+ All Categories
Home > Documents > Tables of Bessel Transforms

Tables of Bessel Transforms

Date post: 11-Sep-2021
Category:
Upload: others
View: 17 times
Download: 3 times
Share this document with a friend
298
Fritz Oberhettinger Tables of Bessel Transforms Spri nger-Verlag New York Heidelberg Berlin 1972
Transcript
Fri~ Oberhettinger
Professor of Mathematics, Oregon State University, Corvallis, Oregon, U.S.A.
AMS Subject Classifications (1970): 33 A 40,44 A 05,44 A 20
ISBN-13: 978-3-540-05997-4 e-ISBN-13: 978-3-642-65462-6 001: 10.1007/978-3-642-65462-6
This work is subject to copyright. All rights are reserved, whether the whole or part of the matenal is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin' Heidelberg 1972. Library of Congress Cataloll Card Number 72-88727. Softcover reprint ofthe hardcover 1st edition 1972
For Joyce
forms involving Bessel (or related) functions as kernel. The
following types of inversion formulas have been singled out.
J k
I' . J k
II'. 1 c+ioo
k f (x) = 27fT J g (y) (xy) 2 [Iv (xy) + I_v(xy)]dy c-ioo
or also
k f(x) = rri J g (y) (xy) 2Iv (xy) dx
c-ioo
II".
0
0
J k
Preface
V.
V'.
VI.
VI' .
VII.
VII' •
g(y) J f(X)Kix(y)dx 0
f(x) -2 sinh (7TX) J -1 27T x g(y)y Kix(y)dy 0
g(y) 21-~[r(~~+~-~v)r(~~+~+~v)]-1
. J f (x) (xy) ~s (xy) dx o ~,v
f(x) l-~ -1 2 [r (~~+~-~v) r (~~+~+~v) ] •
• J g(y) (XY)~[S~,v(xy) -5 (xy)]dy 0 ~,v
g(y) ~ J f(x)\ [xy)~]dX 0 0
f(x) ~ f g(y) \ [(xy) lz]dy 0 0
with \ (z) o
this book.)
The transform VII is also known as the divisor transform.
Greek letters denote complex parameters within the given
range of validity while latin letters signify positive real
numbers. A possible extension to complex values will in general
require a minor effort. In a few cases the expression for g(y)
is given only for a part of the internal (0,00) for y. This
means that g(y) cannot be given in a simple form for the
VI Preface
involving Bessel functions as integrand (not necessarily of one
of the transform types I-VII) include the work by Y. L. Luke
(Integrals of Bessel functions, ~ew York, McGraw-Hill, 1962,
419 p.) and A. Erdelyi et. al. (Tables of Integral Transforms,
Vol. 2. New York, McGraw-Hill 1954, 451 p.). Compared to the
latter (pp. 1-174) the material displayed here represents a
considerable extension. Large parts of it do not seem to have
been available before.
Oregon State University
1. 2 Transfonns of Order Zero........................................ 6
1 .3 Transfonns of Order Unity....................................... 28
Transfonns of General Order
1.5 Exponential and Logarithmic Functions ........................... 45
1.6 Trigonometric and Inverse Trigonometric Functions ............... 49
1 .7 Orthogonal Polynomials.......................................... 64
1 .8 Miscellaneous Functions......................................... 68
1 . 9 Legendre Functions.............................................. 71
1.10 Bessel Functions of Argument x.................................. 80
1 . 11 Bessel Functions of Other Arguments............................. 96
1. 12 Modified Bessel Functions of Argument x ......................... 108
1.13 Modified Bessel Functions of Other Arguments .................... 117
1. 14 Functions Related to Bessel Functions ........................... 124
1. 15 Parabolic Cylinder Functions .................................... 129
1. 16 Whittaker Functions... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 136
1.17 Gauss I Hypergeometric Function.................................. 143
VIn Contents
as KerneL ................................................ 145
2.2 Transforms of Order Zero........................................ 148
Transforms of General Order
2.3 Elementary Functions............................................ 156
Chapter III. Integral Transforms with Neumann Functions as Kernel ..... 191
3. 1 General Formulas................................................ 192
3.2 Transforms of Order Zero........................................ 193
Transforms of General Order
3.3 Elementary Functions............................................ 196
Chapter IV. Integral Transforms with Struve Functions as Kernel ....... 221
4.1 General Formulas ................................................ 221
4.3 Elementary Functions..................... . . . . . . . . . . . . . . . . . . . . . .. 226
Contents IX
Chapter VI. Transforms with Lommel Functions as Kernel ................ 262
Chapter VII. Divisor Transforms ....................................... 267
Appendix. List of Notations and Definitions .....................•..... 277
Chapter I. Hankel Transforms
(1)
(2)
The representation of a given real function f(t) of the real variable t by means of a double integral involving Bessel func­ tions of order v is known as Hankel's integral formula
f(x) = J Jv(tx)tdt J f(u)Jv(ut)udu o 0
Equivalent with this is the pair of inversion formulas
9 (y; v) J f(x) (xy)~J (xy)dx o v
f(x) l< J g(y;v) (xy) 2J V (xy) dy
o
which represent the Hankel transform of a given function f(x) and its inversion formula. The Hankel transform is self recip­ rocal and since
it is obvious that the Fourier sine transform 9 (y) I the Fourier cosine transform 9 (y) and the exponen~ial Fourier c transform ge(y) of a function f(x) are special cases of
(1) and (2)
(~TI)-~ J f(x)cos(xyldx g(y,-~l o
J f(xleixYdx o
2 I. Hankel Transforms
The two dimensional Fourier transform of a given function f(x,y) of two variables defined by
F(x,y) f f f(x' ,y')eixx'+iYY'dx'dy'
leads if f(x,y) only i.e.
is such that it depends on p
F(x,y) F (p) ~ k k
21fp-2 f p'2f(p')(pP')2JO(pp')dp' o
The integral occuring here is the Hankel transform of order zero k
of the function p2f(p). Similarly for the three dimensional Fourier transform of a function of three variables f(x,y,z) such that
F(x,y,z)
f f f f(x' ,y' ,x')eixx'+iyy'+izz'dx'dy'dz'
F(x,y,z) F(R) 41fR- l f R'f(R')sin(RR')dR' R'=O
The integral here represents the Fourier sine transform (or the Hankel transform of the order v=Y,) of the function Rf(R).
In this connection it should be pointed out that in Poisson's summation formulas in one, two or three dimensions
F (x) 1
n=-oo A e n
-i21fn~ a
-i21fn~ - i21frnt-a
I. Hankel Transfonns
F 3 (X,y,Z) L L L f 3 (x+na,y+mb,z+kc) n=-oo m=-oo k=-oo
\ \ \ -iTIn~ -i2~~~ -i2TIk~ l l l Anmke a 0 c
n=-OO m=-oo k=-oo
the coefficients
H (u,v) 2
H (u) 1
f f -00
H (u,v,w) 3
f J f f ( ) iux+ivy+iwzd d d 3 x,y,z e x y z
which are the Fourier transforms (in one, two or three dimen­ sions) of the functions f, f , f involved in the summation.
1 2 3
Erde1yi, A. et.a1., 1953: Higher transcendental functions, Vol. 2. McGraw-Hill, New York.
Erde1yi, A. et.a1., 1954: Tables of integral transforms, 2 vo1s. McGraw-Hill, New York.
3
Sneddon, I. N., 1951: Fourier transforms. Mc.Graw-Hill, New York.
Titchmarsh, E. C., 1937: Introduction to the theory of Fourier integrals. Oxford.
Watson, G. N., 1922: A treatlse on the theory of Bessel functions. Cambridge.
1.1 General Formulas 5
1.1 General Formulas
'" f (x) (xy) ~J v (xy) dx f (x) g(y;v) = J
0
0
a > a g(ya ;v)
~-v d m m+v-I<
1.3 xmf(x) ,m=O,1,2,··· y (yay) [y 2 g (y; v+m) ]
(_l)m ~+v (...£... m m-v-I<
1.4 xmf (x) ,m=O, 1,2, ••• Y ydy) [y 2 g (y;v-m)]
1.5 -1 2vx f(x) yg(y;v-1)+yg(y;v+1)
x -Il f (x) 21-Il[r(Il)]-ly~-V . 1.6
Rell>O,Re(v+1»Rell J V-Il+1< 2 2 11-1 T 2(y -T) g(T;v-ll)dT 0
x- Il f(x) 21-Il[r(Il)1-ly~+V . 1.7
00
o ,ReV-~2>Rell I -V-Il+1< 2 2 11-1 Rell > T 2 (T -y) g (T ; v+ll) d T
y
"
2.1 x-~ Y -~
x-~ k k x < 1 y 2J 0 (y) +~TIY 2 [J 1 (Y)Ha (Y) -J 0 (Y)K:t (Y) 1
2.2
0 x > 1
0 x < 1 -~ ~
Y [l-J 0 (Y) 1 +~TIY [J 0 (y)H1 (y) -J 1 (y)HO (y)]
2.3 x-~ x > 1
x-~(a2+x2)-~ y~ (l+e -ay)
2.5 [a2+x2)~+xl .
2.6 2 2 k -1 • [(a +x ) 2+xl
x~(a2-x2)-~ x < a -k y 2 sin (ay)
2.7 0 x > a
x -~ (a 2_X 2) -~x ~TIY~[Jo (~ay) 1 2
2.8 < a
00
f (x) (xy) \J 0 (xy) dx f (x) g(y) = f 0
x \(a2_x2)].l, x < a ].l ].l+1 -].l-k 2 a y 2r(].l+1)J (ay) ].l+1 2.9 0 x > a
Re ].l > -1
x\(x2-a2)-\ y
x-\(x2-a2)-\ x > a -\nY\Jo (\ay)YO (\ay)
2.12 x\(a~+x~)-l -2 k -a y 2kei o (ay)
2.13 x 5/z (a~+x~)-l y\kero(ay)
5/2 (a~-x~)-l x -\Y\[Ko(ay) - \nYO (ay) ]
2.14 Cauchy principal
value
2.15 x-\ (a 2 +x2)\_x -\ -2 _5/2 -ay e -aY_l) (a2+x2)~+x
y +2a y (aye +
x\(x~+2aZx2+b~)-\ k -k \ y 2r 0 [2 "y (a 2 - b 2) ].
2.16 Ko[2-\y(a2+b 2 )\] a > b .
8 I. Hankel Transforms
0
x~(x4+2a2x2+b4)-~ y~JO[2-~Y(b2-a2)~] . 2.17
b > a -1< 2 1< . KO[2 "y(b+a2)2]
x\l+x4) -~ ~ -1< -~ . Y J (2 'y)K (2 y) v v
2.1B . [x2+ (l+x4)~]-V
2.21 - 3;2 -ax x (1-e )
;. -1 y 'sinh (ay )
~ 1< - L. 2 x-~e-ax2 ~(!.) y' e 8a I (L.)
2.22 a o Ba
-11k - ~ x 2Y~Ko[(2aY)~]Jo[2ay)~] 2.24 x e
-1 -ax~ 1 -~ a 2 2 a 2 2 2.25 x e 8" nay {[JJ.., (By)] + [YJ.., (8y)] }
1.2 Transforms of Order Zero 9
00 k f (x) g(y) = f f(x) (xy) 2JO(xy)dx
0
k k x2exp[-a(b2+x2) 2] ljj % k ay (a 2+y2)- [l+b(a2+y2) 2]
2.26 k . exp[-b(a2+y2) 2]
xljj(b 2+X 2)-ljj . yljj(a 2+y2)-ljj exp[-b(a 2+y2)ljj] 2.27 . k
· exp [-a(b 2+x2) 2]
2.28 x-ljjlog x - y-ljj log (2yy)
x-ljj(a 2+x 2)-ljj . k 2.29 k y2[ljjK~(ljjay) + log a IO(ljjay)KO(ljjay)]
· log[x+(a2+x2) 2]
x-ljj(a 2+x 2)-ljj . yljj K2 (ljjay) 0 2.30
(a 2+x2)ljj+x ·log [ J<] (a 2+x2) 2_X
xljj(z2-l)-ljj . 2.31 · log [z+ (z2-l) ljj] k 2aby 2 KO(ay) KO(by)
z = (2ab)-1(a2+b 2+y2)
xljj(a"+x,,)-ljj k -k -k 2.32 - ljj1TY 2 YO (2 2ay) KO (2 2ay)
x 2+(a"+x,,)ljj · log[ ] a 2
10 I. Hankel Transforms
f(x) (XY)~JO(XY)dX f (x) g(y) = f 0
~ -2 -~ -1 -aKl (ay) 1 2.33 x log(1+a 2x ) 2y 2[y
2.34 ~ -1 2 ~ x'iog[ax +(l+a2x-) 1 - 3/2 -ay
y (l-e )
x-~e-ax2 - ~ 2 2.35 log x 2a-1y~e 4a[log (!a) - ~ Ei (~) 1
x-~ sin (ax) y~(a2_y2)-~ y < a 2.36
0 Y > a
2.37 y~(y2_a2)-~ y > a
- 3h sin (ax) ~ ~ x 27fY Y < a
2.38 ~ -1 Y arcr:;in (ay ) y > a
-% -~ a a 2 1)~1 x [I-cos (ax) 1 y 21og[_ + (- - y < a Y y2
2.39
2.40 x-~(b2+x2)-1sin(ax) y~b-1sinh(ba) KO(by) y > a
2.41 x ~ -1 (b 2+X 2) sin (ax) ~7fY~ e -ab
10 (by) y < a
'" f (x) g(y) = f f(x) (xy JO(xy)dx 0
2.42 X-\(b2+X2)-lcos(ax) \b-1ny\e-abI O(bY) y < a
x\(b2+x2)-lcos(ax) l< 2.43 Y 'cosh (ba) KO(by) y > a
x\sin(ax2) -1 l< ~ 2.44 \ a y 'cos ( ) 4a
2.45 x\cos (ax 2) -1 l< \a y' sin
y2 (4a)
4a 2
4a 2
x-Is in (ax\) -\ a 2 a 2 a 2 2.4S \nay J\(Sy) [J\(Sy) - Y\ (Sy)]
x -lcos (ax\) 1 -l< a 2 a 2 a 2 snay 2{y\(SY) [Y\(Sy)-J\(Sy)] -
2.49 a 2 a 2 a 2 - J\ (Sy) [J\ (Sy) + Yk(B)]} 4 y
-1 -ax\ l< -lar a 2 a 2 2.50 x e sin (ax') \ay \(4y) K\(4y)
-1 -ax\ l< a 2 a 2
2.51 x e cos (ax\) \ay- 2 1 k(4) K\(4y) -4 y
12 I. Hankel Transfonns
X-~cOS(aX)lOg(bX) -~lTy~(a 2_y 2)-~ Y < a
2.52 -y~(y2-a2)-~[Y~log(~Y)+log(y2_a2)1
y > a
x~(b2+x2)-~sin[a(b2+x2)~1 y~(a2-y2)-~cOS[b(a2-y2)~1 y < a 2.53
0 Y > a
x~(b2+x2)-~cos[a(b2+x2)~1 -y~(a2-y2)-~sin[b(a2-y2)~1 y < a 2.54
y~(y2-a2)-~exp[-b(y2-a2)~1 y > a
x~(a2-x2)-~cos[b(a2-x2)~1 y~(b2+y2)-~sin[a(b2+y2)~1
2.55 x < a
0 x > a
0 x < a 0 y < b
2.56 x~(x2-a2)-~cos[b(x2-a2)~1 y~(y2-b2)-~cos[a(y2-b2)~1 y > a
x > a
x~sin[b(a2-x2)~1 ab(b2+y2)-1{a-l(b2+y2)-~sin[a(b2+y2)~1_
2.57 x < a - cos[a(b2+y2)~1} 0 x > a
x-~e-axsinh(bx) (aby)~(uv)-l(u-v)~(u+v)-~ 2.58
(b-a)21~, v=[y2+(b+a)21~ a~ b u= [y2+ - - ---------
1.2 Transforms of Order Zero 13
'" f(x) (xy)~JO(xy)dx f(x) g (y ( = b
x-~e-axcoSh (bx) ~ -1 J.: -l< (aby) (uv) (u+v) 2(U-V) 2
2.59 J.: l< a ;:,b u = [y 2+ (b-a) 2] ., v = [y 2+ (b-a) 2] •
- ./z -ax ~~log[2a + 4 2 l<
2.60 x e sinh (ax) (l+~) 2] Y
Y
k -ax -1 -1 -\1- ~ ~ 2.61 }< 2e sinh(ax ) 2ay 1 [2 (ay) ] K1 [2 (ay) 1
x\> 2 < 1 -~ n(1-2x ) x y J 2n+1 (y)
2.62 0 x > 1
n = 0,1,2, •••
xSlzp n (1-2x 2) x < 1 -~ -1 y (2n+1) [(n+1)J~n+2(y)-nJ~n(Y)1
2.63 0 x > 1
x~ (a 2+X 2) -lon-~
p [a (a 2+X 2) -~l 1 n-k e -ay 2.64 n n! y 2
n = 0,1,2, ...
