+ All Categories
Home > Documents > Tech Guide

Tech Guide

Date post: 29-Oct-2014
Category:
Upload: actrahul53
View: 122 times
Download: 2 times
Share this document with a friend
Popular Tags:
153
DESIGN CRITERIA 12 DESIGN CRITERIA
Transcript
Page 1: Tech Guide

DESIGN CRITERIA

12 DESIGN CRITERIA

Page 2: Tech Guide

The distribution system 14

Protection from indirect contacts 18

CONTENTS

DESIGN CRITERIA TECHNICALGUIDE

13CONTENTS

Page 3: Tech Guide

Inlowvoltageapplications,distributionsystemsaredefineddependingontheiractiveconductorssystemandtheearthconnectionmethodused.

The distribution systems

ACTIVE CONDUCTORS SYSTEMSOne-phase,alternateordirectcurrent,twoorthreeconductors.

L1

L2

L1

L2

L3

One-phase system, alternate current, two conductors Three-phase system, alternate current, three conductors

THE TT SYSTEMInaTTtypesystem,theneutralisdistributeddirectlybythepowersupplycompanyandisconnectedtotheearthatthestarcentreofthetransformer.Ontheotherhand,themassesoftheusersareconnectedtoalocalearthsystem,asshowninthediagram.InaTTsystem,theneutralconductormustbeconsideredasanactiveconductor,becauseitcouldtakeupdangerouslevelsofvoltage.Therefore,breakingoftheneutralconductorisalwaysnecessary.InTTsystems,thefaultcurrentvalueislimitedtobyneutralresistance,connectedtotheearthinsidethecabin,andbytheearthresistanceofthelocalearthsystem.Inthesetypesofequipments,wherethemassesarenotconnectedtoacommonearthconductor,an

T (neutral connected to the Earth) T (masses connected to the Earth)

L1

L2

L3

N

PE

TT system

Users

Three-phase,alternatecurrent,threeorfourconductors.

EARTH CONNECTION METHODSAsfarasthemethodsforearthconnectionoftheneutralofthetransformerandthemassesareconcerned,thedistributionsystemsareidentifiedusingtwolettersrepresentingrespectively:

1st letter,situationoftheneutralinrelationtotheearth:T - neutraldirectlyconnectedtotheearthI - neutralinsulatedfromtheearthorconnectedto

theearththroughanimpedance

2nd letter,situationofthemassesinrelationtotheearth:T -massesdirectlyconnectedtotheearthN-massesconnectedtotheneutralconductor

One-phasedistributionsystemscaneitherbeofthephase/neutraltype,ifderivingfromastarthree-phasesystem,orphase/phaseifderivingfromatrianglesystem.

earthleakagecircuitbreakermustalwaysbeinstalledoneachoutput.Itisinfactimperativethatthecircuitisimmediatelybrokenassoonasthefirstinsulationfaultoccurs.

14 DESIGN CRITERIA14

Page 4: Tech Guide

THE TN SYSTEMTheTNdistributionsystemisusedinequipmentfittedwithitsownmedium/lowvoltagetransformationcabin.Inthistypeofdistributionsystem,theneutralisdirectlyconnectedtotheearth.TwotypesofTNsystemscanbeinstalled,respectively:

TN-S systemThisisinstalledkeepingtheneutral(N)andtheprotection(PE)conductorsseparatefromeachother(PE+N),asshowninthereferencediagram(5-wireconnection).Theprotectionconductor(PE)mustneverbebroken.

TN-C systemThisisinstalledkeepingtheneutral(N)andtheprotection(PE)conductorstogether(PEN),asshowninthereferencediagram(4-wireconnection).Withthistypeofsystem,savingsontheinstallationoccur,duetothefactthatitrequirestheuseofthree-polecircuitbreakers,andtheeliminationofoneconductor.Inthistypeofdistribution,theneutral’sprotectionfunctionisperformedbythesameconductor(PEN),whichmustneverbebroken.ThePENconductormustbeconnectedtotheearthterminaloftheuserandtotheneutral.Itssectionmustnotbelessthan10mm2forcopperconductors,or16mm2foraluminiumconductors.Withthistypeofsetup,theuseofearthleakagebreakingdevicesonoutputswithdistributedneutralisforbidden.Thereforethesystemcannotbeusedinsystemswhichpresentahighlevelofrisksshouldafireoccur.MixedTN-CandTN-Sdistributionsubsystemsonthesamesystemareallowed(TN-C-S),providedthattheTN-CsubsystemisupstreamtheTN-Ssubsystem.

IntheTNsystem,themassesmustbeconnectedtotheprotectionconductor,whichisinturnconnectedtotheearthingpointofthepowersupply.Itisrecommendedthattheprotectionconductorisconnectedtotheearthatseveralpoints.Thebreakingofthecircuitiscompulsorywhenthefirstinsulationfaultoccurs.Thiscanbeensuredbyinstallingovercurrentorearthleakageprotectiondevices(withtheaboveexceptions).ItisappropriatetopointoutthatinaTNdistributionsystemthereisahigherriskoffireinstrongfaultcurrentsituations.

DESIGN CRITERIA TECHNICALGUIDE

15GENERAL fEATURES 15

Page 5: Tech Guide

THE IT SYSTEMThisdistributionsystemisnormallyusedwithequipmentincludingitsownconversioncabin,wheremaximumservicecontinuityisrequired.IntheITsystem,theneutralisinsulatedfromtheearthorisconnectedtoitthroughasufficientlyhighimpedancevalue.Allthemassesoftheusersareindividuallyconnectedtotheearthandtheneutralisnotdistributed.Thisisrecommendedbytheofficialstandards.Inordertoensuremaximumservicecontinuity,noautomaticreleaseatthefirstfaultisrequired,althoughitiscompulsorythatsuchfaultbenotifiedthroughapermanentcontroloftheinsulationbetweentheneutralandtheearth.Thebreakingofthecircuitisthencompulsorywhensecondfaultoccurs.Thiscanbeensuredbyinstallingovercurrentorearthleakageprotectiondevices.Testingoftheautomaticreleaseatthesecondfaultmustbeperformedatthedesignstagebymeansofappropriatecalculationsand,ifnecessary,ascertainedwhenthesystemisputintooperation.ForITsystems,wherethemassesareconnectedtotheearthindividuallyoringroups,itisnecessarythattheautomatictrippingofprotectiondevices,followingtheconditionsforTTtypesystems,ischecked.

The A and B users are connected in series between L2 L3, to the 400V voltage, with a consumption of 3.45A. The A user is overloaded.

Through the U user, the neutral takes up the phase voltage

Breaking the neutral only is forbidden

Intheseconditions,theuseofearthleakagecircuitbreakersisalwaysrequired.However,ifthemassesarecollectivelyconnectedtotheground,theinspectionoftheprotectionsmustbeperformedtakingintoaccountallparametersapplicabletotheTNsystem.Theofficialstandardsstronglydiscouragetheinstallationofacabinmassesearthelectrodeseparatefromtheonefortheusers.However,ifasystemisinstalledinsuchway,theinclusionofearthleakagedevicesupstreamtheinstallationisnecessary.

NEUTRAL CONDUCTOR BREAKINGTheneutralconductormustneverbebroken,unlessallphaseconductorsrelevanttothesystemarealsobroken,eitherbeforeoratthesametime.Thesameappliesforthereclosingofthecircuit.Thismeansthattheneutralmustneverbeclosedafterthephases.

Thisrulemustbeappliedforsafetyreasons:theneutralwouldinfacttakeupthephasevoltagethroughtheusersand,incaseofthree-phasedistribution,anyone-phaseuserswithphase-neutralpowersupplycouldbedamaged.

The distribution systems

16 DESIGN CRITERIA16

Page 6: Tech Guide

Legend

SN = neutral conductor sectionSF = phase conductor sectionyes = protection neededno = protection forbidden on the PEN conductor(1) = protection allowed but not needed(2) = protection forbidden

1P = circuit breaker with protected pole1P+N = circuit breaker with phase pole protected and neutral pole not protected2P = circuit breaker with both phase poles protected3P = circuit breaker with 3 protected poles3P+N = circuit breaker with 3 phase poles protected and neutral pole not protected4P = circuit breaker with 4 protected poles

1P+N or 2P 2P 3P+N or 4P 4P 3P

1P+N or 2P 2P 3P+N or 4P 4P 3P

1P 2P 3P 3P 3P

2P 2P 4P 4P 3P

Distribution One-phase Three-phase with neutral Three-phase

Phase+Neutral (L + N) Phase + Phase (L + L) SN ≥ SF (L1 + L2 + L3 + N) SN < SF (L1 + L2 + L3 + N) (L1 + L2 + L3) systems

TT

TN-SPE conductor separate from N

TN-CPEN conductor

IT

Forsafetyreasons,withITtypesystemstheneutralshouldnotbedistributed.Thisisbecauseatthefirstgroundfault,theneutralmaydevelopavoltagetowardstheearth,equaltothephase-to-phasevoltageofthethree-phasesystem.Iftheneutralisdistributed,itwillbenecessarytoensuredetectionofovercurrentswiththebreakingofallconductors,includingtheneutral.Thismeasureisnotneedediftheneutralissuitablyprotectedfromshortcircuitbyasuitabledeviceinstalledupstreamthesystem(forexampleattheoriginoftheinstallation),andthecircuitisprotectedbyaearthleakagedevicewithearthleakagecurrent15%lowerthantheloadofthecorrespondingneutralconductor.Theearthleakagedevicemustopenallactiveconductors(includingtheneutral).

NUMBER Of POLES REQUIRING PROTECTION, DEPENDING ON THE DISTRIBUTION SYSTEMDependingonthedistributionsystemused,itisnecessarytoselectsuitableprotectionsbasedonthenumberofpoles(conductors)requiringprotection.Asageneralrule,suitabledevicesmustbeinstalledforbreakinganyovercurrentonallphaseconductors.Breakingallactiveconductorsisgenerallynotnecessary.Basedonthisrule,automatic1poleormulti-polecircuitbreakersandfusescanbeused.InTTandTNsystemswithnondistributedneutral,theovercurrentdetectiondeviceononeoftheconductorscanbeomitted,ifanearthleakagedeviceisinstalledupstream.Ontheotherhand,onITsystems,theinstallationofdetectionsystemsonallphaseconductorsiscompulsory.

DESIGN CRITERIA TECHNICALGUIDE

17GENERAL fEATURES 17

Page 7: Tech Guide

TYPES Of PROTECTION fROM INDIRECT CONTACTS Allelectriccomponentsmustbeprotectedfromcontactwithaccessiblemetalparts,normallynotundervoltage,butwhichcouldbecomepotentiallydangerousduetoafaultordeteriorationoftheinsulation.

Zone 1: no reaction to the passage of the current

Zone 2: generally no physiologically dangerous effect

Zone 3: generally no organ damage. Possibility of muscle contraction and breathing difficulties; reversible effects in the formation and conduction of impulses to the heart, including ventricular fibrillation, which increase with the current intensity and time.

Zone 4: in addition to the effects described for zone 3, the possibility of ventricular fibrillation can increase of more than 50%. Physiological effects, such as cardiac-respiratory arrest and severe burning, can occur.

c2: probability 5%

c3: probability > 50%

PROTECTION THROUGH BREAKING Of THE POWER SUPPLY Thisisnecessarywhenduetoafault,contactvoltagesofadurationandvaluedangeroustopeoplemaydeveloponthemasses.TheIEC60364deemsasdangerousallcontactandpitchvoltageshigherthan50Va.c.forstandardenvironments,and25Va.c.forspecialenvironments.Ifhighervaluevoltagesdevelop,theymustbebrokeninsuitablyshorttimes,asindicatedbyIEC60479-1standard.Inthiscase,itthereforebecomesnecessarytoselectautomaticbreakingandprotectiondevicespresentingtrippingcurvesthatcanguaranteeasuitablelevelofsafety.Thestandardsdonotspecifyanylimitationstotherangeofprotectiondevicesthatcanbeused.Thesecouldeitherbefuses,orthermalmagneticorearthleakagecircuitbreakers.Theimportantrequirementisthattheymeetthespecifiedprotectionparameters.

Itisworthmentioningthatearthleakagecircuitbreakersarethemostuseddevices,whenanefficientprotectionfromindirectcontactisrequired.Whenselectingthedevicetobeused,thetime-voltagecurvemustbeknown.Thisinformationgivesinfactthepossibilitytoassesforhowmanyseconds,orfractionsofsecond,acertaincontactvoltagevaluecanbewithstood.Tobeabletoascertainthiscurve,onemustanalysetheeffectsofthecurrentonthehumanbody,asshownintheIEC60479-1standard.Thiscurvedefines4dangerzones,dependingonthevalueofthecurrentcirculatingforacertainamountoftime.Inanalysingthesafetycurves,onecandeductthatearthleakagerelayswitha30mAtrippingthreshold,offeranexcellentlevelofprotectionfromindirectcontacts,andarepreferredtootherprotectiondevices.

EffECT Of THE CURRENT ON THE HUMAN BODY ACCORDING TO IEC 60479-1

Protection from indirect contacts

18 DESIGN CRITERIA18

Page 8: Tech Guide

PROTECTION WITHOUT AUTOMATIC BREAKING Of THE POWER SUPPLYTotalprotectionfromindirectcontactscanbeensuredwiththeinsulationoftheactiveparts,withoutthepossibilityofremovingtheinsulationitself,orwiththeuseofenclosuresandbarriersprovidingsuitabledegreesofprotection.Incertainenvironments,thepartialprotectionfromindirect

contactsusingobstaclesordistances,preventingtheaccidentalcontactwiththepartsundervoltage,isalsopermitted.Theinstallationofactiveprotection,usingearthleakagecircuitbreakerswithratedearthleakagecurrentnothigherthan30mA,isalsorequired,inadditionto(andnotasareplacementof)totalandpartialprotections.

ELECTRIC SEPARATION PROTECTION

Toensuretheprotectionfromcontacts,circuitswiththeactivepartspoweredbyaperfectlyearthinsulatedelectriccircuitareused.Withthesesystems,thecircuitcannotbeclosedthroughthehand-feetcontactoftheperson,whicheliminatesthepossibilityofrealdangersituations.Thistypeofprotectioncanbeensuredusingstandardinsulationconvertersandlimitedlengthlines.

