+ All Categories
Home > Documents > talk_bonn

talk_bonn

Date post: 14-Jan-2016
Category:
Upload: christos-kallidonis
View: 17 times
Download: 0 times
Share this document with a friend
Description:
Talk given in Bonn, Germany
30
7/18/2019 talk_bonn http://slidepdf.com/reader/full/talkbonn 1/30 Hyperon and charmed baryon masses from twisted mass Lattice QCD ( = 2 + 1 + 1 ,  N  = 2  plus clover) Christos Kallidonis Computation-based Science and Technology Research Center The Cyprus Institute C. Alexandrou et al.  arXiv:1406.4310 with C. Alexandrou, V. Drach, K, Hadjiyiannakou, K. Jansen, G. Koutsou Rheinische Friedrich-Wilhelms-Universit¨at Bonn Bonn, Germany 1 April 2015 C. Kallidonis (CyI)  Baryon Spectrum  Bonn University 1 / 27
Transcript
Page 1: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 1/30

Hyperon and charmed baryon masses from twisted mass Lattice QCD(N f = 2 + 1 + 1, N f = 2 plus clover)

Christos KallidonisComputation-based Science and Technology Research Center

The Cyprus Institute

C. Alexandrou et al. arXiv:1406.4310

withC. Alexandrou, V. Drach, K, Hadjiyiannakou, K. Jansen, G. Koutsou

Rheinische Friedrich-Wilhelms-Universitat Bonn

Bonn, Germany

1 April 2015

C. Kallidonis (CyI) Baryon Spectrum Bonn University 1 / 27

Page 2: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 2/30

Outline

1 Introduction - Motivation

2 Lattice evaluationWilson twisted mass actionSimulation detailsScale settingInterpolating fields - Effective mass

3 Tuning of the strange and charm quark mass

4 ResultsChiral and continuum extrapolation for N f = 2 + 1 + 1Isospin symmetry breaking

5 Comparison

6 Conclusions

C. Kallidonis (CyI) Baryon Spectrum Bonn University 2 / 27

Page 3: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 3/30

Introduction - Motivation

Why we want to calculate baryon masses?

easy to calculatefirst quantities one calculates before proceeding with more complex observables

large signal to noise ratio

reliable way to study lattice effects

significant for on-going experiments

observation of doubly-charmed Ξ baryons (SELEX, hep-ex/0208014, hep-ex/0209075,hep-ex/0406033) - interest in charmed baryon spectroscopy (G. Bali et al. arXiv:1503.08440, M.

Padmanath et al. arXiv:1502.01845)

are the experimentally known masses reproduced?safe and reliable predictions for the rest

C. Kallidonis (CyI) Baryon Spectrum Bonn University 3 / 27

Page 4: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 4/30

Lattice evaluationWilson twisted mass action for N f = 2 + 1 + 1

doublet of light quarks: ψ =

u

d

R. Frezzotti et al. arXiv:hep-lat/0306014

Transformation of quark fields:ψ(x) = 1√

2

11 + iτ 3γ 5

χ(x)

ψ(x) = χ(x) 1√ 2

11 + iτ 3γ 5

mass term

ψmψ → χiγ 5τ 3mχ

S (l)F = a4

x

χ(x)

1

2γ µ(∇µ + ∇∗µ)−

ar

2 ∇µ∇

∗µ + m0,l + iγ 5τ 3µ

χ(x)

heavy quarks: χh =

s

c

In the sea we use the action: R. Frezzotti et al. arXiv:hep-lat/0311008

S (h)F = a4

x

χh(x)

1

2γ µ(∇µ + ∇∗µ)−

ar

2 ∇µ∇

∗µ + m0,h + iµσγ 5τ 1 + τ 3µδ

χh(x)

presence of τ

1

introduces mixing of the strange and charm flavorsvalence sector: use Osterwalder-Seiler valence heavy quarks χ(s) = (s+, s−) , χ(c) = (c+, c−)

re-tuning of the strange and charm quark masses required

Wilson TM at maximal twist

cut-off effects are automatically O(a) improved

no operator improvement is needed (important for nucleon structure)

C. Kallidonis (CyI) Baryon Spectrum Bonn University 4 / 27

Page 5: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 5/30

Lattice evaluationWilson twisted mass action for N f = 2 plus clover

S (l)F = a4

x

χ(x)

1

2γ µ(∇µ + ∇∗µ)−

ar

2 ∇µ∇

∗µ + m0,l + iγ 5τ 3µ +

i

4C SW σ

µν F µν (U )

χ(x)

Clover term

stable simulations

control O(a2) effects

O(a) improvement remains!