Ox> 1
n=0,1,2,'"
x < 1
Ox> 1
n = 0,1,2,'"
x~exp (a 2X 2)
2.71 • Erfc (ax)
I. Hankel Transfol1JlS
g(y) = J f(x) (XY)~JO(XY)dX o
[ ( 2 2 -~ [( 2 2 ~ .P2n+l a a +y) ]J2n+ 3/ 2 a +y ) ]
-1 -2n-l -2n-2 2n+~ • (n!) 2 a y
-~ -1 Y Erfc\~a )
1.2 Transforms of Order Zero lS
'" k f (x) g(y) = f f (x) (xy) 2J 0 (xY) dx
0
2.74 ~ - S (a2x 2) y-~C(~y2a-2)
2.75 ~ - C (a2x 2) -~ y S (~y2a -2)
2.76 x~Ei (-ax 2) _312 -1
-2y [1-exp(-~y2a)]
2.77 k . x2exp(ax2)E~(-ax2) -1 ~ 2 -1 2 -1 (2a) y exp(~y a )Ei(-~y a )
k -2k-1 -2-2k [r(k+1)]-1y2k+~ 2.78 x 2exp (-ax 2) 2 a
• Lk (ax2) 2 -2 . exp (-~y a )
Re k > - 3/ ..
0 y > a
sin (4a)
2y [1-cos(4a)]
00
f (x) (xy) ~J 0 (xy) dx fIx) g(y) = f 0
-k -k r..:£ 2 2.82 x 'ci (ax 2 ) y 2[log( ) + Ci (~a) ] 4a
X~(1+x2)-V-1 . 2.83 . P [(1-x 2 ) (1+x2) -1] [2 Vr(v+1)]-2 2v+~K ( )
v y 0 y
-~ Y W (ay) 2.84 v-Jo ~,v
Re ~<1, -J,o < Re v < J,o [W (ayeiTT ) ~,v
- W (aye -iTT) ] ~,v
2.85 p-~ [(1+x 2 a -2) 10] v-Jo
-1;o<Re v < 1;0
k ~ -2 k ei1[~ r(Jo+v-~) - 3/2 x'p [(1+x2a) 2] . Y v-Jo r(1+2v )
2.86 q~-Jo[ (1+x2a-2)10] . W (ay) M (ay)
~,v -~,v
1.2 Transforms of Order Zero 17
f(x) g(y) k
3/2 1T-1 r (3/, ) ~ (a2_y2)-~ J 0 (ax) 2 (¥o) .
r(l:d a
• K.{[~-~(l-y a )2]2 } y < a
2 3/21T -1 r (314) (y2-a2 ) -~ fT!i) .
• K {[~_~(1_a2y-2)~]~} y > a
-~ 2 (ITa) -ly~ K.(~) x J O (ax) y < a
2.88 2IT -ly -~ K(~) y > a
y
-1 2~1T-1 r(la) -2 ~ x J O (ax) r ( 3/ .. )
(1-y 2a )
2~ IT- 1 r(la) au ~_~ (1-a 2y -2)~]~} r (~A)
Y > a
~ log (~) Y > a y y
2.91 -~ -bx x e JO(ax)
-1 k 2 2-k 2 IT Y 2 [ (a+y) + b ] 2
• K{2(ay)~[(a+y)2+ b2]-~}
18 I. Hankel Transforms
DO k f (xl g(y) = f f (x) (xy) 2J 0 (xy) dx
0
_ 812 J 1 (ax) 21T-1y~ £(l.) 2.92 x y < a
a
-1 3/2 a (1_a2y-2)£(~)] > a 2 (1Ta) y [K(y) - y
X-~[Jo (~ax)] 2 -2 -k 2 2 -2 k k
2.93 41T Y "It {[~-~(1-a y ) 2] 2} Y > a
2.94 k x 2JO (ax) J v (ax) -1 -k 2 2-~ 21T y 2(4a -y) cos [varccos (h) ]
Re v > -1 y < 2a
0 y > 2a
k 2.95 x 2J O(ax)Yo (ax) 0 y < 2a
-1 -k 2 2-k -21T Y 2 (y -4a) 2 y > 2a
2.96 k _(1Tab)-1Y~(Z2_1)-~ x 2JO (ax) YO (bx) y < a-b
1
-(1Tab)-1y~(Z~-1)-~ y > a+b
Zi = ± a 2+b 2_;( 2
2ab 2
2.97 k
X 2J O (bx)YO (ax) (1Tab) -1y~ (z ~-1)-~ y < a-b
a > b 0 a-b < y < a+b
_(1Tab)-1Y~(Z;-1)-~ y > a+b
Z = ± a 2+b 2_;( 2
1 2ab 2
f(x)
2.100
Re II > -1
o
o
-1 -k 2 2-k 211 Y 2 ( 4 a _Y ) 2 •
• COS[llarccos(1-~y2a-2)]
2.102
2.103 Re II > -1
I. Hankel Transfonns
y < 2a
• [~- 1+ ~(1_4a2)~]-1l y > 2a 2a2 2a2 y2
o
_('JIab)-1Y~(Z~-1)-~Sin('JIIl) •
2 2 4 2 t- • {[:L.:.- -1+ :L.:.-(1- ~) '2] II
2a 2 2a 2 y2
_ [~_ 1+~ (1_4a2)~]-Il} 2a 2 2a 2 y2
1 .2 Transfonns of Order Zero 21
f (x) g(y) k
X~J (bx)Y (ax) II J.l
2.105 Re II > -1 y < a-b
a > b
a-b < y < a+b
-1 k 2 -k k -ll - (1Iab) y 2COS (1IJ.l) (z -1) 2[Z + (z2-1) 2]
2 2 2
y > a+b
x~J (ax)Y (bx) J.l J.l
-1 k 2 -k 2 k J.l - (1Iab) y 2 (z -1) 2 [z + (z -1) 2]
1 1 1
the same values as before
2.107 k -1 2 3 k 2 2 -k 2 2 k -k = 2'11 r ('4)y2(a +y) '[y+(a +y )'] •
k 2 2 k -k . K{ (2y) 2[ (a +y ) 2+y ] 2}
22 I. Hankel Transfonns
. K{ [ (a2+:i2)~-a ~
• K { (2y)~[(a2+y2)~+y]-~ }
2.110 X~KO (ax) y~(a2+y2)-1
2.111 x~Jo(aX)Ko(bX) y~(a4+b4+y4-2a2y2+2a2b2+2b2y2)-~
2.112 a/2
x J 1 (ax (Ko (bx) ~ -~ 2ay (a2+b2_y2) [a2+b 2+y2)2_4a 2y2]
2.113 X~1o(aX)Ko(bX) y~(a4+b4+y4_2a2b2+2a2y2+2b2y2)-~
b > a
2.114 a/2
x 10 (ax) Kl (bx) ~ -ah 2y b (b2+y2-a2([(a2+b 2+y2) 2-4a2b 2]
b > a
1 .2 Transfonns of Order Zero 23
f(x) g(y) = j f (x) (xy) ~J 0 (xy) dx 0
x~I 1 (ax) K 1 (bx) (2ab) -1y~ {(a2+b2+y2) . 2.115 b > a 2 _~
• [(a 2+b 2+y2) -4a 2b 2] _ 1}
x -~o (ax) KO (ax) 1I-1a-2y~ [(4a2+y2) \...Y]K{ 2a [(4a2+y2. )~+y]-~r
• K{(2y) ~[(4a2+y2 )~+y] -~ }= 2.116
-1 - ah ~ ~ - ~ =411 Y [(4a 2+y2} -2aJlC{y[ (4a 2+y2} +2a]
• K{2a ~[ (4a 2.+y 2.fz +2a] - ~ }
x -~ [KO (~ax) ] 2. 2y~a -2 [(a2+y2) ~-Y]K2.{ (2y) ~[(a 2+y2.) ~+y] -~}
2.117 =4y - ak [(a 2.+y2.) ~-a]a.a {y [ (a 2+y2.) ~+a] -~}
2.118 x ltyo (ax) KO (ax) -1 ~ -~ ~ (1~ ~] -211 Y (y4+4a~) 1og[ +
2a2. 4a 4
x~Ko(aX)Ko(bX) ~(ab)-1y~(z2.-1)-~109[Z+(Z2_1)~] 2.119 -1 Z = (2ab) (a2+b2.+y2)
2.120 x ~Kll (ax) III (bx) ~(ab)-1y~(z2-1)-~[z+(z2.-1)~]-1l
a > b, Re II >-1 z = (2ab)-1(a2.+b 2+y2.)
X~Kll(ax)Kll(bX) ~1I(ab)-1CSC(1Ill)y~(z2.-1)-~ •
24 I. Hankel Transforms
0
I< _3/2 -1 -I< 1 2 -2 _312. a-1y) x 2exp(a2x 2) • ~1f a y 2exp (gy a )Ertc(2
2.122 . K (a2x 2) 0
-~ -1 -1 -~ -1 -2 a ~ I< 2.123 x I k(ax )Kk(ax ) aye (y) cos [2 (ay) 2]
-4 4
-I< -1 -1 I<
-~ -1 -2 (ay) 2 sin[2(ay)~] 2.124 x ·1k (ax (Kk (ax l aye 4 4
-I< -1 2 ~ x 2 [Kk (ax l] 1f(2al-~y-1e-2(aYl .
2.125 4 I<
2.126 I< -ax 2 x·e 1O(ax2l (21fay)-~exp(- ~ 8al
I< 2 -1 I< L L 2.127 x 2[JO(ax 2 )] -~a y 2J ( l YO (16a l o 16a
2 2.128 I< -1 I< L x 2J O(ax2)YO(ax 2) -~a y 2 [J ( l] o 16a
I< -1 I< L L 2.129 x·1O(ax2lKO(ax2l ~a y 2KO (l6al 10 (l6a l
X~J (ax~l K (ax~) _3~ -~a2y -1 2.130 ~y e o 0
1 .2 Transfonns of Order Zero
f(x)
2.134 Re ~ > -~
2.135 - ~ < Re ~ < ~
-2~Y-~K (2ay~) • 2~
2S
-1 -~ 2 2-1 - ~~ y KO(~a y )
26 I. Hankel Transfonns
co I< f (x) g(y) = f f (x) (xy) 2J 0 (xy) dx
0
X-~J ].I(aX~)K].I(aX~) -~ 2 -1 2 -1 ~y I~].I(~a y )K~].I(~a y )
2.137 Re ].I > -1
2.138 X-~Y (ax~)K (ax~) -~-~seC(~U].l)K~].I(~a2y-1) . ].I ].I
-1 < Re ].I < 1 -1 2 -1 2 -1 • [u K~].I(~a y )+sin(~U].l)I~].I(~a y )]
.U _I< ~4 ~
H(l) (k 2 -1)H(2) (k 2 -1) x 2K (ae x) . i6u2sec(~u].I) ].I ~].I 4a y ~].I 4a y
.u -~-
- 1 < Re ].I < 1
-1 I< -1 -1 4u y2(a+y) K[la-yl(a+y) ]
2.141 X-~[Io(ax)-Lo(ax)] 2u-ly~(a2+y2)-~K[a(a2+y2)-~]
2.142 x-10 (a~x~)o (a~x~) 2-3hu(~)~p~V+~[(1+4y2a-2)~] . v -v-l a -~
· p-~v-~[(I+~y2a-2)~] -~
· -~ 2 -2 ~ q-~v- 3/4 [(l+~a y ) ]
-k -2 I< · q 4 [(1+~a2y )2] ~v-~
1 . 2 Transfonns of Order Zero
f(x)
-\i 2.145 x Dv (-x) Dv- 1 (x)
_ 3/2 x Wk (ax)M k (ax)
I~ -,~
g(y) k
= I f(x) (xy) 2JO(xy)dx o
Y-\i[D (y)D l(Y)+\iD (y)D l(-Y) + v v- v v-
y\i[\iDv (y)Dv- 1 (-y)+\iDv (-y)Dv- 1 (y) -
- Dv (y)Dv_1 (y)]
= e-iTI~ r(l+2H) ay-\i. r(\i-k+~)
• p-~ [(1+a2y-2)\i]q~ [(1+a 2y-2)\i] k-\i -k-\i
_3k \i x Wk (ax)W k (ax) \iTIcos(TI~)Y
I ~ - I ~
2.147 -\i < Re \.I < \i Pk [(1+y2a -2) \i] p -k d (l+y2a -2) \i] ~-\i ~-'2
= ei2TI~cos(TI~) [r(\i-\.I+k)r(\i-~-k)]-l
.ay-\iq=~_\i[(1+a2y-2)\i]q~~\i[(1+a2y-2)\i]
27
00 1,
f (x) g(y) = J f (x) (xy) '.J 1 txy) dx 0
x-~ x < a y-~[l-Jo(aY)l 3.1
0 x > a
x-~ x > a
0 x > a
x-~(x2-a2)-~x > a
x-~e-ax2 k 2 3.7 Y - 2 [l-exp (_:L:.) 1
4a
3/2 -ax 2 -2 3/2 2 3.8 x e l;,a y exp (_:L:.)
4a
3.9 -1: k
x 2exp[-a(b 2+x2) 2] -~ -ba 2 -k k y {e -a(a +y2) 2exp [-b(a 2+y2) 2J}
1 .3 Transfonns of Order Uni ty 29
'" f (x) (xy) ~J (xy) dx f(x) g(y) = f
0 1
y [e -e ]
a _ 312 -~
1 1
_ 7/2 a x -1 3, k k
3.12 x e 2a y 2J [(2ay) 2]K [(2ay)2] 2 2
-k -y-~log(~yy) 3.13 x 210g x
3.14 x -~log (a 2+X 2) 2Y-~[Ko(ay) + log a]
3.15 -k 2 k
x 'log [ax+ (l+a x 2) "] -~ y L y 10 (2a) KO (2a)
3.16 x -~log (l+x~) -k 4y 2keroy
3.17 x -~sin (ax 2) -k 2
y 2sin (l.::.) 4a
y2 (Ba)
3.19 x -~sin 2 (ax 2) y-~cos 'L (Ba)
30 I. Hankel Transfonns
x-~(a2+x2)-~ . a-1y-~{sin(ab)-sin[a(b2-y2)~1}y < b 3.20
• sin[b(a2+x2)~1 a-1y-~ sin(ab) y > b
x-~(a2+x2)-~ • a-1y-~{cOS(ab)-Cos[a(b2-y2)~1}y < b 3.21
[b(a 2+x2) ~l a-1y-~{cos(ab)-exp[-a(y2-b2)~1}y > b • cos
x-~(a2-x2)-~COs[b(a2-x2)~1 a-1Y-~{COS(ab)-Cos[a(b2+y2)~1}
3.22 x < a
0 x > a
0 x < a 0 y < b
3.23 x-~sin[b(x2-a2)~1 by-~(y2-b2)-~cos[a(y2-b2)~1 y > b
x > a
3.24 x-~(x2-a2)-~ • a-1y-~sin[a(y2-b2)~1 y > b
• cos[b(x2-a2)~1, x > a
-~ -ax2 -~ -1 x e sin(bx 2) y exp[-~ay2(a2+b2) 1 . 3.25
• sin[~y2(a2+b2)-11
'" f(x) (xy)~J (xy)dx f (x) g(y) = f 0 1
x-~e-ax2sinh(bX2) y-~exp[_~ay2(a2_b2)-l) . 3.26 -1 a > b • sinh[~y2 (a 2-b 2) )
3.27 x-~arctan x 2 - 2Y~keiOY
x- 312p n (1-2x 2) x < 1 (2n+1)-ly-~[(n+1)J2n+2(y)-nJ2n(Y») 3.28
0 x > 1
-~ y Y > a
a a y < a 3.32
-1 ~ a 21T y (y) Y > a
_5/2 '/2 10g(~) ) x [J 0 (ax) -1) -~y [1+2 y < a 3.33
-~y~a2 y > a
32 I. Hankel Transforms
co k
f (x) g(y) = J f (x) (xy) 2J (xy) dx 0 1
-k -1 -k 2 -2 3.34 x 2yO (ax) -TI y 21og(1-y a ) y < a
3.35 x~keiox -~y -~arctan (y2)
3.36 -k x 2kerOx -k
!,jy 21og(1+y2)
-k la-bl x 2J O(ax)JO(bx) 0 y <
-1 -k -1 TI Y 2arccos[(2ab) (a 2+b 2_y2)]
3.37 la-bl < y < a+b
y -~ y > a+b
a
3.38 X~J [(ax)~]K [ (ax)~] k _3/2 -2y 2Y e
1 1
2 2
-k y-~log[:L + (l+~)~] 3.40 x 210 (ax) KO (ax) 2a 4a 2
X-~l -~ -1 [:L + 2 k
(ax)K (ax) ~y ]J {l- (l+l.:-) 2]} ]J ]J 2a 4a 2
3.41 Re ]J > -1
Transforms of General Order
ex> k
f(x) g(y) = f f (x) (xy) 2JV (xy) dx 0
1, 0 1 2l>;; r (!j,~+l>;;v) -1 (v-l>;;)Jv(Y) . < x < r (Vl>;;v) y +
4.1 0, x > 1 . S-l>;;,v-l (y)-Jv- 1 (y)Sl>;;,v (y) Re v > - 3~
x-l>;; y-l>;; 4.2
Re v > -1
xl>;;-v I-v v-~ -l>;;
I 0 < X < 1 2 Y - y J v- 1 (y) 4.3 r(v)
0 , x > 1
xv-l>;; , 0 < x < 1 2v- 11Tl>;; r (l>;;+v) . 4.4 0 , x > 1 l>;;-v [Jv (y)llv_l(y)-llv (y)Jv_1 (y)] y
Re v > - l>;;
xv+l>;; , 0 < x < 1 y-l>;; J (y) v+l
4.5 0 , x > 1
Re v > -1
xjl 2jl+~-jl-l r (l>;;jl+l>;;V+3~ 4.6 r (l>;;v-l>;;jl+!;;)
- Re V_3~< Re jl < 0
34 I. Hankel Transfonns
f(x) (XY)~Jv(XY)dx f (x) g(y) = f 0
x].l 0 1 -].1-1 -, < x < Y [(v+].I-~)yJv(Y)S].I_~,V_1(Y)
4.7 0 , x > 1 -yJv_1(Y)S].I+~,v(Y) +
Re (].I+v) > - %
r (liiv - ~].I + J.i j
x-~ -1 k 4.8 (a+x) lTCSC (lTv) y 2 [.:Iv (ay) - J'v(ay)]
Re V > -1
xV-~ -1 ~lTav SeC(1TV)y~~(ay) - Y- v (ay) ] (a+x) 4.9
- ~ < Re V < 312
x].l-~ -1 (2a) ].Iy~ [r(~+~ll+~V) s_].I,v(ay ) (a+x) r(lii-lii].l+liivj -
4.10 Re(].I+v) > -1
- 2 r(l+~].I+~v) S-].I-1,V (ay) ]
Re ].I < 3/2 r(~v-lii].l)
x-~ (a )-1 k -1 +x ~y 2a IT{sec (~lTv) Iv (ay) +CSC (lTv) [Jv (iay)- 4.11
Re v > -1 - \I_v(iay)]}
Re v > -2 - 2 COS(~lTV)Iv(ay)]
1.4 Algebraic Functions and Powers with Arbitrary Index 35
00
f (x) (xy) ~J (xy) dx f{x) g{y) = f 0 v
x v+~ (a2+x2)-1 aVy~ Kv{ay) 4.13
-1 Re v < 3/2
xV-~{a2+x2)-1 ~1Tav-1 SeC{1TV)Y~[IV{aY)-L_v{aY)l 4.14
-~ < Re v < 512
Re v >- 512
lJ-312 -1 x (a2+x2) lJ-2 ~ ~1Ta csc[~1T{v+lJ)ly IV{ay) - 4.16 -Re v < Re lJ < 7/2 11-3 r{~v+~lJ-1) y~alJ-2 (2+v-lJ) (2-V-lJ) . -2
r{~v-~lJ+2)
.1T . J.'2lJ sl_lJ,V(iay ) e
x-~(a2+x2)-~ k K~V{~ay) y 2I~V (~ay)
4.17 Re v > -1
-1 < Re v < ~
4.19 x~-v (a2+x2)-~ k k-v (~1T) 2a 2 [IV_~ (ay) - "'V-~ (ay) 1
Re v > -~
36 I. Hankel Transforms
'" k f(x) g (y) = f f (x) (xy) 2J v (xy) dx
0
x - v- >'(a 2+X 2) -lr v 2-VTf>'a- 2V >,+V IV (>,ay) KV(>,ay) r (li+v) y 4.20
Re v > ->,
4.21 r(Vv)
Re v > ->,
x v+>, (a 2+X2) -v- 3/2 2- V- 1Tf\,v+>'e-ay
4.22 ar (%+v)
Re v > -1
xv+ ~a2+x2)-].I 1-].1 v-].I+l ].1->, 2 a y.