PROTECTION Of SYSTEMS WITH EXTREMELY LOW SAfETY VOLTAGE Inthiscase,protectionisensuredwhentheactivepartsarepoweredwithvoltagesnothigherthan50Va.c.and120Vd.c..However,measuresmustbeimplemented,topreventaccidentalcontactbetweenextremelylowvoltagecircuitsandlowvoltagecircuits.Insomespecialcases,protectionthroughnonconductinglocationsorlocalequipotentialconnectionnotconnectedtotheground,ispermitted.

PROTECTION USING DOUBLE INSULATION OR REINfORCED INSULATION Inthesetypesofelectriccomponents,theactivepartsareinsulatedfromaccessiblepartswiththefunctionalinsulationand,inaddition,alsobyasupplementaryinsulation.Thismakesanyrisksofaccidentspracticallyimpossible.TheyaredefinedasbelongingtoclassII.Inthiscase,theconnectionofthemassestotheprotectionconductorisnotallowed.

SELV system

DESIGN CRITERIA TECHNICALGUIDE

19GENERAL fEATURES 19

Page 9: Tech Guide

PROTECTION fROM INDIRECT CONTACTS IN TT SYSTEMS USING EARTH LEAKAGE CIRCUIT BREAKERS InTTsystems,afaultbetweenaphaseandamasscausesafaultcurrent,whichhasanimpactonboththeuserandtheenergydistributorearthsystem.Thiscurrentisdependentonthefaultimpedance,dueessentiallytotheearthresistancesofthemassesandtheneutral.Thisisbecausethesumoftheseresistancesprevailsontheotherelementsofthefaultring.InTTsystems,theprotectionfromindirectcontactsbymeansofautomaticbreakingofthepowersupplymustbeensuredbymeansofanearthleakagecircuitbreaker.

Thefollowingconditionmustbemet:

RE ≤ 50/I∆nwhere:

RE = istheresistanceofthedischarger(Ω)50 = isthesafetycontactvoltage(V)forordinary environments(25Vforspecial,agricultural, zoo-technicalenvironmentsetc...)I∆n= istheratedcurrent(A)thatcausesthe earthleakagerelaytotrip

I∆n (A) 1 0.5 0.3 0.1 0.03 0.01RE (Ω) 50 100 166 500 1666 5000

Power supply breaking condition

I∆n ≤

id

RE

In

50

RE

PROTECTION fROM INDIRECT CONTACTS IN TN SYSTEMS InaTNsystemthereareasmanyfaultringsasthenumberofmassessusceptibletobeundervoltage.Afaultonthelowvoltageside,canbecomparedtoashortcircuitthatclosesatthestarcentreofthetransformer,bymeansofthephaseandprotectionconductors.Itisnecessarytoensurethatthepropertiesoftheprotectiondevicesandtheimpedancesofthecircuitsaresuchthat,inthepresenceofafaultbetweenaphaseconductorandaprotectionconductor,oramassatanypointofthesystem,thepowersupplyisbrokenwithinthetimessetbytheIEC60364standard.

Breaking times based on U0

U0 (V) 120 230 400 >400 T (s) 0.8 0.4 0.2 0.1

Thefollowingconditionmustalsobemet:

Ia ≤ U0/Zswhere:

U0 = istheratedvoltagetowardstheearth(low voltageside)ofthesystemZs = isthetotalimpedanceIa = isthecurrent(A)causingtheautomatic trippingoftheprotectiondevicewithin thetimelimitslistedbelow.

Theearthleakagecircuitbreakersdirectlydetecttheearthleakagecurrent,asthedifferenceamongthetotalcurrentswhichhaveaneffectontheactiveconductors.Thetrippingcurrent(Ia=50V/RE),tobeintroducedinthecoordinationcondition,isidentifiedbytheratedearthleakagecurrent(I∆n=50V/RE),whenthetrippingtimedoesnotexceedonesecond.Thecoordinationconditionsarelistedinthetable.

Protection from indirect contacts

20 DESIGN CRITERIA20

Page 10: Tech Guide

L1

id id

L2

L3

NPE

Themaximumtimeslistedinthetableapplytoterminalcircuitsprotectedwithovercurrentprotectiondeviceswithratedorstandardcurrentsofupto32Amaximum.Timeshigherthanthoselistedinthetables,butlessthan5seconds,arepermittedfordistributioncircuitsandterminalcircuitsprotectedbyovercurrentdeviceswithratedorstandardcurrentsover32A.Iftheautomaticbreakingcannotbeensuredwiththeaboveconditions,thestandardrecommendsthatanadditionalequipotentialconnectiontothegroundisalsoinstalled.TheIEC60364standardalsorequiresthat,inexceptionalcaseswhereafaultbetweenaphaseconductorandtheearthmayoccur,forexamplewithsuspendedlines,thefollowingconditionismet,toensurethattheprotectionconductorandtheconnectedmassesdonotexceedthestandardvalueof50V:

RB/RE ≤ 50/U0-50where:

RB=istheearthresistanceofallearthelectrodes connectedinparallel,includingthoseofthe powersupplyline.RE =istheminimumearthresistanceofthe externalmassesnotconnectedtoaprotection conductor,throughwhichafaultbetween phaseandearthcanoccur.U0 =istheratedvoltagetowardstheearth.

Thermalmagneticcircuitbreakersarepreferredtoearthleakagerelays,forbreakingagainstdirectcontacts,insituationofhighfaultcurrents.Belowisthetableshowingthecoordinationconditionsforasuitableprotection,usingBTicinothermalmagneticcircuitbreakers,incircuitswithU0=230V.

BTDIN Mcb’s

In (A) 25 32 40 50 63Zs (Ω) 1533 1197 958 766 608

MEGATIKER Mccb’s

In (A) 80 125 160 250 400 630 800 1000 1250 1600Zs (Ω) 287 184 143 92 57.5 36.5 28.7 38.3 30.6 23.9

Iftheprotectionconditionisnotmetusingthermalmagneticcircuitbreakers,earthleakagedevicesmustbeused(thesearehoweverforbiddenwiththeTN-Csystem).Theuseofsuchdevicesisgenerallycapableofsatisfyingtheprotectionconditionsandrequirements,withouttheneedforcalculatingthetotalsystemimpedanceZs.Earthleakagecircuitbreakersdonotpresentanycoordinationproblems,becauseincaseofhighI∆n(3A),theyallowfaultringimpedancesofseveraltenthsofΩ (76),whichneveractuallyoccur.Toavoidanyunwantedtrippingofearthleakagedevices,itisrecommendedthatadjustabledevicesareinstalledonthedistributioncircuit,andthatthemaximumratedearthleakagecurrentandthemaximumdelayareset.Ontheotherhand,onterminalcircuits,instantaneousdeviceswiththemaximumallowedlevelofsensitivity,mustbeinstalled.Alwayscheckthatthedifferentialbreakingcapacityisnotlowerthantheexpectedfaultcurrent(U0/Zs).

Thefollowingformulaisrecommendedforcalculatingtheimpedanceofthefaultring: Zs = 1.5 (RE+RL+RPE)2 + (XE+XL+XPE)2√where:RE =InternalresistanceofthetransformerRL =PhaseconductorresistanceRPE=ProtectionconductorresistanceXE =InternaltransformerReactanceXL =PhaseconductorreactanceXPE=Protectionconductorreactance

DESIGN CRITERIA TECHNICALGUIDE

21GENERAL fEATURES 21

Page 11: Tech Guide

IT system with individual earth masses

PROTECTION fROM INDIRECT CONTACTS IN IT SYSTEMS IntheITdistributionsystem,theneutralisinsulatedfromtheground(orisconnectedtoitthroughhighvalueimpedance),andthemetalmassesaredirectlyconnectedtotheearth.Incaseoffaultatthemass,thefaultcurrentcanonlyclosethroughthecapacitiesofthehealthyconductorstowardstheground.Thisfaultcurrentislimitedwithinnondangerousvalues.Whenthefirstfaultoccurs,thestandardsdonotrequirethetrippingofprotectiondevices.However,whenthesecondfaultoccurs,itbecomesnecessarythattheprotectiondevicestripquickly,inaccordancewiththetimesshownonthetablebelow.

Voltage (V) Breaking time (s) neutral neutral non distributed distributed120/240 0.8 5 230/400 0.4 0.8 400/690 0.2 0.4 580/1000 0.1 0.2

Althoughthetrippingoftheprotectiondevicesisnotrequiredatthefirstfault,itishoweverstillnecessarytoimplementcontinuousoperationwarningdevices,tomonitortheinsulationstateofthesystemitself,andnotifyanysuchearthfaultsonthephasesortheneutral(onlyifdistributed).Thestandardsrecommendthatthefirstfaultiseliminatedasquicklyaspossible.

ThetypesprotectiondevicesthatcanbeusedinITsystemsareovercurrentprotectiondevices,orearthleakagedevices.Ifearthleakagecircuitbreakersareused,itisnecessarytousedeviceswithanonoperationearthleakagecurrentthatisatleastequaltothecurrentexpectedforapossible1stearthfault.Thisconditionisnecessarytoensuremaximumservicecontinuity.Theprotectionconditiontomeet,forthecoordinationofprotectionsinITsystemsis:

RE · I∆≤ ULwhere:

RE= istheresistanceoftheearthelectrode(Ω)I∆ = isthefaultcurrentforthe1stnegligible impedancefaultbetweenaphaseconductor andamass.UL= isthelimitcontactvoltage,equalto50V forordinaryenvironmentsand25Vforspecial environments

Dependingonthetypeofconnectionusedforthemasses,eithertogetheratthesamepoint,orconnectedindividuallytoearthrods,whenthefirstfaultoccurs,theITsystemsturnseitherintoaTNorintoaTTsystem.Asaconsequence,toensureprotectionfromindirectcontacts,anyconsiderationsrelatingtothesetwotypesofsystemsmustbetakenintoaccount.

Individual connection of the massesIfthemassesoftheusersareindividuallyconnectedtolocalearthelectrodes,thesecondearthfaultmustbeconsidered,andthereforetreated,asafaultoccurringinaTTsystem.Thecoordinationconditiontomeetatthesecondfaultis:I∆≤ 50/RE.Theuseofearthleakageprotectiondevicesdoesnotcausesanycoordinationproblems,andisnecessarytoensurebreakingwhenthesecondfaultoccurs.

Protection from indirect contacts

22 DESIGN CRITERIA22

Page 12: Tech Guide

IT system with distributed neutral

IT system with non distributed neutral

Connection of the masses to the same pointWheninanITsystemthemassesoftheusersareconnectedtothesamepoint,asshowninthefigure,thesecondearthfaultmustbeconsideredandhandledasafaultthatcouldoccurinaTNsystem.Inthistypeofsystem,overcurrentprotectioncircuitbreakers(thermalmagneticorelectronic)canbeused,providedtheconnectionrequirementsarecompliedwith:Ia ≤ U/2Zs(systemwithnondistributedneutral)Ia ≤ U0/2Z’s(systemwithdistributedneutral)where:Ia =isthetrippingcurrent

U =isthelinkedvoltageU0=isthephasevoltageZs=istheimpedanceofthefaultring,madeupof thephaseconductorandthePEconductorZ’s=istheimpedanceofthefaultring,madeupof theneutralconductorandthePEconductor

Theuseofearthleakagedevicesdoesnotcauseanyconnectionproblems.The IEC 60364 standard recommends that for safety reasons the neutral should not be distributed.

DESIGN CRITERIA TECHNICALGUIDE

23GENERAL fEATURES 23

Page 13: Tech Guide

OVERCURRENT PROTECTION

24 DESIGN CRITERIA

Page 14: Tech Guide

26 Thetransferoflowvoltageenergy

27 Generalconditionsfortheprotectionofconductors

28 Protectionfromoverload

31 Cabledesignationcodes

31 Cableloadsinpermanentcapacity

49 LoadsoftheZucchinibusbars

50 Selectionofconductorsdependingonvoltagedrop

55 Sizingoftheneutralandprotectionconductors

56 Protectionfromshortcircuit

67 Limitationcurves

69 Protectedsectionsdependingontimedelays

70 LossesinbusbarsduetotheJouleeffect

71 Selectionofcircuitbreakerswithseveraltransformersinparallel

SECTION CONTENTS

DESIGN CRITERIA TECHNICALGUIDE

25CONTENTS

Page 15: Tech Guide

The transfer of low voltage energy

MT/BT EdM transformer

Distribution systems in Zucchini busbar

MAS BTicino distribution boards and cabinets

Inlowvoltageconditions,thetransferanddistributionofelectricpowertotheusers,orgroupsofusers,isonlypossibleusingacableorabusbar.Thedesignersselectsthemostsuitableandconvenientmethod,dependingonthetypeofsystemtoinstallandthetypeofusers.Cabledistributiongiveshighflexibilityofuse:thankstothedifferentsectionsandthepossibilityofinstallingcablesinparallelforthesamephase,veryhighcurrentvaluescanbedistributedusingarangeof

installationmethods.Thebusbarisavalidalternativetothecable,inthosesituationswheremedium-highpowersneedtobedistributedforthepoweringofextensiondistributionboards,lightingdevicesorpowersupplybackbones.Setuptimescanbeveryquick,andatequalcurrentconditions,itrequireslessspacecomparedwithacable.Bothtransfersystems,cableandbusbar,mustbeofsuitablesizeandmustalsobeprotectedfromovercurrents.

26 DESIGN CRITERIA26

Page 16: Tech Guide

Cable heating thermal transient

General conditions for the protection of conductors

OVERCURRENTS AND TEMPERATURESTheproblemofovercurrentsisfundamentallyatemperatureissue.Thetemperatureofapoweredconductorsincreasesproportionallytothesquareofthecurrentintensityandthedurationofthethermalstresscondition.Itisthereforeveryimportant,thatthecurrentvaluesarecontrolled,inordertoavoidsubsequentheatingofthecables,whichwouldcauseafastdeteriorationoftheconductorinsulationsheathitself.Threedifferentsituationscouldoccur,whichthreedifferentmaximumtemperaturesadmittedbythecablecorrespondto:

• The permanent capacity;itcausesmaximumtemperaturesthatcanbeacceptedbythecableforanindefiniteamountoftime.Thesetemperaturescannotexceedthemaximumoperationtemperatureindicatedforeachtypeofinsulatingmaterial.

