+ All Categories
Home > Documents > TD DFT applied to biological problems- energy transfer - electron transfer - proton transfer - Q B...

TD DFT applied to biological problems- energy transfer - electron transfer - proton transfer - Q B...

Date post: 24-May-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
99
TD ! DFT applied to biological problems Marcus Elstner TU Braunschweig
Transcript

TD!DFT applied to biological problems

Marcus ElstnerTU Braunschweig

0) biological structures

N

Biological structures: proteins, DNA, lipids

Amino acids: 20DNA bases: 4 (A,C,G,T)

lipids

- contain (mainly) H, C, N, O and S

- units: amino acids

N

Proteins

- contain (mainly) H, C, N, O and S

- units: amino acids

N

Proteins

Proteins

Proteins

Proteins

Photosynthetic Reaction CenterAquaporin

Photochemistry

bR

Different representations of backbone

DNA

1) Intro

Optical properties in biological systems: examples

• bioenergetics: photosynthesis

• vision

• avoiding radiation damage: DNA protection and repair

• biological fluorescence: from jellyfish to biological markers

Three pigments, same chromopor: what determines the color?

Vision

• two different types of cells involved in vision

• rod cells for dim-light vision (500 nm, rhodopsin)

• cone cells (425nm, 533 nm, 560 nm) for color discrimination

Vision

• 7-helix proteins

• G-protein coupled receptors (GPCR’s)

• cone cells (425nm, 533 nm, 560 nm) for

color discrimination

• differ in amino acid composition

Vision

Reaction coordinate efficiencyalcohol not specific 10 ps 0.1

Rh cis-trans <0.5 ps 0.65

- intiates structural response => signalling state

cis trans

After photon absorption:

Questions:

cis trans

can we calculate the

excitation energy of

Rhodopsins?

can we describe the

isomerization

process?

Answers:

cis trans

Rh exp: 500 nm

TD-B3LYP: 505 nm

(JPCB 112 2007 6814)

(also Biophys J. 87 2004 2931)

DFT-QM/MM simulation

of isomerization

process:

JACS 126 2004 15328

Spectral tuning over 300 nmMechanism of color tuning:

Retinal has different absorption properties in different protein environments

What about other rhodopsins?

from Kusnetzow et al. Biochemistry

2001, 40, 7832

e.g. Bacteriorhodopsin

• transmembrane protein

• 7 a-helices

• retinal chromophor

e.g. Bacteriorhodopsin

• transmembrane protein

• 7 a-helices

• retinal chromophor

Bioenergetics

bR is simplest light driven proton pump

bR photocycle

absorbs at 570 nm, e.g. 70 red-shifted with respect to Rh

and one more: SRII

SRII absorbs as Rh at 500 nm, i.e. 70 red-shifted with respect to bR

TD-DFT (B3LYP) exp.

bR 2.57 eV 2.18 eV (570nm)

SRII 2.58 eV 2.48 eV (500nm)

Rh 2.52 eV 2.49 eV (498nm)

JCTC 3 (2007) 605

JPCB 112 2007 6814

Theor Chem Acc (2003) 109:125

Is TD-DFT color blind?

cis trans

Further

DFT-QM/MM simulation

of isomerization

process:

JACS 126 2004 15328

why did they heat the

chromophore to

690K?

Some other interesting systems

• bioenergetics: photosynthesis

• vision

• Avoiding radiation damage: DNA protection and repair

• Biological fluorescence: from jellyfish to biological markers

1! light absorption

2! proton transfer

3! ATP synthesis

Bacterial Photosynthesis

" bacterial reaction center" bacteriorhodopsin

bacteriorhodopsin bacterial reaction center

Bacterial Photosynthesis

- photon absorption- energy transfer- electron transfer- proton transfer

- QB movement:

large structural transitions

Bacterial Reaction Center

Special pair

special pair: chlorophyll

Light Harvesting LH1 and LH2 complexes

- Antenna complex

- BChl800 (green)- BChl850 (red) - carotenoids (yellow)

LH2

from Sundström ARPC 2007

Chromophors

Mg ! porphyrenepolyenes

- Shomomura discovered GFP from Aequorea victoria

- Similar proteins exist in a big number of jellyfish with different wavelenghts of emission

- GFP can be expressed by bacteria

- chromophore build from amino acids: good marker for molecular biology

Green fluorescent protein (GFP)

- green fluorescence 508 nm

- dual absorption: 395 nm (neutral form) A 475 nm (anionic form) B 4:1 fraction (A:B)

- Conversion via PT and structural change of Thr 203

DNA

how does it avoid radiation damage?