KV-].I+l (ay) r(].I)
4.23 Re v > -1
Re (2].1-v) > >,
x>,-v (a 2+x 2)-].I a-].I-v+l ].1->, [2-].1 r (1-].1) I v+lJ - 1 (ay) y (I-v)
21- v -i2!.(v-lJ+l) 4.24 Re (v+2].1) > >, - r(v)
e 2 s_lJ+v,_lJ_v+l(iay )
x"-~(a2+x2) -lJ -1 2-v- 1 a,,+v-2-2].1y>'+V r(>'''+>,v)r(l+lJ->'''->'V). r (1+lJ)-r (1+v)
-Rev<Re,,<2RelJ+ 7h 4.25 'IF2(>,,,+>,v;>,,,+>,v-lJ,l+v;~a2y2) +
,,-2lJ-3 2lJ-,,+5 2 r (>,H>,v-lJ-1) + 2 y r(2+].I+>'v->,")
·IF2(I+lJ;2+lJ+>'V->,,,,2+].I->,v->''';~a2y2)
1.4 Algebraic Functions and Powers with Arbitrary Index 37
4.26
4.27
4.28
4.29
4.30
f(x)
g(y) = f f(x) (XY)~JV(XY)dX o
v+l ~ ~lTa sec(lTv)y . . [Jv (ay) sin (lTv) - Yv (ay) cos (lTv)
- H_ v (ay)] + 2vlT-~r(~+v)y-v-~
v ~ ~lTa sec (lTv) y 2 .
-
+ £v(ay)}
- H_ v (ay) sec (lTv) ]
38 I. Hankel Transfonns
f (x) (xy) ~Jv (xy) dx f(x) g(y) = J 0
_ 3 2 -1 -krra].l-2 y~y (ay)-x].l (x 2-a2) 2 v
4.32 Principal value _2].l-la].l-2 r(~v+~1!) y~Sl (ay) Re v < Re ].l < 7/2 r (I+~v-~].l) -].l,V
x -~(a 1_x 2 ) -\O<x<a
4.33 0 ,x > a ~'IIy~[J ~v (~ay) ] 2
Re v > -1
x~-v (a 2_X 2) -\ 0 <x <a (~'IIa)~ a -v H (ay) 4.34 v-~
0 ,x > a
x V+~(a 2_X 2) -v-~, 0 <x <a -~ v ('IIY) (~) r(\-v)sin(ay)
4.35 0 ,x > a
-~ < Re v < ~
xV+~(a2_x2)-v_3~o<x<a -~ -v-l -1 v+k 'II 2 a r(-~-v)y 2cos(ay)
4.36 0 , x>a
-1 < Re v < - ~
x~-V(a2-x2)].l,O<x<a 21 - va].l-v+l -U-~ SV+].l,].l-v+l (ay) r(v) y
4.37 0 ,x > a
00
f (x) (xy) ~J (xy) dx f (x) g(y) = f 0
v
xV+~(a2-x2)~,0<x<a ~ v+~+l -~_k 2 f (~+1) a y 2 J (ay) v+~+l
4.38 0 ,x > a
Re v>-l, Re ~>-1
x~-!o (a 2_X 2/, O<x<a 2-v-1 2A+~+v+1 f~v+1) B(A+1,~~+~v+!o) .
4.39 0 , x > a
Re A>-l,Re(~+v»-l .yv+~lF2(~+~~+~v;v+1,3~+3k~+~V+A;-~a2y2)
0 , 0 < x < a -!o1TY~ J~v(~ay) 4.40 y~v (~ay)
x-~(x2-a2)-~
0 , 0 < x < a
4.41 X-V-~(x2_a2)-V-~,x>a k -v-1 -2v v+~ -1T 2 2 a f(~-v)y Jv(~aY)Yv(~ay)
-~ < Re v < ~
0 , 0 < x < a
4.42 x!o-V(x 2_a 2)V-!o,x > a -k -v -v-k 1T 22 f(!o+v)y 2 cos (ay)
-10 < Re v < 10
0 , 0 < x < a
4.43 k-v v- 3Jz x 2 (x 2-a 2) ,x>a 1T-!o2- v- 1a-1 k-v f (v-~) y 2 sin (ay)
~ < Re v < %
40 I. Hankel Transforms
'" k f(x) 9 (y) = J f (x) (xy) 2J v (xy) dx a
a , a < x < a
4.44 xV-l:!(x 2_a 2)V-l:!, x>a 1Tl:!2 v -2 r(l:!+v) a 2Vy l:!-v
-l:! < Re v < l:! . [J v (l:!ay)Y_v (l:!ay) +'Yv(l:!ay)J_v(l:!ay)]
a , a < x < a
4.45 xl:!-V(x 2_a 2»).I, x > a 2).1al +).I-V r(l+).I)y-).I-l:! J l(ay) V-).I-
Re ).1>-1, Re(v-2).1»l:!
a , a < x < a 2).1a1+).I+v r(l+).I)y-).I-l:!
4.46 xl:!+V(x 2_a 2»).I , x > a . [sin(1T).I)Y).I+v+1(ay)-cos(1T).I)J).I+v+1(ay )]
Re ).1>-1, Re(v+2).1)<-l:!
a , a < x < a y-2A-).I-1 2).1+2A r (Hl:!+l:!v+l:!).I) r (\v-\).I+\-A)
4.47 x).l-l:!(x 2_a 2)A, x > a ·lF2(-A;l:!V+l:!-l:!).I-A,l:!-l:!v-l:!).I-A; -l,;a 2y2)
Re ).1>-1, Re ().I+2A) <l:!
+ 2-v-1a2A+V+).I+1
r(l+v) B(l+A,-A-l:!V-l:!).I-l:!)
.yV1F2(l:!+l:!v+l:!).I;3h+l:!v+l:!).I+A;v+1;-l,;a2y2)
4.48 p_ 3h -).1-1 x (4a 4 + x 4 ) Watson, 1944, p. 435
Bessel functions
00 k
f (x) g(y) = J f (x) (xy) 2JV (xy) dx 0
Xv+5k(4a'+x')-V-~ 1I~2l-3va2-2v v+k 4.49 r(~+v)
y 2JV_l(ay)KV_l(ay) Re v > 1/6
xV+~(4a'+x')-v-~ ~ -3v -2v v+k 11 2 a
4.50 r(~+v) y 2Jv (ay)Kv (ay)
Re v > - ~
4.51 , O<x<l Math. Soc., 38, 177-180.
0 , x > 1
xV+~(x'±2a2x2+b')-~ . (b2"+a2) -V2Vy~
[b 2+X 2+ K [~b2±~a2)~Y1J [(~b2±~a2) v v
4.52 +(x'±2a2x2+b')~1-2v
O<a<b
Re v > - ~
x-~(a2+x2)-~ . 4.53 [ (x2+a 2) ~+xl v-I -k v- 3/2
211 2a sinh(~aY)Kv_~(~ay)
-1 < Re v < 5/2
4.56
o
h h-v -hay 1T 2a 2 e 2 Iv_~ (~ay)
-~ -ay y e
4.59
4.60
4.61
f(x)
aVB(~+~V+~,~+~v-~) yV+~ r (1+v)
• IF1(~+~V-~; v+l; -iay)
IFI (~+~v-~; v+l; iay) =
= a-l[r(l+v)l-IB(~+~V+~, ~+~v-~)y-~
1< v-312 -n 2a [sin(~ay)Jv+~(~ay) +
+ cos(~aY)Yv+~(~aY)l
- sin(~aY)Yv_~(~aY)l
o
1.5 Exponential and Logarithmic Functions 45
1.5 Exponential and Logarithmic Functions
00 k f(x) g(y) = f f (x) (xy) 2J v (xy) dx
0
x -~e -ax k+v I I -k I k-V y2 (a. +y) 2[0.+(0. +yl) 2] 5.1
Re v > -1, Re a>O
- 3/1 -ax x e v-1y~+v[a+(al+yl)~]-v
5.2 Re v > 0, Re a > 0
xm+~e-ax ( I' m+1 ~+v dm+1 {(al+yl)-~ - I Y
dam+1 5.3 Re v>-m-2, Re 0.>0
m=0,1,2,··· . [a+(al+yl)~]-V}
x v+~e -ax 2 v+ 11[ -~r (v+ % ) ay~+v (a I+y I) -v- '0 5.4
Re v>-l, Re 0.>0
xV-~e-ax v -k v+k I I -V-k 2 1[ 2r (~+v)y 2(a +y) 2
5.5 Re v>-~, Re 0.>0
xj1-~e-ax y~(al+yl)-~j1-~r(V+j1+1)p-v[a(al+yl)-~] 5.6
Re(j1+v»-1,Re a>O j1
x-~e -ax l
5.7 ~(1[ Z. ) ~ ( yl
I~v ( L. ) exp - 80.) Re v>-1, Re 0.>0 a 80.
46 I. Hankel Transforms
0 v
x\e -ax2 1 \ - 3/2 3/2 2 81T a y exp (-~)
5.S Sa Re v>-2, Re a>O L y2
[I\v_\ (Sa) - I\v+\ (Sa) ]
x\)+~e-O'.x2 (2a)-v-l yV+\ (- y2
exp 4a) 5.9 Re v>-l, Re c.>0
v- 3f2 -ax 2 2 v - 1 \-v y(v, L x e y 4a) 5.10
Re v>O, Re a>O
v+!.:: ±iax2 (2a)-v-l v+\ [+. (v+l ~)] x 2 e y exp _l. 2 1T - 5.11
-l<Re v<!z, a>O
x2n+v+\ e-~x2 22n+v+l n!yv+\ e-y2 LV( 2
) 5.12 n y
Re v>-1-2n,n=0,1,2,'
11-1: -ax 2 r(\+\v+\~) -\~ -\ L x 2 e r(l+v) a y exp (- Sa) 5.13 Re (~+v) >-l,Re a>O 2
M (~) \~,\v 4a
_3/2 - ::: ), x 2y\J [(2ay) \] 5.14 x e , Re a.>0 Kv [(2ay) 2] v
1.5 Exponential and Logarithmic Functions 47
f (x) g(y) 00
a _3/2 -X-/3x
x e 5.15
k k k k 2y 2JV {(2a) 2 [( S2+y2) 2-8] 2} •
Re a>O, Re 8>0 • K {(2a)!.z[(s2+y2)!.z+S]!.z} v
-1 -(ax)!.z x e
5.16 Re v>-!.z, Re a>O
, x<l (2 ' )-V-l !.z+V[ (2' )' (2' )] La y UV+1 La,y -LU v+2 La,y
5.17 o , x>l
Re V>-!.z
V+k 2 2 k X 2exp [-a(b +x ) 2] 5.18
Re v>-l, Re a>O
--~~----------------~--------------------------------------
48 I. Hankel Transfonns
00 h
f (x) g(y) = J f (x) (xy) 2JV (xy) dx 0
X~-V(b2+X2)-~ . v+h 2 h -v 2 -h Y 2 [a+ (a 2+y ) 2) (a 2+y ) 2 . '[(x2+b2)~_b)V h . exp [-b (a 2+y2) 2)
5.21 h 'exp [-a (x 2+b 2 ) 2)
Re v>-1, Re a>O
xT-~(b2+X2)-~ r(l-,+~V+~T) -~ h Y M, h {b[(a 2+y2)2_a)} .
br(l+v) ~'T, zV
[(b2+X2)~+b)-T . h
5.22 exp[-a(b2+x2) 2) -~T, 2'V
Re(V+T) > -1
Re a > 0
1.6 TTigonometric and Inverse Trigonometric Functions
00
f(x) (XY)~Jv(XY)dX f(x) g(y) = J 0
x -~sin (ax) v+~ 2 2 _k 2 k -v cos(~TIV)y (a -y ) 2[a+(a _y2) 2] ,y<a
6.1 Re v > -2 k 2 2 -k a y 2 (y -a) 2sin [varcsin (_) ] , y > a
y
X-~cos(ax) v+k 2 2 -k 2 2 k -v -sin(~TIv)y 2(a -y ) 2[a+(a -y ) 2] ,y<a
6.2 Re v > -1 y~(y2-a2)-~cos[varcsin(~)] , y > a
y
_3/2 sin (ax) -1 V+k 2 2 k -v X v sin(~TIv)y 2[a+(a _y ) 2] , Y < a
6.3 Re v > -1 -1 k a
v y 2sin [varcsin (-) ] , y > a y
_3h X cos (ax) -1 v+k 2 2 k -v v cos(~TIV)Y 2[a+(a _y ) 2] , Y < a
6.4 Re v > 0 -1 k a
v y2cos[varcsin(-)] , y > a y
x v-~sin (ax) TI~[r(~_v)]-12Vyv+~(a2_y2)-v-~, y < a 6.5
-1 < Re v < ~ 0 , y > a
xV-~cos(ax) v -k v+~ -v-k -2 TI 2s in(TIv) r (~+v)y (a 2_y2) 2,y< a 6.6
-~ < Re v < ~ V -h v+k -v-k 2 TI 2r(~+v)y 2(y2_a 2) 2, i' a
v+ k x 2sin (ax) -21+vTI-~a v+k -v- 312
sin(TIv)re12+v)y 2(a 2_y2) 6.7
-% < Re v < -~ y > a
_?l+v 'TT' -~;;:a r (312-4-.) \ U v+~ ('i.72_~ 2 \ -'\1- 3/2
so
f(x)
6.10
6.11
I. Hankel Transforms
= f f(x) (xy) 2JV(xy)dx o
l+v l< -1 v+l< 2 Z _v_ 3n 2 1T 2a[r(-I;;-v)] y 2(a -y ) ,y<a
o
o
-v -V-ll. 1T r(V+ll) v+1;; 2 a sln[Z(v+ll)] r(v+l) y
3 a 2 F (I;;+l;;ll+l;;v l;;+l;;ll-I;;v;-;--)
2 1 ' 2 y2
y>a
y<a
, y < a
, y > a
-v -v-ll 1T r(V+ll) v+l< 2 a cos[Z(v+ll)] r(v+l) y 2.
y < a
y > a
1.6 Trigonometric and Inverse Trigonometric Functions 51
'" 10 f(x) g(y) = f f(x) (xy) 2JV (xy)dx
° x~-V(b2+x2)-lsin(ax) -v -ab 10
~rrb e y2Iv (by) y < a 6.13
Re v > -~
6.14 1- < Re v < ~
Re v > - 5/2
xV+2n-la(b 2+x2)-1 (-1)nbv+2n-~sinh(ab)Y~Kv(bY) y > a
sin (ax)
n = 0,1,2,'"
x2n+~-v(b2+x2)-1 (_1)n~rrb2n-ve-abY~I (by) y < a v 6.17 sin (ax)
Re v > 2n- 3/2 ,n=-l,O ,1,
x2n-la-v(b2+x2)-1 (_1)nlarrb2n-v-1e-abY~I (by) y < a v cos (ax)
6.18 Re v > 2n - 5'2
n = 0,1,2, ...
