPSwaypointsreceivedbytheUAV

Page 95: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

95

waypointsalreadyloadedwerenotoverwritten.

TheoperatorprovidestheGPSwaypointswhentheydonotalignwiththemission

H3 C.3.1

TheoperatordoesnotprovideGPSwaypoints.Thestepisaccidentallyskippedduringpreflight.GPSwaypointsfromthelastsortiearestoredinthememoryandtheUAVusesthose

TheGPSwaypointsstoredintheautopilotmustbeverifiedwiththemissionplan

H2 C3.2

TheoperatorsendstheGPSwaypointstotheUAVhowevertheydonotalignwiththemission.Duringmissionplanningtherequestedroutewaschanged,howeverthatinformationdidnotmakeittothemissionplanners.

Customerchangerequestsduringthemissionmustbedeliveredasquicklyaspossibletomissionplanners

H2 C.3.3

TheoperatorsendstheGPSwaypointstotheUAVhowevertheydonotalignwiththemission.Themissionplannerscopyanoldmissionplanandupdateit,howevertheymissthewaypointupdates

Theoperatormustverifythemissionplanwiththecustomerrequest

H1,H2,H3 C.3.4

Theoperatorprovidedcoordinatesthatalignedwiththemission,butaBLOSoperatordoingagroundstationcheckoutaccidentallylinkedwiththeUAVandsentnewcoordinates.Thesecoordinatesoverrodethepreviouscoordinatesanddidnotalignwiththemission

GroundstationchecksmustbeeitherdeconflictedwiththeUAVflyingschedule,orbeconductedwithradiosofftoavoidtransmittingcommands

H1,H2,H3 C.3.5

TheoperatorprovidedGPSwaypointsthatalignedwiththemission,howevertheUAVdidnotflythewaypoints.TheGPSsolutionalongtherouteissuchthatthenavigationisnotaccurate

TheoperatormustreceivefeedbackwhentheaccuracyoftheGPSsolutionisbelowaminimumthreshold,additionallyothernavigationsolutions

Page 96: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

96

suchasINSorVORshouldbeconsideredasabackupsystem

TheoperatorprovidestheGPSwaypointswhentheypresentaconflictwithotheraircraft

H2 C.4.1

TheoperatorprovidesGPSwaypointsthatdonotconflictwithothertraffic,butthereisinterferencealongtheroute.ThewaypointsarenotreceivedbytheUAV,andautopilotuseswaypointsfromtheprevioussortie,whichconflictwithpresenttraffic

UAVoperatorsmustbeawareofEMusageinoperatingareaanddeconflictoperationstoavoidinterference.

H3 C.4.2

TheoperatorprovideswaypointstotheUAV.Theoperatorormissionplannersusedanoldflightplanasatemplateforthecurrentmission,butdidnotcopyoverallthedata.,Thewaypointsdonotmatchtheapprovedroutefromtheairspacetrafficoperator(ATC).

TheoperatormustverifythemissionplanwiththecustomerrequestandapproveATCroute

C.4.3

Theoperatorprovideswaypointswhichdonotconflictwithairtraffic,butthewaypointsarefarapartfromeachother,andtravelbetweenthewaypointsdopresentaconflictwithotheraircraft

WaypointsmustbesufficientlyclosetogethertocontrolthebehavioroftheUAVandpreventitfromconflictingwithothertraffic

C.4.4

Theoperatorprovideswaypointswhichdonotconflictwiththeairtrafficasreportedbytheairtrafficoperator,howevertheairtrafficchangesafterplanningorduringthesortie.Theoperatordoesnotreceivetheupdatedinformationinorder

TheoperatormustbeprovidedwithandairtrafficchangestoensuretheUAVisproperlydeconflictingfromothertraffic

Page 97: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

97

toprovideadifferentsetofwaypoints

C.4.5

TheoperatorsendstheGPSwaypointstotheUAV.Theywerenotsavedbytheautopilot,andolderwaypointsalreadyloadedwerenotoverwritten.

TheautopilotmustsavetheGPSwaypointsreceivedbytheUAV

TheoperatorprovidesGPSwaypointsandtheroutelengthexceedsthefuelonboard

H4 C.5.1

TheoperatordoesnotprovideGPSwaypoints.Thestepisaccidentallyskippedduringpreflight.GPSwaypointsfromthelastsortiearestoredinthememoryandtheUAVusesthose.Theprevioussortiewaslonger,andtheUAVwasfueledwithmorefuel.

TheGPSwaypointsstoredintheautopilotmustbeverifiedwiththemissionplan

C.5.2

TheoperatorprovidestheGPSwaypointsandtheroutelengthexceedsthefuelonboard.TheoperatorfatfingeredaGPSwaypointresultingintheUAVflyingfurtherfromtheairfieldthananticipated.TheerrorwasnotdiscovereduntiltheUAVtraveledsignificantlyoffcourseandnolongerhadthefueltoreturntotheairfield

TheGPSwaypointsstoredintheautopilotmustbeverifiedwiththemissionplan

C.5.3

TheoperatorprovidesGPSwaypointstocreatearoutebasedonalargerthanstandardtakeofffuelweightoftheaircraft,howevergroundpersonnelfueledtheaircraftthestandardamount.

Theoperatormustprovidenonstandardfuelrequeststothegroundpersonnel,andgroundpersonnelmustdocumentthefuelstatusoftheaircraftfor

Page 98: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

98

Therewasnotenoughfueltocompletethesortie.

theoperatortoverifyduringpreflight

C.5.4

TheoperatorprovidedtheGPSwaypointsandbelievedbasedonthereportedfuelstatethattheUAVthatthesortiedurationwasappropriate,howeverthefuelstatefeedbackwasincorrectduetofuelsystemmodifications

TheUAVmustprovideaccuratefuelstatefeedbacktotheoperator

C.5.5

TheoperatorprovidedtheGPSwaypointsbasedontheexpectedfuelconsumption,however,thefuelconsumptionwashigherthanexpected.Theoperatormonitorsthefuelconsumptionandrecognizesthatthatthedurationofthesortiewillbelongerthanfueldurationandprovidesanewsetofwaypoints,butthefuelstateistoolowtomakeitbacktotheairfield

Theoperatormusthavejokerandbingofuelstatesthatcanbeadjustedifthefuelisconsumedfasterthanexpectedtoensuretheaircraftcanreturntotheairfieldbeforerunningoutoffuel

TheoperatorprovidesGPSwaypointsthatcreatearouteoutsideofLOSradiusandBLOSisnotbeingused

H3,H4 C.6.1TheoperatorsentGPSwaypoints,howeverthewaypointswerenotreceivedduetointerferenceandtheUAVusedpreviouslystoredwaypointsforaBLOSsortie

UAVoperatorsmustbeawareofEMusageinoperatingareaanddeconflictoperationstoavoidinterference.

Page 99: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

99

C.6.2

TheoperatorsentGPSwaypointsthatarewithintheLOSradioradius,howeverterrainbetweentheantennaandtheaircraftmasksthesignal.Theoperatordidnotrecognizethatareasofhighterrainintheareacouldmaskthesignal,LOSislost

UAVoperatorsusinganLOSgroundstationmustresearchpotentialterrainmaskingareasintheareaofoperationsandflightplanaccordingly

C.6.3

TheoperatorprovidesGPSwaypointsthatareknowntobeoutsideLOS,butbelievedthatradiosignalrepeaterswouldcarrythesignaltotheUAVbeyondgroundstationLOS.Therepeatersarenotfunctioning,andthestatusoftherepeaterswasnotverifiedduringpreflightoperations.OncetheUAVwasoutsideofthegroundstation'sLOSradius,itlostthelink

UAVoperatorsusingLOSgroundstationsandrepeatersmustincluderepeatersstatusduringpreflightchecks

C.6.4

TheoperatorprovidesGPSwaypointswithinLOSradius.ThelostlinkprocedureswerenotupdatedfromapreviousBLOSsortie,andlostlinkoccursresultingintheaircrafttodepartingtheLOSradius.

Lostlinkproceduresmustbeupdatedpriortoeveryflight

TheoperatorprovidesGPSwaypointsafterLOSislost,butbeforeBLOSradiolinkisestablished

H3,H4 C.7.1

TheGPSwaypointswereprovidedbytheoperatorafterLOSislost,butbeforeBLOSradiolinkisestablished.TheoperatorprovidedGPSwaypointsjustbeforetheLOStransitiontoBLOSneartheLOSradiuslimit,howeverthelimitwaslessthanexpectedduetoterrain,atmospherics,orothereffectsandtheLOSwaslostbeforetheBLOStransition.

LOS/BLOStransitionmustoccurwellwithinLOSradiustoensurethetransitionoccursbeforetheUAVlosescommunicationwiththeLOSgroundstation.

Page 100: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

100

H2 C.7.2

TheoperatorprovidestheGPSwaypointslateoutsideoftheLOSradius,buthasnotcompletedBLOStransition.HeaviertrafficthannormalcausesseveralchangestothedepartureproceduresfortheUAV,andtheoperatorgetsbehindcreatingthenewflightplananduploadingittotheUI.BYthetimethenewflightplanisreadyforupload,theUAVisoutsidetheLOSradius.

TheUImustprovidefeedbacktotheLOSoperatorwhentheUAVisneartheLOSradiuslimitifBLOShasnotyetbeenestablished.TheoperatormusthaveestablishedprocedureswithATCtokeeptheUAVintheLOSradiusofBLOSisnotestablishedasplanned

C.7.3

TheoperatordoesnotrecognizethatLOSwaslost,andbelievestheUIstillhasalinktotheUAV.Theoperatorprovideswaypoints,buttheyarenotreceivedduetothelostlink.

TheUImustprovidefeedbacktotheoperatorwhenthelinkislost.

H1,H2,H3 C.7.4

TheoperatorprovidesGPSwaypointstotheUAV,howevertheUAVdoesnotflythewaypointsprovided.SignificantwindspushtheUAVoffcourse,andtheUAVdoesnotadjusttheheadingtomaintainthecorrectgroundtrack

TheUAVmustadjustthetargetheadingtoaccountforwindstomaintainasafegroundtrack.

TheoperatorprovidesGPSwaypointsaftertheUAVreachesbingofuel

H4 C.8.1

TheoperatorprovidesGPSwaypointstoupdatetherouteaftertheUAVreachesbingofuel.TheoperatorrecognizesthattheUAVisnearingbingofuel,andprovidesGPScoordinates,butlostlinkoccursandtheUAVdoesnotreceivethecoordinates.Perlostlinkprocedures,theUAVcontinuestoflythelastrouteprovided.Whenthelinkisreestablished,theoperatorprovideswaypointstoreturn

Theoperatormustnotwaituntilbingotoreplantheflight.OncetheUAVreachesjoker,replanningmustbegin

Page 101: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

101

totheairfield,buttheUAVispastbingoandnolongerhasenoughfueltoreturn.

C.8.2

TheoperatorprovidesGPSwaypointsaftertheUAVreachesbingofuel.TheoperatorbelievedbasedonthefuelstateanddistancethattheUAVcouldmakeitbacktotheairfieldwithlessfuelthanbingo.However,headwindscausethereturntriptotakelongerthanexpected

Theoperatormustconsiderwindswhenconductingflightplanning

C.8.3

TheoperatorprovidesGPSwaypointsaftertheUAVreachesbingofuel.Theoperatordidnotrecognizethatthefuelstatewasatbingountilreviewingthefuelstateattheregularstatuscheck.TheoperatorimmediatelyprovidesGPScoordinatestoreturntotheairfield,buttheUAVnolongerhasenoughfueltoreturnhome.

TheoperatormustenterjokerandbingofuelstatesintheUI,andtheUImustalerttheoperatorwhentheUAVisatjokerandbingo

C.8.4

TheoperatorprovidesGPSwaypointstoreturnhomebeforetheUAVreachedbingo,howeverthewaypointswerenotsavedintheautopilot,andtheUAVcontinuedtotravelontheoriginalroute.BythetimetheoperatorrecognizedthattheUAVwasnotreturningtotheairfield,theUAVwaspastbingoanddidnothaveenoughfueltoreturnhome.

TheGPSwaypointsstoredintheautopilotmustbeverifiedwiththemissionplan

Page 102: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

102

TheoperatorprovidesGPSwaypointsandthenumberofwaypointsexceedthestoragecapacityoftheautopilot

H3 C.9.1

Theoperatorprovideswaypointsthatwerewithinthestoragecapacityoftheautopilot.ThemessagereceivedbytheUAVisdelimitedincorrectlyduetotranslationfromtheUItotheradiostotheUAV,whichexceedsstoragecapacity

Thegroundstationradiosmustsendcommandsaccurately

C.9.2

TheoperatorprovidesalargenumberofwaypointstoensurethattheUAVfliesaroutethatalignswiththemission,howevertheoperatorusestoomanywaypointsthatexceededthestorage

Theoperatormustsendanumberofwaypointsthatarelessthantheautopilotstorage.Theautopilotstoragemustbelargeenoughtostoreenoughwaypointsforthelengthofmission

C.9.3

Theoperatorprovidesthewaypoints,butdoesnotreceivefeedbackthatthewaypointswerereceived,sotheoperatorprovidesthewaypointsagain.Thesecondsetofwaypointsareconcatenatedratherthanreplacingthefirstsetofwaypoints

TheUAVmustprovidefeedbackthatthewaypointswerereceived,andtheautopilotmustreplaceoldwaypointswithnewwaypoints

H1,H2 C.9.4

Theoperatorprovideswaypointsthatwerewithinthestoragecapacityoftheautopilot,butthewaypointsaredelimitedincorrectlytakingupmorestoragespacethantheautopilot'scapacity

TheUAVmustsaveprovidedwaypointsintotheautopilotaccurately

TheoperatorprovidesGPSwaypoint,butthelistofwaypointsisnotcompletefortheentiremission

H3 C.10.1

TheoperatorprovidedacompletesetofGPSwaypoints,howeverthetransmissionwascutshortduetoagroundstationradiopowerfailure,andtheUAVdidnotreceivetheentiresetofwaypoints.

Thegroundstationandassociatedequipmentmustbeconnectedtoemergencypower,andthegroundstationpowermusttransitionwithoutdelaytoemergencypowerifthemainpowersupplyiscut

Page 103: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

103

C.10.2

Theoperatorprovidesanincompletesetofwaypointsthatdidnotincludetheentiremission.TheoperatordoesnottranslatetheflightplancompletelyintotheUIduetodistractionorotherfactorsduringthepreflightpreparations.Theoperatordoesnotverifythewaypointsafterenteringthem,sotheerrorwasnotcaught

TheGPSwaypointsstoredintheautopilotmustbeverifiedwiththemissionplan

C.10.3

Theoperatorprovidesanincompletesetofwaypointsthatdidnotincludetheentiremission.Thecustomerrequestwasincomplete,andthecustomerisnotrequiredtoapprovethemissionplan,thereforetheincompleteplanwasnotcaught

Thecustomermustprovideacompleterequesttotheoperator,andmustreviewtheplantoensureitalignswiththemission

C.10.4

Theoperatorprovidesacompletesetofwaypoints,howevertheautopilotdidnotsaveallofthewaypoints.

TheGPSwaypointsstoredintheautopilotmustbeverifiedwiththemissionplan

TheoperatordoesnotprovidealtitudewhentheGPSwaypointsareupdated

H1,H2,H3 C.11.1

TheoperatorprovidesthealtitudeafterassigningnewGPSwaypoints,buttheUAVbeginsaturntothenextwaypointcausingaircraftmaskingandthealtitudesarenotreceivedbytheaircraft.

Theoperatormustensurethataltitudecommandsareaccepted,monitoraltitude,andcorrectaltitudeasneeded

C.11.2

TheoperatorbelievesthatthepreviouslyassignedaltitudeswouldbesafewiththenewGPScoordinates.Theoperatormisreadsthesectional,andthepreviousaltitudesarenotaboveMOCA.

TheUImustbeprogrammedtoincludeterraindata(atleasthighestobstacleineachsection),andprovidefeedbackiftheUAVwillflybelowMOCA

Page 104: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

104

C.11.3

Theoperatorreceivesanairtrafficbriefingandbelievesthatthepreviouslyassignedaltitudewillbedeconflictedfromotherairtraffic.Theairtrafficbriefingisoutdated,andtherearenowairtrafficconflictswiththepreviouslyassignedaltitude.

TheoperatormustconfirmwithATCthatthealtitudeblockisdeconflictedifGPSwaypointsareupdated

C.11.4

TheoperatorprovidesanewaltitudeassignmentwiththeupdatedGPSwaypoints.ThealtitudeisnotattainedbytheUAV,howeverbecausetheadditionalalternatorsreducemaxengineRPM,thusdecreasingtheservicealtitudeoftheUAV.

Simulationandflighttestmustbeaccomplishedtovalidatethelimitationsofthebaselineaircraftorvalidatenewlimitationsduetomodifications

Theoperatorprovidesaltitudewhenthealtitude,coupledwiththeprogrammedwaypointsarenotaboveminimumobstacleclearancealtitude(MOCA)

H1 C.12.1

TheoperatorprovidesanaltitudeabovetheMOCAastheUAVfliestowardsmountainousterrain,howeverthelinkislostduetoterrainoraircraftmaskingduringmaneuveringandtheUAVdoesnotreceivethealtitudeassignment

TheoperatormustprovidesafealtitudeaspartoftheentireflightplansuchthatiflostlinkoccurstheUAVwillnotcollidewithterrain

C.12.2TheoperatormisreadsthesectionalchartsandprovidesanaltitudethattheoperatorbelievesisaboveMOCA,butitisactuallynot

TheUImustbeprogrammedtoincludeterraindata(atleasthighestobstacleineachsection),andprovidefeedbackiftheUAVwillflybelowMOCA

Page 105: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

105

C.12.3

Theoperatorreceivesincorrectoroutdatedsectionalcharts,andassignedanaltitudethatwasabovetheMOCAonthechartbutthereareobstacleshigherthanlistedonthechart

Theoperatormustensurechartsareupdatedduringmissionplanningandobtainupdatedinformationpriortoflight

C.12.4

TheoperatorprovidesanaltitudeabovetheMOCA,howevertheregionofflighthasasignificantlydifferentpressurecomparedtothefield,andtheUAVisflyinganaltitudelowerrelativetotheground

Theoperatormustreceiveambientpressurereportsthroughouttherouteofflightandupdatethealtimeterasappropriate

Theoperatorprovidesaltitudewhenthealtitudeconflictswithothertraffic'saltitudeblocks

H2 C.13.1Theoperatorprovidesanaltitudethatdeconflictswithtraffic,howeverthecommandisnotreceivedduetomasking

Theoperatormustensurethataltitudecommandsareaccepted,monitoraltitude,andcorrectaltitudeasneeded

C.13.2

TheoperatorbelievesthatthetrafficwillnolongerbeinconflictbythetimetheUAVarrivesatthatwaypoint,howevertheconflictingtrafficstaysintheairspaceforlongerthanexpected

TheoperatormustrequestupdatedinformationastheUAVprogressesthroughrouteofflighttoensuretrafficdeconfliction

C.13.3

Theoperatorreceivesinformationthatconflictingtrafficisataparticularaltitude,sotheoperatorclimbsordescendstodeconflict.Thetraffichasanaltitudeblockwithinwhichitcanmaneuver,andwhiletheUAVisaboveorbelowthecurrentposition,itisnotoutsidethemaneuveringblock

Theoperatormustconfirmtheassignedaltitudeisoutsideofthealtitudeblockofconflictingaircraft

Page 106: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

106

C.13.4

Theoperatorprovidesanaltitudethatisdeconflicted,howeverthepitot-staticsystemispartiallyblockedresultingintheaircraftflyingadifferentaltitudethanassigned

Thepitotstaticsystemmustberegularlyinspectedandthepitottubeshouldbeclearofobstructionsbeforelaunch

TheoperatorprovidesaltitudewhenthealtitudeisaboveicinglevelandtheUAVfliesthroughclouds

H4 C.14.1

TheoperatorrecognizesbyviewingtheonboardcamerathattheUAVisheadingtowardsacloudandprovidesachangeinaltitudetostaybelowthecloudsandicinglevel,butthemessageisnotreceivedduetointerferenceormasking

Theoperatormustmonitoraltitudetomakesurecommandsareacceptedandreattemptcommandasneeded

C.14.2

Theoperatorknowsthatthereareicingconditionsforecastedandknowstheicinglevel,butassignsanaltitudeabovetheicinglevelanywaytoavoidterrain.Theoperatorbelievesthatbyusingthecameratheoperatorcanavoidthecloudsandthereforenotflythroughicingconditions,howeverthecloudsaretoothickalongtheroute,andtheoperatorcannotstayoutoftheclouds

Theoperatormustflybelowtheicinglevelasterrainpermitsandconsiderreturningtotheairfieldifthecloudsaretoothicktoflyataltitude

C.14.3

Theoperatorisawareoftheicingforecast,butintendstostayoutoftheclouds,howevertheonboardcamerafailsandtheoperatorcannolongerdetectwhetherornottheUAVisflyingthroughclouds

Iftheweatherissuchthatcamerauseisrequiredforsafety,andthecamerafails,theUAVmustreturntotheairfieldoranothercloserairfieldbelowtheicinglayerifterrainpermits

Page 107: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

107

C.14.4

Theicingforecastwasincorrect,andtheicinglevelwaslowerthanpredicted,sotheoperatorintendedtostaybelowthelevel,butinfactwasabovethelevel.Thecloudsarenotverythick,sotheyarehardtoseetoavoid

TheUAVoperatormustmonitorindicationsoficinganytimeicingconditionsarepossible,andremovetheUAVoutoftheconditionsassoonastheyaredetected

C.14.5

Theoperatorprovidedaltitudesthatwerebelowtheicinglevel,howevertheUAVflewabovetheicinglevel.TheoperatorprovidedthecorrectaltitudesandtheUAVproperlystoredthem,howeverthepitotstaticsystemfailedresultingininaccurateinformationsenttotheVMSandtheUAVdifferentaltitudesthanplanned

Thepitotstaticsystemmustberegularlyinspectedandthepitottubeshouldbeclearofobstructionsbeforelaunch

TheoperatorprovidesaltitudeafterLOSislostduetoterrainmasking,butbeforeBLOSradiolinkisestablished

H3 C.15.1

Thedeparturerouteincludestraveloverarisingterrainthatmasksthegroundstationantennasignal.TheoperatorrecognizedthattheterrainwouldmaskthesignalcausingtheUAVtoloseLOSlinkearlierthannormalandprovidedahigheraltitudecommand,butthelinkwaslostbeforethecommandwasreceived.

TerrainmaskingfromtheLOSgroundstationmustbeidentifiedduringsiteplanningandincorporatedinflightplanningforeachsortie

C.15.2

TheoperatorrecognizesthattheUAVflightpathwillputterrainbetweenthegroundstationandtheUAV,butprovidesanaltitudeperthenormalclimbprocedures.Theoperatorbelievesthattheterrainisnothighenoughtomaskthesignal.TheUAVlosesthelinkanddoesnot

TerrainmaskingfromtheLOSgroundstationmustbeidentifiedduringsiteplanningandincorporatedinflightplanningforeachsortie

Page 108: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

108

receivethecommandtocontinuetheclimb.

C.15.3

HeaviertrafficcausedATCtoprovidetheoperatorwithanabnormaldepartureroute.TheoperatordoesnotrecognizethatthenewroutehasrisingterrainthatwouldmasktheLOSsignal,andtheoperatorsenttheclimbaltitudeatthenormaltime,buttheLOSlinkwaslost.

TheUAVmustprovidealtitudefeedbackrelativetogroundfortakeoff/climbandlandingflightphases

H1 C.15.4

TheoperatorrecognizestherisingterrainandprovidesanaltitudetoensurethattheterraindoesnotmasktheLOSsignaluntiltheBLOStransition.However,theUAVdoesnotflytheassignedaltitude.Thealtimeterwasnotsettoairfieldaltitude,andtheUAVflieslowerthanitshould.

Thealtimetermustbesettotheairfieldaltitudeduringpreflightandverifiedbeforelaunch.