• Overload;itcauseslevelsoftemperaturesthatwouldneedtobequicklybroken,inordertoavoidfastdeteriorationoftheinsulatingmaterial.Itisacceptablethattheovercurrentscausingsuchtemperaturesarebrokenwithinaperiodofonehour.

• Short Circuit;itcausesmuchhighertemperatures,whichmustbebrokeninveryshorttimes,withinsomecentsofasecond.

Type of insulation maximum maximum maximum(standard operating overload short circuitdesignation) temperature temperature temperature ϑz °C (1) ϑs °C (2) ϑcc °C (3)G1b (rubber) 75 120 200 EI2 (rubber) 180 330 350G5 (EPR) 90 150 350G7 (HEPR) 90 150 250G9 (4) 90 150 250G10 (4) 90 150 250TI2 (PVC) 70 110 150R2 (PVC) 70 110 160TI3 (PVC) 90 150 160TI4 (PVC) 70 110 160

Typical cable temperatures

(1) Temperature based on which Iz is calculated(2) Temperatures which are not specifically set by any standards, but which are calculated based on the If 1.45 Iz ratio, listed in the IEC 60364 Standard.(3) Temperatures based on which the maximum admitted values of the Joule integral are calculated(4) Special mixes emitting low levels of toxic gases and fumes

DESIGN CRITERIA TECHNICALGUIDE

27GENERAL fEATURES 27

Page 17: Tech Guide

Protection from overload

TheIEC60364Standardrequiresthat(unlessotherwisestated)thecircuitsofasystemarefittedwithprotectiondevicescapableofbreakingoverload

CABLE OVERLOAD PROTECTIONThecablemustbesuitablyprotectedfromoverloadtoavoidexcessiveheating,thatmaycauseearlydeterioration,andtheconsequentbreaking,oftheinsulation.Inordertoensuresuchprotection,thefollowingrulesmustbecompliedwith:

Rule1) IB ≤ In ≤ Iz

Rule2) If ≤ 1,45 Iz

where:IB= CircuitcurrentofuseIn= CircuitbreakerratedcurrentIz = CablepermanentcapacityloadIf = Safeoperationcurrentoftheautomatic circuitbreaker

Thefirstrulemeetsthegeneraloverloadprotectionconditions.Ifanautomaticcircuitbreakerisusedtoensureoverloadprotection,rule2isalwaysmet.ThisisbecausetheIfsafeoperationcurrentisneverhigher

than1.45In(1.3InaccordingtoIEC60947-2;1.45InaccordingtoIEC60898).However,therulemustbecheckedwhenafuseisinstalledasprotectiondevice.ByanalysingthegeneralprotectionruleIB ≤ In ≤ Iz,itbecomesclearthattwoseparateprotectionconditionscanbeobtained:amaximum protectioncondition,whichcanbeensuredbyselectingacircuitbreakerwithratedcurrentsimilarorequaltotheoperatingcurrentIB,andaminimum protectioncondition,obtainedbyselectingacircuitbreakerwithratedcurrentsimilarorequaltothemaximumcableload.Whenthemaximumprotectionconditionisselected,situationsmayoccurthatmaypreventservicecontinuity.Thisisbecausetrippingofthecircuitbreakerwouldalsooccurincaseofacceptableanomalies.Ontheotherhand,althoughtheselectionofacircuitbreakerwithratedcurrentequaltothecableload,couldguaranteemaximumservicecontinuity,thiscouldbeattheexpensesofmaximumexploitationofthecopperinstalled.Theseconsiderationsarelefttothedesigner,basedonthetypeofcircuittoinstall.

currentsbeforeexcessiveheatingoftheinsulation,theconnection,theterminalsortheenvironmentoccurs.

Maximum protection condition In = IB

IB

In

Iz

If

1.45 Iz

I

CIRCUIT FEATURES

FEATURES OF THE DEVICE TO BE PROTECTED

Minimum protection condition In = Iz

IB

In

Iz

If

1.45 Iz

I

CIRCUIT FEATURES

FEATURES OF THE DEVICE TO BE PROTECTED

28 DESIGN CRITERIA28

Page 18: Tech Guide

Overload protection condition

IB Iz 1.45 Iz

I

Kt correction coefficient for room temperature other than 40°C

Room 15 20 25 30 35 40 45 50Temperature °C kt 1.15 1.12 1.08 1.05 1.025 1 0.975 0.95

PROTECTION Of BRANCHES fROM OVERLOADIfthebranches,normallymadeofcablesrunninginsidepipes,havenotalreadybeenprotectedfromoverloadwithadeviceupstreamthebusbar,thefollowingisnecessary:

• theloadofthebranchisnormallylowerthanthebusbar.Itisthereforenormallynecessaryforthebranchtobealsoprotectedfromoverload.

• Theoverloadprotectiondevicecanbeinstalledinsidethebranchingunit,orontheinputdistributionboard.Inthiscase,overloadprotectioncanalsobeensurebythecircuitbreakersinstalledforthe

BUSBAR OVERLOAD PROTECTIONOverloadprotectionofbusbarsfollowsthesamecriteriaasthecables:Thefollowingrelationmustbechecked:

IB ≤ In ≤ Iz

Inathree-phasesystem,theIBcurrentofuseiscalculatedusingthefollowingformula:

Pt • bIB = √3 • Ur • cosφm

where:Pt = Isthetotalsumoftheactivepowersofthe installedloads[W];b = Powersupplyfactorequalto: 1ifthebusbarispoweredfromonesideonly; ½ifthebusbarispoweredfromthecentreor frombothendsatthesametime;Ur = Operatingvoltagein[V];cosφm= Averagepowerfactoroftheloads.

Thetemperatureoftheenvironmentinwhichthebusbarisinstalledhasanimpactontheloadofthebusbaritself.Duringthedesignstage,theloadvalueatthereferencetemperaturemustbemultipliedbyacorrectionfactorbasedonthefinaloperatingtemperature.

Iz = Iz0 · Kt

where:

Iz0isthecurrentthebusbarcanholdforanindefiniteamountoftime,atthereferencetemperature(40°C);Ktisthecorrectioncoefficientforenvironmenttemperaturevaluesotherthanthereferencevalueslistedinthetablethatfollows.

protectionoftheindividualoutputsfromthedistributionboard,providedthatthesumoftheirratedcurrentsisequalorlowerthanthebranchlzloadcapacity.Inareaswheretheriskoffireishigh,itisrequiredthattheoverloadprotectiondeviceisinstalledatthebranchingpoint,andthereforeinsidethebranchingunit.

DESIGN CRITERIA TECHNICALGUIDE

29GENERAL fEATURES 29

Page 19: Tech Guide

Protection from overload

PRACTICAL CASES WHEN PROTECTION IS REQUIREDTheIEC364Standardstatesthegeneralobligationforoverloadprotectioninallthosecasesthistypeofovercurrentsituationmayoccur.Itisthedesignerwhoisresponsibleforassessingthecircumstancesforthiscompulsoryrequirement.Thestandardrecommendsthatprotectionisinstalledonlyincircuitswithsizesdefinedtakingintoaccountutilisationorcoincidencecoefficientslowerthan1.Inpracticalterms,protectionbecomescompulsoryinthefollowingsituations:a)mainbusbarwhichpowersuserextensions

workingwithutilisationorcoincidencecoefficientslowerthan1;

b)powersupplylinesformotorsorotheruserswhich,duetotheiroperation,maycauseoverloadsituations;

c)powersupplylinesforplugsocketsnotintended

e)IZ ≥ In1 + In2 + In3

In1 In2 In3

a)

In ʺ IZ1; In ʺ IZ2; In ʺ IZ3.

IZ1 IZ2 IZ3In

b)

IBD = IB1 + IB2 + IB3

IB1

IBD

IB2 IB3

c) M IR ʺ IZ IR

IZ

d) UIB ʺ IZ

IB1 IB2 IB3 IB4

Iz < IB1 + IB2 + IB3 + IB4a)

Icc > Izb) M

CASES WHEN THE OVERLOAD PROTECTION IS NOT NECESSARYOntheotherhand,thestandardliststhefollowingcasesinwhichprotectionisnotnecessarya)powersupplylinesbranchingfromamainline

alreadyprotectedfromoverloadsbyasuitabledevice,andcapableofalsoguaranteeingprotectionforthebranchinglines.

b)powersupplylinesforusersthatcannotgenerateoverloadcurrents,ontheconditionthattheyareprotectedfromshortcircuitsandhavenobranchesorplugsockets.

c)powersupplylinesforequipmentalreadyfittedwithitsownprotectiondevices,thatisalsocapableofguaranteeingtheprotectionofthelineitself.

d)powersupplylineforuserswhichcannotgenerateoverloadconditions,andarenotprotectedbyoverload,whentheoperatingcurrentofsuchusersisnothigherthanthepowerlineratedload(e.g.temperatureequipment).

e)powersupplylinesservingseveralbranchesthatareindividuallyprotectedfromoverload,whenthesumoftheratedcurrentsoftheprotectiondevices

CASES WHEN THE OVERLOAD PROTECTION IS NOT RECOMMENDEDTheStandarddoesnotindicateanyconditionswhenprotectionisforbidden.However,itrecommendsthatprotectionisnotinstalledinthefollowingcases,forsafetyreason:

a)excitationcircuitsofrotatingmachinesb)poweringcircuitsofliftingelectromagnetsc)secondarycurrenttransformerscircuitsd)circuitspoweringfireextinguishingdevices

forpoweringanyoftheuserslistedatthefollowingparagraph(caseswhenoverloadprotectioncanbeomitted);

d)powersupplylinesforusersinstalledinenvironmentswheretheriskofexplosionorfireishigh(thisobligationisaconsequenceoftheIEC364Standard).

installedonthebranchesisnothigherthantheIZloadofthemainline.

f)powersupplylinesfortelecommunicationandsignalingsystemsandsimilar.

30 DESIGN CRITERIA30

Page 20: Tech Guide

Cable designation codes

CabledesignationcodesusedinItaly,havebeendefinedatnationallevelbytheCEI20-27Standard(CENELECHD361).

TheserulesapplyonlytoCENELECharmonizedcablesorcablesproducednationally,forwhichCENELEChasexpresslygrantedtherightofuse.

Designation code H 07 R N - - F 3 G 1.5Type of cable cable in accordance with harmonized standards H (reference to standards) nationally manufactured approved cable A nationally manufactured cable not in accordance N with IEC standardsRated voltage 300/300V 03 Uo/U 300/500V 05 470/750V 07 600/1000V 1 Insulating coverings ethylene propylene rubber (EPR) B natural rubber or equivalent (Rubber) R polyvinyl chloride (PVC) V XLPE polyethylene (XLPE) X polychloroprene (neoprene) N Sheathing, braids and ethylene propylene rubber (EPR) B protecting coverings natural rubber or equivalent (Rubber) R polyvinyl chloride (PVC) V XLPE polyethylene (XLPE) X polychloroprene (neoprene) N Special constructions “split” flat cables H “non-split” flat cables H2 Conductor material copper (no symbol) - aluminium A Conductor shape rigid single wire conductor U rigid rope conductor R flexible rope conductor F for mobile installation (class 5 IEC 228) flexible rope conductor K for fixed installation (class 5 IEC 228) extremely flexible rope conductor H (class 6 IEC 228) Cable composition number of conductors Num. multiplying symbol when yellow-green X protection conductor is not present when yellow-green protection G conductor is present Rated conductor Numsection

Ifacarefulanalysisoftheconditionsbeingdiscussedisnotcarriedout,varioustypesoferrorsmayoccur:• undersizingofthepowerlineduct(toosmallasection):thiswillresultinareducedlifeofthecableoratoohighvoltagedrop

• oversizingofthepowerlineduct(toobigasection):inthiscase,theselectedcablewillbringtotallyunjustifiedexpenses,togetherwithhigherspacerequirementsandhigherlevelofinstallationdifficulties.

Cable loads in permanent capacity according to IEC 60364-5-52

DESIGN CRITERIA TECHNICALGUIDE

31GENERAL fEATURES 31

Theshortcircuitcurrentvaluesofthebrancheswillalsobehigher,withtheconsequencethattheinstallationofprotectiondeviceswithhighertrippingpowerswillbenecessary.Inordertoselecttheoptimumconductorsectionforeachsectionoftheline,itisnecessarytotakeintoaccountseveralfactors.Thetablethatfollowsgivesthecableloadsandthecorrectioncoefficientsthatshouldbeappliedtothemdependingofthesetuptype.