52 I. Hankel Transfonns
00 1< f(x) g(y) = f f (x) (xy) 2J (xy) dx
o v
xV+2n+\(b 2+x2)-1 . (_I)nbv+2ncOSh(ab)y\K (by) y ~ a v . cos (ax)
6.19 -1 < Re (v+n) < 3/2_n
n = 0,1,2,'"
x- \in(ax2 ) \ 2 v+l L _\(2!Y.) sin(.l..:.. - -4- 11) J\v(Sa)
6.20 a Sa
Re v > -3
x -\cos (ax 2 ) \ 2 v+l ) L \(2!Y.) cos(.l..:..- -4-11 J\v (Sa)
6.21 a Sa
Re v > -1
x\sin(ax2 ) 1 \ 3/2 2 11 2 -11 (t.) [cos (.l..:.. - v -) J (.l..:..) -
6.22 S a Sa 4 \v-\ Sa
Re v > -4 2 11 L - sin (.l..:.. - +
Sa v4 )J\v+\(Sa) 1
x\cos (ax 2 ) 1 \ 32 2
11 L -11 (~) [cos(.l..:..- 4) J\v+\ (Sa) + 6.23
S a Sa
Re v > -2 2 11 ~ + Sin(~ - v4)J\v-\(sa) 1
x v+\sin (ax 2) -v-l v+1< L \1Iv) 6.24
(2a) y 'cos (4a -
1.6 Trigonometric and Inverse Trigonometric Functions 53
00 k f(x) g(Y)=l f (x) (xy) 2J v (xy) dx
xV+>'cos (ax 2 ) (2a)-V-1yV+>'Sin(~ - >,lTv) 6.25
-1 < Re v<,.
xV+Y,sin(ax2 ), x<b -v-1 V+k 2 2 (2a) y 2[UV+1 (2ab,by)sin(ab) - 6.26 0 , x>b
Re v > -2 - UV+ 2 (2ab 2 ,bY)COs(ab 2 )]
XV+>'cos(ax 2 ) , x<b -v-1 V+k 2 2 (2a) y 2[UV+2 (2ab,by)sin(ab) +
6.27 0 ,x>b
Re v > -1 + UV+1 (2a 2 b,by)cos(ab 2 )]
xV+Y,sin[b(a 2 -x 2 )] -v-1 V+Y, 2 (2b) y UV+2 (2a b,ay)
x<a 6.28 0 x>a
Re v > -1
xV+>'cos[b(a 2 -x 2 )] -v-1 V+k 2 (2b) Y 2UV+1 (2a b,ay)
x<a 6.29
0 x>a
Re v > -1
_(2b)-v-1 v+~v (2 2b ) Y I-v a lay
k: k; .k ~1Iy2Jv(Cb2) [Jv(db2)sin(~1Iv) +
+ y (db~)cos(~1Iv)1 + v
c k k d = (a+y) 2± (a-y) 2 y < a
h 1:: k: ~ 1Iy 2 J v (cb 2) [J v (db 2) CO S (1:; 11 V ) -
- y (db~)sin(~1Iv)1+y~I (cb~)K (db~)' v v v
• sin (1:;1Iv)
C k k: d = (a+y) 2±(a-y) 2 I y < a
1.6 Trigonometric and Inverse Trigonometric Functions
f (x)
6.36 Re v > -1
6.37 Re v > -1
= f f(x) (xy) 2JV (xy)dx o
l< l< l< ~1Ty 'Jv (cb') [J v (db 2) COS (~1TV) -
l< . - Yv(db2)s~n(~1Tv)1 -
y < a
y < a
- Yv(db~)sin(~1Tv)l
0
-31z -1 k k k x cos(ax-bx ) 2 cos (lo1TV) Y 2yv (cb 2) Kv (db 2)
6.38 Re v > -1 c k k
= (a+y) 2± (a-y) 2 I Y < a d
_ 3/2 -1 -1TyloJ (cblo) [J (dblo) sin (lo1Tv) x cos(ax-bx ) + v v
6.39 Re v > -1 + Y (dblo)cos(lo1Tv)] v
c k k
d = (a+y) 2± (a-y) 2 I Y < a
x-1o(b 2+x 2)-1o k k . -lo1TY 2Jlov {lob [a- (a 2_yZ) 2] } . 6.40 cos [a(b z+x2)1o] Y {lob[a+(a z_y 2)1o]} -lov I
y < a
x-lo(b 2+x 2)-1o k k 101Ty2Jlov{lob[a-(aZ-yZ) 2]}
6.41 sin[a(b 2+x z )1o] J lo {lob[a+(a 2_y 2)1o] y < a - v I
Re v > -1
00 k
f (x) g(y) = J f (x) (xy) 2J \) (xy) dx 0
x\)+~sin[a(b2+x2)~] ( ) ~ab \)+ 3/2 \)+~ (2 2 ) -~\)- 3/. ~~ y a -y .
-1 < Re \) < -~ {sin (~\)) J \)+3/2 [b (a2_y2)~] +
6.42 + cos(~\))Y\)+~2[b(a2-y2)~]}, y < a
- -k \)+ 3/2 \)+~ -k\)- 3/. (~~) 2ab y (y2_a2 ) 2 .
. K\)+3k[b(y2-a2)~] , y > a
x\)+~cos[a(b2+x2)~] k \)+ 312 +k -k\)- 3/. (~~) 2ab y\) 2 (a2_y2) 2
-1 < Re \) < -~ k • {cos (~\))J\)+3f2 [b (a2_yZ) 2] -
6.43
0 , y > a
X\)+~(b2+X2)-~ k k+\) k+\) -k-k (~~) 2b 2 Y 2 (a2_y2) 4 2\)
sin[a(b2+x2)~] k . .J [b(a~_y2)2] y < a -v-la -1 < Re \) < ~ 0 > y a
58 I. Hankel Transfonns
0
XV+~(b2+X2)-~ (' )~b~+v ~+v( 2 2)-~-~V ~rr y a -y
k sin[a(b 2+x 2)l:2]
. J [b(a2_y2)2] y < a 6.44 -v-~
-1 < Re v < ~ 0 y > a
xv+l:2(b 2+X2)-l:2 . k k+ ~ + -k-1 V _ (l:2rr) 2b 2 Y V (a2-y2) 4 ~
cos [a(b 2+x2)l:2] k . Y [b(a2-y2) 2] y < a
6.45 -v-~
k K [b(y2-a2)2] y > a v+~
xv+l:2(k 2+x 2)-1 v k k: . k y 2cosh[a(k2-b 2) 2]Kv (kY) y > a
6.46 cos [a(b 2+x2)l:2]
-1 < Re v < 3/2
xv+l:2(k2+x2)-1 V k _k: k: k y2(k 2_b 2 ) 2sinh[a(k2-b 2) 2] .
'(b2+X2)-\ . Kv(ky) . 6.47 y > a
sin [a (b 2+X2) \]
-1 < Re v < 5/2
6.48
6.49
6.50
_x-l:;(x 2 _a 2 )-l:;
x>a
= J f(x) (xy) 2J\I(xy)dx o
k \I \I+k 2 2 -k\l-h (l:;a1T)2a y 2(b +y) 2 4
S9
= f f(x) (xy)~J (xy)dx o v
-~ ~ v+~ 2 2 -~v-~ v+~ 2 TI a (b +y ) y •
y [a (b2+y2)~] v+~
x < a
x > a
Re v > -1
o x < a
l< - v l<-v 2 2 l<\)-l< 2 2 l< (~TIa) 'a y 2 (y -b ) 2 4JV_~ [a(y -b ) 2]
6.52 Y > b
Re v > -~
o x < a -~ v+ 31z . ( ) v+~ (b 2 2) -~v- 3/. -(~TI) a s~n TIV y -y
y < b
x > a
• yv+ 312 [a (y -b ) 2] y > b
1.6 Trigonometric and Inverse Trigonometric Functions 61
f(x)
= J f(x) (xy) 2JV (xy)dx o
-~ v+ 3/2 V+k 2 2 -kv- 3/4 - (~'1T) a sin ('1Tv)y 2(b _y ) 2 •
0
k 312_v k-v ~v- 3/4 (~1T) 2a by 2 (y2_b 2 )
k . J V_3J2 [a(y2_b2) 2)
k • K, {~a[b+(b2_y2)2)}
'liV
• Iv(ky)
I
0
0 x < a ~~y~k-vexp[-b(a2+k2)~lIv(kY) > b y
x~-v(k2+x2)-1
Re v > _ 3/2
X~-V(b2+X2)-~ . yV+~[a+(a2_y2)~1-v(a2_y2)-~
• [ (b 2+X2) ~-bl v k . cos [b (a 2_y2) '+~~vl y < a
6.58 sin[a(b2+x2)~1 y-~(y2-a2)-~exp[-b(y2-a2)~1 ·
Re v > -1 sin[v arcsin (~)l y > a y
X~-V(b2+X2)-~ . v+k 2 ~ -v 2 2-k -y 2 [a+ (a _y2) 1 (a _y ) 2
[(b2+x2)~-blV k . . sin[b(a2-y2) 2+~~vl y < a
6.59 cos[a(b2+x2)~1 -k -k ~ · y 2(y2_a 2 ) 2exp[-b(y2-a 2) 1 .
Re v > -1 cos[v arcsin (~) 1 . , y > a y
1.6 Trigonometric and Inverse Trigonometric Functions 63
'" k f (x) g(y) = J f(x) (xy) 'Jv(xy)dX
0
-1 -axJ-. -k -k X e DV-J-. (ay 2) D_V-J-. (ay ')
6.60 . cos[axJ-.-J-.~(v-J-.)l Re v > -J-.
x-J-.(a 2 _x 2 )-J-. J-.~yJ-.JJ-.V+J-.~(J-.aY)JJ-.V_J-.~(J-.ay)
6.61 . cos[~ arccos(~)l a Re (v+~) > -1
64
2 -2 • exp(-'/sY a )
1.7 Orthogonal Polynomials
7.5 Re (2n-v) > _ 3/2
V+>< 2 x 2exp (-a 2x ) . 7.6 LV(a 2x 2)
n
x v+~exp (-~a 2X 2) . 7.7 LV(a 2x 2)
n
7.8
(n!)-12-na-n-V-1yn-~exp(_1~y2a-2)
• YV+~Lv(y2a-2) n
Re v > 0
l< 2 [L 2V (ax 2 ) )
n
n
Re v > -1
o x < a
2n-y, < Re v < 2n+y,
I. Hankel Transfonns
-v-1 v+Y, 2 -1 (2a) y exp(-~y a ) •
l< 1 2 [L~v(~2a- »)
-1 -v-1 v+Y, (TIn!) r (n+l+y,v) (2b) y •
(_l)mr (n-m+y,)r (m+y,) • r (m+l+J;v) (n-m) !
(_1)n 22n-v+1 r(2v-2n)'
2n+ 3/2 -~ 2 2 v- 2n- 312 x \x -a ) •
v-2n-1 -1 • C2n+1 (ax )
x > a
x < a
Ox> a
. cos[b(a2-x2)la] . ·cv+la [(1_x2a-2 )la]
2n
o
(_1)n(laTI)la(ay)v+la(b2+y2)-lav-~ •
(_1)n(laTI)la(ay)v+la(b2+y2)-lav-~ •
67
0
Re v > - ~
XV+~Ei(-ax2) -2 V+ly -v- 3/2 y(v+l,l:oy2 a
-1
+;. 2 -r(l+v) (2a)-V-lyv+~exp(l:oy2a-l) XV 2eax Ei (-ax2 ) .
B.3 -1 < Re v < 3/2 2 -1 . f(-v,J..oy a )
v- k 2 2 x 2exp(a x ) 11- ~a-vr (\+v) y -~ 1 2 - 2 exp ( lay a ) . B.4 Erfc(ax) . W (l:oy2a- 2 )
-v,v -~ < Re v < 3/2
x~+vErfc (ax) a-v r(31z+v) [r(v+2»)-ly _ 3/2 .
B.5 Re v > -1 lA 2 - 2 2 -2
'exp(- ay a )M~+~,~v+~(J..oy a )
x -v-lfiy(v+~,ax2) -v ~ v-\; -1 2 11 Y rfc (J,;ya )
B.6 Re v > -~
2-v-1 v+\;. ( 1 2 -1) x - Y ~ -~y a B.7
Re v > -1
0
xV+~xp (ax 2) r (-v ,ax2) -[r(1+v)]-1(2a)V+lyV+~xp(ax2)Ei(-ax2) 8.8
-1 < Re < 312
X~-V exp (-a 2X 2) (2a2)v-ly~-vexp(_\y2a-2) . 8.9 L_v (a2x 2) · L_ v (\y2 a - 2 )
Re v < ~
k+v x 2 exp(-a2x 2 ) [r(~+v)]-12-2va-2V-lyV-~.
8.10 L (a 2x 2) 1 2 -2 -~ -1 . · exp(-/eya )D2v (2 a y) v-~
Re v > - ~
k+v • [r (3/z+v ) ]-12-2v-3/2yv+~exp(_1/ey2a-2) x 2 exp(-a 2x 2) . 8.11 L (a 2x 2)
v+~ -~ -1
Re v > -1
~-v 2 2 x exp(-a x ) . k -1 -v -1 v-k 1/, 2 -2 1T 2 [f(V)] 2 a y 2exp(- By a ) .
8.12 . LV_l(a 2x2) · I 1 (1/ey 2a- 2 ) \)-'2
Re v > 0
'" k f (x) g(y) = f f (x) (xy) 2JV (xy)dx
0
lztv exp (-a 2x 2) -J" -1 v -1 -v-J" 1~ 2-2 . x 1[ [r(-v)] 2 a y exp(- Sy a )
8.13 · L- v - 1 (a 2x 2) K efi y 2a -2) v+J"
-1 < Re v < - 1/6
xJ,,-vexp (_a 2x 2) . [f(V+k+1)]-12-ka v-k-ly k-J"
8.14 · L (a 2x 2) · exp(_I/sy 2a - 2 ) . k
Re(v+k) > 0 · 2 -2 M~_l:>v+J",J.-"k+J"v (>.,y a )
k+v x' exp(-a2x 2) [f(1+k)]-12-ka -k-V-1y k-J"
· Lk (a 2 x 2 ) · exp (_I/sy2 a -2)
8.15 W (1/6y 2 a -2) Re(2k-v) > - 3iz
J"k+J"+J"v,J"k-J,,v
Re v > -1
1.9 Legendre Functions
1.9 Legendre Functions
• p -V-~ (2a 2X -2_1 ) \1
x < a
Ox> a
x < a
J. 1-\1 \1 ('orr) 2a y JJ.- (~y)J (~y)
2 \1 v
• F (V+\1+3/2 ;2V+2;-iay) 1 1
= (271) -~[r (3f2+V) ]-2r (3/2 +\1+V) r (~+v-\1) •
• 2 v+% V-\ -V- 312 •
~ -v-1 V+~ 71 2 ay JJ. (ay)J '+ (ay)
2-\1 -,. \1
o x < a
9.5 x > a
o x < a
9.6 x > a
2 2
Re(v±lI) > -2
• P>, 11->' (I 2 2 I ) a -x
Re 11>-1, Re(II-2v)<1
00
-v-2 3/2 -1 2 TI a[f(l+v-II)f(l+v+II)] •
V+k 2 2 • y 2{[J II (>,ay)] +[YII(>,ay )] }
• y-II->'K (ay) v
f(x) (XY)~Jv(XY)dX f(x) g(y) = f 0
x~(a2+x2)~V . 21+v -1 ~ a COS(~~~)y-V-~K~(ay)
9.12 • P~~_~(1+2x2a-2)
-1 < Re ~ < 1
x~(a2+x2)-~V . 21-va[r(~+v+~~)r(~+v-~~)]-1 . 9.13 -v 2 -2
• p~~_~(1+2x a ) · v-~ y K~ (ay)
Re(2v±~) > -1
xV+~(a2+x2)~V . (2a)V+1[~r(_v)]-1 . -v-~ 2
9.14 2a 2+x2 • y [Kv+~(~ay)] • p [ ] v 2a(a2+x2)li
-1 < Re v < 0
v+~ x 2+2a2 (2a)V+1[r(_v)]-1y-V-~ . x pv [] 9.15
2a(x2+a2)~ · I_v_~(~aY)Kv+~(~ay) O<Rev< 312
1.9 Legendre Functions 75
f(x) (xy)~J (xy)dx f(x) g(y) = 6 \I
x\l+~[ (a+2b2x2)~lC%\I-~. n-~2-2\1-~-2\1-2[r(1+\I+~)r(1+\I_~)]-1 . • p-\l-~(a+2b2x2) • y\l+~K {2- 3/2b -ly [(a+1) ~+ (a-1)~]} .