TheoperatorprovidesaltitudewhenthealtitudeassignmentsexceedthenumberofGPSwaypoints

H3 C.16.1

TheoperatorprovidesmorealtitudeassignmentsthanGPSwaypoints.Theinitialmessagecontainingaltitudeassignmentswascutoffduetolostlink.Theoperatorresendsthealtitudeassignments,butratherthanreplacetheincompletemessage,thesecondmessageisaddedontoit.

Theautopilotmustreplacepreviouslyprovidedaltitudeswiththemostrecentlyprovidedaltitudes.

Page 109: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

109

C.16.2

Duringmissionplanningtheoperatorcreatestoomanyaltitudeassignments,anddoesnotrealizethattherearemorealtitudeassignmentsthanwaypointassignments.

Themissionplanningprocessmustprovidefeedbacktotheoperatorwhennumberofwaypointsandaltitudeassignmentsdonotmatch

C.16.3

Theoperatoraccidentallyinputsone(ormore)altitudestwiceintotheUI.TheUIdoesnotprovidefeedbacktoindicatethatthenumberofaltitudeassignmentsisdifferentfromthenumberofwaypointassignments.TheUIassignsanincorrectaltitudeforeachofthesubsequentwaypointsaftertheduplication,andneverassignsthealtitudesthatdonothaveacorrespondingwaypoint.

TheUImustprovidefeedbackwhenthenumberofaltitudeandwaypointsdonotmatch.

H1,H2 C.16.4

Theoperatorprovidesthesamenumberofaltitudesaswaypoints,buttheUAVdoesnotflythealtitudesmatchedwitheachwaypoint.Thealtimeterisincorrect,andtheUAVdoesnotflytheassignedaltitude.

ThealtimetermustbesetinflightbasedonatmosphericconditionsreportedbyATC.

Theoperatorprovidesaltitudewhentherearefeweraltitudeassignmentsthanwaypointsanditdoesnotincludetheentiremission

H3 C.17.1Theoperatorprovidesthesamenumberofaltitudeassignmentsaswaypoints,butthemessageiscutoffduetolostlink.

Iflostlinkoccursaftertheoperatorprovidesacommand,theoperatormustresendthecommandwhenthelinkisestablishedtoensurethatcommandwasreceived

Page 110: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

110

C.17.2Theoperatorprovidesthesamenumberofaltitudeassignmentsaswaypoints,buttherearetoomanywaypoints,andnotallthealtitudeassignmentsarenotsavedbecausetheautopilotrunsoutofstoragecapacity.

Theoperatormustknowhowmanywaypointsandassociatedaltitudeandairspeedassignmentstheautopilotcanstoreandprovidelessthanthatamount.Additionally,theautopilotmustbeabletostoreenoughdatafortheoperatortoprovidetheentireflightplan

C.17.3

TheoperatormissesanairspeedwheninputtingthealtitudesfromthemissionplanintotheUI.TheUIdoesnotprovidefeedbacktoindicatethatthenumberofaltitudeassignmentsisdifferentfromthenumberofwaypointassignments.TheUIassumesthatthelastaltitudeassignmentinthelististhealtitudeassignmentfortheremainderoftheflight.

Themissionplanningprocessmustprovidefeedbacktotheoperatorwhennumberofwaypointsandaltitudeassignmentsdonotmatch

H1,H2 C.17.4

Theoperatorprovidesthesamenumberofaltitudesaswaypoints,buttheUAVdoesnotflythealtitudesmatchedwitheachwaypoint.Thealtimeterisincorrect,andtheUAVdoesnotflytheassignedaltitude.

ThealtimetermustbesetinflightbasedonatmosphericconditionsreportedbyATC.

Theoperatordoesnotprovideairspeedduringachangeinflightconditionorenvironmentalconditions

H1,H4,H6 C.18.1

Theoperatorprovidestheairspeed,butitisnotreceivedduetointerferencewithnearbyUAVoperations.

UAVoperatorsmustbeawareofEMusageinoperatingareaanddeconflictoperationstoavoidinterference.

Page 111: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

111

C.18.2

Theoperatordoesnotprovidetheairspeedcommandbecausetheoperatorbelievesthatthecurrentairspeedisappropriateforthenewsituation.Theoperatorisnearanairspeedlimit,andthenewconditionsreducethelimitsuchthattheUAVhasexceededairspeedlimits

Theoperatormustknowtheeffectsofflightconditionsontheairspeedlimitsandadjustairspeedwhencommandingaclimbordescentasappropriate

C.18.3

Theoperatordoesnotrecognizethechangeinflightcondition.TheUAVisprogrammedtoautomaticallydescentandclimbpertheflightplan,andtheUAVoperatordoesnotreceivefeedbackthattheclimbordescentwillcausetheUAVtoexceedairspeedlimits.

TheUImustprovidefeedbackwhenclimbingordescending,andprovidefeedbackifcurrentlyassignedairspeedwillviolatealimitatthenewaltitude

C.18.4

Theoperatordoesnotrecognizethechangeinenvironmentalconditions.GustscausetheUAVtoexceedairspeedlimits,howevertheoperatordoesnotreceiveadequatefeedbacktorealizethattheUAVisingustyconditions.

TheUAVmustbeabletodetectgustyconditionsandprovidefeedbacktotheoperator.

C.18.5

Theoperatorprovidesanairspeedappropriateforgusty,turbulentconditions,howevertheconditionsarevariablewithvariousgustspeedsanddirection.TheUAVreceivesvariableairspeedfeedbackfromthepitotstaticsystemduetothewinds,andisconstantlyprovidingthrottlesettingstomaintaintheprovidedairspeed.TheUAV'sreactiontochangesinairspeedcause

Whenflyingingusty,turbulentconditionstheUAVmustnot'chase'theprovidedairspeedsoaggressivelythatitexceedsanairspeedlimit.

Page 112: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

112

theUAVtoexceedairspeedlimits.

Theoperatorprovidesairspeedthatisatorbelowstallspeed

H4 C.19.1

Theoperatorprovidedanairspeedabovestallspeed,buttheUAVdidnotreceivethecommand.TheUAVisonfinalapproachwhentheoperatorhastoabortthelandingduetoanobstructionontheairfield.Theoperatorimmediatelyprovidesacommandtoleveloffatthecurrentaltitude.TheUAVthrottlesettingislow,andtheoperatorsendsacommandtoincreaseairspeed,howeverthecommandisnotreceivedduetomaskingatthelowaltitude

TheUImustbedesignedwithanabortprocedurethatsendsaltitudeandairspeedcommandssimultaneously.Additionally,thegroundstationandassociatedantennasmustbelocatedsuchthattheyhaveclearLOStotheUAVduringlandingandtakeoffphases

C.19.2

Theoperatorprovidesaslowairspeedabovestalltomaintainaslowgroundtrackinanorbitaroundthetargetarea.Theinitialportionoftheorbithasasignificantheadwind,butwhentheUAVturnstheheadwindbecomesatailwindreducingairspeedbelowstallspeed

Theoperatormustaccountforheadwindsduringslowflightandadjusttheairspeedaccordingly

Page 113: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

113

C.19.3

Theoperatorprovidesanairspeedbelowstallspeedbyaccidentallyinputtingthewrongnumbers(fatfingering).TherewasnofeedbackthattheairspeedtheoperatorinputintotheUIwasoutoflimits,andtheincorrectairspeedwassenttotheUAV

TheUImustprovidefeedbacktotheoperatoriftheoperatorentersacommandthatisoutsideofUAVlimits

C.19.4

Theoperatorprovidesairspeedthathigherthanstallspeed,buttheenginefailsinflight.TheoperatordoesnotimmediatelyrecognizethestateoftheUAV,andtheUAVautopilotisprogrammedtomaintainaltitude,suchthatairspeedbleedsoffbelowstallspeed.

TheUAVmustprovideengineindicatorstotheoperator,andtheUImustbeprogrammedtoalerttheoperatorwhentheengineisnotfunctioningproperlyorhasfailed

C.19.5

Theoperatorprovidesanairspeedabovestallspeed,howeverthepitot-staticsystemmalfunctions,andtheactualairspeeddecreases.TheoperatorrecognizesthattheUAVisdeceleratingbasedonthegroundtrackandexpectedwaypointtiming,butcannotintervenebydirectlycommandingathrottlesetting.

Theoperatormusthavetheabilitytodirectlycommandathrottlesetting

TheoperatorprovidesairspeedthatisaboveVNE

H6 C.20.1

TheoperatorcommandsanairspeednearVNE,andtheUAVentersairspacewithgustywindconditions.TheoperatorrecognizesthattheairspeedshouldbereducedtoensurethattheairspeeddoesnotexceedVNE.Theoperatorcommandsalowerairspeed,butthecommandisnotreceivedduetomaskingorinterference.

TheoperatormustnotcommandairspeednearVNEifgustyconditionsareforecastedorexpected.

Page 114: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

114

C.20.2

TheoperatorprovidesanairspeedthatisjustbelowVNE,howeverthewindconditionsarevariablewithsignificantgusts.AwindgustcausestheairspeedexceedVNE

Ingustyconditions,theoperatormustassignanairspeedfarenoughbelowVNEthatthewindswillnotcausetheUAVtoexceedVNE

C.20.3

Theoperatorprovidedanairspeedthatiswithinlimitsatloweraltitudes,buttheUAVthenclimbsandviolatestheairspeedlimit.

TheUImustbeprogrammedtoidentifychangesinlimitsbasedonflightconditionsandalerttheoperator.

C.20.4

TheoperatorprovidesanairspeedaboveVNEbyaccidentallyinputtingthewrongnumbers(fatfingering).TherewasnofeedbackthattheairspeedtheoperatorinputintotheUIwasoutoflimits,andtheairspeedissenttotheUAV

TheUImustprovidefeedbackwhentheoperatorprovidesanairspeedoutsideofthelimits.

C.20.5

TheoperatorprovidesanairspeedbelowVNE,howeverthepitot-staticsystemmalfunctions,andtheautopilotcommandsahigherthrottlesettingtomaintaintheairspeed,causingtheUAVtoexceedVNE

TheUAVautopilotmusthaveasecondarymethodofmeasuringairspeedincaseofapitot-staticsystemfailure,suchasGPS

Theoperatorprovidesairspeedwhenflightplanningfueldurationwasbasedonauto(maxendurance)airspeed,butahigherairspeedisset

H3,H4 C.21.1

TheoperatorcommandsahigherairspeedforafixeddurationthatwillgettheUAVtothetargetareafaster.Afterthedurationtheoperatorprovidesanairspeedtoauto(maxendurance)command,howeveritisnotreceivedbytheUAVduetointerferenceormasking

TheoperatormustcommandareturntomaxenduranceairspeedearlyenoughthatifthecommandisnotreceivedimmediatelytheUAVwillstillhaveenoughfuelendurancetocompletethesortie

Page 115: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

115

C.21.2

Theoperatorprovidesacruiseairspeedhigherthanmaxendurance,whichwastheflightplanningairspeed.TheUAVtookofflate,andtheoperatorwantstomakeuptimebycruisingatafasterairspeedtogetbackontheoriginalflightplan.TheoperatorbelievesthereisenoughfuelintheUAVtoflytheroutewithahigherairspeed(andthereforehigherfuelflow),butdoesnotdothecalculationstoverify.

Theoperatormustverifywithnewflightplancalculationsiftheairspeedwilldiffersignificantlyfrommaxenduranceairspeed

C.21.3

Theoperatorprovidesacruiseairspeedhigherthanmaxendurance,whichwastheflightplanningairspeed.TheUAVtookofflate,andtheoperatorwantstomakeuptimebycruisingatafasterairspeedtogetbackontheoriginalflightplan.TheoperatorusesthefuelflowratefeedbackprovidedbytheUAVtocalculatetheenduranceoftheUAVatthehighercruisealtitude,howeverthefuelflowrateisinaccurate

TheUAVflightmanualmustincludefuelconsumptionchartsfortheoperatortocalculateUAVendurance

C.21.4

Theoperatorcommandsairspeedonauto(max-endurance),howeverthepitot-staticsystemmalfunctionsandtheUAVactuallyfliesfaster,burningfuelatafasterrate

TheUAVautopilotmusthaveasecondarymethodofmeasuringairspeedincaseofapitot-staticsystemfailure,suchasGPS

Page 116: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

116

Theoperatorprovidesanairspeedvaluethatwillcreateaconflictwithotheraircraft

H2

C.22.1

Theoperatorprovidesanairspeedcommandtodeconflictwiththetraffic,buttheairspeedchangewasnotsufficienttoavoidthetraffic.

Theoperatormustcommandachangeinairspeedthatissufficienttodeconflictwithtraffic

C.22.2

Theoperatorprovidesanairspeedcommandtoaccelerateinordertoavoidtraffic.Theotheraircraftalsoaccelerates,resultinginacontinuedconflict.

TheoperatormustcommunicatedeconflictionactionswithATCortheaircrewoftheaircraftInconflict.Otherwise,deconflictionactionsmustbestandardizedtoallowdeconflictionactionswithoutcommunication

C.22.3

TheoperatorreceivesfeedbackfromATCthatthetrafficisnolongerinconflict,andresumesmaxendurancespeed.Thefeedbackwasbasedoncurrentrateofspeed,butthenewairspeedcausesaconflict.

Theoperatormustturnoffenginestartcommandwhentheenginestartcommanddoesnotworkuntiltheoperatorisreadytotryagain.

C.22.4

Theoperatorprovidesanairspeed,butthewindschange,causingtheairspeedtochangeandnolongerdeconflictwiththetraffic.

Theoperatormustconsiderwindswhenconductingflightplanninganddeconflictingwithtraffic

TheoperatorprovidesairspeedaftertheUAVstalledduetoslowflight

H4 C.23.1

TheoperatorrecognizesthattheUAVisabouttostall,andprovidesahigherairspeedsothattheUAVwillaccelerate.Thelinkislost,andtheUAVdoesnotreceivetheairspeedcommand.Theoperatorprovideshigherairspeedwhenthelinkisreestablished,buttheUAVhasalreadystalled.

TheUAVmustnotflynearstallspeedduringappropriatephasesofflight,suchastouchdown

Page 117: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

117

C.23.2

Theoperatorprovidesanairspeedthatisabovestallspeed,butatailwindordecreasedheadwindresultsinastall.Theoperatordoesnotimmediatelyrecognizethattheaircraftisinastall,anddelayscommandingahigherairspeed.

TheUImustprovidefeedbacktotheoperatorwhentheairspeedapproachesstallspeed.TheUAVmustbeprogrammedwithastallrecoveryprocedure.

C.23.3

Theoperatorprovidesanairspeedbelowstallspeedduetoapitot-staticsystemmalfunction.Theairspeedfeedbackishigherthanactualairspeed.Theoperatorcommandsanairspeedthatisabovestallspeed,buttheresultingspeedislessthanstallspeed.Theoperatorreceivesattitudefeedbackindicatingastall,andcommandsahigherairspeed,butaircrafthasalreadystalled.

Thepitotstaticsystemmustberegularlyinspectedandthepitottubeshouldbeclearofobstructionsbeforelaunch

C.23.4

Theoperatorprovidesanairspeedthatisabovestallspeed,howeveratailwindcausestheairspeedtodecreaseandtheUAVtostall.Theoperatorprovidesanairspeedcommand,buttheaircrafthasalreadystalled.

Theoperatormustflyanairspeedhighenoughabovestallspeedtoavoidastalliftheheadwind/tailwindchangesoccur

C.23.5

Theoperatorprovidesanairspeedthatisabovestallspeed,howevertheenginefails,andtheUAVdoesnotadjusttheUAVattitudetostopthedecelerationbelowstallspeed.Theoperatorrestartstheengineandcommandsahigherairspeed,buttheUAVhasalreadystalled.

TheUAVmustrecognizewhentheenginehasfailedandflyanattitudethatresultsinanairspeedabovestallspeed

Page 118: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

118

TheoperatorprovidesairspeedafterstructuraldamagefromflyingaboveVNE

H6 C.24.1

TheoperatorrecognizesthattheUAVisabouttoexceedVNEandprovidesalowerairspeed.Thelinkislost,andtheUAVdoesnotreceivetheairspeedcommand.Theoperatorprovideshigherairspeedwhenthelinkisreestablished,buttheUAValreadyexceededVNE.

TheUAVmustnotflynearVNE.

C.24.2

TheoperatorprovidesanairspeedthatisbelowVNE,butadecreasedtailwindoranincreasedheadwindresultsinexceedingVNE.TheoperatordoesnotimmediatelyrecognizethattheaircrafthasexceededVNEbecausetheoperatorwasnotonthemainUIpage,anddelayscommandingalowerairspeed.

TheUAVmustnotflynearVNE.Safetycriticalalerts,suchasnearinganairspeedlimitmustbeprovidedtotheoperatorregardlessofwhatUIscreentheoperatorison.

C.24.3

TheoperatorprovidesanairspeedthatisaboveVNEduetoapitot-staticsystemmalfunction.Theairspeedfeedbackislowerthantheactualairspeed.TheoperatorcommandsanairspeedthatisbelowVNE.ThereisnofeedbackotherthanairspeedtoindicatetheVNEexceedanceuntiltheUAVairframeintegrityislost.

Thepitotstaticsystemmustberegularlyinspectedandthepitottubeshouldbeclearofobstructionsbeforelaunch

C.24.4

TheoperatorprovidesanairspeedthatisbelowVNE,howeveraheadwindcausestheairspeedtoincreaseaboveVNE.Theoperatorcommandsalowerairspeed,buttheUAValreadyexceededVNE.

TheUAVmustnotflynearVNE.

Page 119: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

119

TheoperatorprovidesairspeedwhenthenumberofairspeedassignmentsexceedthenumberofGPSwaypoints

H3 C.25.1

TheoperatorprovidesmoreairspeedassignmentsthanGPSwaypoints.Theinitialmessagecontainingairspeedassignmentswascutoffduetolostlink.Theoperatorresendstheairspeedassignments,butratherthanreplacetheincompletemessage,thesecondmessageisaddedontoit.

Theautopilotmustreplacepreviouslyprovidedairspeedswiththemostrecentlyprovidedairspeeds.

C.25.2

Duringmissionplanningtheoperatorcreatestoomanyairspeedassignments,anddoesnotrealizethattherearemoreairspeedassignmentsthanwaypointassignments.

Themissionplanningprocessmustprovidefeedbacktotheoperatorwhennumberofwaypointsandairspeedassignmentsdonotmatch

C.25.3

TheoperatoraccidentallyinputsoneairspeedtwiceintotheUI.TheUIdoesnotprovidefeedbacktoindicatethatthenumberofairspeedassignmentsisdifferentfromthenumberofwaypointassignments.TheUIassignsanincorrectairspeedforeachofthesubsequentwaypointsaftertheduplication,andneverassignstheairspeedsthatdonothaveacorrespondingwaypoint.

TheUImustprovidefeedbackwhenthenumberofairspeedandwaypointsdonotmatch.

H4,H6 C.25.4

Theoperatorprovidesthesamenumberofairspeedsaswaypoints,buttheUAVdoesnotflytheassignedairspeeds.Apitot-staticsystemmalfunctioncausestheUAVtoflydifferentairspeedsthanassigned.

Thepitotstaticsystemmustberegularlyinspectedandthepitottubeshouldbeclearofobstructionsbeforelaunch

Page 120: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

120

TheoperatorprovidesairspeedwhenthenumberofairspeedassignmentsarefewerthanthenumberofGPSwaypoints

H3 C.26.1

Theoperatorprovidesthesamenumberofairspeedassignmentsaswaypoints,butthemessageiscutoffduetolostlink.

Iflostlinkoccursaftertheoperatorprovidesacommand,theoperatormustresendthecommandwhenthelinkisestablishedtoensurethatcommandwasreceived

C.26.2Theoperatorprovidesthesamenumberofairspeedassignmentsaswaypoints,buttherearetoomanywaypoints,andnotalltheairspeedassignmentsarenotsavedbecausetheautopilotrunsoutofstoragecapacity.

Theoperatormustknowhowmanywaypointsandassociatedaltitudeandairspeedassignmentstheautopilotcanstoreandprovidelessthanthatamount.Additionally,theautopilotmustbeabletostoreenoughdatafortheoperatortoprovidetheentireflightplan

C.26.3

TheoperatormissesanairspeedwheninputtingtheairspeedsfromthemissionplanintotheUI.TheUIdoesnotprovidefeedbacktoindicatethatthenumberofairspeedassignmentsisdifferentfromthenumberofwaypointassignments.TheUIassumesthatthelastairspeedassignmentinthelististheairspeedassignmentfortheremainderoftheflight.

Themissionplanningprocessmustprovidefeedbacktotheoperatorwhennumberofwaypointsandairspeedassignmentsdonotmatch

Page 121: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

121

H4,H6 C.26.4

Theoperatorprovidesthesamenumberofairspeedsaswaypoints,buttheUAVdoesnotflytheassignedairspeeds.Apitot-staticsystemmalfunctioncausestheUAVtoflydifferentairspeedsthanassigned.

Thepitotstaticsystemmustberegularlyinspectedandthepitottubeshouldbeclearofobstructionsbeforelaunch

Theoperatordoesnotprovideenginestartduringprelaunchenginerun-up

H3 C.27.1 Theoperatorprovidestheenginerestartcommand,howeverthebatteryiseitherdepletedornotproducingenoughpowertorestarttheengine.

Thebatterymustprovideenoughpowertostarttheengineduringenginerun-up.Thebatterychargemustbecheckedduringpreflight,andexternalpowermustbeusedtostarttheengineasneeded.

C.27.2

TheoperatorclicksontheenginestarticonontheUI,howevertheenginestartcommandisnotsentbecausetheoperatorclickedjustoutsidetheareathatsendsthecommand.

Theoperatormustbeabletoclickanywhereonanicontosendacommand.

C.27.3

Theoperatordoesnotprovidetheenginestartcommandbecausetheoperatorbelievesthattherearepeopleinthepropellerarea.Thegroundpersonnelareactuallyclearofthearea,butdidnotannouncetheywereclear.

Thegroundpersonnelmustprovideanallclearcallwhenpersonnelareoutofthepropellerarea.

C.27.4

Theoperatorprovidesthecommand,buttheenginedoesnotstart.Theengineunderwentmaintenance,andthewiringwasdisconnectedformaintenance,butnotreconnectedpostmaintenance.

Themaintenancepersonnelmustperformapostmaintenanceenginerun-upafterenginemaintenance.Additionally,aftermaintenancetheworkareamustbeinspectedtoensuretheUAVhas

Page 122: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

122

beenreturnedtoaflightreadystate.

Theoperatordoesnotprovideenginestartduringbeforetakeoffprocedure

H3 C.28.1

Theoperatorprovidestheenginerestartcommand,howeverthebatteryiseitherdepletedornotproducingenoughpowertorestarttheengine.

Groundpowermustbeavailabletostarttheengineasrequired.Ifbatteryisnotcharging,theflightmustbecancelled.

C.28.2

TheoperatorclicksontheenginestarticonontheUI,howevertheenginestartcommandisnotsentbecausetheoperatorclickedjustoutsidetheareathatsendsthecommand.

Theoperatormustbeabletoclickanywhereonanicontosendacommand.

C.28.3

Theoperatorreceivesinaccurateenginefeedbackindicatingthattheengineshouldnotbestarted.Theoperatorprovidestheinformationtothegroundcrew,whotroubleshoottheproblem,delayingtheflight.

Theenginehealthfeedbackparametersmustbecalibratedandregularlymaintainedtoensureaccuracy.

C.28.4

Theoperatorprovidesthecommand,buttheenginedoesnotstart.Theenginestartwirewasloose,andwhentheaircraftwastaxiedtotheenginerun-uparea,thewirebecamecompletelydisconnected.

Wiringandconnectionsmustbecheckedduringpreflightandshouldbedesignedtowithstandvibrationsassociatedwithflight

Page 123: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

123

Theoperatordoesnotprovideenginestartcommandwhentheenginefailsinflightandtheengineneedstoberestarted

H4 C.29.1 Theoperatorprovidestheenginerestartcommand,howeverthebatteryiseitherdepletedornotproducingenoughpowertorestarttheengine.