Page 21: Tech Guide

Current-carrying capacities in amperes for PVC insulation/two loaded conductors/copper or aluminium –

Conductor temperature: 70 °C/Ambient temperature: 30 °C in air, 20 °C in ground

32 DESIGN CRITERIA32

Page 22: Tech Guide

Current-carrying capacities in amperes forXLPE or EPR insulation/two loaded conductors/copper or aluminium –

Conductor temperature: 90 °C/Ambient temperature: 30 °C in air, 20 °C in ground

DESIGN CRITERIA TECHNICALGUIDE

33GENERAL fEATURES 33

Page 23: Tech Guide

Current-carrying capacities in amperes for PVC insulation/three loaded conductors/copper or aluminium –

Conductor temperature: 70 °C/Ambient temperature: 30 °C in air, 20 °C in ground

34 DESIGN CRITERIA34

Page 24: Tech Guide

Current-carrying capacities in amperes for XLPE or EPR insulation/three loaded conductors/copper or aluminium –

Conductor temperature: 90 °C/Ambient temperature: 30 °C in air, 20 °C in ground

DESIGN CRITERIA TECHNICALGUIDE

35GENERAL fEATURES 35

Page 25: Tech Guide

Current-carrying capacities in amperes for installation method CMineral insulation/copper conductors and sheath –PVC covered or bare exposed to touch (seenote2)

Metallic sheath temperature: 70 °C/Reference ambient temperature: 30 °C

36 DESIGN CRITERIA36

Page 26: Tech Guide

Current-carrying capacities in amperes for installation method CMineral insulation/copper conductors and sheath –

Bare cable not exposed to touch and not in contact with combustible materialMetallic sheath temperature: 105 °C/Reference ambient temperature: 30 °C

DESIGN CRITERIA TECHNICALGUIDE

37GENERAL fEATURES 37

Page 27: Tech Guide

Current-carrying capacities in amperes for installation methods E, F and GMineral insulation/Copper conductors and sheath/PVC covered

or bare exposed to touch (see note 2)Metallic sheath temperature: 70 °C/Reference ambient temperature: 30 °C

38 DESIGN CRITERIA38

Page 28: Tech Guide

Current-carrying capacities in amperes for installation methods E, F and G Mineral insulation/Copper conductors and sheath/

Bare cable not exposed to touch (see note 2)Metallic sheath temperature: 105 °C/Reference ambient temperature: 30 °C

DESIGN CRITERIA TECHNICALGUIDE

39GENERAL fEATURES 39

Page 29: Tech Guide

Current-carrying capacities in amperes for installation methods E, F and G PVC insulation/Copper conductors

Conductor temperature: 70 °C/Reference ambient temperature: 30 °C

40 DESIGN CRITERIA40

Page 30: Tech Guide

Current-carrying capacities in amperes for installation methods E, F and G PVC insulation/Aluminium conductors

Conductor temperature: 70 °C/Reference ambient temperature: 30 °C

DESIGN CRITERIA TECHNICALGUIDE

41GENERAL fEATURES 41

Page 31: Tech Guide

Current-carrying capacities in amperes for installation methods E, F and G XLPE or EPR insulation/Copper conductors –

Conductor temperature: 90 °C/Reference ambient temperature: 30 °C

42 DESIGN CRITERIA42

Page 32: Tech Guide

Current-carrying capacities in amperes for installation methods E, F and G XLPE or EPR insulation/Aluminium conductors

Conductor temperature: 90 °C/Reference ambient temperature: 30 °C

DESIGN CRITERIA TECHNICALGUIDE

43GENERAL fEATURES 43

Page 33: Tech Guide

Correction factor for ambient air temperatures other than 30 °Cto be applied to the current-carrying capacities for cables in the air

Correction factors for ambient ground temperatures other than 20 °C to be applied to the current-carrying capacities for cables in ducts in the ground

Correction factors for cables in buried ducts for soil thermal resistivities other than 2.5 K • m/W to be applied to the current-carrying

capacities for reference method D

NOTE1 Thecorrectionfactorsgivenhavebeenaveragedovertherangeofconductorsizesandtypesofinstallation.Theoverallaccuracyofcorrectionfactorsiswithin±5%.

NOTE2 Thecorrectionfactorsareapplicabletocablesdrawnintoburiedducts;forcableslaiddirectinthegroundthecorrectionfactorsforthermalresistivitieslessthan2.5K•m/Wwillbehigher.WheremoreprecisevaluesarerequiredtheymaybecalculatedbymethodsgiveninIEC60287.

NOTE3 Thecorrectionfactorsareapplicabletoductsburiedatdepthsofupto0.8m.

44 DESIGN CRITERIA44

Page 34: Tech Guide

Reduction factors for groups of more than one circuit orof more than one multi-core cable to be used with current carrying capacities

NOTE1 Thesefactorsareapplicabletouniformgroupsofcables,equallyloaded.

NOTE2 Wherehorizontalclearancesbetweenadjacentcablesexceedstwicetheiroveralldiameter,noreductionfactorneedbeapplied.

NOTE3 Thesamefactorsareappliedto: –groupsoftwoorthreesingle-corecables; –multi-corecables.

NOTE4 Ifasystemconsistsofbothtwo-andthree-corecables,thetotalnumberofcablesistakenasthenumberofcircuits,andthecorrespondingfactorisappliedtothetablesfortwoloadedconductorsforthetwo-corecables,andtothetablesforthreeloadedconductorsforthethree-corecables.

NOTE5 Ifagroupconsistsofnsingle-corecablesitmayeitherbeconsideredasn/2circuitsoftwoloadedconductorsorn/3circuitsofthreeloadedconductors.

NOTE6 Thevaluesgivenhavebeenaveragedovertherangeofconductorsizesandtypesofinstallationtheoverallaccuracyoftabulatedvaluesiswithin5%.

NOTE7Forsomeinstallationsandforothermethodsnotprovidedforintheabovetable,itmaybeappropriatetousefactorscalculatedforspecificcases.

Reduction factors for more than one circuit, cables laid directly in the ground –Installation method D

Single-core or multi-core cables

DESIGN CRITERIA TECHNICALGUIDE

45GENERAL fEATURES 45

Page 35: Tech Guide

Reduction factors for more than one circuit, cables laid in ducts in the ground –

Installation method D

46 DESIGN CRITERIA46

Page 36: Tech Guide

Reduction factors for group of more than one multi-core cableto be applied to reference ratings for multi-core cables in free air –

Method of installation E

DESIGN CRITERIA TECHNICALGUIDE

47GENERAL fEATURES 47

Page 37: Tech Guide

Reduction factors for groups of more than one circuit of single-core cables (note 2) to be applied to reference rating for one circuit of single-core cables in free air –

Method of installation F

48 DESIGN CRITERIA48

Page 38: Tech Guide

Loads of the Zucchini busbars

Type Size No. of Conductors AL/CU Phase resistance Phase reactance Fault ring Ue (Va.c.) at In (mΩ/m) (mΩ/m) resistance (mΩ) LB 25 2, 4, 6 Cu 6.96 1.14 11.61 400LB 40 2, 4, 6 Cu 3.56 0.79 5.93 400HL 25 2, 4, 6, 8 Cu 6.88 1.40 11.46 400HL 40 2, 4, 6, 8 Cu 3.52 1.58 5.86 400SL 40 4 Cu 2.17 0.29 3.62 400SL 63 4 Cu 1.65 0.64 2.75 400MS 63 4 Al 1.50 0.37 2.50 400MS 100 4 Al 1.00 0.25 1.67 400MS 160 4 Cu 0.57 0.25 0.96 400MR 160 4 Al 0.59 0.26 0.98 1000MR 250 4 Al 0.39 0.20 0.66 1000MR 315 4 Al 0.24 0.19 0.39 1000MR 400 4 Al 0.14 0.13 0.24 1000MR 500 4 Al 0.09 0.11 0.15 1000MR 630 4 Al 0.07 0.10 0.12 1000MR 800 4 Al 0.06 0.10 0.10 1000MR 250 4 Cu 0.28 0.21 0.47 1000MR 315 4 Cu 0.22 0.19 0.36 1000MR 400 4 Cu 0.11 0.13 0.19 1000MR 630 4 Cu 0.07 0.12 0.12 1000MR 800 4 Cu 0.05 0.12 0.08 1000MR 1000 4 Cu 0.04 0.12 0.06 1000SCP 630 4 Al 0.083 0.023 0.125 1000SCP 800 4 Al 0.064 0.017 0.117 1000SCP 1000 4 Al 0.069 0.017 0.117 1000SCP 1250 4 Al 0.057 0.016 0.095 1000SCP 1600 4 Al 0.041 0.014 0.068 1000SCP 2000 4 Al 0.032 0.011 0.053 1000SCP 2500 4 Al 0.024 0.006 0.041 1000SCP 3200 4 Al 0.02 0.007 0.033 1000SCP 4000 4 Al 0.017 0.006 0.028 1000SCP 800 4 Cu 0.044 0.023 0.066 1000SCP 1000 4 Cu 0.037 0.017 0.065 1000SCP 1250 4 Cu 0.039 0.017 0.065 1000SCP 1600 4 Cu 0.028 0.016 0.045 1000SCP 2000 4 Cu 0.024 0.014 0.040 1000SCP 2500 4 Cu 0.018 0.011 0.029 1000SCP 3200 4 Cu 0.014 0.006 0.024 1000SCP 4000 4 Cu 0.012 0.007 0.019 1000SCP 5000 4 Cu 0.009 0.006 0.015 1000HR 1000 4 Al 0.07 0.09 0.11 1000HR 1250-1600 4 Al 0.04 0.07 0.07 1000HR 2000 4 Al 0.03 0.05 0.06 1000HR 2250 4 Al 0.03 0.05 0.05 1000HR 2500 4 Al 0.02 0.03 0.04 1000HR 3200 4 Al 0.02 0.03 0.03 1000HR 4000 4 Al 0.02 0.02 0.03 1000HR 4500 4 Al 0.01 0.02 0.02 1000HR 1000 4 Cu 0.04 0.10 0.06 1000HR 1250 4 Cu 0.04 0.08 0.06 1000HR 1600 4 Cu 0.03 0.07 0.06 1000HR 2000 4 Cu 0.03 0.07 0.04 1000HR 2500 4 Cu 0.02 0.04 0.03 1000HR 3000 4 Cu 0.02 0.03 0.03 1000HR 3200 4 Cu 0.01 0.03 0.02 1000HR 4000 4 Cu 0.01 0.03 0.02 1000HR 5000 4 Cu 0.01 0.02 0.01 1000MTS 63 5 Cu 1.80 1.40 3.60 400TS5 70 5 Cu 1.14 0.06 2.27 600TS5 110 5 Cu 0.94 0.06 1.88 600TS5 150 5 Cu 0.62 0.09 1.24 600TS 250 4 Cu 0.31 0.16 0.61 600

DESIGN CRITERIA TECHNICALGUIDE

49GENERAL fEATURES 49

Page 39: Tech Guide

Selection of conductors depending on voltage drop

Specific resistance and reactance of standardised cables (UNEL 35023-70 table)

Single core cables Multicore cables

Rated R resistance XL reactance R resistance XL reactance sections per metre per metre per metre per metrein mm2 (mΩ) (mΩ) (mΩ) (mΩ)1 22.1 0.176 22.5 0.1251.5 14.8 0.168 15.1 0.1182.5 8.91 0.155 9.08 0.1094 5.57 0.143 5.68 0.1016 3.71 0.135 3.78 0.095510 2.24 0.119 2.27 0.086116 1.41 0.112 1.43 0.081725 0.889 0.106 0.907 0.081335 0.641 0.101 0.654 0.078350 0.473 0.101 0.483 0.077970 0.328 0.0965 0.334 0.075195 0.236 0.0975 0.241 0.0762120 0.188 0.0939 0.191 0.0740150 0.153 0.0928 0.157 0.0745185 0.123 0.0908 0.125 0.0742240 0.0943 0.0902 0.0966 0.0752300 0.0761 0.0895 0.0780 0.0750400 0.0607 0.0876 0.0625 0.0742500 0.0496 0.0867 0.0512 0.0744630 0.0402 0.0865 0.0417 0.0749

Note - Values based on a temperature of 80°C.

Withextremelylongdistributionlines,itisoftennecessarytodefinethesectionoftheconductordependingonthemaximumpermittedvoltagedropbetweenthepointoforiginoftheusersystemandanyoftheuserequipment.TheIEC60364-5standardrecommendsthatthemaximumpermittedvoltagedropdoesnotexceed4%ofthesystemratedvoltage.Duringthestart-upproceduresofmotors

orotherusers,highervoltagedropsarepermitted,providedthattheydonotpreventappropriatesystemoperation.Iflatchingcontactorsarepresent,thedropshouldnotexceed20%.Belowarethemethodsusedfordefining,bothmathematicallyandgraphically,thevoltagedropsforcurrentsequaltotheoperatingcurrentIBestablishedatthedesignstage.

SELECTION Of CABLES DEPENDING ON VOLTAGE DROP

where:

∆Vf =voltagedropinvolts,projectedonthephase voltagevectorIb =linecurrentofuseinamperesϕ =impedanceanglebetweentheIbcurrentand thephasevoltageR =resistancepermetreinΩ/m (seetableontheright)X =reactancepermetreinΩ/m (seetableontheright)L =ductlengthinm

(1)Theformulacanbeusedwithanegligibleerror marginforS≤50mm2.(2)Theformulaappliesto230/400Vlines. Allformulasapplyalsotoonephasecircuits, bydoublingthelengthL.

NOTEForthedefinitionof∆Vfinstrictvectorterms,refertogenericelectro-technicalliterature.

∆Vf = IBL (Rcos ϕ + Xsen ϕ)

∆Vf = IBL Rcos ϕ (1)

∆V% = ∆Vf 2.3

(2)

50 DESIGN CRITERIA50

Page 40: Tech Guide

EXAMPLE Of VOLTAGE DROP CALCULATION

AB sectionFromthetable,forS=50mm2thefollowingisobtained:R=0.473mΩXL=0.101mΩPercosϕ0.8senϕ=0.6∆Vf=80x30(0.473x0.8+0.101x0.6)=1053mV

BC sectionFromthetable,forS=25mm2thefollowingisobtained:R=0.889mΩXLandsenϕ canbeleftout∆Vf=40x50x0.889x0.75=1333mV

AC sectionTotal = 2386mV∆V% ==1.03%2.386

2.3

50 mm2 single core cablesIB 80Acos ϕ = 0.8L = 30m

25 mm2 single core cablesIB 40Acos ϕ = 0.75L = 50m

M

A

B

C

DESIGN CRITERIA TECHNICALGUIDE

51GENERAL fEATURES 51

Page 41: Tech Guide

Toensureappropriateperformanceoftheusers,itisnecessarythattheyoperateattheratedvoltageforwhichtheyhavebeendesigned.Forthisreason,itisimportanttocheckthatthevoltagedropacrossthelinedoesnotreachtoohighavalue.Thevariationlimitsofthevoltagevarydependingonthetypeofsysteminstalledandthenatureofthepoweredload.Itisalsoworthmentioning,thatwithmachinessubjectedtostart-upscausinghighbreakaway

startingcurrents,thevoltagedropontheusermustbemaintainedwithinvaluesthatarecompatiblewiththegoodoperationofthemachineevenduringstart-up.Thetablesbelowshowthepercentagedropvaluesina100metrelineat400Va.c.three-phase.Forthree-phase230Va.c.lines,multiplythevaluesinthetableby1.73.For230Va.c.singlephaselines,multiplyby2.