C SW = 1.57551

B. Sheikholeslami et al. Nucl.Phys. B259 (1985), S. Aoki et al. hep-lat/0508031

C. Kallidonis (CyI) Baryon Spectrum Bonn University 5 / 27

Page 6: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 6/30

Lattice evaluationSimulation details

Total of 10 N f = 2 + 1 + 1 gauge ensembles produced by ETMC

N f = 2 plus clover ensemble at the physical pion mass

R. Baron et al. (ETMC) arXiV:1004.5284, A. Abdel-Rehim et al. arXiv:1311.4522

β = 1.90, a = 0.0936(13) fm

323 × 64, L = 3.0 fm

aµ 0.0030 0.0040 0.0050

No. of Confs 200 200 200

mπ (GeV) 0.2607 0.2975 0.3323

mπL 3.97 4.53 5.05

β = 1.95, a = 0.0823(10) fm

323 × 64, L = 2.6 fm

aµ 0.0025 0.0035 0.0055 0.0075

No. of Confs 200 200 200 200

mπ (GeV) 0.2558 0.3018 0.3716 0.4316

mπL 3.42 4.03 4.97 5.77

β = 2.10, a = 0.0646(7) fm

483 × 96, L = 3.1 fm

aµ 0.0015 0.002 0.003

No. of Confs 196 184 200

mπ (GeV) 0.2128 0.2455 0.2984

mπL 3.35 3.86 4.69

β = 2.10, a = 0.0941(12) fm

483 × 96, L = 4.5 fm

aµ 0.0009No. of Confs 524

mπ (GeV) 0.1303

mπL 2.99

two lattice volumes

pion masses from 210-430 MeV → chiral extrapolations

three values of the lattice spacing → investigation of finite lattice effectsC. Kallidonis (CyI) Baryon Spectrum Bonn University 6 / 27

Page 7: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 7/30

Lattice evaluationScale setting

for baryon masses → physical nucleon mass

dedicated high statistics analysis on 17 N f = 2 + 1 + 1 ensembles

use HBχPT leading one-loop order result mN = m(0)N − 4c1m2

π − 3g2A16πf 2π

m3π

fit simultaneously for N f = 2 + 1 + 1 and N f = 2 plus clover for all β values

systematic error due to the chiral extrapolation → use O( p4) HBχPT with explicit ∆-degrees of freedom

β a (fm)

1.90 0.0936(13)(35)

1.95 0.0823(10)(35)

2.10 0.0646(7)(25)

2.10 0.0941(12)(2)

fitting for each β separately yields consistent values - negligible cut-off effects for the nucleon case

light σ-term for nucleon σπN = 64.9(1.5)(13.2) MeVC. Kallidonis (CyI) Baryon Spectrum Bonn University 7 / 27

Page 8: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 8/30

Lattice evaluationEffective mass

Effective masses are obtained from two-point correlation

functions

C ±B (t, p = 0) =xsink

1

4Tr (1± γ 0) J B (xsink) J B (xsource)

, t = tsink − tsource

Gaussian smearing at source and sink, APE smearing at spatial links

source position chosen randomly

amBeff (t) = log

C B(t)

C B(t + 1)

C. Kallidonis (CyI) Baryon Spectrum Bonn University 8 / 27

Page 9: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 9/30

Lattice evaluationInterpolating fields

constructed such that they have the quantum numbers of the baryon in interest

4 quark flavors

baryons (qqq)

SU(3) subgroups

of SU(4)