Thebatterymustprovideenoughpowertorestarttheengineiftheenginefailsinflight.

C.29.2

Theoperatorattemptstorestarttheengine,buttheUAVisabovetherestartairspeedlimit.Theaircraftattitudeissuchthattheairspeeddoesnotdecreasebelowthelimit,andtheengineisnotrestarted.

TheUAVmustbeflownatanairspeedbelowtheenginerestartlimitbeforeenginerestartisattempted.

C.29.3Theoperatorprovidestherestartenginecommand,howevertheairspeedfeedbackisincorrectandtheUAVisstillabovetherestartairspeedlimitanddoesnotrestart.

IfairspeedfeedbackisincorrecttheUAVmustbeabletoflyattitude/throttlesettingcombinationstoachieveasafeairspeed.AirspeederrorsmustbedetectedinorderfortheUAVtoupdatethemethodofcontrollingflight.

C.29.4

Theoperatorprovidestherestartenginecommand,buttheenginedoesnotrestart.Theenginehasfailedsuchthatitcannotberestarted,ortheengineisnolongerreceivingfuel.

Theoperatormustattempttocyclefueltanksbeforeenginerestartattempt.Ifthereareindicationsthatanenginerestartisnotpossible,theoperatormustimmediatelybeginpreparationforlanding

Page 124: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

124

Theoperatorprovidestheenginestartcommandwhengroundpersonnelarenearthepropellers

H1 C.30.1

Theoperatordoesnotprovidetheenginestartcommand,howevertheUAVreceivesanenginestartcommandfromasecondgroundstationwhilegroundpersonnelwerenearthepropellers

EitherUAVoperationsmustbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.

C.30.2

Theoperatordoesnotprovidetheenginestartcommandbecausetherearepeopleinthepropellerarea.TheUAVisconfiguredtostartengines,buttheoperatoriswaitingforanareaclearcall.TheoperatorputsthemouseovertheenginestartbuttonontheUIandwaitsfortheallclearcall.Themouseisaccidentallyclickedbeforetheallclearcallstartingtheengine.

Theoperatormustnotputthemouseoverasafetycriticalcommanduntilthecommandissafetoperform.Additionally,considerasecondarypromptforsafetycriticalcommandsorotherdesignstopreventaccidentallysendingcommand.

C.30.3

Theoperatoristoldthatgroundpersonnelareclearofthepropellerarea,butatechnicianreenterstheareabecausetheindividualseesanissuethatmustbecorrectedbeforeenginestart

Thegroundpersonnelmustinformtheoperatorifpersonnelreenterthepropellerareaaftertheclearsignal

H5 C.30.4

Theoperatorprovidestheenginestartcommand,howeverthebrakesfailedanddidnotkeeptheaircraftfrommoving,andittaxistowardsthepersonnel

GroundpersonnelmuststandinapositionsuchthatiftheUAVdoesinadvertentlytaxiafterenginestartitdoesnothitanyone.

Theoperatorprovidesenginestartcommandwhentheenginefailsinflight,butaftertheUAV

H1 C.31.1

Theoperatorattemptstorestarttheengine,buttheenginestartcommandisnotreceivedbytheUAVduetoterrainmaskingasitdescends.Theoperatorbeginstroubleshootingthelostlinkandleavestheenginestartcommandon.Whenthe

Theoperatormustturnoffenginestartcommandwhentheenginestartcommanddoesnotworkuntiltheoperatorisreadytotryagain.

Page 125: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

125

iscommittedtolanding

linkisestablishedtheUAVreceivestheenginerestartcommandandrestartstheengine.

C.31.2

Theoperatorattemptstorestarttheengine,buttheenginedoesnotrestart.Theoperatorthenbeginschecklistactionsforlanding.Theoperatordoesnotdisablethestarter,andtheenginestartsneartouchdown

Theoperatormustturnoffenginestartcommandwhentheenginestartcommanddoesnotworkuntiltheoperatorisreadytotryagain.

C.31.3

Theenginequitsbecausetheoperatordoesnotswitchfueltanks,andthecurrentlyselectedfueltankisempty.Theoperatorattemptstorestarttheengine,butisunsuccessful.Duringthelandingsequencetheoperatorrealizesthefuelfeederror,switchestanks,andsuccessfullyrestartstheengine.However,theUAVistooclosetotheground,andtheautopilotdoesnottransitionsafelyfromengineoffperformancetoengineonperformance.

TheoperatormustverifyfuelstateandswitchtanksduringenginefailureemergencyproceduresiftheUAVisabovesaferestartaltitude.TheUAVautopilotmustbedesignedtotransitionsmoothlybetweenengineoffandengineonperformance.

Page 126: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

126

C.31.4

Theoperatorattemptstorestarttheengine,buttheenginedoesnotrestart.Theoperatorcontinuestoattemptarestartastimepermits,inaccordancewiththechecklist.TheUAVisflyingfarfromtheairfield,andtheexactheightabovegroundisnotknown.Theoperatorcontinuestoattemptrestartandfinallydoesrestarttheengine,buttheUAVdescendedtoolowandimpactsterrain

Duringmissionplanning,operatorsmustdetermineminimumrestartattemptaltitudesforeachlegoftheroutethatisbasedonasafepressurealtitude,sinceexactaltitudeabovegroundmaynotbeknown.Thelaseraltimetermustbeonbatterypowerforusetodetermineheightaboveterrain.

C.31.5

Theoperatordeterminesbasedonthealtitudethatanenginerestartisnotappropriateandbeginschecklistactionsforlanding.Aloosewireprovidespowertotheenginestarter,andtheenginerestartswithouttheenginestartcommand

Wiringandconnectionsmustbecheckedduringpreflightandshouldbedesignedtowithstandvibrationsassociatedwithflight

Theoperatordoesnotprovidethelaunchnowcommandduringtakeoff

H3 C.32.1

Theoperatorprovidedthelaunchnowcommand,howeverthecommandwasnotreceivedduetointerferencewithconcurrentUAVoperations

UAVoperatorsmustbeawareofEMusageinoperatingareaanddeconflictoperationstoavoidinterference.

C.32.2 TheoperatordoesnotprovidethelaunchnowcommandbecausetheoperatordidnotreceiveATC'sclearfortakeoffcall

ThegroundstationmustbeequippedtocommunicatewithATC,andradioandinternalcommunicationsmustbekepttoaminimumduringlaunchoperationstoensureallATCinstructionsarereceived

Page 127: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

127

C.32.3

Theoperatordoesnotprovidethelaunchnowcommandbecausethecontrollerreceivesincorrectengineparameterfeedbackandbelievestheengineisnotoperatingwithinlimits.Theoperatorabortsthetakeofftoallowgroundpersonneltotowtheaircraftbacktoparkandtroubleshoottheproblem.

Theenginehealthfeedbackparametersmustbecalibratedandregularlymaintainedtoensureaccuracy.

C.32.4

Theoperatorprovidesthelaunchnowcommand,whichwasreceivedbytheUAV,howevertheUAVdidnotlaunch.TheUIlaunchsequenceisnotprogrammedcorrectly,andtheUAVdoesnotaccelerateenoughtorotateandtakeoff

TheUIlaunchsequencemustbeverifiedbeforeflightandadjustedforatmosphericconditionsattheairfield.

Theoperatorprovidesthelaunchnowcommandwhentherunwayisnotclear

H2 C.33.1 Theoperatordoesnotprovidethelaunchnowcommand,howeveranotherLOSgroundstationonsiteisconductingchecksanddoesprovidethelaunchcommand

EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbeverifiedtoensureitiscorrect

H1 C.33.2

TheoperatorreceivesaclearfortakeoffcallfromATC,butthegroundpersonneldidnotprovideapersonnelclearcall.TheoperatorcommandslaunchnowaftertheATCcall.

TheoperatormustnotprovidethelaunchnowcommanduntiltheoperatorreceivescallsfrombothATCandgroundpersonnel

Page 128: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

128

H1 C.33.3

TheoperatoriswaitingonaclearfortakeoffcallfromATC,andreststhemousecursoroverthelaunchnowbuttonontheUI.Whilewaiting,theoperatororanotherpersoninthegroundstationaccidentallyclicksthemouse,launchingtheUAV.

Theoperatormustnotputthemouseoverasafetycriticalcommanduntilthecommandissafetoperform.Additionally,considerasecondarypromptforsafetycriticalcommandsorotherdesignstopreventaccidentallysendingcommand.

C.33.4

TheoperatorreceivesaclearfortakeoffcallfromATCandapersonnelclearcallfromthegroundpersonnelsupportingthelaunch.Visibilityislow,andthetowercannotseetheentirerunway.Thelipstickcameraalsodoesnotprovideaviewoftheentirerunwayduetolowvisibility.ThereiseitheranaircraftoravehicleontherunwaythatcannotbeseenbyATC,groundpersonnel,ortheUAVoperator.

TheUAVmustbeabletoabortalaunchattemptoncetheoperatorrecognizesthattherunwayisnotclear.

H5 C.33.5

Theoperatordoesnotprovidethelaunchnowcommand,howevertheparkingbrakefailsandtheUAVtravelsdowntherunway.

TheUAVshouldmaintainanidleornearidlethrottlesettinguntilthelaunchcommandisprovided.Additionally,theUAVmustbeabletoquicklystopiftheUAVmovesinadvertently

TheoperatorprovidesthelaunchnowcommandwhentheUAVisnotontherunway

H5 C.34.1

Theoperatordoesnotprovidethelaunchnowcommand,howeveranotherLOSgroundstationonsiteisconductingchecksanddoesprovidethelaunchcommand

EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbe

Page 129: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

129

verifiedtoensureitiscorrect

C.34.2

Duringtheenginerun-up,theoperatoraccidentallyclicksthelaunchnowbuttonontheUI.ThethrustovercomestheparkingbrakeandtheUAVtravelsoverthechocks.

Asecondarypromptforsafetycriticalcommandsorotherdesignstopreventaccidentallysendingcommand.

C.34.3

TheoperatorprovidesthelaunchnowcommandwhentheUAVisontherunway,howevertheUAVrunsofftherunwayduringthelaunchprocedure.Thecrosswindsareoutoflimits,howeverthelatestweatherreportindicatedcrosswindswerewithinlimits.

TheweathersupportorganizationmustprovideuptodateweatherinformationandalerttheUAVoperatorifthewindisoutoflimitsduringthebeforetakeoffprocedures.

C.34.4

TheoperatorprovidesthelaunchnowcommandwhentheUAVisontherunway,howevertheUAVrunsofftherunwayduringthelaunchprocedure.TheUAVdoesnotcompensateforthecrosswinds.

TheUAVmustbedesignedtocompensateforcrosswindsduringtakeoff.

Theoperatorprovidesthelaunchnowcommandbeforegroundpersonnelandequipmentareclearofthearea

H1 C.35.1 Theoperatordoesnotprovidethelaunchnowcommand,howeveranotherLOSgroundstationonsiteisconductingchecksanddoesprovidethelaunchcommand

EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbeverifiedtoensureitiscorrect

Page 130: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

130

C.35.2

TheoperatorreceivedatakeoffclearancefromATCanddidnotseeanyonethroughthecamera.Theoperatorassumedtherunwaywasclearandprovidedthelaunchnowcommand

Theoperatormustreceiveanareaclearmessagefromthegroundpersonnelbeforeprovidingthelaunchnowcommand

C.35.3

Thegroundpersonnelstatethattheareaisclear,howeveritisnotactuallyclear.ThegroundpersonnelarestillwalkingoutofthepathoftheUAVandbelievetheyhavetimetocleartheareabeforelaunch.

Theareaclearcallmustonlybegivenwhenallpersonnelareoutofthepathoftheaircraft

C.35.4

Thegroundpersonnelstatethattheareaisclear,andbelievethegroundequipmentisoutofthepathoftheaircraft,howevertheequipmentisstillwithinthepathoftheaircraft.

Allgroundequipmentusedtotowtheaircrafttotherunwaymustbecompletelyofftherunwaybeforetakeoff

H5 C.35.5

Thegroundpersonnelandequipmentaretothesideoftheaircraftoutofthepath,howeverwhentheaircraftlaunches,itdoesnotmoveinastraightlinedowntherunway,andinsteadrollstowardsthegroundpersonnelandequipment

Allpersonnelandgroundequipmentmustbeplacedbehindtheaircrafttoavoidbeinghitbytheaircraftifthelaunchisnotsuccessful

TheoperatorprovidesthelaunchnowcommandaftertheUAVisairborne

H4 C.36.1 Theoperatordoesnotprovidethelaunchnowcommand,howeveranotherLOSgroundstationonsiteisconductingchecksanddoesprovidethelaunchcommand

EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbeverifiedtoensureitiscorrect

Page 131: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

131

C.36.2

Theoperatoraccidentallyclicksthelaunchnowbutton.Theoperatorintendedtoclickadifferentbutton.TheUAVimmediatelyreducesthrottletothestartingthrottlepositionduringthelaunchsequence,causingtheUAVtostall.

Asecondarypromptforsafetycriticalcommandsorotherdesignstopreventaccidentallysendingcommand.

C.36.3

Theoperatorprovidesthelaunchnowcommand,butthepitotstaticsystemisnotworking.TheUAVacceleratesandgoesairborne,buttheoperatorbelievesthecommandwasnotreceivedandprovidesthelaunchnowcommandagain.

Theoperatormustusevisualconfirmationoflaunch,eitherfromthecameraorfromgroundpersonnel.AdditionallyiftheUAVdoesnotappeartoworkingasexpected,thelaunchorsortiemustbeabortedandtheissueresolvedbeforecontinuingthemission.

C.36.4

Theoperatorprovidesthelaunchnowcommand.AheadwindgustcausestheUAVtobecomeairborneearlierthanexpected,andwhenthegustorgroundeffectendstheUAVnolongerhasenoughlifttomaintainflightandlandsbackontherunway.

Duringtakeoffingustyconditions,therotatespeedmustbeincreased,ifrunwaylengthallows,topreventearlyrotation.

TheoperatordoesnotprovidethelandnowcommandwhentheUAVisinthepatternandatminimumfuel

H4 C.37.1 Theoperatorprovidesthelandnowcommand,buttheUAVdoesnotreceivethecommand.InterferencefromanotherUAVpreventsthesignalreception.

EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbeverifiedtoensureitiscorrect

Page 132: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

132

C.37.2

TheoperatorbelievesthattheUAVhasenoughfueltolastuntillanding,eventhoughtheUAVisfuelstateislow.TheoperatordecidestowaitfortheUAV'sturntolandratherthandeclaringafuelemergencyandlandingassoonaspossible.

Theoperatormustdeclareafuelemergencywhenthefuelstateislowinordertolandassoonaspossible

C.37.3

TheUAVprovidesinaccuratefuelstatedataandtheoperatorbelievesthattheUAVhasmorefuelthanitactuallyhas.ThereareotheraircraftinthepatternaheadoftheUAV,andtheUAVwaitstolandinsteadofdeclaringanemergencyinordertolandaheadoftheotheraircraft.

TheUAVmustprovideaccuratefuelstatefeedbacktotheoperator

H1 C.37.4

Theoperatorrecognizesthatthefuelislowanddeclaresanemergency.Theoperatorthenprovidesthelandnowcommand,butittakeslongertolandthanexpectedduetotrafficandwinds.TheUAVrunsoutoffuelandcrashlandsofftherunway.

Theoperatormustincludewindsandthetimeittakestodeconflicttrafficwhendeterminingwhentodeclareanemergency

TheoperatordoesnotprovidethelandnowcommandwhentheUAVisattheairfieldandotheraircraftareattemptingtoenterthepattern

H2 C.38.1Theoperatorprovidesthelandnowcommand,buttheUAVdoesnotreceivethecommand.InterferencefromanotherUAVpreventsthesignalreception.

EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbeverifiedtoensureitiscorrect

Page 133: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

133

C.38.2

Theoperatordoesnotprovidethelandnowcommand.Theoperatorbelievesthatthewindsareoutoflimitsforlanding,anddecidestoremaininthepatterntoseeifthewindsdecreaseinordertoland.Thereareotheraircraftwithhigherwindlimitsthatareattemptingtolandatthesametime,andthepatternisbusy.

IftheUAVcannotland,butotheraircraftcanenterthepatternandlandtheUAVmustmaintainaholdawayfromthepatterntoavoidtrafficcongestion

C.38.3

TheoperatordoesnothearthecleartolandcallfromATC.TheoperatoriscoordinatingwiththegroundpersonnelforthetowandprovidingaircraftstatusinformationwhenATC'scallwasmade.

Duringcriticalphasesofflight,suchastakeoff,climb,andlanding,thegroundstationmustbeclearofnonessentialpersonnelandtheoperatormustmaintaina'sterilecockpit'environment.

H1 C.38.4 Theoperatorprovidesthelandnowcommand,buttheGPSsolutionisnotaccurate,andtheUAVdoesnotflythepatternaspublishedorlandontherunway

TheVMSmustreceivefeedbackwhentheaccuracyoftheGPSsolutionisbelowaminimumthreshold,additionallyothernavigationsolutionssuchasINSorVORshouldbeconsideredasabackupsystem

Theoperatorprovidesthelandnowcommandwhentherunwayisnotclear

H2 C.39.1

Theoperatordoesnotprovidethelandnowcommand,buttheUAVexecutesthelandingprocedure.AnothergroundstationprovidesthelandnowcommandforanotherUAVinthepattern,butbothUAVsreceivethecommand.

EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbeverifiedtoensureitiscorrect

Page 134: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

134

C.39.2

TheoperatorheardATCprovidealandingclearancetoanotheraircraftandmistakenlythoughttheclearancewasfortheoperator'sUAV.Theoperatorreadsbacktheclearanceatthesametimeastheotherpilot,andATConlyhearsthereadbackforthecorrectaircraft.Theoperatorprovidesthelandnowcommandastheotheraircraftislanding.

Duringcriticalphasesofflight,suchastakeoff,climb,andlanding,thegroundstationmustbeclearofnonessentialpersonnelandtheoperatormustmaintaina'sterilecockpit'environment.

C.39.3

ATCprovidesalandingclearanceeventhoughanaircraftisontherunwaybecausethecontrollerbelievesthattheaircraftwillbeofftherunwaybythetimetheUAVlands.Theaircraftontherunwayisnotabletocleartherunwayintime,andtheUAVlandsontherunwaywhiletheotheraircraftisalsoontherunway.

Theoperatormustbeabletoabortthelandingprocedureifthelandingisnotlongerconsideredsafe.Groundpersonnelmustprovidefeedbackifthereisanaircraftontherunway,astheUAVoperatormaynotseetherunwaythroughthecamera.

H5 C.39.4

Theoperatorprovidesthelandnowcommand,buttheUAVdoesnotcompensateforcrosswindsduringfinalapproachanddoesnotlandontherunway

TheUAVmustbedesignedtocompensateforcrosswindsduringlanding

TheoperatorprovidesthelandnowcommandwhentheUAVisnotattheairfield

H1 C.40.1 Thelandnowcommandisnotprovided,buttheUAVreceivesalandcommandfromadifferentgroundcontrolstation

EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbeverifiedtoensureitiscorrect

Page 135: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

135

C.40.2

Theoperatordoesnotintendtoclickthelandnowbutton.Thebuttonisnearanotherbuttonthattheoperatormeanttopress.TheoperatordoesnotimmediatelyrealizethattheUAVistryingtoland,anddoesnotrecovertheaircraftbeforeitfliesintoterrain.

Asecondarypromptforsafetycriticalcommandsorotherdesignstopreventaccidentallysendingcommand.

H2 C.40.3 TheUAVprovidesaGPSpositionindicatingthattheUAVisinthepattern,howevertheGPSsolutionisinaccurateandtheUAVisnotinthepattern.

TheVMSmustreceivefeedbackwhentheaccuracyoftheGPSsolutionisbelowaminimumthreshold,additionallyothernavigationsolutionssuchasINSorVORshouldbeconsideredasabackupsystem

C.40.4

Theoperatorprovidesthelandnowcommand,butprovidesaGPSlandingwaypointthatisnotattheairfield.Thelandingpointwasforanemergencyofffieldlanding,andwasmistakenlyprovidedtotheUAVpriortolanding.

TheUImustprovidefeedbackifthelandingwaypointisnotattherunway.

TheoperatorprovidesthelandnowcommandbeforetheUAVcompletestheairfieldarrivalprocedure

H1,H2 C.41.1 Thelandnowcommandisnotprovided,buttheUAVreceivesalandcommandfromadifferentgroundcontrolstation

EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbeverifiedtoensureitiscorrect

C.41.2

Theoperatorsetsupthelandingprocedure,andplacesthemouseoverthelandnowbutton.Theoperatoraccidentallypressesthe

Asecondarypromptforsafetycriticalcommandsorotherdesignstoprevent

Page 136: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

136

mouse,commandingtheUAVtoland.

accidentallysendingcommand.

C.41.3

TheoperatorreceivesincorrectGPSlocationandbelievestheUAVhasfinishedtheapproach.

TheVMSmustreceivefeedbackwhentheaccuracyoftheGPSsolutionisbelowaminimumthreshold,additionallyothernavigationsolutionssuchasINSorVORshouldbeconsideredasabackupsystem

C.41.4

Theoperatorprovidesthecommand,whichistobeexecutedoncethearrivaliscomplete,butinsteadtheUAVexecutesthelandingprocedureassoonasthecommandisreceived.Thecommandoverwritesthecurrentflightplan.

Thelandingsequencemustnotoverwritethecurrentplan,orthelandingsequencemustnotbeprovideduntiltheUAVisinapositiontoland.

Theoperatordoesnotprovidelostlinkproceduresduringflightoperations

H1,H2 C.42.1

Theoperatorprovidesthelostlinkprocedure,butitisnotreceivedduetointerferenceormasking.Theprocedureisthennotupdatedasterrain,weather,orconflictingtrafficchangesalongtherouteofflight

TheUAVmostprovidefeedbackindicatingthelostlinkprocedureswerereceived.Ifthefeedbackisnotreceivedbytheoperator,theoperatormustresendtheprocedures

C.42.2

Theoperatordoesnotbelievethatthelostlinkprocedureneedstobeupdatedbecausetheprocedurewasrecentlyupdatedperaregularschedule,anddoesnotprovideupdatedlostlinkprocedure.However,terrain,weather,orconflictingtraffichavechangedalongtheroutesincethescheduleupdate.

ThelostlinkproceduresshouldbeupdatedbasedonrouteoftravelandobstaclesbetweentheUAVandtheairfieldratherthantiming.

Page 137: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

137

C.42.3 TheoperatordoesnotprovideanupdatedlostlinkprocedurebecausetheoperatorwasnotawarethattheairspacethattheUAVwouldflythroughifalostlinkoccurredisnolongersafe.

ATCmustprovidetheoperatorwithuptodateinformationifairspaceisnolongersafe.TheoperatormustalsoprovideATCwiththecurrentlostlinkproceduresothatiflostlinkshouldoccurATCcanensureotheraircraftareclearofthepath.

C.42.4 Theoperatorprovideslostlinkprocedures,butthesamesignalthatisjammingcommunicationsalsojamstheGPSsignal,andtheUAVfliesoffcourse

TheUAVmustbeabletodetectwhentheGPSsignalislostandusebackupnavigationmethods.Additionally,thecommunicationssystemmusthaveabackupsystemthatisfullyindependentofthemaincommunicationssystem.

Theoperatorprovideslostlinkprocedure,andthelostlinkprocedurewaypointsconflictwithotheraircraft

H2 C.43.1

Lostlinkproceduresareupdatedbyanothergroundstation.TheprocedureswereintendedforanotherUAV.

EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbeverifiedtoensureitiscorrect

C.43.2

Theoperatorisawarethatthereareotheraircraftintheairspace,butprovidesthelostlinkprocedureanyway.Theoperatorbelievesthatshouldlostlinkoccur,theoperatorcanupdateATCsothattheycandeconflicttheotheraircraft.However,thelostlinkisduetocommunicationsfailureatthegroundstation,

Theoperatormustnotprovidealostlinkprocedurethatconflictswithothertraffic.