~-~ ~ 9.16
Re \I>-l,Re(\I±~»-l .K {2- 3Izb -ly [(a+l) ~- (a-1)~]) ~
a ~ 1
x~(a2+x2)-~ . 2~-\la~[r(1+~\I+~~)r(~+~\I-~~)]-1 . • p-\l[(1+x2a-2)~]
~ • Kl.+ (ay) . ~
Re(\I+~) > -~
X~~~~[(1+x2a-2)~] 23~-\la~[r(~+~\I+~~)r(~+~\I_~~)]-1 . 9.18 -1 Re (\I±~) > - ~ • Y K~ (ay)
x~{p-~\I[(1+x2a-2)~]} 2 2an-1[r(~+~\I+~)r(~+~\I-~)]-1 .
~-~ 9.19
xJo(a 2+x2)-Jo a~-l[r(l+Jov+jl)r(l+JoV-jl)]-l •
• p-JoV-Jo[(1+x 2a- 2)Jo] •• yJo[Kjl(Joay)]2 jl-Jo
9.20
Re(Jo±jl) > -1
-"V 2 -2 " P 2 [(l+x a ) 2] • -jl 9.21
Re v>-l,Re(Jov±jl»-l
9.22
1.9 LegendTe Functions 77
o
Re v > -1, Re p <~
Re(v+p) > -1
-1<Rev<O
9.26 iu( ~-v) v-~( 1+2 2 -2) "e q_~ a x
o < Re v < 3/ 2
-k -v-l k+v u'2 ay' Ip (~ay) Kp (~ay)
9.27
78
9.29
9.30
9.31
9.32
9.33
f(x)
• e-i'll'(V+~) •
Re(V±l1) > -1
i'll''' _II 2 -2 ~ e '"q '" [(l+a x )'2] v-~
Re (v±l1) > -1
• ql1 [(l+a2x-2)~] v-~
~ -2V- 3/2 -2v-2 ~+v 'II' 2 by'
• I {2- 312b -ly [(a+1) ~- (a-1)~]} • 11
• K {2-3kb-1y[(a+1)~+(a_1)~]} 11
'II'~2-V [r (3/4+~V+~11) r (3/4+~V_~11)] -1.
• r(~+V-l1)Kl1(ay)
-1 • r(~+v-l1)Y Kl1 (ay )
1.9 Legendre Functions 79
co k f (x) g(y) = f f(x) (xy) 2JV (xy)dx
0
x-~(a2+x2)-~ei2n~ r(~v-~) k . 2r (l+~v+~) Y"K~_~(~aY)K~+~(~ay)
k-~ -2 k · q" [(1+a 2x) "]. ~v-~
9.34 q-~-~[(1+a2x-2)~] · ~v-~
x-~ei2n~ . -~ r(~+~v-~) [K~ (~ay) ]2 y r (~+~v+~)
9.35 · {q~ [(1+a2x-2)~]} ~v-~
Re(~±~) > - ~
-k -~ 2 -2 ~ y-~I~(~aY)K~(~ay) x"p [ (l+a x ) ]. ~v-~
9.36 -in~)J 2-2 k · e q [(l+ax )"] ~v-~
Re v>-l, Re (v+2)J) >-1
x~p-~V[(1+x2a-2)~] . aY-~I (~ay)K (~ay) )J-~ )J ~ .1[
-~2v kv -2 ~ 9.37 .e q2 [(1+x 2a ) ]
)J-~
80
10.1
10.2
-1 < Re(v+ll) < 0
x>,,+Il- VJ (ax) 10.3 Il
Re (WIl) > -1
I. Hankel Transforms
o
• (a 2_y 2)-Il- v-l y < a
-1 v+Il+1 . Il v+k -~ 2 s~n(~Il)r(ll+v+l)a Y •
y > a
2V- Il+1 -)1 V+>" 2 2 Il-v-l r (Il-v) a y (a -y ) , y < a
o , y > a
o , y < a
21l- v+1 Il ~-V 2 2 V-Il-1 r(v-Il) a y (y -a ) ,y > a
v (>"+v->"A) 2-1. Y r(>"A+>,,) •
• (la 2_y 21)>"A->"p-V (a 2+y2 ) ~A->" 1 a 2_y 21
=2-A(rra)->"[r(>"+~A)1-1~a2_y21>"A •
i2!.A • e 2
10.5
10.6
10.7
10.8
f(x)
00
y < a
y > a
y > a
Eason, G. Noble, B. and Sneddon,
I. N., 1955:
Re v > -1
I. Hankel Transforms
= f f(x) (xy) 2JV (xy)dx o
L 2 2 _L).I_k -kV • y'2 (a _y ) '2 4 p ' ( z ) =
).I-~
-k 2 2 -k).l -i~).I ).I 2 -2 • Y '(a -y ) • e q (2a y -1)
~v-~
y < a, 2 '-2 -2 -k z = (1-~ a ) (1-y 2a ) •
2).1r (~+~v+).I) [r (~+~V-).I) l-ly-~ •
• (y2_a2)-~).Ip-).I (1_2a 2y-2) ~v-~
• (a2_y2)~).Iq).l (2a2y-2_1) ~v-~
1.10 Besse;!. Functions of Argument x
f (x)
Re \! > n-1
l+Re ~ > Re \! > -1
Re ~-2n+1 > Re \! >
10.17
y~a
y ~ a
y ~ a
y < a
y < a
f (x)
(-I)ny~I (by)K 2 (ab) v v- n y < a
10.18 n = 0, 1, 2,··· (_I)ny~I 2 (ab)K (by) v- n v y > a
Re v > n-I
x~(b2+x2)-ly (ax) (-I)ny~K 2 l(ab)I (by), v-2n-l v- n- v y ~ a
10.19 Re v > n - ~
10.21 +sin[~TI(p-~+v)]Y (ax)) ~
Re p < 1
Re(v±~+p) > -2
y ~ a
f(x)
Re p<3/2 , Re(p+Il»-2
Re(p+Il+2v) > -2
'{COS[I(P+O-Il)]JIl(ax)+
i=l
Re(p+o»IRe 111-2
o _2~-ly-~(y2_4a2)-~
y < 2a
y > 2a
y < 2a
-~ 3v+1 2v L ~ 2 a -v-~ 2 2 -V-'ll r(~-v) y (y -4a ) ,y>2a
CPY~IIl(bC)IV(CY)KV(aC) Y < a - b
k Y < a - L c i
i=l
10.26
-A A-v-l 2 a
• r(~+~V+~]1-~A)r(~+~V-~]1-~A)y~+v •
-1 cof -A-~ y. =~ sin[~~(v-]1-A)l x IV(XY) (xy) 'K\l(ax)
o dx
y < a
co
f -A-Y. ~ cot(~]1) x 2J (ax) (xy) J (xy)dx o ]1 v
COf -A-Y. Y. -csc(~]1) X 2J (ax) (xy}'J (xy)dx o -]1 v
Y > a
Ch. II) for y > a
1.10 BesseL Functions of Argument x 87
00 l< f (x) g (y) = f f(x) (xy) 2J (xy)dx
0 v
xl:i+v+j.ly j.l(ax) -1 v+j.l+l v+l< j.l TI 2 cos(TIv)r(j.l+v+l)y 2a .
-l<Re(v+j.l) < 0 10.28
(a 2_y2) -j.l-v-l , y < a
Re v > -1 -1 v+j.l+l j.l v+l< - TI 2 COS (TIv)r(j.l+v+l)a y a . . (y2_a 2)-j.l-v-l
, y > a
xl:i+v-j.ly j.l(ax) -1 v-j.l+l -j.l v+l:i -TI 2 r(v-j.l+l)a y . Re v > -1, (y2_a 2) j.l-v-l , y > a
10.29 -1 < Re(v-j.l) < 0 -1 V-j.l+l -j.l v+l< TI 2 -cos[TI(j.l-v)]r(v-j.l+l)a y a
. (2 2)j.l-v-l Y < a -y , a
xl:i[Jl< (ax)] 2 -1 -l< 2 _l:i = 2TI y 2 (4a _y2) y < 2a aV
10.30 0 2a Re -1 y > v >
l:i -1 -2j.l _l< -l< x Jl< + (ax) TI (2a) y 2(4a 2_y2) 2 .
2V j.l
aV-j.l -1 -l:i -l< -1
10.31 Re v -1 = 2TI Y (4a 2_y2) 2COS [2j.larccos (l:;ya ) ] >
y < 2a
Re(v+J.I) > -I,
10.34 Re p>-l, Re(p-J.l-V)<~
b > a > 0
x~-vJ (ax)J (bx) v v
Rev>-~
10.36
g (y) = I f(x) (xy)~J (xy)dx o v
n+1 2n-J.l-2 ~ (-1) e y I (be)l (ye)K (ae) J.I v v
y < a-b
sides a, b, y
00 1<
f (x) g(y) = f f(x) (xy) 2Jv (xy)dx 0
~-v V(ax)JV(bX) 0 la-bl and y > a+b x J , Y <
Re v > - ~ 1I-~(ab)-v21-3v ~-v r(!li+v) y
10.37
x -~ [J (ax) 1 r(~+~v+].I) . ].I r(!li+!liv-].I)
10.38 Re(v+2 ) > -1 -~ -].I 4a 2) ~12 } , 2a . y {p -~+~v [ (1- Y >
y2
X-~J ].I (ax)J_].I (ax) y-~p~ ~[(1_4a2)~lP~].I ~[(1-4~)~1 10.39 2V- y2 v- y2 Re v > -1
y > 2a
~ -1 -~ -1< ~ x J~(v+n) (ax)J~(v_n) (ax) 211 y 2(4a 2_y2) 2T ( ), o < y < 2a 10.40 n 2a
Re v > -1, n=0,1,2, ... 0 , y > 2a
~-v 2
y v-~ (4a 2_y 2) v-~ , <y< 2a Re v > - ~
r (!i+v)
0 < y > 2a
10.42
jJ -jJ
~+v x J (ax)J (ax) v -v
10.46 -1 < Re v < ~
o < y < 2a
o < y < 2a
o y > 2a
-~ I-v -1 2 l<v-~ -TI 2 a sin (TIjJ) (y2-4a ) 2 •
• ~-v (y2 1) PjJ-~ ---
• y-V-~(4a2_y2)-V-~,
o
f(x)
Re ].I > -1, Re \I > - ~
10.47
10.48
91
o o < y < I a-b I
I a-b 1< y < a+b
-(~~3)-~(ab)\I-ly~-tZ;-ll~\I-~ •
y > a + b
• (Z2_1)-~\I-~e-i~(\I+~)q\l+~(z ) 1 ].1--. 1
y < la-bl
(2~)-~(ab)-\l-ly\l+~(I-z2)-~\I-~ • 1
• [p\l+~(z )COS(~\I)- l Q\I+~(z )sin(~\I)] ].1--. 1 ~ ].1--. 1
I a-b I < y < a+b
-(~~3)-~sin(~].I) (ab)-\l-ly\l+~ •
• (z2_1)-~\I-~e-i~(\I+~) \I+~(z ) 2 q].l-~ 2
Zl as in 10.47 2
Y > a+b
0 v
x-~[J2(ax)+y2(ax)] -1 J" 2 (7TY) esc (7T].I)Y 2 . ].I ].I
Re(v±2].1) > -1 4a 2)~] 0-].1 [(1_4a2)] . {P].lJ,,+l [(1- -
-. 'l;V y2 -~+~V 2 Y
10.49
_ P -].I [ (1- 4a 2 ) ~] 0].1 [(1_4a2)~]} -~+~V y2 -~+~V 2
Y
Y > 2a
xV+~[J2(ax)+y2(ax)] 2V+1 7T-o/2a-1r(1+V+].I)r(1+V_].I) . ].I ].I
10.50 Rev < ~, Rev > -2 . (y2_4a2)-~-~Vp-V-~(~ -1) y > 2a ].I-~ 2a2
Re (v±2].1) > -2
1.10 Besse,l Functions of Argwnent x
f(x)
-1 < Re v < ~
Re(v+jl) > -1
-1 < Re v < l!j
10.52 Re(V+Jl) > -1
(~7f3) -~cos (7fv) (ab) -v-1y v+~ •
• ( 2_1)-l.i-~v -i7f(v+~) V+~(Z ) Zl e qJl-~ 1
Y < a-b
a-b < y < a+b
y > a+b
Y < a-b
as above
x -lzJ (ax sin C4 cos 13) • Jl
Jp(ax)
• JV_Jl(ax}
0= I Jl i i=l
-1< Re v< Re o+J.-ak-lz
I. Hankel Transfonns
o v
Math. Soc. (2), 40, 37-48.
(sin C4 cos I3)Jl (sin 13· cos C4)v+lz •
·2Fj (lz+lzo-lzp,lz+lzo+lzp;1+v;sin 2 13)
o = Jl+v, Y = a cos C4 sin 13
-1 _3(2 Jl V+'-' 21T a sin (1TJl) (sin a) (sin 13) 2
• [cos (a+l3) - cos (a-l3) ]-1
y = a cos a sin 13
o
f (x)
k 10.58 6 = L lli
i=l
95
o
f (x) g(y) k
xloJ (ax 2 ) lov
11.1 Re v > -1
11.2 lov
2V 2 11. 3
11. 4 aV- 2
Re v > - 5/2
(l,;ax 2 )
co
f(x) (xY)~J (xy)dx f(x) g(y) = f 0 v
x~ [JItV(JolaX 2) ] 2 -1 ~ x.: :C. -a y J ( ) Yltv (4a) ltv 4a
11. 7 Re v > -1
X~Jltv(ltax2)Yltv(ltax2) -a -1y~ [Jltv (li) ]2
11.S Re v > -1
• 'IT
X~J (ax2) -1 - 3/2 14" . 2 'IT Y [e W It (z)W It (z ) + Itv-lJ lJ, v 1 -lJ, v 1
11.9 • J It + (ax2) .7[ -17'\1
V lJ - + e 4 W lJ,ItV(Z2)W-lJ ,ltv(Z2)] Re v > - ~
2 ±i.!L Zl = ~ e 2
Sa 2
11.10 Rev>- ~
Re v > ~
_ 3/2 -1 a-~J2V_1[2(ay)~] x J V_1 (ax ) 11.12
Rev>-~
98
11.13
11.14
11.15
-Re(v+ 312 )<Re p <
Re(p+v) > - 10
Re (p-v) < 3/2
I. Hankel Transfonns
~ +B·oF3(1+v,1+~V-~\.1r~p,1+~\.1+~v+~p; 16 )
2P-1-2\.1a\.1y\.1-P+~r('v+~e-~\.1) A = r(1+\.1)r(1+~v+~\.1-~p)
2-p-1-2vav+pyV+~r('H_;V_~P) B = r(v+1)r(1+~v+~\.1+~p)
V-~ -~i CSC (2TTV) (~) •
2
2
2 -y-\.1BoF3(1+\.1,1+~\.1+~v-~p,1+~\.1-~V-~p;ti)]
A-1=2v+Pr(1+v)r(1+~p-~\.1+~v) •
• r(l+~p+~\.1+~v)
• r (l+~\.1-~v-~p)
1 . 11 Bessel, Functions of Other Arguments 99
00 k
f (x) g(y) = J f (x) (xy) 2J (xy) dx 0 v
• ~ -k -a 2b
x (b 2+X 2) 2exp (-----)· -~ -by J 2v (2ay~) b 2+X2 y e
2 11.16 . J (~)
Re v > - ~
~ J 2v- 1 (ax) ~ay _3/2 2 -1 J v _ 1 (>;;a y )
11.17 Re v > - ~
Y 2J V (>;;a y )
11.18 Re v > - ~
-k -bx k k 2 2-k a 2b x 2e J 2V (2ax 2) y 2 (b +y ) 2exp ( - --) . 11.19
b 2+y2
100
Re v > -1, Re(v+ll)<O
11.21
11.22
11. 23
I. Hankel Transforms
g(y) co k
a -Pb V-ll+1 (a2_y2) ~Jr~v-\v+~ •
J [b(a2-y2)~1 p-v-1
o y > a
llbV+Jl+1 v+~ (2 2)-~Jl-~\!-~ a y a -y "
-COS(~V)Jll+V+1[b(a2-y2)~1} y ~ a
_2~-1sin(~1l)allbv+ll+1y\!+~ •
y > a
y > a
y > a
11.24
v+2n- 3f2 (2 2-1 x a +x) -
n = 0, 1, 2,---
v+~ 2 2 -~v- ... x (b +x ) -
- C~~11[b(b2+X2)-~]-
v+~ 2 2 -~v- ... x (b +x )
n = 0, 1, 2,---
y ~ c
y < c
( l) n(, )-~ -~-v v+~( 2 2)-~ - •• a y a -y -
~ v+~ y2 ~ - sin[b(a 2-y2) ]C2 +1[(1---) ],
n a 2
o , y > a
V+k n -~. x 2 n z. 1 J~ (a.z.)
i=1 1 i 1 1
n ~n+ L ~i-~>Re V>-1
i=1
g(y) k
n 2 v-lb-n~r(v)y~-V n (b)
i=1 J~ a i
n y > L
i=1
v_ 3/2 nn -~i V-I ~-v x z. J~ (a.z.) 2 r(v)y •
i=1 1 i 1 1
n ~n + L
i=1 y >
11.31
11.32
o x < b
o x < b
all+V+lbllyV+~(b2+y2)-~Il-~V-~ •
!. • J [a (b 2+y2) 2] ll+v+l
o y < a
• J [b(y2_a2)~] V-ll-l
• K [b(a2_y2)~] ll+v+l
llbv+ll+1 ~+v( 2 2)-~Il-~V-~ a y y -a •
• {Sin(Wll)Yll+V+l[b(y2-a2)~] -
- COS(Wll)Jll+V+l[b(y2-a2)~]}
o x < a
n=0,1,2,'"
I. Hankel Transfonns
o v
-A ~-v d m d n b y (bdb) (ydy)
• (b2+y2)-~(A+v+m+n+1) •
( 2 2 ~ • J A+v+m+ni-l [b +y ) 1
y < b
y < b
'" l:2 f (x) g(y) = b f(x) (xy) JV(Xy)dx
Bailey, W. N. 1938: Quart. J. Math.