Examples

p (uud) J = abcuT a Cγ 5db

uc

Σ0 (uds) J = 1√ 2abc

uT a Cγ 5sb

dc +

dT a Cγ 5sb

uc

Ξ+c (usc) J = abc

uT a Cγ 5sb

cc

Ξ0 (uss) J µ = abcsT a Cγ µub

sc

Σ++c (uuc) J µ = 1√

3abc

uT a Cγ µub

cc + 2

cT a Cγ µub

uc

Ω0c (ssc) J µ = abcsT a Cγ µcb

sc

20plet of spin-1/2 baryons20 = 8 ⊕ 6⊕ 3⊕ 3

20plet of spin-3/2 baryons20 = 10⊕ 6⊕ 3⊕ 1

C. Kallidonis (CyI) Baryon Spectrum Bonn University 9 / 27

Page 10: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 10/30

Lattice evaluationInterpolating fields

incorporation of spin-3/2 and spin-1/2 projectors

P µν 3/2 = δ µν −

1

3γ µγ ν , J

µB3/2

= P µν 3/2J νB

P µν 1/2 = δ µν − P

µν 3/2 , J

µB1/2

= P µν 1/2J νB

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 4 8 12 16 20

a m e ff

Σ ∗ +

t / a

3 / 2 projection

1 / 2 projection

No projection

0.4

0.5

0.60.7

0.8

0.9

1

1.1

1.2

2 4 6 8 10 12 14 16

a m e ff

t /a

J Ξ∗− 3 / 2 projection

J Ξ∗− 1 / 2 projection

J Ξ∗− No projection

J Ξ−

C. Kallidonis (CyI) Baryon Spectrum Bonn University 10 / 27

Page 11: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 11/30

Tuning of the strange and charm quark mass (N f = 2 + 1 + 1)

use Ω− for strange quark and Λ+c

for charm quark

fix renormalized strange and charm masses using non-perturbatively determined renormalization

constants (N. Carrasco et al. arXiv:1403.4504

) in the M S scheme at 2 GeV

Strange quark mass tuning

use a set of strange quark masses to interpolate the mass of Ω− to a given value of

mRs and extrapolate to the continuum and physical pion mass using

mΩ = m0Ω − 4c

(1)Ω m2

π + da2

match with physical mass of Ω−

M S : mRs (2 GeV) = 92.4(6)(2.0) MeV

C. Kallidonis (CyI) Baryon Spectrum Bonn University 11 / 27

( )

Page 12: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 12/30

Tuning of the strange and charm quark mass (N f = 2 + 1 + 1)

Charm quark mass tuning

follow the same procedure using Λ+c and fit using

mΛc = m0Λc + c1m2π + c2m3π + da2

M S : mRc (2 GeV) = 1173.0(2.4)(17.0) MeV

C. Kallidonis (CyI) Baryon Spectrum Bonn University 12 / 27

T i f h d h k (N 2 l l )

Page 13: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 13/30

Tuning of the strange and charm quark mass (N f = 2 plus clover)

use Ω− for strange quark and Λ+c

for charm quark

use a set of strange and charm quark masses and interpolate to the physical Ω− and Λ+c mass

interpolate all the rest hyperons and charmed baryons to the tuned valuesof aµs and aµc

C. Kallidonis (CyI) Baryon Spectrum Bonn University 13 / 27

T i f th t d h k (N 2 l l )

Page 14: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 14/30

Tuning of the strange and charm quark mass (N f = 2 plus clover)Interpolation

Hyperons - Charmed baryons

mass

Min t

!1 !2 ! t !3 !

Charmed baryons with strange quarks

mass !c = !c,1

Ms,1

!s,1 !s,2 !s,t !s,3 !s

mass !c = !c,2

Ms,2

!s,1 !s,2 !s,t !s,3 !s

...

mass

Mint

!c,1 !c,2 !c,t !c,3 !c

C. Kallidonis (CyI) Baryon Spectrum Bonn University 14 / 27

Res lts I: Chiral and contin m extrapolation for N 2 + 1 + 1

Page 15: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 15/30

Results I: Chiral and continuum extrapolation for N f = 2 + 1 + 1

fit in the whole pion mass range 210-430 MeV

include all β ’s

allow for cut-off effects by including a term ∝ a

2

Hyperons

use leading one-loop order continuum HBχPT

systematic error due to the chiral extrapolation → use O( p4) HBχPT

C. Kallidonis (CyI) Baryon Spectrum Bonn University 15 / 27

Results I: Chiral and continuum extrapolation for N 2 + 1 + 1

Page 16: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 16/30

Results I: Chiral and continuum extrapolation for N f = 2 + 1 + 1

Charmed baryons

use Ansatz mB = m(0)B + c1m2

π + c2m3π + da2

systematic error due to the chiral extrapolation → set c2 = 0 and restrict mπ < 300 MeV