Page 138: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

138

andtheoperatorcannotinformATCofthelostlink.

C.43.3

TheoperatordoesnotreceivefeedbackfromATCthattheairspacetheUAVwillflythroughiflostlinkoccursisnowoccupiedbyaircraft.

ATCmustprovidetheoperatorwithuptodateinformationifairspaceisnolongersafe.TheoperatormustalsoprovideATCwiththecurrentlostlinkproceduresothatiflostlinkshouldoccurATCcanensureotheraircraftareclearofthepath.

C.43.4

Thelostlinkproceduresdonotconflictwithothertraffic,butwindsblowtheUAVoffcourse,andtheUAVdoesnotcorrectthecoursedeviation

TheUAVmustcompensateforwindsandmaintainthecoursebetweenwaypoints.

Theoperatorprovideslostlinkprocedures,andthelostlinkprocedureisnotatoraboveMOCA

H1 C.44.1 Lostlinkproceduresareupdatedbyanothergroundstation.TheprocedureswereintendedforanotherUAVthatisflyingoverlowerterrain.

EitherUAVoperationsshouldbedeconflicted,orproceduresputinplacetoensurethecontrolstationislinkedtothecorrectaircraft.Ifanincorrectlinktakesplacealldatamustbeverifiedtoensureitiscorrect

C.44.2

ThelostlinkproceduresarebasedoffofthecurrentpositionoftheUAV,butwhentheUAVlosesthelinklaterintheflightthereishigherterrainbetweentheairfieldandtheUAV.

Iflostlinkproceduresareprovidedbasedontimingratherthanexpectedterrain,thelostlinkproceduremustbesafefortheentiretimeuntilthenext

Page 139: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

139

scheduledlostlinkupdate.

C.44.3

Theoperatorhasinaccuratecharts,andbelievesthatthelostlinkprocedureissafe,butthealtitudeisactuallytoolowcomparedtotheterrain.

Theoperationssupportorganizationmustprovideupdatedandaccuratecharts.

C.44.4

Thelostlinkproceduresareofanappropriatealtitudeforthecourse,howeverthewindsblowtheUAVoffcourse,anditdoesnotcorrectthecoursedeviation.

TheUAVmustbeprogrammedtocorrectcoursedeviations.

Theoperatorprovideslostlinkproceduresbeforelostlinkproceduresneededtobeupdated

H1,H2 C.45.1

Itisalmosttimetoupdatethelostlinkprocedures,sotheoperatordecidestogoaheadandsendtheupdate.Shortlyaftertheupdate,theUAVexperiencesalostlinkandexecutestheproceduresfortheupcominglegratherthanthecurrentleg.

ThelostlinkprocedureupdatemustnotbeprovideduntiltheUAVisflyingthelegassociatedwiththeupdatedprocedure

C.45.2

TheoperatorreceivedpositionfeedbackthatindicatedtheUAVwasatthenextleg,sotheoperatorprovidedthelostlinkprocedure.Thepositionfeedbackwasincorrect,andtheupdatewasnotyetneeded.

OncetheUAVhasenteredthelegassociatedwiththeupdatedlostlinkprocedure,theoperatormustsendtheprocedure.

Theoperatorprovideslostlinkprocedureswhenthewaypointsexceedthestorage

H1,H2 C.46.1

Theoperatorprovideslostlinkproceduresthatwerewithinthestoragecapacityoftheautopilot.ThemessagereceivedbytheUAVisdelimitedincorrectlyduetotranslationfromtheUItotheradiostotheUAV,whichexceedsstoragecapacity

Thegroundstationradiosmustsendcommandsaccurately

Page 140: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

140

capacityoftheautopilot

C.46.2

TheoperatorprovidesalargenumberoflostlinkwaypointstoensurethattheUAVfliesasaferoute,howevertheoperatorusestoomanywaypointsthatexceededthestorage

Theoperatormustsendanumberofwaypointsthatarelessthantheautopilotstorage.Theautopilotstoragemustbelargeenoughtostoreenoughwaypointsforthelengthofmission

C.46.3

Theoperatorprovidesthelostlinkprocedures,butdoesnotreceivefeedbackthattheprocedureswerereceived,sotheoperatorprovidesthemagain.Thesecondsetofproceduresareconcatenatedratherthanreplacingthefirstsetofprocedures

TheUAVmustprovidefeedbackthattheprocedurearereceived,andtheautopilotmustreplaceoldprocedureswithnewprocedures

C.46.4

Theoperatorprovideslostlinkproceduresthatarewithinthestoragecapacityoftheautopilot,buttheproceduresaredelimitedincorrectlytakingupmorestoragespacethantheautopilot'scapacity

TheUAVmustsaveproceduresintotheautopilotaccurately

TheoperatordoesnotprovidethepayloadpoweroncommandwhenUAVisoverthetargetarea

H3

C.47.1

Theoperatorprovidedthepayloadpoweroncommand,howeverthesignalisjammed,andtheUAVdoesnotreceivethecommand.

TheoperatormustprovidepayloadpoweronearlytoensurethatthecommandisreceivedbeforetheUAVisoverthetargetarea

Page 141: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

141

C.47.2

TheoperatordoesnotprovidethepayloadoncommandbecausetheoperatormisinterpretedtheflightplananddidnotbelievetheUAVwasoverthetargetarea

TheUImustprovidefeedbackindicatingwhentheUAVisoverthetargetarea

H1,H2

C.47.3

TheoperatordoesnotprovidethepayloadoncommandbecausetheoperatorbelievestheUAVisnotatthetargetarea.AGPSnavigationmalfunction,inaccuratesolution,orjammingofthenavigationsignalcausestheoperatortogetincorrectornopositionfeedback.

TheGPSmustprovidefeedbackwhenthesolutionisbelowtheminimumaccuracythreshold.Additionally,asecondarynavigationalsystemsuchasVORorINSmustbeconsideredinthedesign

C.47.4

TheoperatorprovidesthepoweroncommandwhentheUAVisoverthetargetarea,howeverthepayloaddoesnotturnon.Thepayloadwasinstalledbeforetheflight,andthewiringwasnotinstalledtoprovidethepayloadwithpower

Afterconductingpayloadmaintenance,thepayloadmustundergoafunctionalcheckouttoensureitworksasexpected

Theoperatorprovidesthepayloadpoweroncommandwhenthealternatorfails

H4

C.48.1

Theoperatordoesnotprovidethepayloadpoweroncommandbecausetheoperatorrecognizesthatthereisanalternatorfailure,andtheUAVisoperatingonbatterypower.Ashortedwireprovidesthepayloadpower,anyway,drainingthebattery.

Wiringmustbecheckedduringpreflightandshouldbedesignedtowithstandvibrationsassociatedwithflight

C.48.2

Theoperatorrecognizesthatthealternatorhasfailed,buttheaircraftisheadingtowardstheairfield(onareturnleg),andtheoperatorbelievesthatthereisenoughpowerforthepayloadtobeturnedonforashorttime.

Thepayloadmustnotbepoweredonifthealternatorisnotfunctioning

Page 142: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

142

C.48.3

TheoperatordoesnotreceivepowersystemfeedbackfromtheUAV,anddoesnotrecognizethatthealternatorhasfailed.Theoperatorisusingamainscreen,andunlesstheoperatorcheckstheelectricpowerstatusscreenisunawareofthepowersystemstate.

SubsystemfaultsmustbedisplayedontheUIregardlessofwhatscreentheoperatorisactivelylookingat.Additionally,consideranelectricalsystemscreencheckpriortoturningonthepayload.

C.48.4

Theoperatorprovidesthepayloadpoweroncommand.Thepayloadusesmorepowerthanexpected,causingthebatterytodrain.Thealternatorfails,butthereisnobatterypowertopowertheUAV

Thepayloadmustnotconsumeanymorepowerthanwhatthealternatorprovides

Theoperatordoesnotprovidethepayloadpoweroffcommandwhenthealternatorfails

H4

C.49.1

Theoperatorcannotturnthepayloadpoweroffwhenthealternatorfailsbecausetheradioisnotonbatterypower.TheUAVexecuteslostlinkprocedures,butisnotprogrammedtoturnoffthepayloadpoweranddoesnothaveenoughbatterypowertoreturnhome.

Theradiomustbeonbatterypowerincaseofanalternatorfailure.Incaseoflostlink,theVMSmustbeprogrammedtoturnoffthepayloadpowerifthealternatorfailsorwiringmustbedesignedtopreventemergencypowertothepayload.

C.49.2

Theoperatorrecognizesthatthealternatorisnotproducingpower,buttheUAVisoverthetargetarea,andtheoperatordecidestocontinueoperatingthepayloaduntiltheUAVhasleftthetargetarea

Theoperatormustpoweroffthepayloadandreturntotheairfieldifthealternatorfails.

C.49.3

Theoperatorrecognizesthatthealternatorisnotproducingpower,theoperatorsendsacommandtoturnthepoweroff,howeverthepowersystemfeedback

SubsystemfaultsmustbedisplayedontheUIregardlessofwhatscreentheoperatorisactivelylookingat.Additionally,consideranalerttoensurethat

Page 143: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

143

wasdelayed,andthebatteryissignificantlydepleted

theoperatorseesthefeedbackassoonasitisprovided.

C.49.4

TheoperatorrecognizesthatthealternatorisnotproducingpowerandclicksthebuttonontheUItoturnoffthepayload.Theoperatorclickedjustoutsidethebutton,andtheoperatordidnotnoticethatthecommandtothepayloadpowerwasnotsent.

Thestatusofthepayloadpowermustbedistinguishablebetweenonandoff.

C.49.5

Theoperatorprovidesthepayloadpoweroffcommandtoconservepoweroncethealternatorfails,howeverevenwiththepayloadpowerofftheUAVdoesnothaveenoughbatterypowertoreturntobase

Thebatterymusthaveenoughpowertoreturntobasesafely

TheoperatorprovidesthepayloadpoweroffcommandwhentheUAVisoverthetargetarea

H3

C.50.1

Theoperatorprovidesthepayloadpoweroncommand,howeveranothergroundstationisbeingusedforapostmaintenancecheckortraining,andthegroundstationsendsapayloadpoweroffsignalthattheUAVreceives,andtheUAVturnsoffpayloadpower.

Groundstationsmustnotsendsignalsoutwhentheyarenotactivelycontrollinganaircraft.

C50.2

Theoperatormisinterpretstheflightplan,andbelievesthattheUAVhasexitedthetargetarea.TheoperatorturnsthepayloadpoweroffwhiletheUAVisstilloverthetargetarea.

TheUImustprovidefeedbackindicatingwhentheUAVisoverthetargetarea

Page 144: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

144

C.50.2

TheoperatorbelievestheUAVhasleftthetargetarea.AGPSnavigationmalfunction,inaccuratesolution,orjammingofthenavigationsignalcausestheoperatortogetincorrectornopositionfeedbackandprovidethepayloadpoweroffcommand

IftheoperatorisunsureofthepositionoftheUAV,theoperatormustnotprovidethepayloadoffcommand

C50.3

Theoperatordoesnotprovidethepayloadpoweroffcommand,howeverthepayloadwasnotdesignedfortheflightenvironmentitisbeingsubjectedto,andfailsinflight

ThepayloadsmustbedesignedandtestedfortheUAVflightconditions

Table12UAVVMSScenarios

UCA Hazard ScenarioDesignator MainScenarioDescription SafetyConstraint

TheVMSdoesnotprovideroll,pitch,oryawcommandswhentheUAVisoffcourse

H1,H2,H3

V.1.1

TheVMSprovidestheroll,pitch,oryaw,howevertheactuatordoesnotreceivethecommand.Abrokenwireorconnectionpreventsthesignalfromgettingtotheactuator.

Wiringmustbecheckedduringpreflightandshouldbedesignedtowithstandvibrationsassociatedwithflight

V.1.2

TheVMSknowsthepositionoftheaircraftrelativetothewaypoint,howeveritdoesnotcommandroll,pitch,oryawinordertoflytothewaypoint.WindsareblowingtheUAVoffcourse.Thewaypointsarespreadout,andtheUAVautopilotisprogrammedtoflytothenextwaypoint,notmaintain

TheUAVmustflythedesiredcourse.Inwindyconditions,thewaypointsmayhavetobeclosertogethertomaintainthetrack.Or,theUAVmustbeprogrammedtofollowthecourse,notjustflytothewaypointfrompresentposition

Page 145: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

145

thecoursefromthepreviouswaypoint.

V.1.3

TheVMSreceivesincorrectUAVpositionfeedback,andthereforedoesnotrecognizethatitneedstoprovideroll,pitch,oryawcommandstoflytothewaypoint.ThepositionisinaccuratebecausetheGPSnavigationmalfunctionsorhasaninaccuratesolution.

TheVMSmustreceivefeedbackwhentheaccuracyoftheGPSsolutionisbelowaminimumthreshold,additionallyothernavigationsolutionssuchasINSorVORshouldbeconsideredasabackupsystem

H4

V.1.4

TheVMSprovidestheroll,pitch,oryaw,butthecontrolsurfacedoesnotdeflect.Anactuatororcablelinkageisbrokennotallowingtheaircraftroll,pitchoryaw

Actuatorsandcablelinkagesmustbeinspectedbeforeeachflight.Acontrolcheckshouldalsobeperformedduringpreflight.

Page 146: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

146

TheVMSprovidesroll,pitch,oryawwhenthecommandexceedsaircraftattitudelimits

H4

V.2.1

TheVMSdoesnotprovidetheroll,pitch,oryawcommand,buttheaileron,elevator,andrudderreceivethecommand.Ashortedwireprovidespowertotheactuatorcausingtheaileron,elevator,orruddertomove.Theaileron,elevator,andrudderreceivethecommandeventhoughtheVMSdidnotcommandit.

Wiringmustbedesignedtowithstandtheflightenvironment,andinspectedbeforeflight.

V.2.2

TheVMSprovidestheroll,pitch,oryawcommandandexceedlimitsforthecurrentflightcondition.TheVMSwasprogrammedwithonesetofattitudelimits,ratherthanasetofattitudelimitsfordifferentflightconditions(altitude&speed).Thecommanddidnotexceedtheprogrammedlimits,butitdidexceedactuallimitsforthatparticularflightcondition

TheVMSmustbeprogrammedwithlimitsatallflightconditions

V.2.3

TheVMSprovidesaroll,pitch,oryawcommandthatitbelieveswillresultinanattitudewithinlimits,howevertheattitudeisactuallyoutoflimits.Theaeromodellingofthesystemwasnotvalidated,andthemagnitudeofthecommandistoolarge.Thecommandedattitudeisactuallyoutoflimits.

Theaeromodelmustbevalidatedfortheentireflightenvelopeandflightconfigurationstoincludeabnormalconfigurations

Page 147: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

147

V.2.4

TheVMSprovidesaroll,yaw,orpitchinputtocorrectaninvalidattitudeindicationitisreceivingandexceedsattitudelimits.Theinvalidfeedbackisduetoavacuumpumpfailurethatrenderstheattitudeindicatorinoperative.Thecommandexceedsattitudelimits,buttheVMSdoesnotrecognizetheexceedenceduetotheinvalidattitudeindication.

AsecondaryattitudeindicatormustbeincludedintheUAVdesignasabackuptothemainattitudeindicator.TheVMSmustreceivefeedbackofavacuumpumpfailuresothatitcanswitchtothesecondaryattitudefeedback

H5

V.2.5

TheVMSprovidesaroll,pitch,oryawcommandthatisappropriateforstayingwithintheUAVattitudelimits.Theactuatorwasconnectedtothecablesbackwards,andtheVMSinputhastheoppositeeffect(rollleftinputrollsUAVright).TheVMScontinuestocommandinthesamedirectioninanattempttocorrecttheattitudeeventuallyexceedingaircraftlimits.

Afteranycontrolsurfacerelatedmaintenance,acontrolscheckmustbeaccomplished.Acontrolscheckmustalsobeaccomplishedduringpreflight.Considerdifferentconnectorsforthedifferentdirectionssothatitcannotphysicallybeconnectedbackwards.

TheVMSprovidesroll,pitch,oryawwhenthecommandsteerstheUAVoffcourse

H1,H2,H3

V.3.1

TheVMSprovidedtheroll,pitch,oryawcorrectlytomaintainthecourse,howeverthecommandwasreceivedincorrectly.Thewiringtotheactuatorwasbackwards,commandingtheUAVtomoveintheoppositedirection.

Afteranycontrolsurfacerelatedmaintenance,acontrolscheckmustbeaccomplished.Acontrolscheckmustalsobeaccomplishedduringpreflight.Considerdifferentwiringconnectorssothatitisimpossible

Page 148: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

148

towiretheactuatorbackwards

H5

V.3.2

TheUAVprovidesaroll,pitch,oryawcommandthatisinsufficienttomaintainthecourse.Thecontrolalgorithmisdesignedtomakesmall,slowcorrectionstoavoidovercontrol.Thecorrectionsaretoosmalltocorrectcoursedeviations,andtheUAVfliesoffcourse

Thecontrolalgorithmintheautopilotmustbedesignedtomakebothsmallcorrectionswhendeviationsaresmall,andlargercorrectionsforgreaterdeviations.

H5

V.3.3

TheUAVprovidesroll,pitch,oryawcommandthatsteerstheUAVoffcourse.TheUAVreceivesincorrectpositiondataindicatingthattheUAVisoffcourse.TheUAVcommandsroll,pitch,oryawtoreturntothecourse,butactuallycausestheUAVtogooffcourse

TheGPSmustprovidefeedbackwhenthesolutionisbelowtheminimumaccuracythreshold.Additionally,asecondarynavigationalsystemsuchasVORorINSmustbeconsideredinthedesign

V.3.4

TheUAVdoesnotprovideroll,pitch,oryawcommand,buttheUAVgoesoffcourse.WindblowstheUAVoffcourse,andtheVMSisprogrammedtoflytowardsawaypoint,notmaintainacourse.

TheautopilotmustbeprogrammedtomaintainthecoursebetweenwaypointstoavoidairspaceconflictsorCFIT

Page 149: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

149

TheVMSprovidesthepitchdowncommandwhenthethrottleisreducedinordertodescend,butthecommandisdelayed

H4

V.4.1

TheVMSprovidedthepitchcommand,howevertheactuatordidnotreceivethecommandattheappropriatetime.Anintermittentwiringissuedelaysthecommandtotheactuator

Wiringandconnectionsmustbecheckedduringpreflightandshouldbedesignedtowithstandvibrationsassociatedwithflight

V.4.2

TheVMSprovidedthepitchcommandlate.Theautopilotwasprogrammedincorrectlywithtoolongofadelaybetweenthrottleandelevatorcommands

Theautopilotmustbeprogrammedtominimizedelaybetweentwocorrelatedcontrolsurfaceorthrottlecommands

V.4.3

TheVMSreceivedincorrectfeedbackwhichresultedindelayingthepitchcommand.TheVMSdidnotreceivefeedbackthatthethrottlewasreducedthereforeitdidnotcommandthenosedowntoavoidanoverspeed

TheVMSmustreceiveaccuratefeedbackofthethrottleposition

V.4.4

TheVMSreceivedincorrectfeedbackwhichresultedindelayingthepitchcommand.TheVMSreceivedincorrectfeedbackthattheelevatorwasalreadyattheappropriateposition

TheVMSmustreceiveaccuratefeedbackofthecontrolsurfacedeflections

V.4.5

TheVMSprovidedthecontrolsurfaceactuatorcommandcorrectly,buttheelevatordidnotdeflectasexpected.Theactuatorlinkageorcableisbroken,andtheelevatorisnolongercontrollable

Actuatorsandcablelinkagesmustbeinspectedregularlybeforeflight

Page 150: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

150

V.4.6

TheVMSprovidedthepitchcommandcorrectly,butthecontrolsurfacedidnotdeflectasexpected.Thepowersystemdidnotprovidepowertotheactuatorduetoapowersystemfailure

Flightcriticalcomponentssuchasactuatorsmusthavebackuppowersothattheaircraftmaybelandedafterapowersystemfailure

TheVMSprovidesapitchupcommandwhenthethrottleisincreasedforaclimb,butthecommandisdelayed

H6

V.5.1

TheVMSprovidedthepitchcommand,howevertheactuatordidnotreceivethecommandattheappropriatetime.Anintermittentwiringissuedelaysthecommandtotheactuator

Wiringandconnectionsmustbecheckedduringpreflightandshouldbedesignedtowithstandvibrationsassociatedwithflight

V.5.2

TheVMSprovidedthepitchcommandlate.Theautopilotwasprogrammedincorrectlywithtoolongofadelaybetweenthrottleandelevatorcommands

Theautopilotmustbeprogrammedtominimizedelaybetweentwocorrelatedcontrolsurfaceorthrottlecommands

V.5.3

TheVMSreceivedincorrectfeedbackwhichresultedindelayingthepitchcommand.TheVMSdidnotreceivefeedbackthatthethrottlewasincreasedthereforeitdidnotcommandthenoseuptoavoidastall

TheVMSmustreceiveaccuratefeedbackofthethrottlesetting

V.5.4

TheVMSreceivedincorrectfeedbackwhichresultedindelayingthepitchcommand.TheVMSreceivedincorrectfeedbackthattheelevatorwasalreadyattheappropriateposition

Actuatorsandcablelinkagesmustbeinspectedregularlybeforeflight

Page 151: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

151

H4

V.5.5

TheVMSprovidedthecontrolsurfaceactuatorcommandcorrectly,buttheelevatordidnotdeflectasexpected.Theactuatorlinkageorcableisbroken,andtheelevatorisnolongercontrollable

Actuatorsandcablelinkagesmustbeinspectedregularlybeforeflight

H4

V.5.6

TheVMSprovidedthepitchcommandcorrectly,butthecontrolsurfacedidnotdeflectasexpected.Thepowersystemdidnotprovidepowertotheactuatorduetoapowersystemfailure

Flightcriticalcomponentssuchasactuatorsmusthavebackuppowersothattheaircraftmaybelandedafterapowersystemfailure

TheVMSprovidesaroll,pitch,oryawcommand,buttheaileron,elevator,orrudderisnotbroughtbacktoneutralwhentheaircraftreachesthetargetheading/descent/ascent

H1,H2,H3

V.6.1

TheVMSprovidesacommandtoreturntheaileron,elevator,orrudderbacktoneutral,howeverthecommandwasnotreceivedduetoapowersystemfault.Wiringorconnectionstotheactuatorarebroken,keepingtheactuatorfromreceivingthesignal.Or,asystempowerfailure(suchasanalternatorfailure)occurs,andtheactuatorsarenotonbatterypower.

Wiringmustbeinspectedduringpreflightandmustbedesignedtowithstandvibrationsassociatedwithflight.Thepowersystemmustbedesignedsuchthatapowersystemfailuredoesnotresultinlossofactuatorpower

H4

V.6.2

TheVMSprovidesacommandtoreturntheaileron,elevator,orrudderbacktoneutral,howevertheaeromodelisincorrectandtheaircraftdidnottakeaslongasexpectedtoreachthedesiredheading/descent/ascent

Theaeromodelmustbevalidatedfortheentireflightenvelopeandflightconfigurationstoincludeabnormalconfigurations

Page 152: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

152

H4

V.6.3

TheVMSreceivedincorrectattitudedata,andbelievedthattheaileron,elevator,orrudderneededtostaydeflectedforlongerthanactuallyneededtoattainthedesiredheading/descent/ascent

Attitudeindicatorsmustbeinspectedduringpreflight,andmustbeflighttestedtoensureaccuracy

H4

V.6.4

TheVMSprovidedacommandtoreturnthecontrolsurfaceactuatortoneutral,howeverthecontrolsurfacedidnotmoveasexpected.Theactuatorlinkageorcableisbroken,andtheaileron,elevator,orrudderisnolongercontrollable

Actuatorsandcablelinkagesmustbeinspectedonaregularbasisandduringpreflightinspections

TheVMSprovidesaroll,pitch,oryawcommand,buttheaileron,elevator,orrudderisbroughtbacktoneutralbeforetheUAVreachesthetargetheading/descent/ascent

H1,H2,H3

V.7.1

TheVMSdoesnotprovideacommandtoreturntheaileron,elevator,orrudderbacktoneutral,howeverthecommandwasreceivedduetoapowersystemfault.Wiringorconnectionstotheactuatorarebroken,removingpowertotheactuatorandcausingtheaileron,rudder,orelevatortoreturntoneutral.