- rapid radiationless de-excitation via conical intersections - N-H stretch coordinate - out-of-plane motion

- transport of radical cations over large distcances

2) simulating biological structures

simulating biological structures

complexity has 2 dimensions:

1) size: number of atoms2) time scale of processes: need MD to sample conformational space

environment of acitve site looks caotic,but is highly structured from a functional perspective

=> do not neglect environment, otherwise you loose the most important point!

active site: chromophore + X

• Size: 4000-15000 atoms (water)

• actives site:50-100 atoms

• excited states, chemical reactions => QM

• size, ns MD simulations => MM

The computational problem

models in theoretical chemistry/biophysics

CI, MPCASPT2

Length scale

Continuum Electrostatics “Coarse graining”

Force Fields:MM

f

s

ps

ns

tim

e

ApproximativeMethods

HF, DFT

nm10"" 100"" 1000"" 10.000 " atoms

© Grubmüller

Molecular Mechanics: MM

Quelle: GrubmüllerMPI Göttingen

For Protein- and DNA ok!

Problems.:

- Polarization

- Charge transfer

- no reactions!

kb

k!

k"

qjqi

fixed point charges

Molecular Mechanics: MM

models in theoretical chemistry/biophysics

CI, MPCASPT2

Length scale

Continuum Electrostatics “Coarse graining”

Force Fields:MM

f

s

ps

ns

tim

e

ApproximativeMethods

HF, DFT

nm10"" 100"" 1000"" 10.000 " atoms

Continuum electrostatics

!"#$%&'()*&+$#+#,-.$/&+0)1+%$0",##$

0#,2%3

!"1%$/&+0,145*&+$/")+-#%$)''$6,&6#,*#%7$'18#

#+#,-1#%7$9&,/#%$:1;#;$-#&2#0,.<7$(14;$9,#=5#+/1#%$>$

!#?0

Continuum electrostatics

9&,2)*&+$&9$/)(10.$)+@$A@B$1+0#,)/*&+%$&9$%&'50#$C10"$%&'(#+0

2&@#'#@$)%$%52

&(#,$%5,9)/#$),#)%$D1$

&9$)0&2%

Continuum electrostatics

E+0#,)/*&+$&9$2&'#/5'),$/"),-#%$C10"$#'#/0,&%0)*/$6&0#+*)'$F:,<

Continuum electrostatics

G&(#$0&$9,##$#+#,-.$%5,9)/#$4.$H%)26'1+-I$&(#,$6&%%14'#$%&'(#+0$

/&+0,145*&+%$:#+0,&6.<$)+@$4.$1+/'5@1+-$0"#$6A$0#,2;

!"1%$/)+$4#$#J#/*(#'.$@&+#$@5,1+-$6),)2#0,1K)*&+$&9$0"#$2&@#'

L,##$#+0")'6.3

M)'/5')0#$,#)/*&+$N#'@

Continuum electrostatics

G&(#$0&$9,##$#+#,-.$%5,9)/#$4.$H%)26'1+-I$&(#,$6&%%14'#$%&'(#+0$

/&+0,145*&+%$:#+0,&6.<$)+@$4.$1+/'5@1+-$0"#$6A$0#,2;

!"1%$/)+$4#$#J#/*(#'.$@&+#$@5,1+-$6),)2#0,1K)*&+$&9$0"#$2&@#'