11. 37 x < 1 Oxford Series 9, 141-147.
Ox> 1
-)lbV-)l+l v+l:2( 2 2)l:2)l-y'V-y. a y a -y •
• Y [b(a 2_y2)l:2] y < a )l-v-l
Re )l > Re v > -1 2 -)lbv-)l+l v+l:2( 2 2)y')l-Y.V-l:2 - TI a y y -a •
y > a
)lbV+)l+l v+l:2( 2 2)-y')l-~V-~ -a y a -y •
h • {cos (1fV)Y)l+v+l [b (a 2_y2) 2] +
Re v>-l,Re(v+)l) < 0 . h + s~n(1fv)J)l+v+l[b(a2-y2)2]), y < a
-1 )l v+)l+l v+h - 21f cos (1f)l) a b y 2
y > a
106 I. Hankel Transfonns
00
f (x) (xy)~J (xy)dx f (x) g (y) = f 0 v
xV+~J {b[(a2+x2)~+x]}' 2-2~aPb-P[r(l+p)r(p_v)]-1 . P
11. 41 .J {b[(a2+x2)~_x]} .yv+~(4b2_y2)p-v-l . p
2 -1 Re p > Re v > -1 'lF2[~+p;2p+l,p-v;-(ab-~ay b )]
y < 2b
0 Y > 2b
k -1 ~ y2 x 2y (ax 2) -~a y H~v (4a:) 11.42 ~v
Re v > -1
11. 43 -~a-lY~[J~v(1:a)]2
Re v > -1
X-~y -1 -1 -~ k k v(ax ) -21T Y [K2v (2a"y 2) - 11. 44
-~ < Re v < ~ -~1TY2v (2a~y~)]
_ 512 x y -1
2y'(a1T) [K2V (2a y2)+~1TY2v(2a"y2)]
11. 45 ~<Rev< 512
11.46
Re v > -1
-~ a 2 2 sec(Trv)y [~cos(TrVlYv(4yl-
, y < 2a
-1 -~ 2 2 -~ -b(y2-a2l~ -2Tr y (y -4a l e
Y > 2a
f(x)
12.1
Re v > - \
Re v > -1
12.6 K]1(ax)
Re(v±]1) > - 3/2
'b-1 \ (a 2_y2 ) J (ay) '2 y exp ~ v 2b
= 2 v 1T -\ r ( 31'++\V+\]1) r ( 3/4+\V-\)1) • r(\+v-]1)
1.12 Modified Bessel Functions of Argument x
f (x)
Re \I > -1, Re (v+211»-1
x±]l+\I+I:;Kll(aX)
-1 < Re ]l < 1
= 2v-1n-1:; r (~+I:;\I+l:;u)r(\+I:;\I-l:;u) • r(I:;+\I-jl)
in" -" _a2 ) 1:;] • e "q" [(1+ v-I:; y2
109
110
12.11
12.12
12.13
12.14
I. Hankel Transforms
-v 2 -2 • p~jJ_~(1+2y a ) =
= 1T -~2 v-I f( ~+v-~jJ) (a 2 +y 2 ) -~V-~ •
2-1-AaA-V-l[r(I+V)1-lr(~+~V+~jJ_~A)
• r(~+~V-~jJ-~A)Yv+~ •
00
f(x) (xY)~J (xy)dx f (x) g(y) = J 0 v
x-A-~K II (ax) -A-1 A-1-v v+~ 2 a :t:' r(~+~V+~ll-~A) . r (l+v)
12.15 Re(v±ll-A) > -1 · r (~+~V-~ll-~A) . '2Fl (~+~V+~ll-~A,~+~V-~ll-~A;l+v;
y2 - -) a 2
12.16 'K~ +~ (ax) · [ (4a 2+y2) ~+y]ll v 2ll
Re v>-l, Re(1l-v)<2
x~r~ (ax)K~ (ax) .v v
y-~(4a2+y2)-~
12.17 Re v > -1
x->Or (ax)K (ax) ->0 e-i~1-Ip-ll [(1+4a2y-2)>o] . II II
y >ov->o
12.18 Re (2ll+V) > -1 1-1 2 -2 ~ · q [(l+4a y ) 2] >oV->o
Re v > -1
x->Or -1 >0 -~-v
II (ax)K1-I (ax) (2a) y e 2 . 12.19 Re v>-l, · p ->ov [ (l+L) >0] q>Ov [(l+L) >0]
ll->O 4a2 ll->O 4a2 Re(v+2 ll »-1
112 I. Hankel Transforms
'" h f (x) g(y) = f f (x) (xy) 2J\) (xy) dx
0
h x 2KO (ax) J v (bx)
h -1 V -v y2(Z l Z2) (Z2- Z1) (Z2+ Z1)
12.20 Re v > -1
= [a 2 + (bW) 2] ~ Zl 2
v+h x 2JV_ 1 (ax)Kv _1 (ax) rr-~23V-la2v-2r(~+v)yv+~2(y4+4a4)-v-~
12.21 0 < Re v < ~
XV+~I v(ax)Kv(bx) rr-~23V(ab)vr(~+v)yv+~ . 12.22 ..,
2 2 -v-~ Re v > -~ [(b 2+y2_a 2) .. + 4a y ]
]
12.23 'Iv_~(~ax)Kv_~(~ax) v -~ v-~ -v-~ = 2 rr a y
0 < Re v < 312 (a2+y2)-~eirr(~-v)qV-~(1+2a2y-2) .
-~
\l+h -~ -1 -\l-~ -(\l-~v+~)rri x 2r (ax) K (ax) (2rr) aye v \l
12.24 Re v>-I, Re \l <~ (1+ ~)-~\l-~ \l+~ 4a 2 qv-~ (iL)
2a
'" I< f (x) g (y) = J f(x) (xy) 2JV (xy)dx
0
v ~ (27T) 2a- b y 2(z2_1) 4 2
12.25 Re v>-l, Re(v+~»-l e-i7T(Ya±~) ~±~(z) qv-~
z = a 2+b 2+y2 2by
xv-2~+YaI (ax) K (ax) 2v-2~ r(v-~+l) ~ ~ .
r(~+l) 12.26 Re v>-l, Re(v-~+l»O
Re(v-2~) < Ya 2~-V-'2 F (v- +1 y 2 I ~ , ~i ~+1; 4a 2 - -)
y2
xYa+~J v(bx)K~(ax) Yaa~b-~-lr(v+~+l)y-~-~
12.27 Re v>-l, Re(v+~»-l -I<~-I< -v 2-1< . (z2-1) 2 2p [(z) (z -1) 2] ~
z = a 2+b 2+;t2 2by
v+ k x 2J v(aX)Kv(bx) 7T-~23v(ab)vr(Ya+v)yv+Ya 12.28
[(a 2+b 2+y2)2_4a 2y2]-V-Ya Re v > -~ .
xV+YaJ v_1(ax)Kv_1 (ax) 7T -Ya2 3v-1a 2 v- 2r (Ya+v)y v+ 51z(y "+4a " ) -v-Ya
12.29 0 < Re v < Ya
114
12.30 a > b
12.31
Re(p+v) > -1
I. Hankel Transfonns
(2n)-~(ab)-V-1YV+~(Z2_1)-~V-~ •
• p-j.l[z(z2-1)-~] v
• (z2_1)-~v-~p-v-~(z) = j.l-~
einj.lq-j.l[z(z2_1)-~] v
y+ib = i a cot(~o+i~cr)
1.12 Modified Bessel Functions of Argument x 115
f (x)
12.34 Re v>-l, Re(v+~»-l
b > a
-1 < Re v < 0
Bailey, W. N., 1936: Proe. London
Math. Soc., (2)40,37-48
~ -v -v-~ v-~ 1T 2 a y
• (a 2+y 2) ~v-"'ei 1T (v+~) q -v-~ (1+2a 2y -'2) -~
21Ti" -" 2 -2 L -" -2 >< 'e '"'q '"'[(l+ay )'2]q'"' [(1+a2y )2] ~v ~v-1
-1 >< ->< = 1Ta y2r(1+~v+~)r(1+~v-~) (a 2+y2) 2 •
• p-~v-~[(1+y2a-2)~]p-~V+~[(1+y2a-2)~] ~-~ ~-~
116 I. Hankel Transfonns
f(x) (XY)~J (xy)dx f(x) g(y) = f 0 v
X-~[K (~ax)]2 r(~+~v+ll) y-~e2will{q-1l [(1+a2y-2)~]}2 Il
Re(~v±ll) > - ~ r pi+Jiv-ll) ~v-~
12.38 -1 ~ = ~wa Y r(~+~v+ll)r(~+~v-ll) .
· -l§v {PIl-l§ [(l+y2a -2) l§]}2
Xl§K 1l_~(l§ax)KIl+l§(~ax) -1 -l§ wa r(l+l§v+ll)r (l+l§v-Il) (a 2+y2) •
Re v>-l,Re(~v±Il»-l • y~-~v[(1+y2a-2)~]p-~v[(1+y2a-2)l§] -Il Il
12.39
y-l§(a 2+y2)-l§ •
.ei2Wllq~-1l [(1+a2y-2)~]q-l§-Il[(1+a2y-2)~] l§v-~ ~v-~
XAK ll(ax)Kp (bx) Bailey, W. N. , 1936: Proe. London 12.40
Math. Soc. (2) 41, 215-220
X-v-l§[Kv+~(~ax)]2 -v-1 v+~ 2 2 ~v (2a) wr(-v)y (a +y ) . 12.41
2a2+~2 -1 < Re v < 0 P [] · 2a(a 2+y2)l§ v
1.13 Modified Bessel Functions of Other Arguments 117
1.13 Modified Bessel Functions of Other Arguments
00
0
l<-v -l< -1 v-l< L)D -2v (~) x' exp(-\a Zx 2) . (~11) 2a y 2exp (- 4a z
13.1 · I (\a zxz) v
Re v > - ~
v-slz -l< v+l< z.: (:i.) x exp (_\a Zx 2 ) (~11) "y 2exp (-\ ) D_ 2v- 3 a Z a
13.2 · I (l<a Zx 2) v+1 4
Re v > -1
l< -l< x..:. x 2exp(-\ax 2)Il< (\axz) (~1Iay) 2exp (- 2a) 2V 13.3
Re v > -1
lis (v+l<) X 2 exp (-\ax 2 ) -1 _lis (v+2) lis (v+~) (ky2)
11 a y exp -4a- . 13.4 · I (+l<) (\ax 2 ) 2
l/S v • . K (\:c.) l/S (v+~) a
-1 < Re v < 5/2
_1/3 (v-I.) x 2 exp(-\ax 2). l/S (v - 2 ) lis (~- v ) (k:t.:.)
a y exp -4a
13.5 II ( l<) (\ax2 ) I ky2 /s v- 2 (v-l<) (4a ) 1/3 2
Re v > -1
00 k f (x) g(y) = J f(x) (xy) 2J (xy)dx
0 \!
k -ax2 ~(a2-b2)-~y~exp[_~ay2(a2_b2)-11 x·e I (bx 2 ) . 13.6 ~\!
Re \! > -1, a > b . I~V[~by2(a2-b2)-11
x~+2~-\!exp(-~aX2). 'IT-~ r(~+~) 2 3/2 ~ -~\!+ 314 a -~-~~ +~\! r(~-~+\!)
13.7 . I (~ax2) -~-1 y2 y2 ~ Y exp (- 4a)M~+3/2~_~\! ,_~_~~+~\! (2a)
Re \! > 2 Re ~+~ > -~
x~-2~+\!exp(-~ax2) . _~ 3/4+~\!_ 3j2 ~ _~_~\!+~~ ~ -1 (y 2 ) 'IT 2 a y exp - 4a .
13.8 . I~(~aX2) 2 . W 3 (L)
-l<Re \!<~+2 Re ~ ~+~\!- 12 ~ , -~+~~-~\! 2a
X~K (kax2 ) -1 k y2 y2
'ITa y2[I (-) - t.~\! (a:-) 1 ~\! 4 ~\! a 13.9
Re \! > -1
% 2'ITa-2y 312 [I k ~ (y2) y2 X K~\!+~(~ax2) .v- a - '[,~\!_~ (a:-) 1
13.10 Re \! > -1
X 1/3 (\!+~) exp (-l,(ax2) _113 (\!+2) 1/3(V+~) (y2)I (y2) 'ITa y exp - 4a 1/3 (\!+~) 4a
13.11 Kl13 (\!+~) (ax 2)
1.13 Modified Bessel Functions of Other Arguments 119
00 l< f (x) g(y) = f f (x) (xy) 2 J (xy) dx
0 v
X 1/3 (V+la) exp (~ax2) . _1/3 (v+2) 1/3 (~+V) (:C.)K (:C.) a y exp 4a 1/3 (v+la) 4a
13.12 . KI ( +l<) (l;;ax2) /3 v 2
-1 < Re v < 5/2
211+v+l< 'JT~ r (1+2l!+v) x 'exp(-!,-,ax 2) r (Il+V+3j2) 2 % 11 +lav+ 3/4 a -l;;-loll-"V .
13.13 K (~ax2) -1-11 y2 y2) 11 . Y exp (-4a)M!,-,+o/211+lav,!'-'+"Il+"v(2a Re v > -l,Re(211+v»-1
x211+V+laexp(~ax2) 'II" r(l+v+211) 'l4+o/211+lav -!'-'-lall-lav -11-1 r(la-ll) 2 a y .
K (~ax2) y2 y2 11
13.14 . exp (4a) W -l.o- 3;z ll-lav ,~+"ll+lav (2ii) Re v > -I,
-1 < Re (211+V) < 1
X"1 .. v(l.oaX2)Klav(l.oaX2) -1 la y2 y2
a y 1l.ov (4a)Kl.ov (4a) 13.15
Re v > -1
.. (l< 2) -3;z r(la+!,-,v-l.oll)w (:C.)M (y2) x 1l< ( ) ~ax . 2y r (l+!iv) !,-,ll,!,-,V 2a -!,-,ll,!,-,V 2a 4 V-ll
13.16 . Kl;o (V+ll) (!,-,ax 2)
120 I. Hankel Transforms
f(x} (xy~J (xy)dx f (x) g(y) = f 0 v
_ 5'2 -1 .rr x K V(ax } i a -ly~[e~irrvK2v (2e ].4a\~) -
13.17 _ 5/2 < Re v < 5/2 ·rr . -].-
_ e-~].rrvK (2e 4a\~) 2v
-2v -1 x Kv_~(ax }
l< -v v-l< l< l< (2rra) 2a y 2J 2v_1 [2ay} 2]K2v_1 [(2ay) 2]
13.18 Re v > 1/6
-2v-2 -1 (2rr) ~a -v-\ v+~K2V [ (2ay)~] J 2v [ (2ay)~] x K 1 (ax ) 13.19 v-~
-~ < Re v < 2
(2ax~) -!.lpra _3/2 a 2 a 2
K2v+1 sec(rrv}y [ll l(-}-Y 1(-)] -v- y -v- Y 13.20
Re v > -1
X-~K (2ax~) -l< a 2 a 2 >.,rrsec (rrv) y 2 [II (-) - Y (-)]
2v -v Y -v Y 13.21
Re v > -~
~y e y
13.22 v v
Re v > -1
f (x)
Re v > - !:!