Wiringmustbeinspectedduringpreflightandmustbedesignedtowithstandvibrationsassociatedwithflight.

Page 153: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

153

H4

V.7.2

TheVMSprovidesacommandtoreturntheaileron,elevator,orruddertoneutral,buttheUAVhasnotyetachievedthedesiredheading/descent/ascent.Theaeromodelwasincorrect,andaircrafttooklongerthanexpectedtoreachthedesiredheading/descent/ascent.

Theaeromodelmustbevalidatedfortheentireflightenvelopeandflightconfigurationstoincludeabnormalconfigurations

H4

V.7.3

TheVMSreceivesincorrectattitudedata,andbelievesthattheaileron,elevator,orrudderdoesnotneedtostaydeflectedtoattainthedesiredheading/descent/ascent

Attitudeindicatorsmustbeinspectedduringpreflight,andmustbeflighttestedtoensureaccuracy

H4

V.7.4

TheVMSdoesnotprovideacommandtoreturntheaileron,elevator,orruddertoneutral,butitreturnedanyway.Theactuatorlinkageorcableisbroken,andtheaileron,elevator,orrudderisfreefloating

Actuatorsandcablelinkagesmustbeinspectedonaregularbasisandduringpreflightinspections

TheVMSdoesnotprovideathrottlesettingcommandwhenenvironmentalconditionschange(turbulence,gusts)

H4,H6

V.8.1

TheVMSprovidesathrottlesetting,buttheenginethrottledoesnotreceivethecommand.Thewiresorconnectorstothethrottleactuatorarebroken

Wiringmustbeinspectedduringpreflightandmustbedesignedtowithstandvibrationsassociatedwithflight.

Page 154: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

154

V.8.2

TheVMSreceivesverticalspeedandairspeeddatathatindicatetheUAVisinanareaofturbulenceorgusts,howeveritisnotprogrammedtochangethethrottlesetting.

TheVMSmustbeabletoeitherdeterminewhenenvironmentalconditionschange,orprovidefeedbacktotheoperatorsuchthatthethrottlecanbesetforasafeairspeedintheconditions

V.8.3

TheVMSdoesnotreceiveverticalspeedfeedback,anddoesnotrecognizethattheUAVisinturbulentconditions

TheVMSmustreceivefeedbacktodeterminewhenitisinturbulentorgustyconditionssothatitcansetasafeairspeed

V.8.4

TheVMSrecognizesthattheUAVisflyingthroughgustyconditions,andcommandsthethrottlelowertheairspeedtolessthanmaximumsafevelocityinroughair(VNO).Thethrottlesettingdoesnotchange.Thecableoractuatorconnectionisbroken,andthethrottleisnolongercontrollable

Actuatorsandcablelinkagesmustbeinspectedonaregularbasisandduringpreflightinspections

TheVMSdoesnotprovideahigherthrottlesettingwhentheUAVisinasustainedturn,whichreduceslift

H1,H2

V.9.1

TheVMSprovidesathrottlesetting,buttheenginethrottledoesnotreceivethecommand.Thewiresorconnectorstothethrottleactuatorarebroken

Wiringmustbeinspectedduringpreflightandmustbedesignedtowithstandvibrationsassociatedwithflight.

Page 155: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

155

V.9.2

TheVMSentersaturnandtheairspeedsubsequentlydecreases.TheVMScommandsahigherthrottlesettingtomaintainairspeed,whichinturnincreasestheturnradius,causingtheaircrafttonolongerbeoncourse.TheVMSrespondsbyincreasingbankangle,whichagainnecessitatesanincreasedthrottlesettingcausingtheturnradiustoincreaseagain.ThiscycleoccursuntiltheUAVreachesthebankanglelimit,causingthepayloadtopointawayfromthetargetareatheUAVisorbiting

TheUAVmustbeprogrammedtopitchupinanorbittomaintaintheturnradiuswiththehigherthrottlesetting.

H4

V.9.3

TheVMSentersaturnandtheairspeedsubsequentlydecreases.TheVMScommandsahigherthrottlesettingtomaintainairspeed,whichinturnincreasestheturnradius,causingtheaircrafttonolongerbeoncourse.TheVMSrespondsbyincreasingbankangle,whichagainnecessitatesanincreasedthrottlesettingcausingtheturnradiustoincreaseagain.Thiscyclecontinues,butattitudeindicatorsareinoperative,andtheUAVexceedsattitudelimits

TheUAVmusthaveasecondaryattitudeindicator,andtheprimaryattitudeindicatormustprovidefeedbackwhenitisinoperative

Page 156: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

156

H4

V.9.4

TheVMSrecognizesthattheUAVisdescendingintheturnandcommandsanincreasedthrottlesetting.Thethrottlesettingdoesnotchange.Thecableoractuatorconnectionisbroken,andthethrottleisnolongercontrollable

Actuatorsandcablelinkagesmustbeinspectedonaregularbasisandduringpreflightinspections

TheVMSprovidesathrottlesetting,butthethrottlesettingisnotenoughtomaintainanairspeedabovestallspeed

H4

V.10.1

TheVMSdidnotprovideathrottlesettingbelowstallspeed,howeverashortinthewiringprovidedthecommandtotheactuator,andthethrottlesettingdecreased

Wiringmustbeinspectedduringpreflightandmustbedesignedtowithstandvibrationsassociatedwithflight.

V.10.2

TheUAVprovidesathrottlesettingforaslowairspeedabovetheprogrammedstallspeed.Theprogrammedstallspeedisincorrect:itisforloweraltitudes,butathigheraltitudesthestallspeedincreases.Thehigherstallspeedisnotprogrammedintotheautopilot,andtheUAVisactuallybelowstallspeed

TheVMSmustbeprogrammedwithlimitsatallflightconditions

V.10.3

TheUAVreceivesinaccuratethrottlefeedbackandbelievesthatthethrottleisinanappropriatepositiontomaintainanairspeedabovestall.Theactuatorwasreplaced,andnotcalibratedtoensurethepositionfeedbackiscorrect.

Afteranythrottlerelatedmaintenance,anenginerunmustbeaccomplished,toincludecalibratingthepositionoftheactuatorwiththethrottlesetting

Page 157: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

157

V.10.4

TheUAVprovidedathrottlesettingthatshouldhaveresultedinahigherairspeed,buttheairspeedisbelowstall.Slackinthecablescausedthethrottletonotreachathecommandedsetting

Cablesmustbeinspectedonaregularbasis,andduringthepreflightinspection

TheVMSprovidesathrottlesettingthatacceleratestheaircraftaboveVNE

H6

V.11.1

TheVMSdidnotprovideathrottlesettingbelowstallspeed,howeverashortinthewiringprovidedthecommandtotheactuator,andthethrottlesettingincreased

Wiringmustbeinspectedduringpreflightandmustbedesignedtowithstandvibrationsassociatedwithflight.

V.11.2

TheUAVprovidesathrottlesettingforahighairspeedjustunderVNETheprogrammedVNEspeedisincorrect:itisforloweraltitudes,butathigheraltitudesVNEdecreasesThelowerVNEspeedisnotprogrammedintotheautopilot,andtheUAVisactuallyaboveVNE

TheVMSmustbeprogrammedwithlimitsatallflightconditions

V.11.3

TheUAVreceivesinaccuratethrottlefeedbackandbelievesthatthethrottleisinanappropriatepositiontomaintainanairspeedbelowVNE.Theactuatorwasreplaced,andnotcalibratedtoensurethepositionfeedbackiscorrect.

Afteranythrottlerelatedmaintenance,anenginerunmustbeaccomplished,toincludecalibratingthepositionoftheactuatorwiththethrottlesetting

Page 158: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

158

V.11.4

TheUAVprovidedathrottlesettingthatshouldhaveresultedinalowerairspeed,buttheairspeedisaboveVNE.Cablemaintenanceresultedinaninitialthrottlesettingataneutralactuatorpositionthatishigherthandesigned.Therefore,whenthethrottleincreasedtheactualthrottlesettingwashigherthanexpected

Afteranythrottlerelatedmaintenance,anenginerunmustbeaccomplished,toincludecalibratingthepositionoftheactuatorwiththethrottlesetting

TheVMSprovidesareducedthrottlesettingtoolateaftertheUAVflaresforlanding

H1,H5

V.12.1

TheVMSprovidedthethrottlecommandattherighttime,buttheactuatorreceivedthecommandlate.Anintermittentwiringissuedelaysthecommandtotheactuator

Wiringmustbeinspectedduringpreflightandmustbedesignedtowithstandvibrationsassociatedwithflight.

V.12.2

TheVMSprovidedthecommandlateduetoincorrectprogramming.TheUAVisprogrammedtowaitacertainamountoftimeaftertheflaretoreducetheairspeed,howeverflightconditionsrequiredanearlierthrottlereduction

TheVMSautopilotmustbeprogrammedtolandusingairspeedandaltitudefeedbackratherthantiming.TheUAVmustbetestedinnominalandoffnominalconditions

V.12.3

TheVMSprovidedthecommandlateduetoincorrectsystemfeedback.Thelaseraltimeterismalfunctioningandprovidingincorrectaltitudedata.TheVMSbelievestheUAVistoohighforareducedthrottlesetting

TheUAVmustbedesignedtodetectlaseraltimetermalfunctions.Thelaseraltimetermustbeinspectedregularlyforproperfunction,andtheexteriormustbecleanbeforeflight

Page 159: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

159

V.12.4

TheVMSprovidedthecommandlateduetoincorrectsystemfeedback.Thepitotstaticsystemismalfunctioning,andtheVMSbelievestheUAVisslowerthanitactuallyis.

Thepitotstaticsystemmustberegularlyinspectedandthepitottubeshouldbeclearofobstructionsbeforelaunch

V.12.5

TheVMSprovidedthecommand,buttheactuatorperformedthethrottlereductionlate.Amechanicalmalfunctionoftheactuator,suchasajam,preventedthethrottleactuatorfromoperatingatthecommandedtime.

Actuatorsandcablelinkagesmustbeinspectedregularlybeforeflight.Additionally,thereshouldbenolooseitems,oritemsthatcouldbecomelooseinflight,leftintheaircraftthatcouldinterferewithoperationoftheUAV

TheVMSprovidesathrottlesettingtoacceleratetoatargetspeed,butthethrottleisnotreducedbeforereachingVNE

H6

V.13.1

TheVMSprovidesthecommandtoreducethethrottle,howeveritisnotreduced.ThewiringtothethrottleactuatorfromtheVMSisbroken,preventingtheactuatorfromreceivingcommands

Wiringandconnectionsmustbecheckedduringpreflightandshouldbedesignedtowithstandvibrationsassociatedwithflight

V.13.2

TheVMSrecognizedthatthetargetairspeedwasreached,howeveritdidnotprovidethecommandtoreducethethrottle.Theautopilotisprogrammedwithalargedeadbandaroundtargetairspeedtoavoidovercontrolandtheassociatedinducedoscillations,howeverthetargetairspeedisnearVNE,andthedeadband

Iftargetairspeedisnottightlycontrolled,thetargetairspeedmustbesufficientlybelowVNEtoavoidoverspeeds

Page 160: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

160

allowstheUAVtoexceedVNE

V.13.3

TheVMSreceivedincorrectairspeedfeedbackduetoapitot-staticsystemfaultanddidnotrecognizethattargetairspeedwasreached

Thepitotstaticsystemmustberegularlyinspectedandthepitottubeshouldbeclearofobstructionsbeforelaunch

H4

V.13.4

TheVMSprovidedthecommandtoreducethethrottleoncetargetairspeedwasreached,howeverthethrottlewasnotreduced.Theactuatorlinkageorcableisbroken,andthethrottleisnolongercontrollable

Actuatorsandcablelinkagesmustbeinspectedregularlybeforeflight

V.13.5

TheVMSprovidedthecommandtoreducethethrottleoncetargetairspeedwasreached,howeverthethrottlewasnotreduced.Thepowersystemdidnotprovidepowertotheactuatorduetoapowersystemfailure

Flightcriticalcomponentssuchasactuatorsmusthavebackuppowersothattheaircraftmaybelandedafterapowersystemfailure

TheVMSprovidesathrottlesettingtodeceleratetoatargetspeed,butthethrottleisnotincreasedbeforereachingstallspeed

H4

V.14.1

TheVMSprovidesthecommandtoincreasedthethrottle,howeveritisnotincreased.ThewiringtothethrottleactuatorfromtheVMSisbroken,preventingtheactuatorfromreceivingcommands

Wiringandconnectionsmustbecheckedduringpreflightandshouldbedesignedtowithstandvibrationsassociatedwithflight

Page 161: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

161

V.14.2

TheVMSrecognizedthatthetargetairspeedwasreached,howeveritdidnotprovidethecommandtoreducethethrottle.Theautopilotisprogrammedwithalargedeadbandaroundtargetairspeedtoavoidovercontrolandtheassociatedinducedoscillations,howeverthetargetairspeedisnearstallspeed,andthedeadbandallowstheUAVtodeceleratebelowstallspeed

Iftargetairspeedisnottightlycontrolled,thetargetairspeedshouldbesufficientlyabovestallspeedtoavoidstalls

V.14.3

TheVMSreceivesincorrectairspeedfeedbackduetoapitot-staticsystemfaultanddoesnotrecognizethattargetairspeedwasreached

Thepitotstaticsystemmustberegularlyinspectedandthepitottubeshouldbeclearofobstructionsbeforelaunch

V.14.4

TheVMSprovidedthecommandtoincreasethethrottleoncetargetairspeedwasreached,howeverthethrottlewasnotincreased.Theactuatorlinkageorcableisbroken,andthethrottleisnolongercontrollable

Actuatorsandcablelinkagesmustbeinspectedregularlybeforeflight

V.14.5

TheVMSprovidedthecommandtoincreasethethrottleoncetargetairspeedwasreached,howeverthethrottlewasnotincreased.Thepowersystemdidnotprovidepowertotheactuatorduetoapowersystemfailure

Flightcriticalcomponentssuchasactuatorsmusthavebackuppowersothattheaircraftmaybelandedafterapowersystemfailure

Page 162: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

162

V.14.6

TheVMSprovidedthecommandtoincreasethethrottleoncetargetairspeedwasreached,howeverthethrottlewasnotincreased.Enginefailureoccurred,notallowingtheaircrafttoaccelerate

Ifenginefailureoccurs,theVMSmustrecognizethefailureandprovideattitudecommandstoavoidastall

Page 163: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

163

Appendix3:STPACompliancewithMIL-HDBK-516CChapter4ofMIL-HDBK-516Cdiscussesthesystemsengineeringcriteriaforairworthinesscertification.ThispaperexamineshowSTPAwouldprovidetheinformationrequiredforeachoftheSEairworthinesscriterialistedinthehandbook,andmoreimportantlyensureasafeaircraftdesign.4.1Designcriteria.4.1.1Requirementsallocation.Criterion:Verifythatthedesigncriteria,includingrequirementsandgroundrules,adequatelyaddressairworthinessandsafetyformissionusage,fullpermissibleflightenvelope,dutycycle,interfaces,inducedandnaturalenvironment,inspectioncapability,andmaintenancephilosophy.Standard:Allocatedhighlevelairworthinessandsafetyrequirementsdownthroughthedesignhierarchyaredefined.Allocateddesigncriteriaforallsystemelementsandcomponentsresultinrequiredlevelsofairworthinessandsafetythroughoutthedefinedoperationalflightenvelope,environment,usageandlife.MethodofCompliance:Inspectionofprocessdocumentationverifiesallocationofairworthinessandsafetyrequirementsanddesigncriteria.Traceabilityisdocumentedamongrequirements,designcriteria,designandverification.Consistencybetweendesigncriteriaandairworthinessandsafetyrequirementsisconfirmedbyinspectionofdocumentation.

OneoftheinputsintoanSTPAanalysisisthecontextwithinwhichthesystemoperates.Thecontextincludesmissionset,flightphases,operatingenvironment,andmaintenanceandlogisticssupport.Oncethecontextisdetermined,therequirementsgeneratedbySTPAforsafeoperationwithinthatcontextflowfromhighlevelrequirementstothesubsystemandcomponentlevels.TraceabilityisakeycomponentofSTPAandflowsthroughtheanalysisandproductstooperations.ThistraceabilitycoupledwiththesystematicapproachofSTPAalsoensuresthatcriticalsafetyrequirementsarenotmissedduringtheairworthinesscertificationinspection.4.1.2Safetycriticalhardwareandsoftware.Criterion:Verifythatairworthinessandsafetydesigncriteriaareadequatelyaddressedatcomponent,subsystemandsystemlevels,includinginterfaces,latencies,softwareandinformationassurance.Standard:Safetycriticalsoftwareandhardware(includingCriticalSafetyItems(CSIs))areidentified.Designcriteriaandcriticalcharacteristicsofsafetycriticalsoftwareandhardwarearedefined,substantiatedanddocumentedinsufficientdetailtoprovidefor“form,fit,functionandinterface”replacementwithoutdegradingsystemairworthiness.Designcriteriaandcriticalcharacteristicsofsafetycriticalsoftwareandhardwareincorporaterelevantsecurityrequirementsandmitigationtechniquesneededtoensuresafetyofflight.MethodofCompliance:Inspectionofdocumentationverifiesthataprocessisinplacetoadequatelyidentifysafetycriticalsoftwareandhardware,CSIs,andassociateddesigncriteriaandcriticalcharacteristicsatthecomponent,subsystemandsystemlevels.Inspectionofdocumentationverifiesthatsafetycriticalsoftwareandhardware,CSIs,andassociateddesigncriteriaandcriticalcharacteristicsresultingfromthisprocessaredocumented.InspectionofdocumentationverifiesthatsecurityrequirementsandmitigationtechniquesthataffectflightsafetyareincorporatedintosafetycriticalsoftwareandhardwareandCSIs.

CriticalsafetyitemsareeasiertoidentifywithSTPAbecauseofthetop-downapproach.Ratherthanlookingatallcomponentstodeterminewhichonesaresafetycritical,STPAstartswiththeaccidentsandassociatedhazardsandgeneratesthescenariosthatcouldcausethehazardousstatetooccur.Thesescenarioswouldillustratewhichcomponentsorsubsystemsaremostsafetycritical.Additionally,anSTPAanalysisprovidesinformationregardingtheinterfacesbetweenthecomponentandotherelementsinthesystem.Ifthesafetyconstraintsareimplementedinthedesign,thesystemwillbesafe.Aslongasthenewcomponentmeetsthe

Page 164: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

164

samesafetyconstraintsasthepreviouscomponent,thecomponentwillnotdegradeairworthiness.Ifthenewcomponentprovidesupgradedfunctionality,theoriginalSTPAanalysiscanbemodifiedtodeterminesafetyoftheupgradedcomponent.STPAcanalsobeusedforsoftwareandinformationassurance.Anotherimportantandoftenoverlookedinterfaceisbetweentheoperatorandtheautomation.STPAisdesignedtoaccountforhumanandsoftwareinteractionsaswellascomponent-levelinteractions.4.1.3Commercialderivativeaircraft.Criterion:Verifythat,forcommercialderivativeairvehicles,theairvehicle'scertificationbasisaddressesalldesigncriteriaappropriatefortheplannedmilitaryusage.Standard:Commercialderivativeaircrafthasbeenassessedforitssuitabilityfortheintendedmilitaryapplicationanddeterminedtobeairworthyandsafe.Limitationsappropriatetotheintendedmilitaryusageandenvironmentareidentified.MethodofCompliance:Inspectionofcertificationdataandanalysessubstantiatesthatthemilitaryairvehicleisairworthyandsafeforitsintendedmilitaryusageandenvironments.Militaryairvehicleairworthinesscertificationdataaddressesallequipment,usage,andenvironmentsnotcoveredbythecommercialcertification.

AnSTPAanalysiscanbecompletedusingthecommercialaircraftwithinthenewoperationalcontext.Inaddition,theanalysiswilldeterminethesafetyoftheintegrateddesignofthecommercialairframewithmilitarymissionsystems.Militarymissionsareusuallymuchmorestressfulontheaircraftandinvolvepushingtheenvelopemorethanthemissionsforwhichcommercialaircraftarecertified.Theexpectedenvironmentandstressesusedduringthecommercialcertificationprocessmaybedifferentthanthatformilitarymissions.STPAwouldconsiderthechangeinoperationsintheanalysis.Inaddition,commercialairworthinessstandardslikeSAEARP4761assumethatpilotsandmaintainersdotherightthinganddonotconsidertheimplicationsofhumanerroronthedesignoftheaircraftitself(notjusttheinterfacebetweentheaircraftandthehumans).STPAincludeshumanbehaviorinairworthinesscertification.4.1.4Failureconditions.Criterion:Verifythatsafetyofflightrelatedfailureconditionshavebeenadequatelyaddressedinthedesigncriteria.Standard:Safetyofflightfailureconditions(includingapplicablesinglepointfailures)havebeenidentified.Nosinglesafetyofflightfailureconditionresultsina"Catastrophic"severity(i.e.,death,permanenttotaldisability,monetarylossequaltoorexceeding$10millionorlossofairvehicle)withafrequencygreaterthan"improbable"(i.e.,arateoflessthanoneeventperonemillionflighthours).MethodofCompliance:Inspectionofthehazardanalysisverifiesthatsafetycriticalhazardshavebeenidentifiedandthatcatastrophicfailuresarenomorefrequentthanimprobable.Analysisofthedesignverifiesthattherequiredlevelofsafetyisachieved.Operatinglimitationsaredefined.Theanalysisincludesgroundrulesandassumptions.

WhileSTPAdoesnotassignprobabilitiestosafetyconditions,ifalloftherequirementsandconstraintsfoundviatheanalysisareimplemented,eitherthroughsystemdesignoroperationalrequirements,thesafetyofflightrelatedfailureconditionsisadequatelyaddressed.Mishapsmayoccurwhenmultiplefailureconditionsexist.Inaddition,particularlywhensoftwareisinvolved,mishapsmayresultwhennothinghasfailedandinsteadunsafe

Page 165: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

165

interactionsoccuramongfunctioningcomponents.Commercialaircraftcertificationstandards(suchasSAEARP4761)donotincludesuchconsiderations.STPAdoes.4.1.5Operatingenvironment.Criterion:Verifythattheairsystemisdesignedtooperateinthenaturalandinducedenvironmentsforwhichitisintended.Standard:Theairsystemdesigncriteriaincludestheintendednaturalandinducedenvironments.Theairsystem,includingtheairvehicleandcontrolstationequipment,isqualifiedtooperateintheintendednaturalandinducedenvironments(e.g.,temperature,humidity,precipitation,icing,fungus,saltfog,particulateandliquidcontamination,shockandvibration,andexplosiveatmosphere).MethodofCompliance:Inspectionofdocumentationverifiesthattheairsystemintendednaturalandinducedenvironmentsaredocumented.Analysis,demonstrationandtestverifythatequipmentprovidesrequiredfunctionandperformancewithintheenvelopeofintendednaturalandinducedenvironmentswithoutimposingasafetyofflightrisk.Inspectionofqualificationtestresultsverifiesthatequipmentisqualifiedforitsintendedenvironments.