Percentage voltage drop (%) at 100 metres. in a three-phase distribution line at 400Va.c. on copper cables

In (A) cosϕ = 0.85 cosϕ = 1 cable section (mm2) cable section (mm2) 1.5 2.5 4 6 10 16 25 35 50 70 95 120 150 1.5 2.5 4 6 10 16 25 35 50 70 95 120 1501 0.5 0.4 0.6 0.42 1.1 0.6 0.4 1.3 0.7 0.53 1.5 1 0.6 0.4 1.9 1.1 0.7 0.56 2.6 1.6 1 0.6 0.4 3.1 1.9 1.2 0.8 0.510 5.2 3.2 2 1.4 0.8 0.5 6.1 3.7 2.3 1.5 0.9 0.516 8.4 5 3.2 2.2 1.3 0.8 0.5 10.7 5.9 3.7 2.4 1.4 0.9 0.620 6.3 4 2.6 1.6 1 0.6 7.4 4.6 3.1 1.9 1.2 0.725 7.9 5 3.3 2 1.3 0.8 0.6 9.3 5.8 3.9 2.3 1.4 0.9 0.632 6.3 4.2 2.6 1.6 1.1 0.8 0.5 7.4 5 3 1.9 1.2 0.8 0.640 7.9 5.3 3.2 2.1 1.4 1 0.7 0.5 9.3 6.1 3.7 2.3 1.4 1.1 0.7 0.550 6.7 4.1 2.5 1.6 1.2 0.9 0.6 0.5 7.7 4.6 2.9 1.9 1.4 0.9 0.6 0.563 8.4 5 3.2 2.1 1.5 1.1 0.8 0.6 9.7 5.9 3.6 2.3 1.6 1.2 0.8 0.680 6.4 4.1 2.6 1.9 1.4 1 0.8 0.6 0.5 7.4 4.6 3 2.1 1.4 1.1 0.8 0.6 0.5100 8 5 3.3 2.4 1.7 1.3 1 0.8 0.7 9.3 5.8 3.7 2.6 1.9 1.4 1 0.8 0.7125 4.4 4.1 3.1 2.2 1.6 1.3 1 0.9 7.2 4.6 3.3 2.3 1.6 1.2 1 0.9160 5.3 3.9 2.8 2.1 1.6 1.4 1.1 5.9 4.2 3 2.1 1.5 1.3 1.2250 6 4.3 3.2 2.5 2.1 1.7 6.7 4.6 3.3 2.4 1.9 1.7320 5.6 4.1 3.2 2.6 2.3 5.9 4.2 3.2 2.4 2.3400 6.9 5.1 4 3.3 2.8 7.4 5.3 3.9 3.1 2.8500 6.5 5 4.1 3.5 6.7 4.9 3.9 3.5

Percentage voltage drop (%) at 100 metres, in a three-phase distribution line at 400Va.c. on aluminium cables

In (A) cosϕ = 0.85 cosϕ = 1 cable section (mm2) cable section (mm2) 10 16 25 35 50 70 95 120 150 185 240 300 10 16 25 35 50 70 95 120 150 185 240 300123 0.4 0.56 0.6 0.4 0.7 0.510 1.3 0.8 0.5 1.4 0.9 0.616 2.1 1.3 0.8 0.6 2.3 1.4 1 0.720 2.5 1.6 1.1 0.7 0.5 3 1.9 1.2 0.8 0.625 3.2 2 1.3 0.9 0.6 0.5 3.7 2.3 1.4 1.1 0.7 0.532 4.1 2.6 1.6 1.2 0.9 0.6 0.5 4.8 3 1.9 1.4 1 0.7 0.540 5.1 3.2 2.1 1.5 1.1 0.8 0.6 0.5 5.9 3.7 2.3 1.7 1.2 0.8 0.6 0.550 6.4 4.1 2.6 1.9 1.4 1 0.7 0.6 0.5 7.4 4.6 3 2.1 1.4 1.1 0.8 0.6 0.563 8 5 3.2 2.3 1.7 1.3 0.9 0.8 0.6 9 5.9 3.7 2.7 1.9 1.4 1 0.8 0.7 0.680 6.4 4.1 3 2.2 1.5 1.2 1 0.8 7.4 4.8 3.4 2.3 1.7 1.3 1 0.9 0.8 0.6100 5.2 3.8 2.7 2 1.5 1.3 1 5.9 4.2 3 2.1 1.5 1.3 1.2 1 0.8 0.6125 6.5 4.7 3.3 2.4 1.9 1.5 1.3 7.4 5.3 3.7 2.6 2 1.5 1.4 1.3 1 0.8160 6 4.3 3.2 2.4 2 1.6 6.8 4.8 3.4 2.5 2 1.8 1.6 1.3 1.1250 6.8 5 3.8 3.1 2.5 7.4 5.3 3.9 3.1 2.8 2.5 2 1.6320 6.3 4.8 3.9 3.2 6.8 5 4 3.6 3.2 2.5 2400 5.9 4.9 4.1 6.2 5 4.5 4 3.2 2.7500 6.1 5 7.7 6.1 5.7 5 4 3.3

Selection of cables depending on voltage drop

52 DESIGN CRITERIA52

Page 42: Tech Guide

1° attempt

2° attempt

IB = 40A cos ϕ = 0.8

IB = 40A cos ϕ = 0.8

10 mm2

25 mm2

L = 200m

L = 200m

∆V% ≅ 2.6% (point F)

∆V% ≅ 6% (excessive)(point D)

Initial data

- Permitted voltage drop = 4% max- IB current of use = 40A, cos ϕ = 0.8- Line section = 10 mm2

- Three-phase line length = 200m

Data obtained from the diagram

- IB cos ϕ = 32A (point A)- Section = 10 mm2 (point B)- Length = 200m (point C)- Voltage drop > 6% (point D)- Increase of section to 25 mm2 (point E)- Voltage drop 2.6% approx. (point F)

Example:

line

sect

ion

(mm

2 )

volta

ge d

rop

∆V%

DIAGRAMS fOR THE ASSESSMENT Of THE VOLTAGE DROP

DESIGN CRITERIA TECHNICALGUIDE

53GENERAL fEATURES 53

Page 43: Tech Guide

Three-phase systems

a•√3•IB•L•(rt•cosφm+x•sinφm) ∆v= 1000

Single phase systems

a•2•IB•L•(rt•cosφm+x•sinφm) ∆v= 1000

Thepercentagevoltagedropisobtainedfrom:∆v% = ∆v•100 Vr

whereVristhesystemratedvoltage.Withverylongbusbars,thevoltagedropcanbelimitedbyinstallingapowersupplyatanintermediateposition,ratherthanattheterminalpoint.

LOADS LOADS

INTERMEDIATE POWER SUPPLY POINT OF

THE BUSBAR

“a” current distribution factor

Type of Loads distribution “a” current power supply distribution factor Load concentrated 1From one at the end end only Load evenly distributed 0.5 From both ends Load evenly distributed 0.25 Loads concentrated 0.25Central at the ends Load evenly distributed 0.125

Legend

a = Distribution factor of the current, based on the way the circuit is powered and the distribution of the electric loads along the busbar, as shown in the table that follows IB = Current of use (A)L = Length of the busbar (m)rt = Phase resistance per length unit of the busbar (mΩ/m)x = Phase reactance per length unit of the busbar (mΩ/m)cosφm = Average power factor of the loads

∆v% = Percentage voltage dropa = Current distribution factork = Coefficient listed in the technical data table corresponding to cosφ (V/m/A)

Vn = Power supply voltage of the busbar

cosφmi = Average power factor of the ith load Ii = ith load current (A) Li = Distance of the ith load from the origin of the busbar (m)

Withparticularlylonglines(>100m),thevoltagedropvaluemustbechecked.Insystemswithpowerfactor(cosϕm)ofnolessthan0.8,thevoltagedropcanbecalculatedusingthefollowingformulas:

CALCULATION Of VOLTAGE DROP WITH NON EVENLY DISTRIBUTED LOADS Inthosecaseswhentheloadscannotbeconsideredevenlydistributed,thevoltagedropcanbedeterminedmoreaccuratelyusingtherelationsbelow.Forthedistributionofthethree-phaseloadsinthefigure,thevoltagedropcanbedeterminedusingthefollowingformula,providedthatthebusbarhasaconstantsection(conditionnormallychecked):

∆v=√3[rt(I1L1cosφ1+I2L1cosφ1+I3L3cosφ3)+x(I1L1sinφ1+I2L2sinφ2+I3L3sinφ3)]

ingeneraltermsitbecomes:

∆v= √3(rt•∑Ii•Li•cosφmi+x•∑Ii•Li•sinφmi) 1000

Ifthesystemisathree-phasesystemandthepowerfactorisnotlowerthancosφ=0,7,thevoltagedropcanbecalculatedusingthevoltagedropcoefficientslistedinthetechnicaldatatable.

∆v% = 2•a•k•lB•L•100 Vn•103

L1L2

L3

L L L

l1 l3l2

Selection of busbars depending on voltage drop

54 DESIGN CRITERIA54

Page 44: Tech Guide

Sizing of the neutral and protection conductors

SIZING Of THE NEUTRAL CONDUCTOR Theneutralconductormusthavethesamesectionasthephaseconductors:

• in2wiresinglephaseconductors,irrespectiveoftheconductorssection

• inthree-phasecircuits,whenthesizeofthephaseconductorsislowerorequalto16mm2forcopper,or25mm2foraluminium.

Inthree-phasecircuitswithphaseconductorswithasectionsexceeding16mm2(ifcopper),or25mm2(ifaluminium),theneutralconductorcanhavealowersectionthanthephaseconductors,providedthatboththefollowingconditionsaremet:

• themaximumcurrent,includinganyharmonics,whichisexpectedtorunthroughtheneutralconductorduringstandardoperation,isnothigherthanthepermittedcurrentforthereducedsectionoftheneutralconductor(thecurrentthatreachesthecircuitduringstandardoperationconditionsmustbebasicallybalancedamongthephases);

• thesectionoftheneutralconductorisatleast16mm2forcopperand25mm2foraluminium.

Section of phase conductors (mm2) Minimum section of the protection conductor (mm2)S f ≤ 16 Sp = S16 < S f ≤ 35 16S f > 35 Sp = S/2

TheIEC60364-5standardliststhefollowingrequirementsfortheprotectionoftheneutralconductor:a)whentheneutralconductorsectionisatleastequal

orequivalenttothesectionofthephaseconductors,overcurrentdetectionontheneutralconductorarenotnecessary.

b)whentheneutralconductorsectionislowerthanthesectionofthephaseconductors,overcurrentdetectionontheneutralconductorisrequired,andmustbeappropriateforthesectionoftheneutralconductoritself:thisovercurrentdetectionmustcausethedisconnectionofthephaseconductors,butnotnecessarilyoftheneutralconductor.

c)itishowevernotnecessarytoensureovercurrentdetectionontheneutralconductorifboththefollowingconditionsaremet:

• theneutralconductorisprotectedfromshortcircuitsbytheprotectiondeviceofthephaseconductorsofthecircuit

• themaximumcurrentthatcanrunthroughtheneutralconductorduringstandardoperationisclearlylowerthanitsloadcapacity.

SIZING Of THE PROTECTION CONDUCTOR TheIEC60364-5standardliststwoproceduresforthesizingoftheprotectionconductor(PE):

a)Thesectionoftheprotectionconductor(Sp) mustnotbelowerthanthevalueobtainedbythe followingformula:

Sp= Theformulacanberewritten asfollows:

(I2t)≤K2Sp2 Takingintoaccountthatthesectionsof thecablesincreasebydiscreetvalues

ThePEsectionisdefinedinawaythatensuresthatduringafault,theadmittedtemperatureincaseofshortcircuitisnotexceeded.Theterm(l2t)indicatesthespecificpowerletthroughbytheprotectiondevice;

TheKcoefficienttakesintoaccountthetypeofinsulation,theconductormaterial,theinitialandfinaltemperaturesduringafault.TheIEC60364-5standardliststhevaluestobeusedforKifPEisasinglecorecable,thecoreofamulticorecable,themetalcoveringorthearmouringofacable,anakedconductor:itmayassumedifferentvaluesdependingonthecase,duetothepresenceorabsenceoftheinsulatingmaterial,andalsobecauseadifferentinitialtemperatureoftheconductorispresumed,fromwhichalowerorhigherquantityofspecificpowerthatcanbesupportedbythesameresults.Thesectionoftheprotectionconductorscanbedeterminedreferringtothefollowingtable.Inthiscaseverificationbyapplyingtheaboveformulaisnotnecessary.Ifwhentheparametersofthetableareapplied,anonstandardisedsectionresults,thestandardisedsectionclosertothevalueobtainedmustbeused.