L,##$#+0")'6.3

M)'/5')0#$,#)/*&+$N#'@

O/"1#(#2#+03$

C#$@&$+&0$")(#$0&$%)26'#$&(#,$)''$%&'(#+0$@#-,##%$&9$9,##@&2P

Continuum electrostatics

Q&,+$2&@#'$:RSTU<

V#+#,)'1K#@$Q&,+3

N+@$#261,1/)'$9&,25'),7$C"1/"$

@#0#,21+#%$0"#$Q&,+$,)@15%$&9$)0&2$1$

1+%1@#$0"#$6,&0#1+

Continuum electrostatics

W&1%%&+$Q&'0K2)++3$%&'(#$W&1%%&+$#=;$&+$)$-,1@$>$

>$C10"$)+@$C10"&50$/&+*+552$),&5+@$0"#$2&'#/5'#3$-#0$,#)/*&+$N#'@

Continuum electrostatics

W&1%%&+$Q&'0K2)++3$%&'(#$W&1%%&+$#=;$&+$)$-,1@$>$

>$C10"$)+@$C10"&50$/&+*+552$),&5+@$0"#$2&'#/5'#3$-#0$,#)/*&+$N#'@

!"#+$650$1&+%$C10"$/&+/#+0,)*&+$+1$)+@$/"),-#$=1

Poisson Boltzmann (PB) vs. Generalized Born (GB)

WQ$(#,.$#?6#+%1(#7$#(#+$9&,$GG3$/)+$+&0$4#$@&+#$

#?0#+%1(#'.$)'&+-$GX$%125')*&+%

V#+#,)'1K#@$%&'(#+0$4&5+@),.$6&0#+*)'$:VDQW$4.$Q;$

Y&5?<

!$N?$)+$&50#,$,#-1&+

!$/)'/5')0#$,#)/*&+$N#'@$)+@$%&'()*&+$9,##$#+#,-.$5%1+-$

)$4)%1%$%#0$9&,$0"#$1++#,$,#-1&+

"$A#,.$-&&@$9&,$6,&4'#2%7$C"#,#$&+#$/)+$+#-'#/0$0"#$

2&*&+$&9$0"#$&50#,$6),0

&50#,$,#-1&+3$N?#@

1++#,$

,#-1&+

• calculate reaction field with and without external dielectric

• ‘rescale’ charges in order to reproduce solvent reaction field

• solvent exposed charges are nearly zeroed out!

!"#$%&'()#*+,%

3) QM/MM

simulating biological structures

complexity has 2 dimensions:

1) size: number of atoms2) time scale of processes: need MD to sample conformational space

environment of acitve site looks caotic,but is highly structured from a functional perspective

=> do not neglect environment, otherwise you loose the most important point!

! chemical reaction which needs QM treatment

! immediate environment: electrostatic and steric interactions

! solution, membrane: polarization and structural effects on protein and reaction!

" 10.000... - several 100.000 atoms

Computational problem I: number of atoms

combining models in multi-scale approaches

CI, MPCASPT2

Length scale

Continuum Electrostatics “Coarse graining”

Force Fields:MM

f

s

ps

ns

tim

e

ApproximativeMethods

HF, DFT

nm10"" 100"" 1000"" 10.000 " atoms

~ 1.000-100.000 atoms

~ ns MD simulations

(MD, umbrella sampling)

- chemical reactions

- excited states, spectroscopy

QM

Combined QM/MM methods

In many cases, the site of interest is localized" apply QM locally

Recent review: Senn & Thiel, Top Curr Chem #2007! 268: 173

1976 Warshel und Levitt

1986 Singh und Kollman

1990 Field, Bash und Karplus

QM • semi-empirical methods• quantum chemistry : DFT, HF, MP2, LMP2• DFT ‘plane wave‘ codes: CPMD

MM• CHARMM, AMBER, GROMOS, SIGMA,TINKER, ...