STPAprovidesaprocedureforidentifyingtheoperationalcontextofthesystemandidentifyingthesafetyconstraintsassociatedwiththatenvironment.Additionally,STPAprovidesinformationtodeterminedesigntradeoffsastheremaybesomecompetinginterestssuchasenginetakeoffpowerandcruiseperformanceorthelocationofdisplays.WithSTPA,thesafetyconsiderationsforthedecisionareevaluatedandonceadecisionismade,STPAcanbeusedtominimizeanyinducedsafetyconcerns.4.1.6Flightandsafetycriticalfunctions.Criterion:Verifythattheairsystemsdesigncriteriaidentifyflightandsafetycriticalfunctions,andtheirdegradedandfailedmodesandstates.Verifythattheairsystemandairvehicledetectandrespondappropriately,predictably,safelyandinatimelymannertoflightandsafetycriticalfunctiondegradedstatesorfailures.Standard:Thedesigncriteriaidentifyflightandsafetycriticalfunctions,modesandstatesfortheairsystem,includingtheairvehicle.Theairsystemdesigncriteriaidentifyflightandsafetycriticalfunctiondegradedstatesandfailures.Theairsystemdetectsandrespondsappropriately,predictably,safelyandinatimelymannertoflightorsafetycriticalfunctiondegradedstatesorfailures.Theairvehicledetectsandrespondsappropriately,predictably,safelyandinatimelymannertoairvehicleflightorsafetycriticalfunctiondegradedstatesorfailures,withorwithoutoperatorintervention.Theairvehicledetectsandrespondsappropriately,predictably,safelyandinatimelymannertolossofflightandsafetycriticalcommandandcontroldatalink(s)betweentheoperatorandairvehicle.Theairvehicleresponsetolossofcommandandcontroldatalinkisappropriateandsafefortheairspaceinwhichtheairsystemwillbeoperated.Theairsystemdetectsandrespondsappropriately,predictably,safelyandinatimelymannertothesenseandavoidfunctionfortheairspaceinwhichtheairsystemwillbeoperated,withorwithoutoperatorintervention.Theairsystem(includingairvehicle)responsestoflightandsafetycriticalfunctionnormalanddegradedstatesorfailures,andlossofflightandsafetycriticalcommandandcontroldatalink(s):a.Activateappropriatelyandinatimelymanner,b.Activateonlywhenneeded,c.Safelytransitiontopre-determinedmodesandstates(seealso6.2.2.4ofthisdocument),d.Activatepre-determinedprocedure(s)forrestoringfunctionality,e.Alertairspacecontrolorairtrafficcontrol,asnecessary,andf.Prevententryintopre-definedkeep-outairspaceorover-flightofpre-definedsurfaceregions(seealso11.1.1.5ofthisdocument).(Forinformation,seealso6.2;8.3.10;11.1.1and11.2.3;Section15;and17.2.9ofthisdocument.)MethodofCompliance:Verificationmethodsincludeanalysis,test,simulation,demonstration,andinspectionofdocumentation.Inspectionofdocumentationverifiesthatdesigncriteriaandprocessesidentifyflightandsafetycriticalfunctions,modesandstates;flightandsafetycriticalfunctionsdegradedstatesandfailures;andlossofflightandsafetycriticalcommandandcontroldatalink(s).Inspectionofdocumentationverifiesthatdesigncriteriaandprocessesensureairsystemresponsesareappropriatefortheintendedairspace.Analysisverifiesthatflightandsafetycriticalfunctions,modesandstatesfortheairsystem,includingtheairvehicle,areidentified.Analysisverifiesthatflightandsafetycriticalfunctiondegradedstatesandfailuresareidentified.Acombinationofgroundtestingandsimulationverifiesthattheairsystem(includingairvehicle)detectsandrespondsappropriately,predictably,safelyandinatimelymannerto:(1)flightorsafetycriticalfunctionnormalanddegradedstatesorfailures,withorwithoutoperatorintervention,(2)lossofflightandsafetycriticalcommandandcontroldatalink(s),and(3)senseandavoidfunction,withorwithoutoperatorintervention.Thistestingandsimulationverifiesthattheairsystem(includingairvehicle)responses:a.Activateappropriatelyandinatimelymanner,

Page 166: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

166

b.Activateonlywhenneeded,c.Safelytransitiontopre-determinedmodesandstates,d.Activatepre-determinedprocedure(s)forrestoringfunctionality,e.Alertairspacecontrolorairtrafficcontrol,asnecessary,andf.Prevententryintopre-definedkeep-outairspaceorover-flightofpre-definedsurfaceregions.

Asaircraftsystemsbecomemorecomplex,itismoredifficulttofullyunderstandallofthehundredsorthousandsofpotentialfailurestatesthatarepossible.Thismeansthatdesigninganaircrafttodetectandappropriatelyrespondtothesefailurestatesisequallydifficult.STPAwasdesignedforjustthisproblem.STPAallowsthedesignerstoevaluatetheemergentpropertiesofthesystemastheydesignittoeliminatefailurestatesorminimizethehazardousconditionassociatedwithsystemfailures.Thisairworthinesscriteriondoesnotaccountforhazardousaircraftstatesthatdonotresultfromacomponentfailurebutrather,forexample,missingcasesormissingrequirementsorsystemengineeringdeficiencies.Thesepropertiesarenotidentifiedbycurrentbottomuphazardanalysistechniques,buttheyareidentifiedusingSTPA.Additionally,flightandsafety-criticalfunctionsareidentifiedbySTPA,andinformationfromtheSTPAanalysiswillfeedintotheverificationprocessforthesafety-criticalfunctions.4.1.7Flightterminationsystem.Criterion:Verifythattheflightterminationfunction,ifincorporatedintothedesign,issafe,secureandreliable.Standard:Designcriteriaensurethattheflightterminationfunctionoperatesreliablyandinatimelymannerwhencommanded.Theflightterminationfunctionresultsinadefinedairvehicleflightstate(e.g.,zerolift,zerothrust).Thelikelihoodofuncommandedflightterminationisremote.Aminimumoftwooperatoractionsisrequiredtoexecutetheflightterminationfunction.MethodofCompliance:Inspectionofdocumentationverifiesthatdesigncriteriaareinplacetoensurethattheflightterminationfunctionoperatesreliablyandappropriately,andonlywhenrequired.Inspectionoftestandsimulationdataverifiesthattheflightterminationfunctionoperatesappropriately,onlywhenrequired,andresultsintheexpecteddefinedflightstate(s).Inspectionofanalysisdocumentationindicatesthattheflightterminationfunctionoperatesreliably.

AnSTPAanalysisoftheflightterminationfunctionprovidessafetyconstraintstoensuresafefunction,whichwouldincludeuncommandedflightterminationandaccidentalflightterminationbytheoperator.STPAdoesnotdeterminelikelihoodofanuncommandedflighttermination,howeveritwouldprovideinformationtodesignaflightterminationsystemwithdesignconstraintstopreventanuncommandedflighttermination.Theanalysiswillalsoverifytheeffectivenessofthetwo-operatoractionrequirement.AnSTPAanalysisprovidesdatatothedevelopmentaltestorganizationinordertoproperlytestthefunctionalityoftheflightterminationsystem.Theanalysiswouldalsoconsiderunintentionalflighttermination(commandedbypilotoroperator,butdidnotintendto)andprovidesafetyconstraintstopreventsuchanoccurrence.4.2Toolsanddatabases.4.2.1Toolanddatabaseprocesses.Criterion:Verifythatalltools,methods,anddatabasesusedintherequirementsmanagement,design,riskcontrolandassessmentsofsafetyareappliedappropriatelyandexhibitaccuracycommensuratewiththeirapplication.Standard:Processesareinplacetoensurethatallanalysis,modelingandsimulationtoolsanddatabasesareofappropriateaccuracyandfidelity,arevalidatedfortheintendedapplications,andareconfigurationcontrolled.Requirementsdefinition/traceability,designandperformanceanalysistools,predictionmethods,modelsandsimulationsareappliedappropriately,andexhibitaccuracycommensuratewiththeirapplications.

Page 167: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

167

MethodofCompliance:Inspectionofdocumentationverifiesthatprocessesareinplacetoensurethattoolsanddatabasesarevalidatedandunderconfigurationcontrol.Inspectionofdocumentationverifiesthatanalysistools,models,simulationsanddatabasesareappliedappropriately.Inspectionofdocumentationverifiesthatanalysis,modelingandsimulationtoolsanddatabasesareofappropriateaccuracyandfidelityfortheintendedapplications.Inspectionofdocumentationverifiesthevalidationbasisofdesignanalysis,modelsandsimulationsissubstantiatedandbasedonactualhardware/softwaretestdata.Inspectionofdocumentationverifiesthatthedesignanalysis,modelingandsimulationtoolsaresubstantiatedbyandbasedonactualtestdata(whenavailable).Actualsystemverificationresultsarecomparedwithdesignanalysis,modelingandsimulationtoolresultsanddatabasesforvalidationpurposes.

AnSTPAanalysisofthetoolsandmethodsensuresthatthecorrectinformationisprovidedtothesystemdesigners.Additionally,STPAwillensurethatsafetyrequirementsdefinitionandtraceabilityareappropriateandaccurate.4.3Materialsselection.4.3.1Selectionofmaterials.Criterion:ForArmyandNavyairsystems,verifythatthematerialselectionprocessusesvalidatedandconsistentmaterialpropertiesdata,includingdesignmechanicalandphysicalpropertiessuchasmaterialdefects,andcorrosionandenvironmentalprotectionrequirements(seealsoSection19,Materials;Section5,Structures;andSection7,Propulsion;Section8,AirVehicleSubsystemsofthisdocument).Standard:Materialselectionprocessusesmaterialscoveredbyanindustryspecification,governmentspecification(MilitaryorFederal)orotherspecificationsasapprovedbytheprocuringagency.MethodofCompliance:Inspectionofdocumentationconfirmsthatmaterialsareadequatelycoveredbyeither:a.AnAerospaceMaterialsSpecification(AMS)issuedbytheSAEAerospaceMaterialsDivision,b.AnASTMstandardpublishedbyASTMInternational(formerlytheAmericanSocietyforTestingandMaterials),c.Agovernment(MilitaryorFederal)specification,ord.Otherspecificationsasapprovedbytheprocuringagency.Ifanapprovedspecificationfortheproductisnotavailable,anacceptabledraftspecificationhasbeenprepared.

AnSTPAanalysisdoesnotdirectlyaffectthisrequirement,howeveranSTPAanalysismaydeterminethecriticalareasformaterialsthatrequiremoreattention.4.4Manufacturingandquality.4.4.1Keycharacteristics.Criterion:Verifythatkeyproductcharacteristics(includingcriticalcharacteristics)havebeenidentified.Standard:Physicalcharacteristicswhicharekeytothesuccessfulfunctionofcriticalsafetyitems(CSIs)andflightcriticalcomponentsaredefinedanddocumented.Toleranceallowancesforeachcharacteristicandtraceabilitythroughthedesignhierarchyaredefined,andtheeffectsofadversetoleranceaccumulationathigher(e.g.,abovetheCSI)levelsofproductassemblyareanalyzedandreflectedinthedesigndocumentation.MethodofCompliance:Keyproductcharacteristic(includingcriticalcharacteristics)andtolerancedefinitionsareverifiedbyinspectionandanalysisofprogramdesigndocumentationattheapplicablelevelsoftheproducthierarchy.ManufacturingprocesscontrolsforspecifickeyproductcharacteristicsidentifiedasCriticaltoSafety(CTS)andmanufacturingprocessparametersnecessarytoachieveandmaintainacceptableprocessindicesareverifiedbyinspectionandanalysisofmanufacturingprocesscontroldocumentationfortheapplicablestagesofmanufactureandassembly.

STPAwillnotdeterminethetolerances,butitwilldeterminecriticalsafetyitemsandflightcriticalcomponents.Additionally,STPAconstraintswillfeeddirectlyintothemanufacturingprocessrequirements.4.4.2Criticalprocesses.Criterion:Verifythatallcriticalprocesscapabilitiesexisttomeetkeyproductcharacteristicrequirements(includingcriticalcharacteristics).Standard:Allkeycharacteristics(includingcriticalcharacteristics)aremappedtocorrespondingcriticalprocesses.Criticalprocesscapabilitiesarecharacterized,processcapabilityindices(Cpk)arecalculatedandacceptablelimitsestablished.Processcontrolplansforcriticalprocessesaredefinedandimplementedthroughoutthesupplychain.ForArmyandNavyonly,qualitycontrolproceduresforcriticalprocessesaredefinedandimplementedthroughoutthesupplychain.

Page 168: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

168

MethodofCompliance:Criticalprocesscapabilitiesandcontrolplansareverifiedbyinspectionofdesigndocumentationandprocesscontroldocumentationandifapplicable,on-siteauditdocumentation,throughoutthesupplychain.

Thesystem’skeyproductcharacteristicrequirementscanbeanalyzedviaSTPAtoensurethattheprocessesareadequatetomaintainsafety.4.4.3Criticalprocesscontrols.Criterion:Verifythatallcriticalprocesscontrolsexisttoassurekeyproductcharacteristicrequirements(includingcriticalcharacteristics)aremet.Standard:Workandinspectioninstructionsaredefined,documentedandimplementedforallcriticalmanufacturingprocesses.Aprocesscapabilityindex(Cpk)ofatleast1.67ismaintainedforprocessesCriticaltoSafety(CTS)orprocessesthatproduceCriticalSafetyItems(CSI).Quantitativeproductqualitycriteria(i.e.,productacceptancecriteria)aredefinedandusedforproductacceptanceatalllevelsoftheproducthierarchyuptoandincludingtheairsystemlevel.MethodofCompliance:Workandproductinspectioninstructions,productacceptancecriteriaareverifiedbyinspection.Cpkisverifiedbyanalysisandinspectionofdesigndocumentationandmanufacturingprocesscapabilitydata.Designconformance(i.e.,"asbuilt"configurationisinaccordancewithdesignrequirements)isverifiedbyfirstarticleinspectionsorfirstarticletests,reviewofmanufacturingprocesscontroldata,and/orperiodichardwarequalityaudits.4.4.4Qualitysystem.Criterion:Verifythattheas-builtconfigurationmatchestheas-designedconfiguration.Standard:Thequalitysystemiseffectiveinassuringconformancetoproductdesignandrealization,includingproductionallowancesandtolerances.Thequalitysystemaddressesdefectpreventionandachievingstable,capableprocesses.Thequalitysystememploysmethodssufficientforconductingrootcauseanalysesandimplementingeffectivecorrectiveactions.MethodofCompliance:ComplianceisdeterminedbyinspectionoftheQualitySystem'spolicies,processesandproceduresandexamplesofMaterialReviewBoardrecords.

TheoutputofanSTPAanalysisareprocesscontrols.STPAcanbeusedtoensurethatprocesscontrolsareadequatetomaintainsafety.4.4.5Nondestructiveinspections.Criterion:Verifythatnondestructiveinspection(NDI)processeshavebeenvalidatedtoassureconformingparts.Standard:Nondestructiveinspection(NDI)methodsandequipmenthavebeenqualifiedtosuitablestandardsandmeettherequirementsoftheapplicablespecificationandapplication.Thespecificationbeingusedensuresanynon-conformanceadverselyaffectingthepartwillbedetected.Acceptandrejectcriteriaforsafetyandflightcriticalhardwarearebasedonvalidatedmodelsanddata.MethodofCompliance:ComplianceisdeterminedbyinspectionofNDIprocess,selectioncriteria,operatorcertificationandmethodvalidationdocumentation.Fornewapplicationsofspecifications,testandinspectiondataconfirmstheinspectionmethodisvalidfortheapplication.

TheSTPAanalysiswillfeedintotheNDIprocesses.ItwillidentifyflightcriticalhardwareandwillbeusedtoensurethattheNDIprocessesprovidetheadequatefeedbacktomaintainflightsafety.Specificmethodsandequipmentmaybeidentifiedbasedoffofthesafetyconstraints.4.4.6ControlofSafety-RelatedArticles.Criterion:Verifythatsafety-relateditems(CriticalSafetyItems,flightcriticalcomponents,andcomponentscontainingcriticalcharacteristicsthatimpactsafety)conformtotheirapproveddesign.Standard:Thequalityofsafety-relateditems,whetherfurnishedbytheprimecontractor,supplier,orsustainmentorganization,iscontrolledtoensureconformancewithdesign.Themanufacturersoftheitemshaveinstitutedmanufacturingprocesscontrolsinspections,andtestingprocedurestoensureeachsafety-relatedproductorpartconformstoitsapproveddesign.MethodofCompliance:Forsafety-relateditems,initialdesignconformanceisverifiedbyinspectionofFirstArticleInspectionreports,FirstArticleTestreports,andothermanufacturingrecordsthatprovedesignconformance.Controlsforensuringthequalityofsafety-relateditemsareverifiedbyinspectingmanufacturingprocesscontrolplans(includingworkinstructions)andinspectionandtestprocedures.

Page 169: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

169

AnSTPAanalysisofthemanufacturingprocesswillidentifyappropriatecontrolsandensurethattheyareinplaceandthatthecommunicationbetweenthedesignteamandthemanufacturerisadequatetomakesurethatthemanufacturerhasthecorrecttechnicaldata.TheSTPAanalysiswillalsoanalyzefeedbackchannelsfromthemanufacturertothedesignteam.4.5Operator’sandmaintenancemanual/technicalorders.4.5.1Proceduresandlimitations.Criterion:Verifythatprocessesareinplacetoidentifyanddocumentnormalandemergencyprocedures,limitations,restrictions,warnings,cautionsandnotes.Standard:Operatorhandbooksormanualsidentifyallnormalandemergencyprocedures,limitations,restrictions,warnings,cautionsandnotes.Warnings,cautionsandnotesareidentifiedinsuchamannerastoattractattentionandsetthemapartfromnormaltext.Whenanunsafeconditionisdetectedandannunciated,theoperator'smanualhasclearandprecisecorrectiveproceduresforhandlingthecondition.MethodofCompliance:Inspectionofoperatorhandbooksormanualsprocessdocumentationdescribesproceduresfordevelopingnormalandemergencyprocedures,limitations,restrictions,warnings,cautionsandnotesfromsystemtechnicaldata.Processdescriptionsincludemethodsforupdatingthisinformationasneeded.ForArmyandNavy,inspectionofoperatinghandbooksandmanualsverifiesthattheyincludeallnormalandemergencyprocedures,limitations,restrictions,warnings,cautionsandnotes.TheUSAFconfirmsoperatormanualaccuracyandcompletenessthroughothersectionscontainedwithinthisdocument.

STPAprovidesinputstothetechnicalorders(TOs)forthesystem.Ifapotentialsafetyhazardisnotdesignedoutofthesystem,STPAcanprovideoperationalormaintenanceconstraintsthatwouldbeincludedintheTOasaprocedureorasacaution/warning.4.5.3Maintenanceofsafety.Criterion:Verifythatproceduresareinplaceforestablishingandmaintainingairsystemflightsafety,asaffectedbyproductdesignchanges,safetyissues,changesinoperations,maintenance,transportationorstorage.Standard:Processesaredefined,documented,andimplementedtoestablishandaccomplishtimelyupdatestooperatorandmaintenancemanualsasmadenecessarybyproductdesignchanges,identifiedsafetyissues(e.g.,CategoryIDeficiencyReports),changesinoperationalconcepts,usage,maintenanceconcepts,transportation,orstorage.Currentupdatedtechnicaldataareusedtoeffecttechnicalmanualrevisions.Maximumtimelinestoincorporatechangesinmanualsarebasedontheeffectofthechangeandtheseverityoftheidentifiedhazard.MethodofCompliance:Theadequacyofestablishmentandchangeprocessesforoperatorandmaintenancemanualsisverifiedbyinspectionofprocessdocumentation.Inspectionofexamplesofrevisedoperatorandmaintenancemanuals(i.e.,changepages)verifiestraceabilitytochangeevents.

Allsystemsthatareinoperationforasignificantamountoftimeundergochangeseithertothesystemitselfortothecontextinwhichitoperates.Thesechanges,withoutanaccompanyingchangetothesafetycontrolstructure,canleadtoaccidents.Anorganizationalsafetycontrolstructurefortheoperationalphasewillmodelthesupportsystem,butmustbeupdatedtoensurecontinuedcontrol.AnSTPAanalysisofthesupportsystemwillverifythattheproceduresinplaceformaintainingflightsafetyareappropriate.Aschangesaremadetoeitherthesystemitself(upgrades)ortotheoperationalenvironment(newmissionset,newoperatinglocation)theanalysiswillbemodifiedtoensurethatthesafetycontrolsarestilladequate,ordeterminenewsafetyconstraintstomeettheupdatedneedsofthesystem.ThetraceabilityinherentintheSTPAprocessassistswithidentifyingthesafetyimpactsofchanges.AnotheroutputofSTPAisanoperationalsafetymanagementplan.Thisplan“isusedtoguidetheoperationalcontrolofsafety”.

Page 170: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

170

Additionally,STPAhasbeenusedtoidentifyleadingindicatorsofincreasinglyriskybehaviorsothattheyaremonitoredandusedtoavoidmishapsaschangesoccur.4.6Configurationmanagement(CM).4.6.1Functionalbaseline.Criterion:Verifythatthefunctionalbaselineisestablishedandunderconfigurationcontroltoprecludeunauthorizedchanges.Standard:Thefunctionalbaselineisproperlydocumented,approvedandbroughtundercontrolbyaConfigurationManagementProcess.MethodofCompliance:TheConfigurationManagementPlan(CMP)isdefinedandimplementedinaccordancewiththecontract.Inspectionofdocumentationverifiesthatthefunctionalbaselinehasbeendocumentedandapproved.

TheSTPAanalysiswouldbecontrolledthroughtheCMPalongwithallothermodels.AnSTPAanalysiscanprovidedatatotheCMPtoensurethattheconfigurationisproperlycontrolled.4.6.2Allocatedbaseline.Criterion:Verifythattheallocatedbaselineisestablishedandunderconfigurationcontroltoprecludeunauthorizedchanges.Standard:Theallocatedbaselineisproperlydocumented,approvedandbroughtundercontrolbyaConfigurationManagementProcess.MethodofCompliance:TheConfigurationManagementPlanisdefinedandimplementedinaccordancewiththecontract.Inspectionofdocumentationverifiesthattheallocatedbaselinehasbeendocumentedandapproved.Inspectionoftheengineeringreleasedocumentationverifiesadequatecaptureoftheallocatedbaseline.

TheSTPAanalysiswouldbecontrolledthroughtheCMPalongwithallothermodels.AnSTPAanalysiscanprovidedatatotheCMPtoensurethattheconfigurationisproperlycontrolled.4.6.3Productbaseline.Criterion:Verifythattheproductbaselineisestablishedandunderconfigurationcontroltoprecludeunauthorizedchanges.Standard:Theproductbaselineisproperlydocumented,approvedandbroughtundercontrolbyaConfigurationManagementProcess.MethodofCompliance:TheConfigurationManagementPlanisdefinedandimplementedinaccordancewiththecontract.Inspectionofdocumentationverifiesthattheproductbaselinehasbeendocumentedandapproved.Inspectionoftheapprovedengineeringdocumentationandengineeringreleasesystemverifiesadequatecaptureoftheproductbaseline.

AnSTPAanalysisoftheConfigurationManagementProcesswillidentifyiftheprocessisadequatetocontroltheconfigurationofthesystem.Additionally,theSTPAmodelsshouldbecontrolledbytheCMP.4.6.4Safetycriticalitemconfigurationmanagement.Criterion:Verifythatallsafety-criticalitemsaretrackedandunderconfigurationcontrol.Standard:Aconfigurationstatusaccounting(CSA)systemisadequatelydocumentedandmaintainedandtrackstheconfigurationofsafety-criticalitems.MethodofCompliance:CSAprocessdocumentationisverifiedbyinspection.InspectionofCSArecordsandreportsforCI/CSCIsverifiesaccuracyoftheconfigurationstatusaccountingsystemandthatthesystemisabletotrackandrecordchangestotheconfiguration.

STPAcanbeusedtoidentifysafety-criticalitems.Anychangestotheitemsorhowtheyareusedintheaircraftsystemcanbeeasilyanalyzedwithupdateddatatoensurethattheresultsofthechangesarefullyunderstoodandthatthesafetycontrolstructurestilladequatelycontrolssystemsafety.