systematic error due to the tuning for all baryons

finite-a corrections ∼ 1%− 9% - cut-off effects are small

reproduction of experimentally known baryon masses → Predictions

C. Kallidonis (CyI) Baryon Spectrum Bonn University 16 / 27

Results I: Chiral and continuum extrapolation for Nf = 2 + 1 + 1

Page 17: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 17/30

Results I: Chiral and continuum extrapolation for N f = 2 + 1 + 1Cut-off effects

Baryon d (GeV3) % correction

β = 1.90 β = 1.95 β = 2.10

Ξcc 1.08(7) 6.3 5.0 3.1Ξ∗cc 1.01(10) 5.9 4.6 2.9

Ωcc 1.20(5) 6.9 5.4 3.4

Ω∗cc 1.10(7) 6.2 4.9 3.0

Ωccc 1.15(5) 5.1 4.1 2.6

C. Kallidonis (CyI) Baryon Spectrum Bonn University 17 / 27

Results II: Isospin symmetry breaking

Page 18: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 18/30

Results II: Isospin symmetry breaking

Wilson twisted mass action breaks isospin symmetry explicitly to O(a2)

it is expected to be zero in the continuum limit

manifests itself as mass splitting between baryons belonging to the same isospin multiplets due tolattice artifacts

u ←→ d is a symmetry, e.g. ∆++(uuu), ∆−(ddd) and ∆+(uud), ∆0(ddu) are degenerate

C. Kallidonis (CyI) Baryon Spectrum Bonn University 18 / 27

Results II: Isospin symmetry breaking

Page 19: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 19/30

Results II: Isospin symmetry breaking

∆ baryons

isospin splitting effects are consistent with zero for all lattice spacings and pion masses

C. Kallidonis (CyI) Baryon Spectrum Bonn University 19 / 27

Results II: Isospin symmetry breaking

Page 20: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 20/30

Results II: Isospin symmetry breaking

Hyperons

small mass splittings for the spin-1/2 hyperons - decreased as a−→ 0

splitting is smaller for the N f = 2 plus clover ensemble

isospin splitting consistent with zero for spin-3/2 hyperons

C. Kallidonis (CyI) Baryon Spectrum Bonn University 20 / 27

Results II: Isospin symmetry breaking

Page 21: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 21/30

p y y g

Charmed baryons

very small effects for spin-1/2 charmed baryons

no isospin symmetry breaking for spin-3/2 charmed baryons

C. Kallidonis (CyI) Baryon Spectrum Bonn University 21 / 27

Comparison

Page 22: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 22/30

pLattice results from other schemes

BMW: N f = 2 + 1 clover fermions S. Durr et al. arXiV:0906.3599

PACS-CS: N f = 2 + 1 O(a) improved clover fermions A. Aoki et al. arXiV:0807.1661

LHPC: domain wall valence quarks on a staggered fermions sea (hybrid) A. Walker-Loud et al. arXiV:0806.4549

MILC: N f = 2 + 1 + 1 Kogut-Susskind fermion action C.W. Bernard et al. hep/lat 0104002

QCDSF-UKQCD: N f = 2 Wilson fermions G. Bali et al. arXiV:1206.7034

C. Kallidonis (CyI) Baryon Spectrum Bonn University 22 / 27

Comparison

Page 23: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 23/30

Experiment

Octet - Decuplet spectrum

S. Durr et al. arXiV:0906.3599, A. Aoki et al. arXiV:0807.1661, W. Bietenholz et al. arXiV:1102.5300, Particle Data Group