13.25 !:! K2v+ l (2ax)
13.26 l<
Re v > - !:!
g(y) f (x) (Xy)!:!J (xy)dx v
-v -l< -2v 2v-l a 2 2 Tf "yaK '(-2) V-" y
v -!:! 2v+1 -2v-2 a 2 2 Tf a y K, (2-)
- !:!TfY -!:! Y (~) v Y
13.30
13.32
o
-2 ~ a 2 a 2 -!.ia y Wl< L (2-) W L L (2-) .v , -.l.l Y --.v , -.l.l Y
!.ia-ly~r(~+~l.l+~v)r(~-~l.l+~v) •
. -1 . -1 • W_~V'~l.l(~ay )W_~V'~l.l(-~ay )
-1 -1 • IJ[v+~ (ay ) - yv+~ (ay ) 1
1.13 Modified Bessel Functions of Other Arguments
f (x)
13.35
g(y) = 7 f(x) (XY)~Jv(XY)dX o
-~ v+l-~ v+~ 2 2 ~~-~v-~ a b y (a +y ) •
• K [b(a2+y2)~] ~-v-l
~b~+V+l v+~( 2 2)-~~-~v-~ a y a +y •
123
co
Hv_~(ax) (~~)-~av-~~-V(a2_y2)-~ y < a
14.1 -312 < Re v < % 0 y > a
I<-v ~ -~21-2vr (1-v) [r (~+v)] -1y-~ x' ~ (ax) -Yv (ax) ] . 14.2 -2 < Re v < 2 . (y2_a2)~V-~v-1(~) y > a v a
0 y < a
x V-J.1-~ [U (ax) -Y (ax)] -~2V-J.1 J.1 r(~+v)r(~+v-J.1) -v-~ . ~ a r(~+J.1)r(1+v-J.1) y
14.3 J.1 J.1
-~ Re v<3h,Re(v-J.1»-1 -2 . 2Fl(~+v,~;1+v-J.1;1-a2y )
x V-J.1+~ ~ (ax) -YJ.1 (ax) ] ~ -121+v-J.1a -J.1 3 2J.1-V- 3/2 (v-J.1+1)r(~+J.1) r( h+v)y .
14.4 -2 . 2Fl (1+v-J.1,~-J.1;2+V-J.1;1-a2y )
I< x 2 [II_v (ax) -Y -v (ax) ]
-v -1 v-~-1 2a ~ cos(~v)y (y+a)
14.5 -~ < Re v
2~-1COS(~J.1)r(2+2v+2J.1)aJ.1y-J.1-~ •
14.6 -l<v-~J.1-~ -v-J.1-1 (~) -1 Re(v+J.1)<~-Re J.1 . (a2_y2) 2 P -v-J.1-1 Y
1.14 Functions Related to Bessel Functions 125
00 k
f (x) g(y) = f f (x) (xy) 2J (xy) dx 0 v
Iv_~(ax)-Lv_~(ax) (~n)-~aV-~~-V(a2+y2)-~ 14.7
-~ < Re v < ~
X~[I (ax)-L (ax)] v v 2 -1 v+l -v-~( 2 2)-1 nay a +y
14.8 -1 < Re v < - ~
x~-v+~[I (ax)-L (ax)] n-~2~-V+la~-lyV-2~-~[r(v_~+~)]-1. 14.9 ~ ~
-1 < 2Re ~+Re -2
~+1 < v · 2Fl (l,~;v-~+~;-y2a )
xV-~+~[I (ax)-L (ax)] ~ ~
n -1 2 v-~+ lr (3/av ) [r (3/a~) ]-la~+ly -v-5/2.
14.10 a 2 -1 < Re v < - ~ · 2F 1 (I, 3/2+V; %+~; --)
y2
xV-~-~[I (ax)-L (ax)] n-~2v-~r(~+v) [r(l+~)]-la~y-V-~ . ~ ~
14.11 -2 -~ < Re v< ~ 2Fl(~+v,l:;;1+~;-a2y )
k -1 I-v v-~ -1 x 2[I (ax)-L (ax)] 2n a cos(nv)y 2(a 2+y2) v -v 14.12
Re v > ~
~ -~
126
-2 < Re v < %
-1 - y-v-1 (ax )]
_3~ 2+v-~ 1-~ 'IT 2 cos('IT~)r(3/2+v-~)a •
211-v- 5/2 -2 Y ... 2F 1 (312-~+v,1; 3/2;-a 2y )
~+v -1 ~ 2 r(Yz+~+v)[r(l+~)r(Yz-~)] a •
-1 l< y2 -Yza y 2y (_) Yzv 4a
-1 -l< l< 4 'IT cos ('lTv)y 2K2v [2 (ay) 2]
-1 -l< l< -4'IT a 2COS ('lTv)K_ 2v _1 [2 (ay) 2]
1.14 Functions Related to Bessel Functions 127
'" f l<
f (x) g(y) = fix) (xy) 2J v (xy)dx 0
2v -1 - 3fz 2 - % ~+v . ( ) -v-~ x [~+~ (ax ) - -~ a s~n ~v y
14.20 -1 -yv+~ (ax )] K2V+1[(2aiY)~]K[(-2aiY)~]
-1 < Re v < - 1{6
2v -1 -1 -~ % ~+v -v-~ X [Iv+~ (ax ) -Lv+~ (ax) )] ~ 2 a y .
14.21 J2V+1[(2aY)~]K2V+1[(2ay)~] -1 < Re v < ~ ·
x~(1-fl-V)S fl,V
p~(V+fl-2) · ( :i.) , y > a ~(V+fl) a
0 , y < a
x~-V-flS (ax) -2v-fl ~ r(1-fl-V) -v v-~ fl,-2v-fl 2 ~ r(vv) a y
14.23 Re v>-~,Re(v+fl) < 1 ( 2_a2)~(V+fl-1)pV+fl-1 (:i.) · y V+fl a
xV+f3+~s 13 (ax) 2a+ f3 +va f3 [(v+f3+1)r(1-a-f3)]-1 a, 2
Re v>-1,-1<Re(v+f3)<~-Re 13 · r (3+a+f3+ 2v) -v-2f3- 3/2 . 14.24 2 Y
Re (2v+a+f3) > -3
• 2F 1 (1+f3+v, 1-a+f3· v+ f3 +2 · 1 - a 2 -) 2' , y2
128 I. Hankel Transforms
00 k f (x) g(y) = f f (x) (xy) 2JV (xy) dx
0
xv-a-"S 6 (ax) 2V- 1a 6 [f (l+v-a)]-lf (1-a-S+2v) . a, 2
-1 < Re v < 3/2 f(1-a+6+2v) ya-S-v-" 14.25
. 2
Re(2v-a±S) > -1
1-a+6+2v 1-a+6 1-a+v; 1 - a 2 • F
2 , --2-; -) 2 1 y2
-].J-k x 2SV+].J,].J_v+1(ax) 2V-1av-].J-1f(v)y"-V(a2_y2)].J y < a
14.26 Re ].J>-1, -l<Re V< 3/2 0 Y > a
k x 2 [Jv (ax) -Jv (ax)] -1 -k-1 IT sin(ITv)y 2(a+y)
14.27 Re v > -1
k+v v+ 1 v+" 2 2 x 2 U 1(2a2b,ax) (2b) y cos[b(a -y )] y < a v+ 14.28 0 Y > a Re v > -1
,,+v 2 x Uv+2 (a b,ax) (2b)v+1y v+"sin[b(a 2_y 2)] y < a
14.29 0 Y > a Re v > -1
1.15 Parabolic Cylinder Functions
1.15 Parabolic Cylinder Functions
Re v > - lo
v+1< x 2exp (->.,a 2X 2) . 15.2 . D2v+l (ax)
Re v > -1
15.3 D2v_1 (ax)
Re v > - lo
g (Yl = If (xl Cxyl \r (xy) dx o v
2 -2 Lv+lo (loy a )
-2v v-I< -2 a y 'exp (_>.,y 2a ) •
15.4 '{[1-2cos(~v)lD2V_l (ax)- • {[1-2cos(~v)lD2v_l (ya- 1 ) _
- D (-ax) } 2v-l _ D (-ya -1) } 2v-l
Rev>-lo
15.5 '{[1+2cos(~v)lD2V_l (ax)- • {[1+2cos(~v)lD2v_l (ya-1 ) _
- D2v- 1 (-ax)}
v
- D2v+l (-ax) }
• {[1-cOS(2~V)lD2V+1(ax)- '{[1-2COS(~V)D2v(ya-1)+D2v(-ya-l)}
- D2v+1 (-ax) }
• D_ 2v (ax)
Rev>- ~
Re v > - ~
Re v > - ~
-~<Re v<Re(~-211)
Re v > -1
-1 • 0_2v_l(ya )
.yll-~exp(_~y2a-2) •
-1l-1 -2 2 -2 • Y exp(~y2a)W Q(~ a ) a,,,
-2v-l -2 ~sec(wv)a exp(-~y2a) •
-1 -1 • [02v+1 (ay ) - 02v+1 (-ay )]
131
132
15.16
15.17
-1 {[1+2cos(~V)]D2V+1 (ya )-
-1 - D2v+1 (-ya )}
-1 • {[1-2cos(rrv)]D2V+ 1 (ya )-
-1 - D2v+l(-ya )}
-2v-2 v+~ 2 -2 a y exp(-~y a ) •
-1 .{[1-2coS(~V)]D2V+2(ya ) +
-1 + D2V+2 (-ya )}
1.15 Parabolic Cylinder Functions
+ D2V+2 (-ax)}
Re v > -1
-2v-2 v+~ -2 -a y exp(-l,oy2a ) •
-1 • {[1+2cos(TIV)]D2v+2 (ya ) +
-1 + D2v+2 (-ya )}
-1 -v- 3/2 TI sin(TIv)f(2v+3)y -2 -2 exp(l,oy 2a )Kv+1 (l,oy2a )
(2v+1)a-2V-1yV-~exp(l,oy2a-2) •
-1 • D_ 2v_2 (ya )
-2v-2 v+~ -2 -1 a y 2exp (l,oy 2a ) D_ 2v- 3 (ya )
133
134
f(x)
15.26 • D2lJ (ax)
15.27. • DlJ (ax)
o v
2 -2 i -2 • exp(~ a )Wa,B(~ a )
2a = lJ-V-l 2B = lJ+v+l
1I~r(2a) [r(l+v)r(~+B)]-12-B-3/2Va-2a •
V+~ 2 -2 • Y 2F 2 (a,a+~;v+l, B+~;-~ a )
2B = A-lJ+%
1.15 Parabolic Cylinder Functions
135
136
Re ll>-~' Re(411-v»-~
I-v ~-v v-~ -1 2 (~+v)a y Erfc(~a )
1 2 -2 2 -2 'exp(- 'lay a ) M3 L (~y a ) ll-V+.,.,ll
(2a) 211-2vr (211+l) [r (~+v)] -1 •
• yV-~exp (_1/ay 2a- 2 ) D (2-~a-ly) 2v-411
2-~(2a)211-2v-lr{211+1) [r{o/2+v )]-1 •
v+~ 2 -2 -~ -1 'y exp{-Yaya )D2v-411+1{2 a y)
1.16 Whittaker Functions
Re (v-k+1) > 0
Re(v+2k+1) > 0
Re v>-1,Re(v-8k-%)<0
Re (v+8k-%) < 0
= f f (x) (xy) 2JV (xy)dx o
1/3v_2/3_4/3k I/3V- 1/3k- 1/6 'V3k- 1/3v+ 1/ 6 • 2 a y •
• exp(-~y2a-1)I k (l/ay 2a-1 ) 2fa + 1/3 V-l/6
~ - 1/3 v- 2{3 - 4/3 k - 1{3 v- 1/3 k-1j6 4/3 k+ 1/3 v+ 1/6 • 11 2 a y
I 2 -1 1/ 2-1 ·exp (- lay a )I Ihv- 2/ 3 k+ 1/6 ( ay a )
1 2 -1 II 2-1 ·exp(- lay a )K%k_ l/aV_ 1/6 (fay a )
138
16.12 • M. (ax 2 ) --k,ll
Rell>-l:>
Re(211-2k-v) < l:>
Re v > - l:>
Re(v- 2lJ-2k ) < l:>
g (y) '" = f f(x) (xy) 2Jv(xy)dx o
211-V 411-2v v-211-1o 1 2-2 2 a y exp ( lay a ) •
• W (ky 2 a- 2 ) 311-V-1o,1l "
-1 r (211+1) [r (v+k-lJ+l:» ] •
r (2lJ+1) [r (lJ+k+l:» ]-1 .
l:>-ll-k l:>lJ-lok-l:>v+~ lJ+k - 1 • 2 a y.
• exp(_1/ay 2a- 1 )W (~y2a-l) a,13
2a = k+v-3lJ+1o, 213 = k+lJ-v-l:>
• 2lJ-k+loa-l:>k-l:>lJ-l:>v+~yk-lJ-l •
• exp(_1/ay 2a- 1 )M 13(~y2a-l) a,
2a = 3lJ+v+k+l:>, 213 = lJ+v-k+l:>
1 . 16 Whi ttilker Functions
f (x)
Re(k+Il+~v) < l;;
X-~K (~ax2) . ~V-Il
Re v > -J
->;; x M_>;;Il,>;;v(ax)
16.18 . W>;;Il,>;;v(ax)
g (y) k
= f f(x) (xy) 2Jv (xy)dx o
~+k+1l l;;+~k-~Il-~v -1l-k - 1 • 2 a y •
• expe/ay 2a - 1 )W Q (l;;y 2a-1 ) a,,,,
r(I+Il+p+~v)r(I-Il+p+~V)
• [r(1+v)r(3/2+~V+P-k)]-1 •
A=I+p+~v
· M (>;;y 2a-1 ) >;;k+>;;Il,>;;k+l;;v
-1 -Il- k ar(1+v) [r(>;;+>;;v->;;Il)] y •
.
.
ll, 2 V
• Mll,~+v(-iax)
I. Hankel Transforms
2f (l+2k+ll+~V) [f (1+2ll) ]-1 •
• y-~K, (J..,y 2 a - 1). ,,>V-ll
2 -1 • Mll+2k'll(~y a )
-1 af(l+v) [B(~+~V+ll,~+~V-ll)] •
y < a
o y > a
-~-V ~-v -~-V 2-2 • 2 a P_~+ll(2a x-I) x < a
o x > a
1.16 Whittaker Functions
Re v > -1
Re (v-4y) > -2
YaV,ll
g (y) J"
r(2p)r(p+~)r(p-~) •
-v-l 1-2p v+~ • 2 a y 4F3(P,~+P'P+~'
-1 ~ r (l+~v) [r (~-~+J"v) 1 (2ay) •
141
142
f(x)
2 v, Jl
- 2 v, Jl
Re(v±2Jl) > -1
-1 'W (-iax)
I. Hankel Transfonns
f (x) l.
-1 -l. [r (~+~v+Jl) r (l;;-Jl+l;;v) ] 4ay 2 •
ar(1+v) [r(l;;+l;;v-Jl)]-1y-2Jl-~ •
-l. l. 2Jl l. • (a 2+y2) 2 [a+ (a 2+y2) 2] exp [-b (a 2+y2)2]
1.17 Gauss' Hypergeometric Functions 143
1.17 Gauss' Hypergeometric Function
17.1 Re v<-~, Re ).,>0 -i1f -1 i1f -L
• [W~_a., -~-v (ye )., ) -W~_a. , -~-v (ye )., -)]
Re (a.+v) > - ~
-1 < Re v < 17.3
Re )., > 0
1f -~ [r (a.) r «(3)(121-(3)., -v-(3-1 r (l+~v+~(3) •
-1 2 • [K~(v_(3+l) (~)., )]
144 I. Hankel Transfonns
f(x) (XY~Jv(XY)dX f(x) g(y) = f 0
-201- 3/2 x 2Fl(~+a,1+a1 A-2aY~I~v+a(AY)K~v_a(AY)
17.5 1+2a1-4A 2X-2)
x ~+v-4a 2 VA 1-2ar (v) [r (201) ]-ly2a-V-~ •
2 -2 '2Fl (a,a+~1v+11-A x ) . Iv(~AY)K2a_v_1(~AY)
17.6 -1+Rea<Rev<4Rea- 3k
Re A > 0
xV+~(l+x)-2a • [r(a)]-l r (V+1)r(1+v_a)22v-2a+1 . 17.7 -2
'2Fl[a,~+v12v+114x(1+x) ] 2a-2v- 3/2 • y Jv(Y)
-1 < Re v<2 Re a-~2
Chapter II. Integral Transforms with Modified Bessel Functions as Kernel
A representation of a given function f(x) by means of a double integral involving modified Bessel functions of order v is
f(x) c+i~ ~
(d) -1 f I (tx) (tx) Ijdt f K (ut) (ut) lzf (u) du c-i~ v 0 v
or also
c+i~ ~
f (x) = (2d) -1 f [I (tx) +1 (tx) ] (tx) Ijdt f K (ut) (ut) Ijf (u) du c-i~ v -v 0 v
This is equivalent with the pair of inversion formulas
(1) g(y;v) j f(x) (xy)lzK (xy)dx o v
(2) f(x) c+ioo
or
(3) g(y;v) j f (x) (xy) lzK (xy) dx o v
(4) f(x) = (2d)-1 c+ioo f g(y;v) (xy)lz[1 (xy)+I (xy)]dy
v -v c-ioo
1lz(z) = (lzuz)-lzsinhz, 1_lz(Z) = (ljuz)-~cosh z
the equations (3) and (4) become
146
-1 l.: (21T ) 2g (Y; ±l;,) f f (x)e -xy dx o
fix) = (21Ti)-1 f (21T- l ) g(y;±l;,)exy dy o
These are the Laplace transform formulas.
Since
II. K-Transforms
it is possible to evaluate integral transforms with Bessel func­ tion (Chapter I) or Neumann function kernel (Chapter III) by means of the above relations.
REFERENCES
Boas, R. P., 1942: Proc. Nat. Acad. Sci. U.S.A. 28, 21-24.
Boas, R. P., 1942: Bull. Amer. Math. Soc. 48, 286-294.