Page 171: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

171

Chapter14ofMIL-HDBK-516Ccoverssystemsafety.14.1.1Systemsafetyprocess.Criterion:Verifythataneffectivesystemsafetyprogramisimplementedthatmitigatesrisks/hazardsattributedtohardware,software,andhumansystemintegrationandthatthesafetyprogramdocumentsandtrackstherisks/hazardsofthedesign/modification.Standard:ThesystemsafetyprogrammeetstheminimummandatoryrequirementsofMIL-STD-882(e.g.,systemsafetyapproachhasbeendocumented;hazardshavebeenidentified;hazardshavebeenassessed;hazardshavebeenmitigated;residualrisksareatanacceptablelevel;residualriskhasbeenacceptedbyappropriateauthority;andhazardsandresidualriskhavebeentracked),andthesystemsafetyrequirementsareincorporatedintothetechnicalandprogrammaticdocuments.TheProgrammaticEnvironmentalSafetyandHealthEvaluation(PESHE)includesallhazardsidentifiedfortheprogram.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Effectivenessofthesystemsafetyprogramisverifiedbyinspectionoftechnicalandprogrammaticdocumentstoverify:systemsafetyapproachhasbeendocumented;hazardshavebeenidentified;hazardshavebeenassessed;hazardshavebeenmitigated;residualrisksarereduced;residualriskhasbeenacceptedbyappropriateauthority;andhazardsandresidualriskhavebeentracked.InclusionofEnvironmentalSafetyandOccupationalHealth(ESOH)hazardsinPESHEisverifiedbyinspection.

STPAdocumentationwouldprovidetheinspectoralloftheinformationneededtoensurecompliancewiththesystemsafetyprocess.Additionally,theinspectorwouldabletotellquicklythatappropriatehazardshavebeenidentifiedbecauseSTPArefineshazardsfromasmallsetofhigh-levelhazards(comparedtodozensorhundredsofhazardsthatarefoundinsomeanalyses)sothatreviewisoptimized.STPAhasbeenshowntocomplywithMIL-STD-882and,infact,wascreatedwiththatgoalinmind.14.1.1.1Systemsafetyrequirements.Criterion:Verifythatthesystemsafetyprogramincorporatessystemsafetyintoallaspectsofsystemsengineeringthroughoutallacquisitionphases.Standard:Systemsafetyrequirementsareincorporatedintothesystemtechnicalandprogrammaticdocuments.Systemsafetyrequirements,analyses,timelinesandothermilestonesareinsynchronizationwiththerestoftheprogramschedules.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Incorporationofsystemsafetyrequirementsintothesystemstechnicaldocuments,programmaticdocumentsandoperatingproceduresisverifiedbyinspection.Integrationofsystemsafetyrequirements,

Ahigh-levelSTPAanalysisonaproposednewsystemcanbeconductedbytheprogramofficeandthatinformationshouldbeincorporatedintosystemrequirementsalongwiththetechnicalrequirements.Thelower-levelanalysescanbesynchronizedwiththelower-leveldesignofthesystemoncethecontracthasbeenawardedandthecontractordevelopsthesystem.Thetimelinesofthesafetyanalysiswouldthereforematchthedesigntimelines.AsstatedpreviouslyintheanalysisofChapter4,anoutputofSTPAisasetofoperationalconstraints(safetyrequirements)thatwillaffectoperatingprocedures.Additionally,anyknownoperatingproceduresshouldfeedintothescenariogenerationportionofSTPA,verifyingthesafetyofthoseprocedures.Forinstance,anewrefuelingaircraftmostlikelywillbeexpectedtoconductproceduressimilartorefuelingaircraftcurrentlyintheinventory.14.1.1.2Systemsafetyanalysisandassessment.Criterion:Verifythatappropriatesystemsafetyanalysisandassessmenttasksareaccomplishedforallprograms,includingtemporaryandpermanentmodifications.Standard:System,subsystem,componentandsoftwaresafetyanalysesandassessmentsareaccomplishedforallprograms,includingtemporaryandpermanentmodifications.Designandoperational/maintenanceproceduresdonothaveanunacceptablenegativeeffectonsystemsafetyoronthemishapriskbaseline.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Accomplishmentofappropriatesystem,subsystem,componentandsoftwaresafetyanalysesandassessmentsforallprograms,includingtemporaryandpermanentmodificationsisverifiedbyinspection,andanychange

Page 172: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

172

STPAworksverywellformodificationstothesystemandforoperationalandmaintenanceprocedures.AcompletedSTPAanalysiscanbeupdatedforsystemmodificationsinordertounderstandtheeffectsofthemodificationonthesystemanddesignthemodificationtoavoidintroducinghazardstothesystem.IfamodificationisaCOTSproduct,theintegrationoftheproductwiththeairframewillbeanalyzedtoensurethatitissafe.TheproductitselfmostlikelywillnotberedesignedbasedontheSTPAresults,butsafetyconstraintsfortheintegrationorfortheairframewillbeidentified.Additionally,ifPOdoesnotwanttoimplementthesafetyconstraints,theymaydeterminethattheCOTSproductisunsuitableandlookforotheroptions.14.1.1.3Hazard/risktrackingandriskacceptance.Criterion:Verifythathazards/risksaretrackedandresidualrisksdocumented.Standard:Hazard/risktrackingandresidualriskdocumentationandacceptanceareplanned,documentedandaccomplishedinaccordancewithMIL-STD-882.Risksarepresentedandacceptedattheappropriatelevelandriskacceptancesaredocumentedinahazardtrackingsystem.MethodofCompliance:Evidenceoftheclosedloophazardtrackingsystem

AhazardlististhesecondstepofaSTAMPanalysis.Furtheranalysisbuildsoffofthehazardlist.IncurrentAFpractice,thelevelofriskacceptanceisbasedonresidualrisklevel(low,medium,high).STPAdoesnotprovideprobabilityofoccurrence,thereforeriskacceptancelevelmustbeaddresseddifferently.Ifthesafetyconstraintsforanassociatedhazardareaddressed,thehazardwillbeappropriatelymitigated.14.1.1.4.1Flightsafety.Criterion:Verifythatthesystemsafetyprogramaddressesflightsafety.Standard:Singlepointfailuresthatresultinlossofaircraftorsystemdonotoccuratanunacceptablerate(e.g.,improbableorlowerprobabilitiesinaccordancewithMIL-STD-882).Safetydesigndeficienciesuncoveredduringflightmishapinvestigationsorindeficiencyreports(e.g.,MaterielDeficiencyReports(MDRs),QualityDeficiencyReports(QDRs))areassessedandresidualrisksidentified.Flighthazardrisksforthesystemdonotexceedthresholdlimitsthatareestablishedfortheprogram.MethodofCompliance:Verificationmethodsincludeanalysisandinspectionofdocumentation.Evidenceofaflightsafetyprocessisverifiedby:reviewofallhazardsassociatedwithsinglepointfailurestodocumenttheireliminationorreductionofriskstoanacceptablelevel;byinspectionofdesigndeficienciesidentifiedinflightsafetyreportsanddeficiencyreports(e.g.,MDRs,QDRs)toassuretheyareassessedandresolutionactionsaretrackedtoclosure;byanalysisthatactualflightmishapratescomplywithpre-setprogramthresholdlimits.

STPAinherentlyaddressflightsafety.Singlepointfailureswillbeidentifiedintheanalysisandeliminatedwithsafetyconstraints.DeficiencyreportsmustfeedbackintotheSTPAanalysis.Thesereportsmayprovideadditionalscenariosthatwerenotconsideredintheoriginalanalysis,orevenahazardthatwasnotoriginallyincluded.Theanalysismustbemodifiedtoincludethedeficienciesdiscoveredduringflighttestoroperationsoncethesystemisfielded.STPAwillidentifymorethansinglepointfailuresandevenhazardsthatdonotarisefromcomponentfailuresbutfromunsafeinteractionsamongcomponents.14.1.1.4.2ForeignObjectDamage(FOD)prevention.Criterion:Verifythatthesystemsafetyprogramaddressesground/industrialsafety(foreignobjectdamageprevention).Standard:Ground/IndustrialsafetyrequirementsareestablishedforactivitiesattheplanttominimizetheriskofForeignObjectDamage(FOD)orundetecteddamagetotheassembledairvehicleandallrequiredsupportequipment.

Page 173: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

173

MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.EvidenceofanestablishedFODpreventionprogramisverifiedbyreviewofFODprogramdocumentsandinspectionofreports,oron-sitecertificationbytheDefenseContractManagementAgency(DCMA)thatanacceptableFODprogramexists.

AnSTPAanalysisoftheFODprogrammayyieldadditionalsafetyconstraintstopreventFOD.Additionally,theSTPAanalysisontheaircraftshouldconsiderFODinthescenariostoensurethatifanaircraftisdamagedbyFOD,thedamagedoesnotresultinanaccident.14.1.1.4.3Explosivesandordnancesafety;non-nuclearmunitions.Criterion:Verifythatthesystemsafetyprogramaddressesexplosivesandordnancesafety;non-nuclearmunitions.Standard:RequirementsforsystemsafetyprocessesandanalysesareestablishedinaccordancewithMIL-STD-882tosupportweaponstesting,certification,andobtainmentofexplosivehazardclassifications.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Safetyprogramrequirementsforexplosivesandordnancesafetyareverifiedbyinspectionofsystemsafetyprogramanalysisdata.

STPAdoesnotdirectlysupportexplosivessafety,howeveranSTPAanalysisoftheexplosivessafetyprogrammayprovideadditionalconstraintstopreventanaccident.14.1.1.4.4Rangesafety.Criterion:Verifythatthesystemsafetyprogramaddressesrangesafety.Standard:Thesystemsafetyprogramisresponsivetotestrangesafetyrequirementsandofficialrequestsforsafetyanalysisinformation.MethodofCompliance:Systemsafetyprogramsupportforrangesafetyisverifiedbyinspectionofsystemsafetyprocessdocumentation.

STPAcanincluderangesafetyrequirementsasaninputintotheanalysis.STPAwillprovideadditionalconstraintsasnecessarytopreventanaccident.14.1.1.4.5Nuclearsafety.Criterion:Verifythatthesystemsafetyprogramaddressesnuclearsafety.Standard:ThenuclearsafetyprogramadherestothefourkeyDoDNuclearWeaponSystemSafetyDesignStandardsforhardwareandsoftware.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Evidencethataprocessisinplacetoincorporatethefourkeynuclearsafetydesignrequirementsintothesafetyanalyses,programfunctionalbaselinesandotherdesignrequirementsisverifiedbyinspectionofprogramsafetydocumentsandfunctionalbaselines.

STPAstartsfromhazardsandsystembehavioralconstraints,whichcanbethefournuclearsafetystandards.TheserequirementsarethenadirectpartoftheSTPAanalysis.14.1.1.4.6Radiation/LASER(lightamplificationbystimulatedemissionofradiation)safety.Criterion:Verifythatthesystemsafetyprogramaddressesradiation/lasersafety.Standard:Keydesignrequirementsforradiation/lasersafetyareestablishedincluding:protectivehousing;safetyinterlocks;remoteinterlockconnector;keycontrol/armingdevice;emissionindicator;beamstop/attenuator;locationofcontrols;viewingoptics;scanningsafeguard;manualreset;labelingrequirements;laserclassification;hazardevaluation;protectiveeyewear;laserareacontrol;andinformationalrequirements.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Evidenceofaprocesstoestablishthekeysafetydesignrequirementsforradiation/lasersafetyisverifiedbyinspectionofsafetyanalyses,designspecificationsandprogramfunctionalbaselines.

STPAcanincluderadiationandlaserdesignrequirementsintheanalysis.Theeffectivenessofthedesignrequirementswillalsobeevaluated,andadditionalconstraintsmaybefound.

Page 174: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

174

14.1.1.4.7Testsafetyandsupport.Criterion:Verifythatthesystemsafetyprogramaddressestestsafetyandsupport.Standard:Systemsafetyorganizationactivelyparticipatesintestplanningandpost-testreviewstoanalyzealltest-relatedhazardsandrecommendedcorrectiveactionstoensurehazardcloseoutormitigation.Appropriatesystemsafetyrequirementscriteriaareincorporatedintothetestprogramforvalidationandverification.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Systemsafetysupportofthetestandevaluationprocessandincorporationofsafetyrequirementscriteriaareverifiedbyinspectionofthesystemsafetyprogramplan,test-relatedhazardanalysesandtheTestandEvaluationMasterPlan(TEMP).

TheSTPAresultsdirectlyapplytotestsafetyplanning.Additionally,thedevelopmentaltestprogramwillverifythatthesafetyconstraintsidentifiedaremetbythedesignedsystem.AnysafetyfindingswillbeprovidedtothedesignerstoupdatetheSTPAanalysis.TheAirForceTestCenteriscurrentlyundergoingatrialusingSTPAfortestplanning.UtilizingSTPAinthedesignprocessanddevelopmentaltestwillprovidesynergytotheentireacquisitionsdevelopmentprocess.14.1.1.4.8Softwaresafety.Criterion:Verifythatthesystemsafetyprogramaddressessoftwaresafety.Standard:See14.3(thisdocument)andsubparagraphs.MethodofCompliance:MethodsofComplianceforSoftwareSafetyarecontainedin14.3(thisdocument)andsubparagraphs.

Mostsoftwaresafetyprogramsfocusonassuranceoftheimplementationofthesoftwarerequirements.However,virtuallyallaccidentsinvolvingsoftwarestemfromflawed(unsafe)requirementsandnotfromtheimplementation.STPAidentifiesthesafety-criticalsoftwarerequirementsthatneedtobeimplementedinthesoftware.See14.3below.14.1.1.4.9Materialchanges/deficiencies.Criterion:Verifythatthesystemsafetyprogramaddressesmaterials.Standard:Risksassociatedwithuseofnew/alternate/substituted/hazardousmaterialsormaterialdeficienciesdonotexceedthehazardbaselinesetfortheprogram.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Evidenceofamaterialsafetyprocessisverifiedbyinspectionofprogramsafetydocumentationandsafetyanalyses.Cumulativerisksofidentifiedhazardsdonotexceedtheprogram'shazardbaseline.

STPAdoesnotdirectlyaddressmaterials,asexplainedinthediscussionof4.3,buttheanalysiswouldidentifycriticalsafetycomponentsthatrequirespecificattention.14.1.1.4.10FailureModesandEffectsTesting(FMET)andBuilt-In-Test(BIT).Criterion:VerifythatthesystemsafetyprogramaddressesFMETandBIT.Standard:Systemsafetyparticipatesinalltests/testplanningonpartsandassembliesthatestablishfailuremodesandrates,andconductssafetyanalysesonallbuilt-intestequipmenttoassurethatintegrationintoasystemdoesnotinducehazardswhichexceedthehazardbaselinesetfortheprogram.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.EvidenceofsystemsafetysupportofFMETandBITevaluationsisverifiedbyinspectionofthesystemsafetyprogramdocuments,testdocumentsandthehazardtrackingdatabase.

Complexsystemsoftenhavemorepotentialfailuremodesthancanbetestedinatimelymanner,andnotallfailuremodeswillbeunderstoodduringthedesignphase,meaningtheycannotbetesteduntiltheyarediscovered.Discoverymaynotoccuruntilthesystemisfieldedandhasbeenoperatingforasignificantamountoftime.Theundiscoveredfailuremode(often

Page 175: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

175

calledan“unknownunknown”)maycauseanaccidentresultinginlossoflifeandproperty.Thelatediscoverymayalsoresultinstandingthesystemdownuntilthefailureisinvestigatedandexpensivemodificationstopreventfuturemishaps.STPAwillprovidesafetyconstraintstodesignthesystemsuchthatifafailureoccursitdoesnotresultintherealizationofahazard.Thesafetyconstraintswillalsomitigatepotentialfailures.STPAessentiallyprovidesawaytodiscover“unknownunknowns”duringthedevelopmentprocess.ThesafetyconstraintsprovidedbySTPAwillalsobeaninputintotheFMETprocedures.Systemfailureswillbetestedandsafetyconstraintsverified.STPAscenarioswillalsoconsiderBITinthesystemdesignandprovidesafetyconstraintstopreventBITfrominducinghazards.14.1.1.4.11Fail-safedesign.Criterion:Verifythatthesystemsafetyprogramaddressesfail-safedesign.Standard:Designensuresthatthesystemremainsinherentlysafe.Asinglefailurecausesthesystemtoreverttoastatewhichwillnotcauseamishap.Flighthazardrisksforthesystemdonotexceedthresholdlimitsthatareestablishedfortheprogram.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation(e.g.,safetyanalyses,technicaldocumentation,testingdocumentation,hazardtrackingdatabase).Designdocumentationverifies:inherentsystemsafety;thatasinglefailurewillnotcausethesystemtoreverttoastatewhichwillresultinunacceptableriskofamishap;andthatflighthazardrisksforthesystemdonotexceedthethresholdlimitsestablishedfortheprogram.

STPAwillprovidesafetyconstraintstoreduceoreliminatesystemstatesthatresultinahazard.TheSTPAdocumentationwillprovidetheairworthinessinspectorwiththeinformationrequiredtoverifycompliance.STPAalsoevaluateshazardsthatoccurwithoutafailure.Manyincidentsoccurwhenthesystemoperatesasdesigned–STPAshouldbeusedduringthedesignprocesstoensurethatitisdesignedtooperatesafely.14.1.1.4.12Safetyassessmentofsupportequipment.Criterion:Verifythatthesystemsafetyprogramaddressessupportequipment.Standard:Designrelatedhazardsandinterfacesofsupportequipmentwithaircraftandcontrolstationsareincludedinsystemsafetyanalyses.Identifiedsafetyhazardsareresolvedorrisksreducedtoanacceptablelevelbeforefirsttestuseorfirstoperationaluseofthesupportequipment.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Theincorporationofdesignsafetyrequirementsforsupportequipmentintotechnicaldocumentbaselines/safetydocumentsandtheeliminationorcontroloftheirassociatedsafetyrisksisverifiedbyinspectionoftechnicaldocumentsbaselines,safetyprocessdocumentation,safetyanalysesandtheclosedloophazardtrackingsystem.

ThesupportstructurecanbeanalyzedusingSTPAtoincludesupportequipment,maintenanceandlogisticspractices.Justaswiththeactualsystemunderdesign,testresultsregardingthesupportequipmentmustbefedbacktotheprogramofficetoensurethesupportequipmentissafeandmeetstherequirementsforthesystem.14.2Safetydesignrequirements.14.2.1Hazardidentification/control/resolutionprocess

Page 176: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

176

Criterion:Verifythatasystematicprocessisemployedthatprovidesforhazardidentification,hazardcontrolrequirementgenerationandimplementation,andresidualriskassessment.Standard:Aprocessisinplacetoidentifyandcharacterizehazards,devisecorrectiveactions,andassessresidualrisks.ASystemSafetyGroupisestablishedtoimplementtheprocessMethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Evidenceofahazardidentification/control/resolutionprocessisverifiedbyinspectionofsafetyprocessdocumentationandreviewofsafetyanalysesandsystemsafetygroupproceedings.

STPAisasystematicprocessthatidentifieshazardsanddevisescorrectiveactions(safetyconstraints).Residualriskisnotcalculated,butifaconstraintisnotimplementedtherewillberiskinherentinthedesign.14.2.2Mitigationofmishaprisks.Criterion:Verifythatthedesignisfreefromunacceptablemishaprisk,includingriskstothirdparties.Standard:UnacceptableriskstopersonnelorequipmentareeliminatedorcontrolledinaccordancewithMIL-STD-882.Mishapriskdetermination,includingrisktothirdparties,reflectsthecurrentconfigurationandmaturityofthesystem.Mishapriskacceptabilityisbasedontheintendedairspaceoperations,includingrulesandrestrictionsforsuchairspaces.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Evidenceofaprocesstomitigatehazardswith"unacceptable"mishapriskisverifiedbyinspectionofsystemsafetydocuments,technicaldocuments,testdocuments,programmaticdocuments,safetyhazardtrackingdatabaseandtheresidualriskacceptanceprocess.

STPAwillidentifyrisksbasedonintendedoperationsandsystemdesign.Ratherthanprovideaprobability,STPAgeneratesthecausalscenariosleadingtoamishapsothattheycanbeeliminatedorcontrolledinaccordancewithgoodsafetyengineeringpractices(andMIL-STD-882).Probabilitiesdonotprovidetheinformationneededtoeliminateorcontrolhazards.“Unacceptable”riskismostlikelydeterminedbyprobabilisticriskassessment,whichisnotacomponentofSTPA.However,anyscenariothatisfoundbySTPAmustberesolvedotherwisethereisresidualriskassociatedwiththedesign.TheinspectorwouldusetheSTPAdocumentationtoverifythesafetyofthedesign.Thereisnoway,withanyhazardanalysismethod,toverifythatthesystemiscompletelyfreefrommishaprisk,howeverSTPAwillprovidemorecompletecoverageacrosspotentialmishapriskssuchascomponentfailure,softwarerequirementsandinteractions,humaninteraction,andsupportstructure.14.2.3Singlepointfailureassessment.Criterion:Verifythatnosingle-pointfailureunacceptablyaffectsthesafetyofthesystem.Standard:Therisksofallhazardsassociatedwithsinglepointfailuresdonotexceedthehazardbaselinesetfortheprogram.ResidualriskisacceptedinaccordancewithMIL-STD-882.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Evidencethattherisksofallsinglepointfailurehazardsdonotexceedthehazardbaselinesetfortheprogramandthattheresidualriskhasbeenacceptedisverifiedbyinspectionofthesafetyanalysesforsinglepointfailuresandtherelevantdataintheclosedloophazardtrackingsystem.

AnSTPAanalysisincludescomponentfailures,andwouldidentifypotentialscenariosforasinglepointfailuretocauseahazard.Thescenarioswouldthenbeusedtodeterminesafetyconstraintstopreventthehazard.However,STPAhandlesmorethanjustsingle-pointfailures.14.2.4Subsystemprotection.Criterion:Verifythatthedesignadequatelyprotectsthepowersources,controls,andcriticalcomponentsofredundantsubsystems.Standard:Powersources,controls,andcriticalcomponentsofredundantsubsystemsareseparated/shieldedperthegeneralsafetyrequirementsofMIL-STD-882.

Page 177: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

177

MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Inspectionofsafetyanalyses/assessmentsandassociateddocumentationverifiesthatpowersources,controls,andcriticalcomponentsofredundantsubsystemsareseparated/shieldedperthegeneralsafetyrequirementsofMIL-STD-882.

STPAexaminescomponentandsubsysteminteractions.Theanalysiswillidentifyanyhazardsassociatedwithpowersources,controls,orredundantsubsystems.Theanalysiswillalsoassistindetermininghowthesubsystemsshouldbedesignedforredundancy,orifothermethodologiestoprotectthesubsystemsareappropriate.14.2.5Humanfactors.Criterion:Verifythatallaspectsofhumanfactorsareaddressedandunacceptablehumanfactorssafetyissues/risksareresolvedinthedesignprocess.Standard:EstablishhumanfactorsdesignrequirementsinterfacewithsystemsafetytominimizetheprobabilityofhumanerrorandsatisfytheintentofMIL-STD-882.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Thestandardtoestablishhumanfactorsrequirementsandidentifysafetyissues/risksrelatedtohumanfactorsandreducethemtoanacceptablelevelisverifiedbyinspectionofsafetydocumentation,safetyanalysesandprogramfunctionalbaselines.

STPAprovideshumanfactorssafetyconstraints.Humanoperatorsareincludedintheanalysissothatthesystemisdesignedforthehumanoperatortoprovidesafecommandsandreceiveaccurateandadequatefeedbackinordertodeterminewhatcommandsaresafe.14.2.6Humanerror.Criterion:Verifythatthesystemisproduced/manufacturedensuringriskreductionoffailuresorhazardspotentiallycreatedbyhumanerrorduringtheoperationandsupportofthesystem.Standard:Systemdesignminimizesriskcreatedbyhumanerrorintheoperationandsupportofthesystem.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Evidencethataprocessisinplacetoreducethemishaprisksassociatedwithhumanerrortoacceptablelevelsisverifiedbyinspectionofsafetydocumentsandanalysesandreviewoftheclosedloophazardtrackingsystem.