Combined QM/MM methods

Recent review: Senn & Thiel, Top Curr Chem #2007! 268: 173

!=80

QM region

Molecular Mechanics (MM) region

Effects:

- polarization of QM region through MM

- steric interactions

Main effect e.g. for catlytic efficiency of proteins

Recent review: Senn & Thiel, Top Curr Chem #2007! 268: 173

Combined QM-MM methods

MM

QM

! Mechanical embedding: only steric effects

! Electrostatic embedding: polarization of QM due to MM

! Electrostatic embedding + polarizable MM

QM/MM Methods

! Mechanical embedding: only steric effects

! Electrostatic embedding: polarization of QM due to MM

! Electrostatic embedding + polarizable MM

! Larger environment: - box + Ewald summ.

- continuum electrostatics

- coarse graining

MM

QM

? ?

QM/MM Methods

- subtractive: several layers: QM-MM

doublecounting on the regions is subtracted

- additive: different methods in different regions +

interaction between the regions

MM

QM

Subtractive vs. additive models

total energy

QM

MM=

-+ MM

Subtractive QM/MM: ONIOM Morokuma and co.: GAUSSIAN

total energy QM= +

QM+

MM

MM

interaction

Additive QM/MM

Additive QM/MM: linking

Additive QM/MM:

Additive QM/MM:

Elecrostatic mechanical embedding

Combined QM/MM

Amaro , Field , Chem Acc. 2003Bonds:

a) take force field terms

b) - link atom

- pseudo atoms

- frontier bonds

Nonbonding:

- VdW

- electrostatics

Combined QM/MM

Reuter et al, JPCA 2000

Bonds:

a)

from force field

Combined QM/MM: link atom

a) constrain or not?

(artificial forces)

relevant for MD

b) Electrostatics

- QM-MM:

exclude MM-host

exclude MM-hostgroup

- DFT, HF: gaussian broadening of MM point charges, pseudopotentails (e spill out)

- J. Chem. Phys. 2002, 117, 10534 J. Phys. Chem. B 2005, 109, 9082

Combined QM/MM: frozen orbitals

Warshel, Levitt 1976

Rivail + co. 1996-2002

Gao et al 1998

Reuter et al, JPCA 2000

Combined QM/MM: Pseudoatoms

Amaro & Field ,T Chem Acc. 2003

Pseudobond- connection atom

Zhang, Lee, Yang, JCP 110, 46

Antes&Thiel, JPCA 103 9290

No link atom: parametrize C! H2 as pseudoatom

X

Nonbonding terms:

VdW

- take from force field

- reoptimize for QM level

Coulomb:

which charges?

Combined QM/MM

Amaro & Field ,T Chem Acc. 2003

Tests:

- C-C bond lengths, vib. frequencies

- C-C torsional barrier

- H-bonding complexes

- proton affinities, deprotonation

energies

Combined QM/MM

- parametrization of methods for all regions required

e.g. MM for Ligands

SE for metals

+ QM/QM/MM conceptionally simple and applicable

Subtractive vs. additive QM/MM

PW implementations

(most implementations in LCAO)

- periodic boundary conditions and large box!

lots of empty space in unit cell

- hybride functionals have better accuracy: B3LYP, PBE0 etc.

+ no BSSE

+ parallelization (e.g. DNA with ~1000 Atoms)

Local Orbital vs. plane wave approaches:

• QM and MM accuracy

• QM/MM coupling

• model setup: solvent, restraints

• PES vs. FES: importance of sampling

All these factors CAN introduce errors in similar magnitude

Problems

Z$1+$2&%0$6,&0#1+%3$/)0)'.*/$#J#/0$@5#$0&$#'#/0,&%0)*/$1+0#,)/*&+%P

'#%%$126&,0)+03

[$@#%&'()*&+

[$%0#,1/$#J#/0%$$[$$$+#),$)\)/$/&+9&,2)*&+$:]OM<

[$/&"#,#+0$@.+)21/%^

-,.&$(/#,.+,%'/"&'#)01,'12'&,345&(678#$("&*9'O++5;$Y#(;$Q1&6".%;$Q1&2&';$D0,5/0;$TUU_;$_T3`Tab`_:

Example bR: 1st step, excited states dynamics

2nd step: proton transfer

Retinal

Asp85

Thr89

Asp212

w402

direct proton transfer

How the protein shapes the barrier

•MM: CHARMM

•QM: DFT-B3LYP and semi-empirical SCC-DFTB

• Minimum Energy Path (MEP)

Example 2: vision

Three pigments with same chromophore: what determines absorption maximum?