Meijer, C. S., 1940: Proc. Amsterdam Akad. Wet. 702-711.
599-608;
0 v
1 c+i ... g(y)(xy)~ 2d .
. 1.2 c-], ... g(y) . [Iv(xy)+I_v(XY)]dy
1.3 f(ax) -1 -1 , a > 0 a g(ya iV)
xmf(x), m = 0,1,2,'" ~-v d m [ym+v-~g (y i m+v) ] 1.4 y (- ydy)
~+v(_ ~) m
[ym-v-~g (y i v-m) ] 1.5 xmf(x), m = 0,1,2,'" Y ydy
1.6 -1 x f(x) -1 ~v [yg(Yiv+l)-yg(YiV-l)]
x-).lf(x) 21-).l[r().l)]-lyv+~ j T~-).l-v(T2_y2»).l-1.
1.7 Re ).l > 0 y
• g(TiV+).l)dT
1.8 f' (x) -1 ~v [ (v-~) yg (y i v+l) + (v+~) yg (y iv-I)]
148 II. K-Transforms
2.2 Transforms of Order Zero
00 k f (x) g (y) = J f (x) (xy) 2KO (xy) dx
0
2.1 xy,(a 2+X2)-Y, -k 2y 2[sin(ay)Ci(ay)-cos(ay)si(ay)]
x-Y,(a2+x2) -Y, · ~na-2~yY,~[J +k (y,ay)Y k (y,ay) -v ~ 2V . ~- 2V 2.2
[x+(a2+x2)Y,]-2~ . - Y +' (y,ay)J k (y,ay)] -0 ~ ~v ~-2V v-
~ ~
+ [ (a2+x2)Y,_x]2~}
0 x < a
2.4 xy,-V(x 2_a 2)V-y, x>a nY,2v- 1 (y,+v)y -v-Y,e -ay
Re v > - Y,
0 x < a
Y,-v 2 2 v- 3/2 Y, v-2 -1 Y,-v -ay 2.5 x (x -a ) x>a n 2 a r(v-y,)y e
Re v > Y,
0 x < a
x-Y,(x 2_a 2)-Y, · 2~+1 Y,[K (k )]2 a y ~+Y, 2 ay
2.6 .{[2x2-a2+2x(x2_a2)Y,]~+Y,+
co
X~(b2+X2)-~ y-~[sin(bY)Ci(by) - 2.7
- cos(by)si(by)]
x-~e-ax ~ 2 2 -~ -1 2 -2 ~ y'(a-y) 1og[ay +(ay _1)2] y<a 2.8
~ -~ -1 Y 2 (y2_a 2) "arccos (ay ) y>a
X~(b2+X2)-~ . ~ -~ ~y (a2_y2) 2 . ~ {eXp[b(a2-y2)~]Ei(-Zl) . exp[-a(b2+x2) 2] . -
2.9 ~ . - exp[-b(a 2_y 2) 2]E~(-z )}
2
1 2
-~ ~ [(-2iay) ~] 2.10 2ay K [(2iay) 2]K 1 1
_3/2 -1 2Y~Ko[(2iaY)~]Ko[(-2iay)~] 2.11 -ax x e
2.12 x-~sin(ax) ~ -~ -1 2 -2 ~ y2(a 2+y2) 21og[ay +(1+a y ).2]
2.13 x-~cos(ax) ~ -~ ~1TY (a 2+y2) 2
150 II. K-Transforms
co k f (x) g(y) = f f (x) (xy) 2KO (xy) dx
0
x-\log(ax)cos(bx) \7TY\(b2+y2)-~ . 2.14 . [log(\ay)-y-log(b 2+y2)]
x\sin (ax-I) -k [(2aY)\]K
k 2.15 7Tay 2 [J [ (2ay) 2] 1 1
2.16 x\cos(ax-1 ) -k ~. \ -7Tay 2[y [(2ay) ]K [(2ay) ] 1 1
_ 3/2 -1 k k ~ 2.17 x sin (ax ) 7Ty2JO[(2ay) 2]K O[(2ay) ]
2.18 -312
cos (ax-I) -7TY~Yo[(2aY)~]Ko[(2ay)~] x
X~(b2+X2)-~ . \y\(a 2+y2)-\{sin u[Ci(z )+Ci(z ) ] - 1 2
. cos[a(b2+x2)~] - cos u lsi (z ) + si(z )]} 2.19 1 2
k U = b(a 2+y2) 2
z = b[(a2+y2)~±a] 1 2
k -k k _\ x 2 (b2+x2) 2 . ~y2(a2+y2) {cos u[Ci(z )-Ci(z ) ] + 1 2
2.20 'sin [a (b2+X2)~] + sin u[si(z ) - si(z ) ] } 1 2
U, Z 1 '
2.21
2.22
2.23
lzY~(a2-y2) -~ •
- sin u[Ci(z ) + Ci(z )]} y < a 1 2
u = b(a2_y2)~
• y {~a[b+(b2_y2)~]} + o
+ J {~a[b+(b2_y2)~]} • o
1 S1
'" l< f (x) g(y) = f fix) (xy) 2KO (xy)dx 0
2.26 _ 3/2
x-~(a2-x2)-~ l< l< l<
h[b(a2-x2)~]x<a ~lIY 2[IO {~a [(b 2+y2) 2_b] }KO {~a [(b 2+y2) 2+b]}+
2.27 cos
0 x>a + IO{~a[ (b2+y2)~+b] }KO{~a[ (b2+y2)~_b]}]
-l< l< -l< -l< 2.28 x 2J O (ax) y 2 (a 2 +y 2 ) "K [ a (a 2 ,y 2 ) 2]
2.29 x-~yo(ax) l< 2 2 -l< 2 2-l< - y2(a +y ) 'a[y(a +y ) 2]
-l< -l< -1 2.30 x 2IO (ax) y>a y "I«ay )
2.31 IO(ax) y>a 2~TI-1r 2 (3/4 ) (y2_a2)-~ . -2 l< l<
• IC{ [~-~ (1-a 2y ) 2] 2}
-l< -1 l< 2 -2 l< x 2KO (ax) ~a y "Ic[ (1-y a ) 2] Y < a
2.32 _l< 2 - 2 l<
~y "1([ (a y -1) 2] Y > a
2.2 Transforms of Order Zero 153
f (x) g (y) = 7 f(X)(XY)~O(XY)dX 0
-1 2- 312r 2 (~) (:i.) ~ • x KO (ax) a
~{[~_~(1_y2a-2)~]~} +
(~)~K{[~_~(1_a2y-2)~]~} + y
x 'KO (ax) ~ -1 -1 y (a 2_y2) 1og(ay )
-k x 'cos (bx) 10 (ax) k -~ k -k y'[b 2+(a+y)2] {2(ay)2[b2+(a+y)2] 2}
2.35 Y ;:, a
-k ~ b2 ( 2 ." 2.36 x 2COS (bx)KO (ax) 1IY [b 2+ (a+y) 2 ]K{ [ + a-y) ] }
b2+(a+y)2
_k 2 -1 ." k -1 x 2[JO (ax)] 211 y [2a+ (4a 2+y2) 2] • 2.37
k ." -1 • K2{2a'[2a+(4a 2+y2)] }
-k 2 x 2[1 O(ax)] 211-1y-~2{["'_"'(1_4a2y-2)"']"'} 2.38
y > 2a
f(x) g(y) = j f(x) (XY)~KO(XY)dX 0
-~ 2 ~~a-1y~{[~_~(1_~2a-2)~]~} x [KO (ax)] . 2.39 • • {[~+~(1_~2a-2)~]~} y < 2a
0 y > 2a
2.40 X-~Io(aX)Ko(aX) Y-~{[~-~(1_4a2y-2)~]~} •
• K{[~+~(1-4a2y-2)~]~} y > 2a
312 312 -2 -1 -~ -1ac-1 x Io(ax) 2y (y2_a 2) Stay )-y (y2_a 2) (ay) 2.41
y < a
2.42 x~Jo(aX)Jo(bX) y~[(a2+b2+y2)2-4a2b2]-~
2.43 X~[Jo(~ax2)]2 1(1 6~a -ly~{ [J 0 (1/ey 2a -1) ]2+ [YO (lfey 2a -1) ]2}
2.44 X~J (ax~)I (ax~) -% -1 o 0 y cos(~a2y )
4Jo(aX~)Ko(aX~)+ - 3/2 -1 2~y sin(~a2y )
2.45
+2~Io(aX~)Yo(ax~)
2.46 X-~[K (~ax-1)]2 2~y-~K2~[(2iaY)~]K2~[(-2iay)~] ~
2.2 Transforms of Order Zero 155
CD
f(x) (XY)~KO(XY)dX f(x) g(y) = J 0
2.47 x-~J (~ax-1)y (~ax-1) jJ jJ -2y -~J 2jJ [(2ay) ~]K2jJ [(2ay)~]
x-~{[J (~ax-1)]2 - jJ 4Y-~2jJ[(2aY)~]K2jJ[(2ay)~]
2.48 _[YjJ(~aX-1)]2}
2.49 .~ (-iax2 ) IjJ .w k(~iy2a-1)W k[-~iy2a-1)
-jJ I -jJ I
RejJ>-~
-% 1/16'11"Y~{ [Jk ('iey2a -1)] 2+ [Yk (1;ay2a -1)] 2} x ~,0(iax2) . 2.50
.M (-iax 2 ) -k,O
0 x < a
x-~(a+x)-1
-Yo-A -Yo~iA . ay e [Kv_l(ay)SA+l,v(~ay)
+ i(V+A)K (ay)S, l(iay)] v /\,v-
F (1; 3/2-~~-~V, 3/2-Yo~+~v;"'a2y2) - 1 2
~ k -~a y2cSC[~(~-v)] •
2.3 Elementary Functions 157
x-~(a2+x2)-~ 1/81T2sec(~1TV)Y~ • 3.6
-1 < Re v < 1 '{[J~V(~ay)]2 + [Y~v (~ay) ]2}
x-~(a2+x2)-1 ~1T2a-1sec(~1TV)Y~ •
3.7 -1 < Re v < 1 · {tan(~1Tv) [3v (ay)-Jv (ay)] -
- BV(ay) - Yv(ay)}
Re v < ~ · [HV(ay) - YV(ay)]
Re (ll±V) < ~ • y~s (ay) ll,V
x~+V(a2+x2)ll 2vr(1+v)aV+ll+1y-ll-~ • 3.10
Re v > -1 · Sll-V,ll+V+1(ay )
158
3.11
f(x)
3 • 12. • [ (a 2 +x 2 ) ~_ a ] - k •
3.13
3.14
o x>a
• F (-~;1-~-~A-~v/1-~-~A+~V;-~a2y2) 1 2
• yV F (~A+~V;~A+~+lt~v/1+v;-~a2y2) 1 2
2.3 Elementary Functions
o
o v
,,-1 "-v+1 -"-k +v2~ a~ y ~ 2CSC(VV) •
• r(~+1)I +1(ay) ~-v
~-v+1
[ (a2+x2) !o_x]2j.l, }
{C05[!orr(v-j.l)] [(a 2+x2)!o+x]2j.l+
+C05 [!orr (V+j.l)] [(a 2+X2) !o_x]2j.l}
Re (2j.l±v) < 1
v
- Y +1. (!oay)J I. (!oay)] j.l 2V j.l- 2V
• W I. (iay)W I. (-iay) j.l, 2V j.l, 2V
2.3 Elementary Functions
principal value
3.27 Rev>-~
principal value
-1 -J. TIa y 2W J. (ay)W J. (ay)
1l,2V -1l,2V
1 -1 - IBTI 2 a sec (~TIv) [I (ay) +1 (ay) 1 } v -v
.{cot[~TI(ll-v)l1_v(ay) +
Re(p±v) > -1
3.32
f(x) (XY)~K (xy)dx g (y) = f v 0
~~csc(TIv)y~-V(a2-y2)-~ . k V k V • {[a+ (a 2_y2) 2] - [a- (a 2_y 2)'J }
k -k TICSC (~v)y 2(y2_a 2) 2 . -1 · sin[varccos(ay )J
k -I< TICSC (TIv)y 2(y2_a 2) 2 . · sin{v[~~+arcsin(ay-1)J}
k (~TI) 'f (p+l-v)f (p+l+v) •
• (y2_a2)-~p-~p-p-~(ay-l) = v-~
= f(p_v+l)y~(a2_y2)-~p-~e-iTIv
k k k k 2y2K {a 2 [(b+y) 2+ (b-y) 'J} •
v
3.34
3.35
3.36
3.37
-1 < Re v < 1
~ sec(~'II"v) (~)~ • a
x..: ~ • exp(Sa)WjJ,~v(4a)
~y~sec (~'II"v) •
Sa '" 4
-~ < Re v < ~
3.40 x < a
o x > a
y2 11 11 (8a - 4" - 4" v) -
y2 11 11 (8a - 4" - 4" v)]
h -h-h (~11) 2r (~-v)D L[a(-iy) ']D ,[a(iy) 2]
V-'2 V-'2
165
2 k ~8 ec(l:i~v)y2[YL (U)Jk (V)-JL (U)Yk (v)]
~V 2V ~V 2V
sin [varcsin (~) ] y
cos [varcsin (~) ] y
166 II. K-Transforms
00 k f (x) g(y) = f f (x) (xy) 2Kv (xy) dx
0
_ 3/2 sin h(ax) -k -1 x Y,7TY 2V sec (Y,7TV) .
3.47 -1 < Re v < 1 sin [varcsin (~) ] .
-Y, 2 2-~ X ta -x ) . k ~7T2Y'CSC(Y,7TV) [I_y,v(U)I_y,v(V) -
3.48 ·cos h[b(a 2-x 2)l:i] - Il:iv(U)I~v(V)]
x < a ~a [(b 2+y2) ~+b]
0 U = x > a
-1 < Re v < 1 ~a[ (b2+y2)~_b)] v =
0 x < a -1 -l:i l:i7Ta y Wk k (ay)W k l:i (ay) .].1 , .v - .].1, v
x-l:i{x 2_a 2)-l:i 3.49
-1 cos[].Iarccos(ax )]
2.4 Higher Transcendental Functions
o x < a
4.1 x > a
4.4 x > a
Re ]1 < 1
o x < a
168 II. K-Transforms
'" k f (x) g(y) = f f (x) (xy) 2KV (xy) dx
0
x~-1(x2_a2)-Jo~p~ (~) ~ U-Jo,v-~
2 ay 2S2VI2~+1 (ay) 4.7
Re v < 1
k: V k:: x 2p [(I+x2)2] ~ -1 4.8 y Sv+Jo,u+Jo(y) Re v < 1
k -Jo v k x 2 (I+x 2) P [(I+x2) 2] ~
4.9 S (y) Re v < 1 V-Jo/~+Jo
~
f(x) g (y) k
x~(a2+x2)':;V-l
2 y S2v_l,2jl(ay ) 4.11
+pv (l+2x2a-2)] -jl
-v v-k 2 ay 2Kll+1 (ay)
x > a
Re v < 1
0 x < a
(x 2_a 2) ,:;v->" . 4.13 k-v -2 .p" (2x 2a -1) jl
-k v-I ~-v 2 'IT "2 ay [K +k (~ay)] jl 2
x > a
Re v > - ':;
x-V-~(a2+x2)>"-':;V . . -i'ITV ~2 -v-3 ,:;-v v-':; 2 ~e 'IT 2 a y [r(l-v)] •
4.14 k-v -2 .q.\ (l+2a 2x ) {[Jv_~(,:;ay)]2 + [Yv_~(,:;ay)]2}
Re v < 1
170 II. K-Transforms
'" I< f (x) g(y) = f f(x) (xy) 'KV (xy) dx
0
x-V-~(a2+x2)~-~V ,
,q~-V (l+2a 2X -2) i e-i1TV1T~2-V-la-V-\V-3/2 [r (3/2+)J-V) ]2,
)J , W ~ l«iay)W I< ~(-iay) 4.15 -)J- ,V-2 -)J-.,v- Re )J>_3/2
Re (]ol-v) > - 312
XV+)J+~J (ax) 2v+)Jr(V+)J+l)a)Jyv+~(a2+y2)-)J-v-l 4.16 )J
Re )J>-I, Re(v+)J) >-1
4.17 J (ax)
)J 2)J-~r (%+~)J+~v) r (3/4+~)J-~V) Re()J±V) > - % '(a2+y2)-~-)J [(I+a2y-2)~]
v-~
x)J-~J )J (ax) 2)J-1r(~+)J+~v)r(~+)J-~V) ,
4.18 -I< -I<)J -)J -2 Re (2)J±v) > -1 .y 2(a 2+y2) • p (1+2a 2y) ~v-~
x-)J-~J (ax) -)J-l -I< 1T2 sec(~~v)y 2 . 4.19 )J
-1 < Re v < 1 (a2+y2)~)Jp-)J (l+2a 2y-2) , ~v-~
X-A-~J v(ax) 2-A-1r(~+V-~A)r(~-~A)Y~ . 4.20
Re A<I, Re(2v-A»-1 (a2+y2)-~+~Ap-V (y2_a 2) ~A-~ y2+a 2
2.4 Higher Transcendental Functions
4.21 Re(j.!±v-A) > -1
Re(±j.!±v-A) > -1
-1 < Re v < 1

Recommended