ThehumanfactorssafetyconstraintsprovidedbySTPAwouldreducethepotentialforhumanerrortocauseahazard.14.2.7Environmentalconditions.Criterion:Verifythatthesystemdesigniswithinacceptableriskboundsoverworst-caseenvironmentalconditions.Standard:Safetyrisksduetosystemexposure/operationinrequiredenvironmentalconditionsaredefinedandverifiedtobewithinacceptablelimits.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Evidencethatthesafetyriskminimizationprocessaddresseseffectsofworst-caseenvironmentalconditionsonthedesignisverifiedbyreviewofsafetyanalysesandenvironmental/climatictestresults/reports.

STPAconsidersthecontextofthesystem,whichincludeshowthesystemistobeoperatedandtheoperationalenvironment.Theanalysiswillensurethattheenvironmentallimitsareappropriateandifthesystemisexposedtosevereorworstcaseenvironmentalconditions,theresultisnotamishap.Iftheenvironmentofthesystemchanges,forinstanceitdeploystoanareaoftheworldnotinitiallyintended,arevisedanalysisconsideringthenewenvironmentalchangesshouldbeconducted.

Page 178: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

178

14.2.8Assembly/installationhazards.Criterion:Verifythatpersonnelexposuretohazardsduringtheinstallationprocess,includinghazardsduetolocationsofsystemsintheairvehicle,isatanacceptablerisklevel.Standard:Asafetyprocessisinplacetopreventerrorsinassembly,installation,orconnectionswhichcouldresultinasafetyhazardormishapforthesystem.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Designandproceduralsafetyrequirementsacceptabilityisverifiedbyinspectionandapprovalofsystemsafetydocumentationandrequirements.Evidenceofacceptability/approvalisprovidedbyinspectionofequipmentinstallation,operationandmaintenanceprocessdocumentation.

STPAcanbedirectlyappliedtothemanufacturing,operation,andmaintenanceofasystem.Thesystemdesigncanprovideasaferprocessformanufacturing,operationandmaintenance.Additionallyananalysisoftheorganizationalstructuresurroundingthedesign,manufacturing,operation,andmaintenancefunctionswillensurethattheinteractionsbetweenthefunctionsaresafe.14.2.9Safetydesignprocess.Criterion:Verifythatthesystemdesignisolateshazardoussubstances,components,andoperationsfromotheractivities,areas,personnel,andincompatiblematerial.Standard:Asafetydesignprocessisinplacetoisolatehazardoussubstances,components,andoperationsfromotheractivities,areas,personnel,andincompatiblematerials.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Thestandardtoassurethathazardoussubstances,componentsandoperationshavebeenidentifiedandcorrectivemeasurestaken(e.g.,separation,shielding,isolation),and/orrisksreducedtoanacceptablelevelfortheprogram,isverifiedbyreviewofsafetyanalysesandprogramtechnicaldocumentation.

STPAanalysiswouldprovidesafetyconstraintstomeetthiscriterion.Exposuretohazardoussubstancesorprocesseswouldbeconsideredahazardintheanalysisandsafetyconstraintsidentifiedtopreventthehazard.14.2.10Analysisofchangesormodifications.Criterion:Verifythatasystemsafetychangeanalysisisaccomplishedonchangedormodifiedequipmentorsoftware.Standard:Allchanges/modificationstoexistingsystemsdonot:a.createnewhazards;b.affectahazardthathadpreviouslybeenresolved;c.increasetheriskofanyexistinghazards;d.adverselyaffectanysafety-criticalcomponent.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Inspectionsofsystemsafetychangeanalysesonchangedormodifiedequipmentorsoftware.Verifythatnochanges/modificationstoexistingsystemswillcauseanyofthefollowing:a.createnewhazards;b.affectahazardthathadpreviouslybeenresolved;c.increasetheriskofanyexistinghazards;d.adverselyaffectanysafety-criticalcomponent.

STPAcanbeusedtodesignthemodificationtopreventintroducingnewhazardstothesystem.Ifthemodificationisalreadydesigned(suchasaCOTSproduct),ananalysisofthemodificationwilldetermineifitintroducessafetyhazardsandprovideinterfaceorsystemredesignrecommendationstomitigatethehazard.ThetraceabilityinherentintheSTPAresultswillminimizetheamountofefforttoanalyzechangesandmodifications.14.2.11Assesssafetyofoperationalcontingencies.Criterion:Verifythatthesystemprovidesandimplementsoperationalcontingenciesintheeventofcatastrophic,criticalandmarginalfailuresoremergenciesinvolvingthesystem.Standard:Intheeventofcatastrophic,criticalandmarginalfailuresoremergenciesthesystemprovidesandimplementsoperationalcontingenciesbytransitioningtoapre-determinedandexpectedstateandmode.

Page 179: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

179

MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Inspectionsofsafetyanalysesverifywhichcatastrophic,critical,marginalfailures,andothersystememergenciesrequireoperationalcontingencies.Inspectionsofdesigndocumentationverifythat,intheeventoftheidentifiedfailuresoremergencies,thesystemprovidesandimplementsoperationalcontingenciesbytransitioningtoapre-determinedandexpectedstateandmode.Inspectionofsystemsafetydocumentationverifiesthatoperationalcontingencieshavebeenapproved.

AnSTPAanalysisofthetransitiontobackupmodesduringsystememergenciescanensuresafecontinuedoperationofthesystemduringcontingencies.Itwillincludemorethanjustfailures,i.e.,italsoconsidersdesignerrors.Implementingsafetyconstraintsduringthesystemdesignwillthereforeminimizetheoccurrenceofsystememergencies.14.2.12Safetyassuranceforspecialmilitarymodesofoperation.Criterion:VerifythatspecialmilitarymodesofoperationwheninactivedonotreducetheUASbelowthresholdsafetylevels.Standard:SpecialmilitarymodesofoperationofUAS(e.g.,weaponsorstoresarmingandreleaseoroperationofelectromagneticspectrumemitters)wheninactive(e.g.,ajammerinstandbymode)meetprobabilityoffailureanddesignanddevelopmentassurancerequirementsthroughphysical/functionalsegregationanddesign.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Inspectionsofprogrammatic,systemsafetyandsoftwaresafetydocuments.Criterion:VerifythatspecialmilitarymodesofoperationofUAS(e.g.,weaponsorstoresarmingandreleaseoroperationofelectromagneticspectrumemitters)wheninactive(e.g.,ajammerinstandbymode)meetprobabilityoffailureanddesignanddevelopmentassurancerequirementsthroughphysical/functionalsegregationanddesign.

STPAwillidentifysafetyhazardsassociatedwithmilitarymodesonUASandprovidesafetydesignconstraintstomitigatethehazards.14.3.1Comprehensiveapproachtosoftwaresafety.Criterion:Verifythatacomprehensivesoftwaresafetyprogramisintegratedintotheoverallsystemsafetyprogram.Standard:Acomprehensivesoftwaresafetyprogramisintegratedintothesystemsafetyprogrambyensuringthefollowing:a.Adequateplanningforsoftwaresafetytasks;b.Adequateplanningforanalysis,traceabilityandtestingisdocumentedinsafetymanagementplansandtestplans;c.Activeparticipationofsoftwaresafetyinengineeringprocesses/events(i.e.,peerreview,changeboards,deviationprocessingetc.);d.Inclusionofsoftwaresafetyinthesoftwaredevelopmentprocessandproducts;e.Systemsafetyallocatessafetyrequirementstosoftwaresafetyinatimelymanner;f.System/softwarehazardanalysessubstantiatethatnosinglepointfailurecausedbysoftwareresultsinlossofaircraftorsystem;g.Softwarecausesofandmitigationsforthesystemhazardsareidentifiedandintegratedintothesystemsafetyprocess(i.e.,hazardreports,hazardtrackingsystemetc.);h.Softwaresafetyrecommendssystemsafetyrequirementstosystemsafetyinatimelymanner;i.Systemsengineeringreceivesthefinalsoftwaresafetyinputfromsystemsafetyinatimelymanner;j.Softwareintegritylevelsareestablishedandenforcedfortheprograminaccordancewithprescribedindustrystandards;k.Safetydesignatedfunctionsandtheirassociatedsafetydesignatedsoftwareareidentifiedandanalyzed;l.Testplansandproceduresincludetestingofsoftwaresafetyfunctionalrequirementsanddesignrequirements.NOTE:Theprecedingshouldnotbeconsideredtobeanall-encompassingexclusivelist,andmaybeexpandeddependingonprogramscopeandcomplexity.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Verifybyinspectionofprogramsafety,softwaresafety,andsoftwaredocumentationthatthecomprehensivesoftwaresafetyprogramhasbeenintegratedintothesystemsafetyprograminamannerwhichmeetsthestandard.

STPAprovidessoftwaresafetyrequirements.TheserequirementsaretraceableandtheSTPAartifactsserveasdocumentationoftheanalysis.Thedatafromtheanalysisshouldfeedintotestplans.TheSTPAsoftwaresafetyrequirementswillbedeterminedduringtheanalysisalongwithallothersafetyrequirementsandmeetcriteriasuchasreducingsinglepointfailures,andtrackingsoftwarehazardsrecommendingsafetyrequirements.

Page 180: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

180

STPAdoesnotdifferentiatebetweenhardwareandsoftwarehazards,andinfacttheyarerelatedasthesoftwareoftencontrolshardware.Treatinghardwarehazardsandsoftwarehazardsastwodifferentproblemstosolvereducesthelikelihoodofsolvingsoftware/hardwareinteractionhazards.14.3.2Planning/accomplishingsoftwaresafetyanalysesandassessments.Criterion:Verifythatthesoftwaresafetyprogramrequiresthatappropriatesoftwaresafety-designatedanalysesbeperformedaspartofthesoftwaredevelopmentprocessandverifyaccomplishmentofrelatedassessmenttasks.Standard:Atailoredsetofanalysesandassessments(orequivalent)requiredbythereferencesof14.3(thisdocument)isplannedforandaccomplished.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Verifybyinspectionofsystemsafety,softwaresafety,andsoftwaredocumentationthatthetailoredsetofanalysesandassessments(orequivalent)requiredbythereferencesof14.3(thisdocument)areplannedforandaccomplished.

TheSTPAartifactswillprovidedocumentationthatasoftwaresafetyanalysisisaccomplished.14.3.2.1Performanceofsoftwaresafetyanalyses.Criterion:Verifythattherequiredsoftwaresafetyanalysespreparationisaccomplished.Standard:Thetypesandquantitiesofrequiredsoftwaresafetyanalysesarepreparedandprovidedinaccordancewithplanningforsoftwaresafety.Softwaresafetyanalysesandassessmentsincludethetailoreddocumentationrequiredbythereferencesof14.3(thisdocument).MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Criterion:Verifybyinspectionthatthedeliveredsoftwaresafetyanalysesfortheprogramhaveacompletesystemsview,includingidentificationofsoftwarehazards,andassociatedsoftwarerisks.

AnanalysisusingSTPAwillbeincompliancewiththiscriterion.Additionally,STPAartifactswillprovidedocumentationfortheairworthinesscertificationinspectortoverifythattheprogramisincompliance.14.3.2.2Performanceofsoftwaresafetytraceabilityanalyses.Criterion:Verifythattherequiredsoftwaresafetytraceabilityanalysesareaccomplished.Standard:Systemsafetyrequirementsallocatedtosoftwarearerefinedusingappropriateanalysestoallocatethesystemsafetyrequirementstothesoftwarerequirements,andbi-directionaltraceabilitytotheidentifiedhazard(s)isaccomplished.Appropriateanalysesincludethetailoreddocumentationrequiredbythereferencesof14.3(thisdocument).MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Verifybyinspectionofsystemsafety,softwaresafetyandprogramdocumentationthatthebi-directionalsoftwaresafetytraceabilityanalysesamongstrequirements,design,implementation,verification,andhazardhavebeenaccomplished.

AkeycomponentofSTPAistraceability.Eachsafetyconstraintisdirectlytiedtoahazardandisdocumentedintheanalysis.TraceabilityinSTPAgoesfromthesystem-levelhazardsdowntothespecificdesigntechniquesusedtomitigatethosehazards.14.3.3Evaluationofsoftwareforeliminationofhazardousevents.Criterion:Verifythatthedesign/modificationsoftwareisevaluatedtoensurecontrolledormonitoredfunctionsdonotinitiatehazardouseventsormishapsineithertheonoroff(powered)state.Standard:Thesoftwareasdesignedorasmodifieddoesnotinitiatehazardouseventsineithertheonoroff(powered)state.MethodofCompliance:Verificationmethodsincludeanalysis,test,andinspectionofdocumentation.Verifythatasystemsafetyassessmentisaccomplishedwhichincludesevaluationofsoftwareandidentificationofanomaloussoftwarecontrol/monitoringbehaviortoassurethesoftwareasdesignedorasmodifieddoesnotinitiaterelevanthazardousevents.

ThiscriteriondescribeswhatSTPAisdesignedtodo:identifyhazardsandcontrolthefunctionofthesystemtoavoidthosehazards.

Page 181: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

181

14.3.4Commercialoff-the-shelfsoftwareintegritylevelconfirmation.Criterion:VerifythatCommercialOff-the-Shelf(COTS)andreusesoftware(whichincludesapplicationsoftwareandoperatingsystems)aredevelopedtothenecessarysoftwareintegritylevel.Standard:ThesoftwarecriticalitylevelforCOTSandreusesoftwarefunctionshasbeendeterminedandtheirdevelopmenthasbeenconfirmedtobeattherequiredsoftwareintegritylevelasdefinedbysoftwareand/orsafetyplanning.MethodofCompliance:Verificationmethodsincludeinspectionofdocumentation.Verifybyinspectionofprogram,systemsafety,softwaresafetyandsoftwareengineeringdocumentationthatthesoftwarecriticalitylevelforCOTSandreusesoftwarebyfunctionisdetermined.Verifythatthesoftwareisdevelopedtotherequiredsoftwareintegritylevelasdefinedbysoftwareand/orsafetyplanning.

STPAdoesnotsupportconfirmationofCOTSsoftwareintegritylevel.Infact,softwarecomponentsarenotsafeorunsafe;theycanbeeitherdependingonthesystemdesigninwhichtheyareused.Therefore,softwareintegritylevelhasnorelationtosafety.14.3.5Identificationofsafetydesignated/significantsoftware.Criterion:Verifythatsoftwareelementswhichperformfunctionsrelatedtosystemhazardshavebeenidentifiedandhandledassafetydesignated/significantsoftware.Standard:Safetyfunctionsidentifiedassystemhazardsareallocatedtosoftwarefunctions.Softwareelements(e.g.,CSCI,CSC,CSU,data,interfaces)relatedtoeachofthosesoftwarefunctionsareidentifiedandassignedanappropriatesafetycriticalityasdefinedbythesystemsafetyplanningdocumentation.Thesoftwareelementsarehandled(labeled,tracked,implemented,tested,etc.)asdefinedbythesystemsafetyplanningdocumentation.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Verifybyinspectionofsystemsafetyandsoftwaresafetydocumentationthatsafetyrelatedsoftwarefunctionshavebeenidentified.Verifybyinspectionofprogram,systemsafetyandsoftwaresafetydocumentationthattheidentifiedsafetyrelatedsoftwareelementsarehandled(labeled,tracked,implemented,tested,etc.)asrequiredbysoftware/safetyplanningbasedontheirsafetycriticalitylevels.

ThroughthescenariosgeneratedbySTPA,safetycriticalsystemsandsoftwarewillbeidentified.14.3.5.1Assignmentofcriticalitylevels.Criterion:Verifythateachsafetydesignatedsoftwarefunctionisassignedanappropriatecriticalitylevel.Standard:Foreachofthesoftwareelements(e.g.,CSCI,CSC,CSU,data,interfaces),thesoftwarefunctionsimplementingthoseelementsareassignedanappropriatecriticalitylevel.Ifasoftwarefunctioncontainsmultiplesoftwareelements,thefunctionisassignedacriticalitylevelequaltothecriticalitylevelofthehighestelement.MethodofCompliance:Verificationmethodincludesanalysisandinspectionofdocumentation.Verifythattheappropriatelevelofcriticalityisassignedtoeachsoftwarefunction.

STPAwillnotdirectlyassigncriticalitylevels,howeverbyidentifyingsafetycriticalsystemstheanalysismayhelpdeterminetheselevels.14.3.5.2Testingtocriticalitylevels.Criterion:Verifythateachsafetydesignatedsoftwarefunctionistestedcommensuratewithitsassignedcriticalitylevel.Standard:Eachsafetydesignatedsoftwarefunctionistestedtothelevelrequiredbyitsassignedcriticalitylevel.Thetestingrequirementsforthesoftwarecriticalitylevelsaredocumentedinthesystemsafetyplanningdocuments.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Verifythattheappropriateleveloftestingfordesignatedsafetysoftwarehasbeenperformedandrequiredresultswereachieved.

STPAwillprovidesafetyconstraintswhichcanbeusedasaninputtotesting.HazardscanbeprioritizedinSTPA,howeverSTPAtreatsallhazardsandassociatedsafetyconstraintsthesame.14.3.6Softwaresafetytestanalyses.Criterion:Verifythattheappropriatesoftwaresafetytestanalyseshavebeenplannedandperformed.

Page 182: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

182

Standard:Softwaresafetytestanalyses(e.g.,nominalandfunctionalrequirementsbasetesting/analysis,structuralcoverageanalysis,hazardmitigationtestinganalysis,failuremodesandeffectstestinganalysis)planningandotherdocumentationareformallydocumentedandarekeptunderconfigurationmanagementcontrol.Softwaresafetytestanalysesactivitiesarealsoexecuted;resultsarerecordedusingformalproceduresandarekeptunderconfigurationcontrol.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Verifybyinspectionofthesafetyplansthatsoftwaresafetytestingandtestanalyseshavebeenadequatelydocumentedandplanned.Verifybyanalysisofthedocumentedhazardsthatthehazardsassociatedwithsoftwareandcomputercomponentshavebeeneliminatedorcontrolledtotheacceptablelevelofriskasrequiredbythesystem/softwaresafetyplan.Verifybyinspectionofthetestreportsthatthesoftwaresafetytestresultshavebeenanalyzedandapproved/accepted.

STPAprovidessafetyconstraintsthatshouldbeusedasaninputintothetestplan,justastechnicalrequirementsareevaluatedduringdevelopmentaltest.14.3.7Structuralcoverageanalysis.Criterion:Verifythatsoftwaresafetyplanningadequatelyplansforstructuralcoverageanalysisandthattheplannedanalysisisaccomplished.Standard:Adequatestructuralcoverageanalysisforthesoftwarecriticalitylevelisaccomplished;resultsarerecordedusingformalproceduresandarekeptunderconfigurationmanagement.MethodofCompliance:Verificationmethodincludesinspectionofdocumentation.Verifybyinspectionofthetestplansthatadequatestructuralcoverageanalysisisplannedforanddocumented.Verifybyinspectionofstructuralcoverageanalysisresultsthatadequatestructuralcoveragetestingandanalysiswereachieved.

IfthesafetyconstraintsdeterminedbySTPAareverified,thetestingshouldbecompletefromasafetyperspective.

Page 183: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

183

Bibliography1.AirForceSafetyCenter.AviationStatistics.AirForceSafetyCenter.[Online]2017.[Cited:1127,2017.]http://www.safety.af.mil/Portals/71/documents/Aviation/End%20of%20Year%20statistics/FY17.pdf.2.FaultTreeAnalysis.Ericson,Clifton.Orlando:SystemSafetyConference,1999.3.ReliabilityAnalysisforPowertoFirePumpUsingFaultTreeandRBD.Anthony,Michael,etal.2,s.l.:IEEE,March/April2013,IEEETransactionsonIndustryApplications,Vol.49.4.FailureModeandEffectAnalysis:APowerfulEngineeringTookforComponentandSystemOptimization.Arnzen,Harry.ForestPark:SymposiumonDeepSubmergencePropulsionandMarineSystems.5.Crawley,FrankandTyler,Brian.HAZOP:GuidetoBestPractice.3rd.s.l.:Elsevier,2015.6.Institution,BritishStandards.BSIEC61882:2001HazardandOperabilityStudies(HAZOPStudies)-ApplicationGuide.2001.7.Tolker-Nielsen,Toni.EXOMARS2016-SchiaparelliAnomalyInquiry.s.l.:EuropeanSpaceAgency,2017.8.Leveson,Nancy.EngineeringaSaferWorld:SystemsThinkingAppliedtoSafety.Cambridge:TheMITPress,2011.9.Thomas,John.ExtendingandAutomatingaSystems-TheroeticHazardHanalysisforRequirementsGenerationandAnalysis.2013.10.AcquisitionsProcess.AcqNotes.[Online]85,2017.[Cited:1113,2017.]http://acqnotes.com/acqnote/acquisitions/acquisition-process-overview.11.DepartmentofDefense.DefenseAcquisitionGuide.2017.12.DefenseAcquisitionGlossary.TechnologyMaturationandRiskReduction(PhaseoftheDefenseAcquisitionSystem).[Online][Cited:1114,2017.]https://www.dau.mil/glossary/pages/3193.aspx.13.AFI62-601.USAFAirworthiness.11June2010.14.AFI91-202.TheUSAirForceMishapPreventionProgram.24June2015.15.MIL-STD-882ESystemSafety.s.l.:DepartmentofDefense,2012.16.Leveson,Nancy.STPACompliancewithArmySafetyStandardsandComparisonwithSAEARP4761.2017.17.Losey,Stephen.AirForcereportfindsfaultyengineassemblycausedF-16crashinApril.AirForceTimes.[Online]October26,2017.[Cited:November2,2017.]https://www.airforcetimes.com/news/your-air-force/2017/10/26/air-force-report-finds-faulty-engine-assembly-caused-f-16-crash-in-april/.18.AFPD62-6.USAFAirworthiness.11June2010.19.USAFAirworthinessOffice.USAFAirworthinessBulletin(AWB)-150.Memorandum.Wright-PattersonAFB,OH:s.n.,2017.20.ALargeScaleExperimentinN-VerionProgramming.Knight,J.andLeveson,N.AnnArbor,MI:s.n.,1985.FifteenthInternationalSymposiumonFault-TolerantComputing.21.Annex3-0OperationsandPlanningTheEffects-BasedApproachtoOperations.CurtisE.LemayCenterforDoctrineDevelopmentandEducation.MaxwellAFB:UnitedStatesAirForce,2016.

Page 184: Systems Theoretic Process Analysis Applied to Air Force ...sunnyday.mit.edu/summers-thesis.pdfSystems Theoretic Process Analysis Applied to Air Force Acquisition Technical Requirements

184

22.Leveson,Nancy.Rasmussen'sLegacy:AParadigmChangeinEngineeringforSafety.23.AirCombatCommand.E-8CJointStarsFactSheet.[Online]923,2015.[Cited:1118,2017.]http://www.af.mil/About-Us/Fact-Sheets/Display/Article/104507/e-8c-joint-stars/.24.NorthropGrumman.JointStars.NorthrupGrumman.[Online]2012.[Cited:1118,2017.]http://www.northropgrumman.com/Capabilities/JointSTARSReCap/Documents/MissionDocs/A_GlimpseJSTARS.pdf.25.GeneralServicesAdministration.FederalBusinessOpportunities.JSTARSRecapitalization-EMD.[Online]113,2017.[Cited:1118,2017.]https://www.fbo.gov/index?s=opportunity&mode=form&id=fe71ff06a1af42be5ee7e63cef761151&tab=core&_cview=1.26.Insinna,Valerie.FutureofJSTARSrecapprograminquestionasAirForceexplorsotheroptions.DefenseNews.[Online]September12,2017.[Cited:November18,2017.]https://www.defensenews.com/air/2017/09/12/future-of-jstars-recap-program-in-question-as-air-force-explores-other-options/.27.AProcessforSTPA.Thomas,John.2017.28.Tillery,Jackie.Accountability:Inconsistent,SituationDependentandSubjective.MaxwellAFB:AirWarCollege,1997.


Recommended