C. Kallidonis (CyI) Baryon Spectrum Bonn University 23 / 27

Comparison

Page 24: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 24/30

Experiment

Charm baryons, spin-1/2 spectrum

R. A. Briceno et al. arXiV:1207.3536, H. Na et al. arXiV:0812.1235, H. Na et al. arXiV:0710.1422, L. Liu et al.

arXiV:0909.3294, G. Bali et al. arXiv:1503.08440, Particle Data Group

C. Kallidonis (CyI) Baryon Spectrum Bonn University 24 / 27

Comparison

Page 25: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 25/30

Experiment

Charm baryons, spin-3/2 spectrum

R. A. Briceno et al. arXiV:1207.3536, H. Na et al. arXiV:0812.1235, H. Na et al. arXiV:0710.1422, G. Bali et al.

arXiv:1503.08440, Particle Data Group

C. Kallidonis (CyI) Baryon Spectrum Bonn University 25 / 27

Ongoing - Future work

Page 26: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 26/30

finalize work on baryon spectrum for the N f = 2 plus clover ensemble

proceed with calculation of other observables (gA,...)

new implementation in twisted mass CG inverter to accelerate inversions using deflation leads tolarge speed-up! (might become even larger...) - Arnoldi algorithm and ARPACK package

more gauge ensembles from ETMC at the physical pion mass / with N f = 2 plus clover action (?)

C. Kallidonis (CyI) Baryon Spectrum Bonn University 26 / 27

Conclusions

Page 27: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 27/30

twisted mass formulation with N f = 2 + 1 + 1 flavors provides a good framework to study baryonspectrum

promising results from N f = 2 plus clover ensemble at the physical pion mass physical nucleon mass appropriate to fix lattice spacing when studying baryon masses

isospin symmetry breaking effects are small and vanish as the continuum limit is approached

cut-off effects are small and under control

good agreement with other lattice calculations and with experiment - reliable predictions of theΞ∗cc, Ωcc, Ω∗cc and Ωccc masses

Thank you

The Project Cy-Tera (NEA YΠO∆OMH/ΣTPATH/0308/31) is co-financed by the European Regional Development Fund and theRepublic of Cyprus through the Research Promotion Foundation

C. Kallidonis (CyI) Baryon Spectrum Bonn University 27 / 27

Lattice evaluationEff i

Page 28: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 28/30

Effective mass

mB

eff (t) = log C B(t)

C B(t + 1) = mB + log 1 +

∞i=1 cie−∆it

1 +∞i=1 cie−∆i(t+1)

−→t→∞

mB , ∆i = mi −mB

mBeff (t) ≈ me

B + log

1 + c1e−∆1t

1 + c1e−∆1(t+1)

criterion for plateau selection

mc

B −meB

12 (mcB + meB) ≤

1

m

c

B

C. Kallidonis (CyI) Baryon Spectrum Bonn University 1 / 3

Backup slidesN l t

Page 29: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 29/30

Nucleon σ-term

20 30 40 50 60 70 80 90 100σπN (MeV)

ETMC N f = 2 + 1 + 1 (this work)

C. Alexandrou et al. (ETMC) arXiv:0910.2419

G. Bali et al. (QCDSF) arXiv:1111.1600

L. Alvarez-Ruso et al. arXiv:1304.0483X.-L. Ren et al. arXiv:1404.4799

M.F.M. Lutz et al. arXiv:1401.7805

S. Durr et al. (BMW) arXiv:1109.4265

R. Horsley et al. (QCDSF-UKQCD) arXiv:1110.4971

C. Kallidonis (CyI) Baryon Spectrum Bonn University 2 / 3

Backup slidesHyperon σ terms

Page 30: talk_bonn

7/18/2019 talk_bonn

http://slidepdf.com/reader/full/talkbonn 30/30

Hyperon σ-terms

20 40 60 80

Λ

20 40 60 80

σπB (MeV)

Σ

0 10 20 30

Ξ

ETMC N f = 2 + 1 + 1 (this work)

C. Alexandrou et al. (ETMC) [1]

X.-L. Ren et al. [2]M.F.M. Lutz et al. [3]

S. Durr et al. (BMW) [4]

R. Horsley et al. (QCDSF-UKQCD) [5]

[1] C. Alexandrou et al. (ETMC) arXiv:0910.2419

[2] X.-L. Ren et al. arXiv:1404.4799

[3] M.F.M. Lutz et al. arXiv:1401.7805

[4] S. Durr et al. (BMW) arXiv:1109.4265[5] R. Horsley et al. (QCDSF-UKQCD) arXiv:1110.4971

C. Kallidonis (CyI) Baryon Spectrum Bonn University 3 / 3