√ I2tK

DESIGN CRITERIA TECHNICALGUIDE

55GENERAL fEATURES 55

Page 45: Tech Guide

Protection from short circuit

where:

• Eisthephasevoltage• ZEistheequivalentsecondaryimpedanceofthetransformermeasuredbetweenphaseandneutral

• ZListheimpedanceofthephaseconductoronly

Features of the short circuit current

Icc =E

ZE+ZL

TheIEC60364-5standardprescribesthatprotectionofthecircuitsofasystemmustbeensuredusingdevicescapableofbreakingtheshortcircuitcurrents,beforetheybecomedangerousduetothethermalmechanicaleffecttheycanhaveontheconductorsandtheconnections.Inordertocorrectlydefinethesizeoftheelectricsystemandtheprotectiondevices,itisnecessarytoknowthevalueofthe

expectedshortcircuitcurrentatthepointwheretheelectricsystemistobeinstalled.Thisvalueenablestoselectsuitableprotectiondevices,basedonthecorrespondingbreakingandclosingpowers,andtochecktheresistancetoelectrodynamicstressofthebusbarsupportsinstalledintheelectricdistributionboards,aswellasofthebusbars.

fEATURES Of THE SHORT CIRCUIT CURRENT Theexpectedshortcircuitcurrentatapointoftheusersystem,isthecurrentthatwouldbepresentinthatpoint,ifanegligibleresistanceconnectionwascompletedbetweenthepoweredconductors.Thesizeofthiscurrentisanestimatedvalue,whichrepresenttheworstpossiblescenario(faultimpedancezero,trippingtimedelaysolongthatthecurrentcanreachthemaximumtheoreticallevels).Inrealterms,theshortcircuitalwaysoccurswithmuchloweractualcurrentvalues.Theintensityoftheexpectedshortcircuitcurrentdependsessentiallyonthefollowingfactors:

• powerofthecabintransformer:thehigherthepower,thehigherthecurrent;

• lengthofthelineupstreamthefault:thelongertheline,thelessthecurrent;

Inthree-phasecircuitswithneutral,threedifferenttypesofshortcircuitscanoccur:

• phase-phase• phase-neutral• three-phasebalanced(themostproblematiccondition)

Theformulaforthecalculationofthesymmetriccomponentis:

56 DESIGN CRITERIA56

Page 46: Tech Guide

L (m)

S (mm2)

P (kVA)

RL = upstream line resistance (mΩ) r = specific line resistance (mΩ/m) (see table on the following page)L = upstream line resistance (m)

XL = upstream line reactance (mΩ) x = specific line reactance (mΩ/m) (see table on the following page)

RE = equivalent secondary resistance of the transformer (mΩ) Pcu = losses from the copper of the transformer (W) In = rated transformer resistance (A) ZE = equivalent secondary impedance of the transformer (mΩ)Vc = linked voltage (V)Vcc% = percentage short circuit voltageP = transformer power (kVA)

XE = equivalent secondary resistance of the transformer (mΩ)

Zcc = total short circuit impedance (mΩ)

lcc = symmetric component of the short circuit current (kA)

Line resistanceRL = r • L

Line reactanceXL = x • L

Transformer resistance

RE = 1000 Pcu

3In2

Transformer impedance Vcc% V2c 100 P

Transformer reactanceXE = ZE2 – RE2

Short circuit impedanceZcc = (RL + RE)2 + (XL + XE)2

Estimated short circuit current

Vc

3 ZccIcc =

ANALYTIC DETERMINATION Of THE SHORT CIRCUIT CURRENTS Tocalculatethevalueoftheestimatedshortcircuitcurrentinanyonepointofthecircuit,thefollowingformulascanbeused,oncetheimpedancevaluescalculatedfromtheoriginofthesystemuptothepointbeingtakenintoconsiderationareknown.Intheformulasbelowthevalueoftheshortcircuitpowerisconsideredasinfiniteandtheshortcircuitimpedanceis0.Thisresultsinthetendencytodetermineshortcircuitcurrentvalueshigherthantheactualones.Howevertheyarestillnormallyacceptable.

ZE =

DESIGN CRITERIA TECHNICALGUIDE

57GENERAL fEATURES 57

Page 47: Tech Guide

Rated Insulation class Vcc% No load losses Losses caused by the load Io% power kVA kV % W W % 100 12 4 440 2000 1.9 17.5 6 430 1900 2 24 6 480 2000 2.1160 12 4 610 2700 1.7 17.5 6 570 2800 1.7 24 6 650 2800 1.8250 12 6 750 3700 1.2 17.5 6 750 3650 1.3 24 6 850 3700 1.5315 12 6 850 4600 1.1 17.5 6 88 4500 1.2 24 6 950 4500 1.4400 12 6 1000 5400 1 17.5 6 1000 5200 1.1 24 6 1150 5400 1.3500 12 6 1200 6700 0.9 17.5 6 1200 6700 1 24 6 1350 6700 1.2630 12 6 1450 7600 0.8 17.5 6 1600 7800 1 24 6 1650 7800 1.1800 12 6 1750 9400 0.8 17.5 6 1780 9300 0.9 24 6 1850 9300 11000 12 6 2000 10000 0.7 17.5 6 2000 10800 0.8 24 6 2200 10800 0.91250 12 6 2300 12700 0.6 17.5 6 2350 12600 0.7 24 6 2600 12800 0.81600 12 6 2800 14000 0.5 17.5 6 2750 15500 0.6 24 6 2950 15500 0.72000 12 6 3300 18000 0.5 17.5 6 3350 18500 0.6 24 6 3800 18600 0.62500 12 6 4300 21000 0.4 17.5 6 4300 21800 0.5 24 6 4800 22000 0.53150 12 7 4600 26000 0.4 17.5 7 4700 26000 0.4 24 7 5100 26000 0.5

The short circuit current of a generic transformer, for which the secondary rated current and the short circuit Vcc% percentage voltage are known, can be calculated very quickly using the following formula:

The short circuit current of x transformers in parallel, can be considered to be the same as the sum of the individual Icc’s.

Icc = In where In = (A = apparent power)Vcc %100

3 Vn

A

When selecting and installing MV/LV transformers, reference should also be made to the DK5600 prescription (June 2006), issued by the electric distribution body, applicable to the connection of equipment to medium voltage lines.

EDM MV/LV TRANSfORMERS fEATURESThefollowingtablereferstoEDMresinnaturalcoolingtransformerswithfrequency50Hz,forprimaryvoltageupto24kV,Dyn11Connection,

protectiondegreeIP00,inaccordancewithIEC60076-1standards.

Protection from short circuit

58 DESIGN CRITERIA58

Page 48: Tech Guide

TABLE AND DIAGRAMS fOR THE ASSESSMENT Of THE SHORT CIRCUIT CURRENT Thetabledirectlysuppliesthevalueoftheshortcircuitcurrent,basedonthelinethatconnectsthecabindistributionboardtothefirstgeneraldistributionboardordepartmentdistributionboard.Thetablehasbeenproducedtakingintoconsiderationoiltransformers,withnormallossesanda6metresinglecorecableline.

Table for the assessment of the short circuit current

KVA Icc type section Icc 0m Icc 7m Icc 10m Icc 15m Icc 20m Icc 30m Icc 50m Icc 80m Icc 120m Icc 180m160 5.7 cable 185 5.5 5.3 5.3 5.2 5.1 4.9 4.7 4.3 3.9 3.4160 5.7 cable 150 5.5 5.3 5.3 5.2 5.1 4.9 4.6 4.2 3.7 3.2160 5.7 cable 120 5.5 5.3 5.2 5.1 5 4.8 4.5 4 3.5 3160 5.7 cable 95 5.5 5.3 5.2 5.1 5 4.7 4.3 3.8 3.3 2.7160 5.7 cable 70 5.5 5.2 5.1 5 4.8 4.6 4.1 3.5 3 2.4160 5.7 cable 50 5.5 5.2 5 4.9 4.7 4.3 3.8 3.1 2.5 1.9160 5.7 cable 35 5.5 5.1 4.9 4.7 4.5 4.1 3.4 2.7 2.1 1.5250 8.9 cable 240 8.5 8.2 8.1 8 7.8 7.5 6.9 6.2 5.5 4.6250 8.9 cable 150 8.5 8.2 8 7.8 7.6 7.3 6.6 5.8 4.9 4250 8.9 cable 120 8.5 8.1 8 7.7 7.5 7.1 6.4 5.5 4.6 3.7250 8.9 cable 95 8.5 8.1 7.9 7.6 7.4 6.9 6.1 5.1 4.2 3.3250 8.9 cable 70 8.5 8 7.8 7.4 7.2 6.6 5.6 4.6 3.6 2.7250 8.9 cable 50 8.5 7.8 7.6 7.2 6.8 6.1 4.9 3.8 2.9 2.1250 8.9 cable 35 8.5 7.7 7.3 6.8 6.3 5.5 4.2 3.1 2.3 1.7400 14.1 busbars 50x6 13.5 12.8 12.5 12.1 11.7 10.9 9.7 8.3 6.9 5.6400 14.1 cables 185x2 13.5 13.2 13 12.8 12.5 12.1 11.3 10.3 9.1 7.7400 14.1 cable 240 13.5 12.9 12.6 12.2 11.8 11.1 10 8.6 7.2 5.8400 14.1 cable 150 13.5 12.7 12.4 11.9 11.5 10.7 9.3 7.7 6.2 4.8400 14.1 cable 120 13.5 12.6 12.2 11.7 11.2 10.3 8.8 7.2 5.7 4.4400 14.1 cable 95 13.5 12.4 12.1 11.5 11 9.9 8.3 6.6 5.1 3.8400 14.1 cable 70 13.5 12.2 11.8 11.1 10.4 9.2 7.4 5.6 4.2 3400 14.1 cable 50 13.5 11.9 11.3 10.4 9.5 8.1 6.2 4.4 3.2 2.3400 14.1 cable 35 13.5 11.5 10.8 9.7 8.7 7.1 5.1 3.6 2.5 1.7630 22 busbars 100x6 21.1 19.9 19.5 18.8 18.1 16.9 15 12.8 10.7 8.6630 22 cables 240x3 21.1 20.5 20.3 20 19.7 19 17.8 16.3 14.6 12.6630 22 cables 185x2 21.1 20.2 19.9 19.3 18.8 17.8 16.1 14 11.9 9.7630 22 cable 240 21.1 19.5 19 18.1 17.3 15.8 13.5 11 8.8 6.8630 22 cable 150 21.1 19.2 18.5 17.4 16.5 14.8 12.1 9.5 7.3 5.4630 22 cable 120 21.1 18.8 18 16.9 15.9 14.1 11.4 8.7 6.6 4.8630 22 cable 95 21.1 18.5 17.7 16.4 15.2 13.2 10.4 7.7 5.7 4.1630 22 cable 70 21.1 18 17 15.4 14.1 11.8 8.9 6.4 4.6 3.2630 22 cable 50 21.1 17.2 15.9 14 12.4 10 7.1 4.9 3.4 2.4630 22 cable 35 21.1 16.4 14.8 12.5 10.8 8.4 5.7 3.8 2.6 1.8800 18.7 busbars 100x10 18.2 18 17.9 17.7 17.6 17.3 16.7 16 15 13.7800 18.7 busbars 100x6 18.2 17.3 17 16.5 16 15.1 13.5 11.7 9.9 8.1800 18.7 cables 240x4 18.2 17.9 17.8 17.6 17.4 17.1 16.4 15.4 14.3 12.9800 18.7 cables 240x3 18.2 17.8 17.7 17.4 17.2 16.7 15.8 14.7 13.3 11.7800 18.7 cables 240x2 18.2 17.6 17.4 17 16.7 16 14.8 13.3 11.7 9.8800 18.7 cable 240 18.2 17.1 16.7 16 15.4 14.3 12.4 10.4 8.4 6.6800 18.7 cable 150 18.2 16.9 16.4 15.6 14.9 13.6 11.4 9.1 7.1 5.3800 18.7 cable 120 18.2 16.7 16.1 15.3 14.5 13.1 10.8 8.4 6.5 4.8800 18.7 cable 95 18.2 16.5 15.9 14.9 14 12.4 9.9 7.6 5.7 4.1800 18.7 cable 70 18.2 16.2 15.4 14.2 13.2 11.3 8.6 6.3 4.6 3.2800 18.7 cable 50 18.2 15.6 14.7 13.2 11.8 9.7 7 4.8 3.4 2.4800 18.7 cable 35 18.2 15 13.8 12 10.5 8.2 5.7 3.8 2.6 1.8630 x 2 42.6 busbars 2x100x10 39.3 38.4 37.9 37.3 36.6 35.4 33.2 30.3 27.2 23.5630 x 2 42.6 busbars 100x10 39.3 38.3 37.8 37.1 36.4 35.1 32.6 29.5 26.1 22.2630 x 2 42.6 cables 240x6 39.3 38.4 38.1 37.4 36.8 35.7 33.6 30.8 27.7 24.1630 x 2 42.6 cables 240x3 39.3 37.5 36.8 35.7 34.6 32.6 29.2 25.2 21.2 17.1630 x 2 42.6 cables 240x2 39.3 36.6 35.6 34 32.5 29.9 25.7 21.2 17.1 13.2630 x 2 42.6 cable 240 39.3 34.2 32.4 29.8 27.6 23.9 18.9 14.3 10.8 9.5630 x 2 42.6 cable 150 39.3 33 30.9 27.8 25.2 21.2 16 11.6 8.5 6630 x 2 42.6 cable 120 39.3 31.8 29.5 26.3 23.7 19.6 14.5 10.3 7.5 5.2630 x 2 42.6 cable 95 39.3 30.9 28.3 24.8 22 17.8 12.7 8.9 6.3 4.4630 x 2 42.6 cable 70 39.3 29 26.1 22.2 19.2 15 10.3 7 4.9 3.4630 x 2 42.6 cable 50 39.3 26.6 23.2 18.9 15.8 11.9 7.8 5.2 3.6 2.4630 x 2 42.6 cable 35 39.3 24.2 20.4 16 13 9.5 6.1 4 2.7 1.8