Absorption over 300 nm“Tuning” by protein environment(opsin-shift)

‘Spectral tuning’

[$steric interactions: twist

- interaction with polar groups in environment

- H-bonding with counterions

Absorption over 300 nm“Tuning” by protein environment(opsin-shift)

‘Spectral tuning’

[$steric interactions: twist

- interaction with polar groups in environment

- H-bonding with counterions

-nearby amino acids have functional role: a single mutation can have drastic effects

;<

Long range forces in Biology

<<

Solvation of whole protein can be important:

=> a) periodic boundary: box filled with waterb) continuum electrostatic c) charge scaling

Multi-scale methods:QM1/QM2/MM/continuum

!linearized PB eq.

!=80

!=2

Computational problem II: sampling with MD

!$flexibility: not one global minimum

" conformational entropy

! solvent relaxation

" ps – ns timescale (timestep ~ 1fs)

Different energy profiles for different

protein conformations

‘Problem’ of potential energy

c")+-$#0$)'$dWMQ$RUe$:TUU_<$```aS

Different energy profiles for different

protein conformations

‘Problem’ of potential energy

c")+-$#0$)'$dWMQ$RUe$:TUU_<$```aS

A) One always has to average over the different conformations of the environment :

Total energy" inner energyE" U

B) Entropy is often as important as accurate total energy : U" F

$

G&'#/5'),$X.+)21/%$:GX<3$

]52#,1/)'$1+0#-,)*&+$&9$]#C0&+%$$#=5)*&+$&9$2&*&+$Lf2g)$$C10"$

*2#%0#63$hR9%

"$0,)i#/0&,1#%

"$R6%$@.+)21/%3$RUUU$9&,/#$#()'5)*&+%

Molecular Dynamics: MD

First Molecular Dynamics Simulation (MD) of a protein: 9.2 ps

G/$M)22&+7$V#'1+j$k),6'5%7$])05,#$Tle7$=>??

QW!E

:4&(1+#$6)+/,#)*/$0,.6%1+$

1+"1410&,<

am$)21+&$)/1@%

First Molecular Dynamics Simulation (MD) of a protein: 9.2 ps

G/$M)22&+7$V#'1+j$k),6'5%7$])05,#$Tle7$=>??

QW!E

:4&(1+#$6)+/,#)*/$0,.6%1+$

1+"1410&,<

am$)21+&$)/1@%

,&&.&.6

)$4(/#*'(/$@)/@$&

BPTI: 210ps and water

n#(1\$j$D"),&+7$W]OD$ma7$=>AAB

BPTI: 210ps and water

n#(1\$j$D"),&+7$W]OD$ma7$=>AAB

/1.#46''C=DDBDDD'#/15(

''''C=DE=DD',(

Multi-scale models in theoretical biophysics

ME7$GW

MODW!T

F&,%/"'()#*&

M&+*+552$o'#/0,&%0)*/%$

pM&),%#$-,)1+1+-q

L&,/#$L1#'@%3GG

''''''''''2(''''''''''''''''G(''''''''''''''''''',('''''''''''''''05&

O66,&?12)*(#

G#0"&@%

rL7$XL!

+2

=D' ' =DD' ' =DDD' ' =DBDDD' #/15(

Multi-scale models in theoretical biophysics

ME7$GW

MODW!T

F&,%/"'()#*&

M&+*+552$o'#/0,&%0)*/%$

pM&),%#$-,)1+1+-q

L&,/#$L1#'@%3GG

''''''''''2(''''''''''''''''G(''''''''''''''''''',('''''''''''''''05&

O66,&?12)*(#

G#0"&@%

rL7$XL!

+2

=D' ' =DD' ' =DDD' ' =DBDDD' #/15(

problem: time step~ 1fs

s: energy + forces

min – h: energy + forces

h – days: energy + forces


Recommended