Pn = 250 kVA S = 35 mm2

L = 20 m Icc1 = 6.2 kA

Icc1

Icc0 L

S

Pn

DESIGN CRITERIA TECHNICALGUIDE

59GENERAL fEATURES 59

Page 49: Tech Guide

Section Length of the line in metres (copper cables)of the phase conductors (mm2)1.5 0.8 1 1.3 1.6 3 6.5 8 9.5 13 16 322.5 1 1.3 1.6 2.1 2.6 5 10 13 16 21 26 504 0.8 1.7 2.1 2.5 3.5 4 8.5 17 21 25 34 42 856 1.3 2.5 3 4 5 6.5 13 25 32 38 50 6 5 13010 0.8 1.1 2.1 4 5.5 6.5 8.5 11 21 42 55 65 85 1 1 0 21016 0.9 1 1.4 1.7 3.5 7 8.5 10 14 17 34 70 85 100 140 1 7 0 34025 1 1.3 1.6 2.1 2.6 5 10 13 16 21 26 50 100 130 160 210 26035 1.5 1.9 2.2 3 3.5 7.5 15 19 22 30 37 75 150 190 220 300 37050 1.1 2.1 2.7 3 4 5.5 11 21 27 32 40 55 110 210 270 32070 1.5 3 3.5 4.5 6 7.5 15 30 37 44 60 75 150 300 37095 1 2 4 5 6 8 10 20 40 50 60 80 100 200 400120 0.9 1.3 2.5 5 6.5 7.5 10 13 25 50 65 75 100 130 250150 1 1.4 2.7 5.5 7 8 11 14 27 55 70 80 110 140 270185 1.1 1.6 3 6.5 8 9.5 13 16 32 65 80 95 130 160 320240 1.4 2 4 8 10 12 16 20 40 80 100 120 160 200 400300 1.7 2.4 5 9.5 12 15 19 24 49 95 120 150 190 2402 x 120 1.8 2.5 5.1 10 13 15 20 25 50 100 130 150 200 2502 x 150 1.9 2.8 5.5 11 14 17 22 28 55 110 140 180 220 2802 x 185 2.3 3.5 6.5 13 16 20 26 33 65 130 160 200 260 3303 x 120 2.7 4 7.5 15 19 23 30 38 75 150 190 230 300 3803 x 150 2.9 4 8 16 21 25 33 41 80 160 210 250 330 4103 x 185 3.5 5 9.5 20 24 29 39 49 95 190 240 290 390Icc0 short Icc1 short circuit currents in kAcircuit currentsin kA 100 94 91 83 71 67 63 56 50 33 20 17 14 11 9 5 2.4 2 1.6 1.2 1 0.590 85 83 76 66 62 58 52 47 32 20 16 14 11 9 4.5 2.4 2 1.6 1.2 1 0.580 76 74 69 61 57 54 49 44 31 19 16 14 11 9 4.5 2.4 2 1.6 1.2 1 0.570 67 65 61 55 52 49 45 41 29 18 16 14 11 9 4.5 2.4 1.9 1.6 1.2 1 0.560 58 57 54 48 46 44 41 38 27 18 15 13 10 8.5 4.5 2.4 1.9 1.6 1.2 1 0.550 48 48 46 42 40 39 36 33 25 17 14 13 10 8.5 4.5 2.4 1.9 1.6 1.2 1 0.540 39 39 37 35 33 32 30 29 22 15 13 12 9.5 8 4.5 2.4 1.9 1.6 1.2 1 0.535 34 34 33 31 30 29 27 26 21 15 13 11 9 8 4.5 2.3 1.9 1.6 1.2 1 0.530 29 29 28 27 26 25 24 23 19 14 12 11 9 7.5 4.5 2.3 1.9 1.6 1.2 1 0.525 25 24 24 23 22 22 21 20 17 13 11 10 8.5 7 4 2.3 1.9 1.6 1.2 1 0.520 20 20 19 19 18 18 17 17 14 11 10 9 7.5 6.5 4 2.2 1.8 1.5 1.2 1 0.515 15 15 15 14 14 14 13 13 12 9.5 8.5 8 7 6 4 2.1 1.8 1.5 1.2 0.9 0.510 10 10 10 9.5 9.5 9.5 9.5 9 8.5 7 6.5 6.5 5.5 5 3.5 2 1.7 1.4 1.1 0.9 0.57 7 7 7 7 7 6.5 6.5 6.5 6 5.5 5 5 4.5 4 2.9 1.8 1.6 1.3 1.1 0.9 0.55 5 5 5 5 5 5 5 5 4.5 4 4 4 3.5 3.5 2.5 1.7 1.4 1.3 1.1 0.8 0.54 4 4 4 4 4 4 4 4 3.5 3.5 3.5 3 3 2.9 2.2 1.5 1.3 1.2 1.1 0.8 0.43 3 3 3 3 3 2.9 2.9 2.9 2.8 2.7 2.6 2.5 2.4 2.3 1.9 1.4 1.2 1.1 0.9 0.8 0.42 2 2 2 2 2 2 2 2 1.9 1.9 1.8 1.8 1.7 1.7 1.4 1.1 1 0.9 0.8 0.7 0.41 1 1 1 1 1 1 1 1 1 1 1 0.9 0.9 0.9 0.8 0.7 0.7 0.6 0.6 0.5 0.3

TABLE fOR THE ASSESSMENT Of THE SHORT CIRCUIT CURRENT ACROSS THE LINEThefollowingtableshowsthedownstreamIcc1shortcircuitcurrent,basedonthecablesection,thelinelengthandtheupstreamIcc0shortcircuitcurrent.Thevaluesshownhavebeencalculatedonthebasisofathree-phase400Vlineand4polecopperoraluminiumcables.

InthosecaseswheretheactualIcc0shortcircuitcurrentorthelinecurrentarenotincludedinthetable,thenexthigherIcc0shortcircuitcurrentmustbeselected,aswellasalengthimmediatelybelowthedesignvalues.Alsofollowing,arethetablesforthecalculationoftheIcc1currentacrossthelineinreference.

Protection from short circuit

60 DESIGN CRITERIA60

Page 50: Tech Guide

Section Length of the line in metres (aluminium cables)of the phase conductors (mm2)2.5 0.8 1 1.3 1.6 3 6.5 8 9.5 13 16 324 1 1.3 1.6 2.1 2.6 5 10 13 16 21 26 506 0.8 1.6 2 2.4 3 4 8 16 20 24 32 40 6010 1.3 2.6 3.5 4 5.5 6.5 13 26 33 40 55 65 13016 0.8 1.1 2.1 4 5.5 6.5 8.5 11 21 42 55 65 85 105 21025 0.8 1 1.3 1.7 3.5 6.5 8.5 10 13 17 33 65 85 100 130 165 33035 0.9 1.2 1.4 1.8 2.3 4.5 9 12 14 18 23 46 90 120 140 180 23050 1.3 1.7 2 2.6 3.5 6.5 13 17 20 26 33 65 130 170 200 260 33070 0.9 1.8 2.3 2.8 3.5 4.5 9 18 23 28 37 46 90 180 230 280 37095 1.3 2.5 3 4 5 6.5 13 25 32 38 50 65 130 250 310 380120 0.8 1.7 3 4 4.5 6.5 8 17 32 40 47 65 80 160 320 400150 0.9 1.7 3.5 4.5 5 7 8.5 17 34 43 50 70 85 170 340185 1 2 4 5 6 8 10 20 40 50 60 80 100 200 400240 0.9 1.3 2.5 5 6.5 7.5 10 13 25 50 65 75 100 130 250300 1 1.5 3 6 7.5 9 12 15 30 60 75 90 120 150 3002 x 120 1.1 1.6 3 6.5 8 9.5 13 16 32 65 80 95 130 160 3202 x 150 1.2 1.7 3.5 7 9 10 14 17 35 70 85 100 140 1702 x 185 1.4 2 4.1 8 10 12 16 20 41 80 100 120 160 2002 x 240 1.8 2.5 5 10 13 15 20 25 50 100 130 150 200 2503 x 120 1.7 2.4 4.5 9.5 12 14 19 24 48 95 120 140 190 2403 x 150 1.8 2.6 5 10 13 15 21 26 50 100 130 150 210 2603 x 185 2.1 3 6 12 15 18 24 30 60 120 150 180 240 3003 x 240 2.7 4 7.5 15 19 23 30 38 75 150 190 230 300 380Icc0 short Icc1 short circuit currents in kAcircuit currentsin kA 100 94 91 83 71 67 63 56 50 33 20 17 14 11 9 5 2.4 2 1.6 1.2 1 0.590 85 83 76 66 62 58 52 47 32 20 16 14 11 9 4.5 2.4 2 1.6 1.2 1 0.580 76 74 69 61 57 54 49 44 31 19 16 14 11 9 4.5 2.4 2 1.6 1.2 1 0.570 67 65 61 55 52 49 45 41 29 18 16 14 11 9 4.5 2.4 1.9 1.6 1.2 1 0.560 58 57 54 48 46 44 41 38 27 18 15 13 10 8.5 4.5 2.4 1.9 1.6 1.2 1 0.550 48 48 46 42 40 39 36 33 25 17 14 13 10 8.5 4.5 2.4 1.9 1.6 1.2 1 0.540 39 39 37 35 33 32 30 29 22 15 13 12 9.5 8 4.5 2.4 1.9 1.6 1.2 1 0.535 34 34 33 31 30 29 27 26 21 15 13 11 9 8 4.5 2.3 1.9 1.6 1.2 1 0.530 29 29 28 27 26 25 24 23 19 14 12 11 9 7.5 4.5 2.3 1.9 1.6 1.2 1 0.525 25 24 24 23 22 22 21 20 17 13 11 10 8.5 7 4 2.3 1.9 1.6 1.2 1 0.520 20 20 19 19 18 18 17 17 14 11 10 9 7.5 6.5 4 2.2 1.8 1.5 1.2 1 0.515 15 15 15 14 14 14 13 13 12 9.5 8.5 8 7 6 4 2.1 1.8 1.5 1.2 0.9 0.510 10 10 10 9.5 9.5 9.5 9.5 9 8.5 7 6.5 6.5 5.5 5 3.5 2 1.7 1.4 1.1 0.9 0.57 7 7 7 7 7 6.5 6.5 6.5 6 5.5 5 5 4.5 4 2.9 1.8 1.6 1.3 1.1 0.9 0.55 5 5 5 5 5 5 5 5 4.5 4 4 4 3.5 3.5 2.5 1.7 1.4 1.3 1.1 0.8 0.54 4 4 4 4 4 4 4 4 3.5 3.5 3.5 3 3 2.9 2.2 1.5 1.3 1.2 1.1 0.8 0.43 3 3 3 3 3 2.9 2.9 2.9 2.8 2.7 2.6 2.5 2.4 2.3 1.9 1.4 1.2 1.1 0.9 0.8 0.42 2 2 2 2 2 2 2 2 1.9 1.9 1.8 1.8 1.7 1.7 1.4 1.1 1 0.9 0.8 0.7 0.41 1 1 1 1 1 1 1 1 1 1 1 0.9 0.9 0.9 0.8 0.7 0.7 0.6 0.6 0.5 0.3

DESIGN CRITERIA TECHNICALGUIDE

61GENERAL fEATURES 61

Page 51: Tech Guide

Three-phase lines

Section (mm2) Three-phase line length (m)4 1 1.3 1.8 2.4 3.2 4.4 6 8.4 11 15 206 1.5 2 2.7 3.6 4.8 6.6 9 12.6 16.5 22.5 3010 2.5 3.3 4.5 6 8 11 15 21 28 37.5 5016 4 5.2 7.1 9.5 12.5 17.5 24 33.5 44 60 8025 6.3 8.1 11.3 15 20 27.5 37.5 52.5 70 94 125

Icc0 (kA) Icc1 (kA)3 3 3 2.5 2.5 2.5 2.5 2 2 1.5 1.5 1.53.5 3.5 3 3 3 3 2.5 2.5 2 2 1.5 1.54 3.5 3.5 3.5 3.5 3 3 2.5 2.5 2 1.5 1.54.5 4 4 4 3.5 3.5 3 3 2.5 2 2 1.55 4.5 4.5 4.5 4 4 3.5 3 2.5 2.5 2 1.56 5.5 5 5 4.5 4.5 4 3.5 3 2.5 2 1.57 6.5 6 6 5.5 5 4.5 4 3.5 2.5 2 1.58 7 7 6.5 6 5.5 5 4 3.5 3 2.5 210 9 8.5 8 7 6.5 5.5 4.5 3.5 3 2.5 212 10.5 10 9.5 8.5 7.5 6.5 5 4 3.5 2.5 214 12 11.5 10.5 9.5 8 7 5.5 4 3.5 2.5 217 14 13.5 12 10.5 9 7 5.5 4.5 3.5 2.5 220 16 15 13 11 9.5 7.5 6 4.5 3.5 2.5 222 17.5 16 14 12 10 8 6 4.5 3.5 2.5 225 19 17.5 15 12.5 10.5 8 6 4.5 3.5 2.5 2

Single phase lines

Section (mm2) Length of the single phase (m)2.5 0.7 0.9 1.3 1.8 2.5 3.5 4.5 6.5 9 12.5 174 1.1 1.5 2 3 4 5.5 7.5 10.5 14.5 20 276 1.6 2.2 3 4.3 6 8 11.5 15.5 21.5 30 4110 2.6 3.7 5.2 7 10 13.5 19 26 36 50 68

Icc0 (kA) Icc1 (kA)2 2 2 1.5 1.5 1.5 1.5 1 1 1 0.5 0.52.5 2 2 2 2 2 1.5 1.5 1 1 0.5 0.53 2.5 2.5 2.5 2 2 1.5 1.5 1 1 1 0.53.5 3 3 2.5 2.5 2 2 1.5 1.5 1 1 0.54.5 3.5 3.5 3 3 2.5 2 2 1.5 1 1 0.55 4 4 3.5 3 2.5 2.5 2 1.5 1 1 0.56 5 4.5 4 3.5 3 2.5 2 1.5 1.5 1 0.5Note: Multicore cables - PVC insulation

TABLE fOR THE ASSESSMENT Of Icc1 ACROSS THE LINE, BASED ON THE Icc0 SUPPLIED

Protection from short circuit

62 DESIGN CRITERIA62

Page 52: Tech Guide

GENERAL PROTECTION CONDITIONS Theconditionsrequiredforshortcircuitprotectionaresubstantiallythefollowing:

• thedevicemustbeinstalledatthebeginningoftheprotectedduct,witha3mtolerancefromthepointoforigin(ifthereisnoriskoffireandthestandardprecautionsforreducingtheriskofshortcircuittotheminimumareimplemented);

• theratedcurrentofthedevicemustnotbelowerthantheoperatingcurrent;

Section mm2 PVC G2 EPR - XLPE Cu (K=115) Al (K=74) Cu (K=135) Al (K=87) Cu (K=143) Al (K=87) 1.5 29.7 41 17 46 17 2.5 82.6 113 47.3 128 47.3 4 211.6 291 121 328 121 6 476.1 656 272 737 275 10 1322 541 1822 756 2045 756 16 3385 1390 4665 1930 5235 1930 25 8265 3380 11390 4730 12781 4730 35 16200 6640 22325 9270 25050 9270 50 33062 13500 45562 18900 51126 18900 70 64802 26800 89302 100200 95 119335 49400 164480 184553 120 190440 78850 262440 294466 150 297562 410062 460102 185 452625 625750 699867 240 761760 1049760 1177863

Maximum permitted values in 103 A2 s of the Joule integral

• theprotectiondevicemusthaveabreakingcapacitynotlowerthantheestimatedshortcircuitcurrentatthepointwherethedeviceitselfisinstalled;

• thedevicemusttripifashortcircuitoccursatanypointalongtheprotectedline,withinthetimenecessarytopreventtheinsulatingmaterialstoreachexcessivetemperatures.

PROTECTION Of CABLES fROM SHORT CIRCUIT TheIEC60364-5standardprescribesthatallcurrentscausedbyashortcircuitinanypointofthelinemustbebrokenbeforethetemperatureoftheinvolvedconductorsreachesthemaximumlimitthatcanbesupportedbytheinsulatingmaterialitself.Thissafetyrequirementismetwhenthespecificfeed-throughpower(Jouleintegral)letthroughbythecircuitbreakerduringtheshortcircuit,doesnotexceedthemaximumpowervaluethatcanbesupportedbythecable.Inpractice,thefollowingrelationmustbesatisfied:

I2t ≤ K2S2

I2tisthespecificfeed-throughpower,expressedinA2s,forthedurationoftheshortcircuit.Forshortcircuitslastingovercertainperiods,theI2tvaluecanbeobtainedbyassumingthatIisther.m.s.valueoftheshortcircuitcurrent,andttheduration,inseconds,oftheshortcircuititself.Forshortdurations(<0.1s),whenthecurrentasymmetryisimportant,andforprotectiondeviceslimitingthespecificfeed-throughpower,theI2tvaluecanbeobtainedfromthecurvesofthecircuitbreakers.Kisaconstantthatdependsonthetypeofinsulation.Sisthecablesection.Asympleprocedureforassessingifthecableisprotected,istocheckthatthevalueofthespecificfeed-throughpowerletthroughbythecircuitbreakerislowerthantheK2S2valueslistedinthefollowingtable.

DESIGN CRITERIA TECHNICALGUIDE

63GENERAL fEATURES 63

Page 53: Tech Guide

Case A

Correction coefficients

Cable section (mm2) 125 150 185 240 300Ks 0.9 0.85 0.8 0.75 0.72No.of cables in parallel 1 2 3 4 5 Kp 1 2 2.65 3 3.2

I2t circuit breaker diagramI2t cable diagram

Case B

GRAPHIC CHECK Of THE JOULE INTEGRALThegraphiccheckisperformedbytracingandcomparingthepowercurvesofthecircuitbreakersandthoseofthecable,implementingthefollowingcriteria.

A - Conductor protected from overload (IB ≤ In ≤ Iz)Overloadprotectionofthecableisguaranteed.IfthecircuitbreakerhasatypeB-Cmagnetictrippingcurve(inaccordancewithIEC60898),orcomplieswiththeIEC60947-2standard,withinstantaneousmagneticthresholdaround10In,onlythemaximumshortcircuitcurrent(Iccmax),calculatedattheterminalsofthecircuitbreakers,mustbeconsidered.AppropriatecableprotectionisonlyguaranteediftheintersectionpointA,betweenthecircuitbreakerpowercurveandtheK2S2lineofthecableisontherightoftheverticalcorrespondingtothecalculatedIccmaxvalue.

B - Conductor non protected from overload (In > Iz)ProtectionofthecableisnotguaranteedbecausethecircuitbreakerhasanInratedcurrenthigherthantheloadoftheIzcable.Withthesespecificcables,itwillbenecessarytoidentifythepointsafterwhichthespecificpowerletthroughbythecircuitbreakerishigherthanthepowerpermittedforthecable.Forthisreason,itisthereforenecessarytotakeintoaccountboththemaximumshortcircuitcurrent(Icc

max)andtheminimum

shortcircuitcurrent(Iccmin

).CableprotectionisguaranteediftheintersectionpointB,betweenthecircuitbreakerpowercurveandtheK2S2lineofthecable,isontheleftoftheverticalcorrespondingtotheIccminvalue.TheIcc

min

valuecanbecalculatedusingtheformulasthatfollow.Theyarevalidforcableswithsectionsupto95mm2Forcablesofbiggersections,orcablesinstalledinparallel,theobtainedvaluemustbemultipliedbythecoefficientslistedonthetableitself.

Iccmin = 0.8US (neutralnondistributed)

1.5ρ2L

Iccmin = 0.8U0S (neutraldistributed) 1.5ρ(1+m)L

where:U isthelinkedvoltage U0 isthephasevoltage S istheconductorsection ρ istheresistivityat20°Coftheconductors m istheratiobetweentheneutralandthephase conductorresistance L istheductlength

Protection from short circuit

64 DESIGN CRITERIA64

Page 54: Tech Guide

PROTECTION fROM SHORT CIRCUIT Of BUSBARSBusbarsmustbeprotectedfromthermalandelectrodynamiceffectsduetohightransientcurrentsincaseofshortcircuit.

Protection from thermal effectsToensureprotectionfromthermaleffects,itisnecessarytocheckthatthespecificfeed-throughpowerletthroughbythebusbarcircuitbreakerisnothigherthanthespecificfeed-throughpowerthatcanbesupportedbythebusbaritself.Thefollowingconditionmustbemet:

I2t CB ≤ I2t BTS

Where:

I2tCBisthespecificfeed-throughpowerofthecircuitbreakerinrelationtothemaximumIcc.I2tBTSisthevalueofthespecificpowerthatcanbesupportedbythebusbar,assuppliedbythemanufacturer.

Protection against elettrodynamic effectsThehighcurrentscirculatinginsideabusbarwhenashortcircuitoccurs,cangenerateelettrodynamicstressesofsuchentitytocauseirreparabledeformationstothebusbaritself.Atthedesignstage,itwillbenecessarytocheckthatthevalueofthepeakcurrentletthroughbythecircuitbreakerinstalledfortheprotectionofthebusbar,islowerorequaltothevalueofthepeakcurrentwhichcanbesupportedbythebusbar:

Ikp CB ≤ Ikp BTSWhere:

IkpCBisthepeakvalueoftheprotectioncircuitbreakersinrelationtothemaximumIcc.IkpBTSisthemaximumpeakcurrentvaluethatcanbesupportedbythebusbar(seetablesonthefollowingpages).

Critical currentsIfthethermalmagneticcircuitbreakerdoesnotprotecttheductformoverload,criticalovercurrentscanresult,belowthemagnetictrippingthresholdofthecircuitbreaker,thatmaydamagethecable.Forlengthsoftimeofapproximatelyonesecond,suchsituationscannotbecheckedusingthefollowinginequality:

I2t > K2S2

“Criticalcurrents”areallthosecurrentvaluesfallingwithintheintervalB-B1showninthefigure.Thesearetheintersectionpointsbetweenthetwocurvescompared.ThecableisappropriatelyprotectedonlyiftheIccminshortcircuitcurrentishigherthanthemax.correctcurrent,whichis,ifitfallsattherightofpointB.

I2t circuit breaker diagramI2t cable diagram

Critical currents

DESIGN CRITERIA TECHNICALGUIDE

65GENERAL fEATURES 65

Page 55: Tech Guide

Specific feed-through power and peak currents of Zucchini busbars

Type Size Number of AL/CU phase I2t neutral I2t earth I2t Phase peak Neutral peak conductors [(kA)2s] [(kA)2s] [(kA)2s] current (kA) current (kA)LB 25 2, 4, 6 Cu 0.48 0.48 0.48 10 10LB 40 2, 4, 6 Cu 0.73 0.73 0.73 10 10HL 25 2, 4, 6, 8 Cu 0.64 0.64 0.64 10 10HL 40 2, 4, 6, 8 Cu 1 1 1 10 10SL 40 4 Cu 7.29 7.29 7.29 10 10SL 63 4 Cu 7.29 7.29 7.29 10 10MS 63 4 Al 5.29 5.29 5.29 10 10MS 100 4 Al 20.25 20.25 20.25 10 10MS 160 4 Cu 30.25 30.25 30.25 10 10MR 160 4 Al 112.5 67.5 67.5 30 18MR 250 4 Al 312.5 187.5 187.5 52.5 31.5MR 315 4 Al 625 375 375 52.5 31.5MR 400 4 Al 900 540 540 63 37.8MR 500 4 Al 900 540 540 63 37.8MR 630 4 Al 1296 777.6 777.6 75.6 45.4MR 800 4 Al 1296 777.6 777.6 75.6 45.4MR 250 4 Cu 312.5 187.5 187.5 52.5 31.5MR 315 4 Cu 312.5 187.5 187.5 52.5 31.5MR 400 4 Cu 900 540 540 63 37.8MR 630 4 Cu 1296 777.6 777.6 75.6 45.4MR 800 4 Cu 1296 777.6 777.6 75.6 45.4MR 1000 4 Cu 1296 777.6 777.6 75.6 45.4SCP 630 4 Al 1296 1296 778 76 47SCP 800 4 Al 1764 1764 1058 88 55SCP 1000 4 Al 2500 2500 1500 110 66SCP 1250 4 Al 5625 5625 3375 165 99SCP 1600 4 Al 6400 6400 3840 176 106SCP 2000 4 Al 6400 6400 3840 176 106SCP 2500 4 Al 22500 22500 13500 330 198SCP 3200 4 Al 25600 25600 15360 352 211SCP 4000 4 Al 25600 25600 15360 352 211SCP 800 4 Cu 2025 2025 1215 95 56SCP 1000 4 Cu 2500 2500 1500 110 66SCP 1250 4 Cu 3600 3600 2160 132 80SCP 1600 4 Cu 7225 7225 4335 187 112SCP 2000 4 Cu 7744 7744 4646 194 116SCP 2500 4 Cu 7744 7744 4646 194 116SCP 3200 4 Cu 28900 28900 17340 374 224SCP 4000 4 Cu 30976 30976 18586 387 232SCP 5000 4 Cu 30976 30976 18586 387 232HR 1000 4 Al 1600 1600 960 84 50.4HR 1250-1600 4 Al 2500 2500 1500 105 63HR 2000 4 Al 3600 3600 2160 132 79.2HR 2250 4 Al 4900 4900 2940 154 92.4HR 2500 4 Al 8100 8100 4860 198 118.8HR 3200 4 Al 8100 8100 4860 198 118.8HR 4000 4 Al 8100 8100 4860 198 118.8HR 4500 4 Al 10000 10000 6000 220 132HR 1000 4 Cu 1600 1600 960 84 50.4HR 1250 4 Cu 2500 2500 1500 105 63HR 1600 4 Cu 2500 2500 1500 105 63HR 2000 4 Cu 3600 3600 2160 132 79.2HR 2500 4 Cu 4900 4900 2940 154 92.4HR 3000 4 Cu 8100 8100 4860 198 118.8HR 3200 4 Cu 8100 8100 4860 198 118.8HR 4000 4 Cu 8100 8100 4860 198 118.8HR 5000 4 Cu 10000 10000 6000 220 132MTS 63 5 Cu 7.5 7.5 7.5 7.5 7.5TS5 70 5 Cu 81 81 81 15.3 15.3TS5 110 5 Cu 81 81 81 15.3 15.3TS5 150 5 Cu 81 81 81 15.3 15.3TS 250 4 Cu 121 121 121 18.7 18.7

66 DESIGN CRITERIA66

Page 56: Tech Guide

Limitation curves

LIMITATION CURVES Theshortcircuitcurrentestimatedintheoreticalconditions,byreplacingeachpoleofthecircuitbreakerwithaconductorwithnegligibleimpedance,wouldhavethetrendshowninthefigure.Ontheotherhand,eachcircuitbreakerhasitsownpowerlimitationcapacitywhichcausestheactualcurrenttrendtobedifferent.Thiscapabilityisindicatedbyacurvecalled“limitationcurve”,which,forthedifferentvaluesofexpectedshortcircuitcurrent(expressedasefficientvalue),indicatesthecorrespondingcrestvalueIp(kA)ofthecurrentlimitedbythecircuitbreaker.Installingcircuitbreakerswithhighlimitationcapacityisundoubtedlyanadvantageintermsofequipmentprotection.Thethermaleffectsarebasicallyreduced,withaconsequentialreductionofcableoverheating,aswellasmechanicalandelectromagneticimpacts.Installinglimitingcircuitbreakers,alsomeansimprovingselectivityandback-upduringcoordinationamongseveraldevices.Intheabsenceofbreaking,thecrest(orpeak)valuedependsontheshortcircuitcurrent,thepowerfactorandtheconnectionangleoftheshortcircuititself.InaccordancewiththeIEC60947-2standard,thelimitationcurvesshowtheIp/Iccvaluestakingintoaccountthecosϕccpowerfactor.

estimated trend

real trend

LIMITATION CURVES IN ACCORDANCE WITH IEC 60898TheIEC60898standarddefinesthreelimitationclasses,bywhichcircuitbreakerscanbesubdivided,andwhichrepresentthespecificfeed-throughpowerlimitationcapacityofeachcircuitbreaker.TheIEC60947-2standarddoesnotdefineanylimitationcurvesforcircuitbreakersforindustrialapplications.Nopowervaluesaredefinedforstandardcurrentshigherthantheonesshownonthetable.

Permitted values of I2t let-through for circuit breakers with rated current up to 16A included

Power classes 1 2 3 Icm (A) I2t max. (A2s) I2t max. (A2s) I2t max. (A2s) B-C type B type C type B type C type 3000 31000 37000 15000 180004500 60000 75000 25000 30000 6000 100000 120000 35000 42000 10000 240000 290000 70000 84000

Permitted values of I2t let-through for circuit breakers with rated current > 16A and up to 32A included

Power classes 1 2 3 Icm (A) I2t max. (A2s) I2t max. (A2s) I2t max. (A2s) B-C type B type C type B type C type 3000 40000 50000 18000 220004500 80000 100000 32000 39000 6000 130000 160000 45000 55000 10000 310000 370000 90000 110000

No limitsare specified

No limitsare specified

DESIGN CRITERIA TECHNICALGUIDE

67GENERAL fEATURES 67

Page 57: Tech Guide

t1

t0

t2

IP

IPL

= CIPIPL

Limitation of the peak current

= KVaV

t0t2

Va

V

Relation between Va peak voltage and maximum value of the power line voltage V

The C limitation current in relation to the pre-arching time and the arch voltage

LIMITATION COEffICIENT fOR AUTOMATIC THERMAL MAGNETIC CIRCUIT BREAKERS Afterthepre-archingtime,allautomaticshortcircuitbreakingdevices(automaticcircuitbreakersandfuses),introduceanarchresistance,whichalreadyfromthefirsthalf-wavepreventstheIPpeakvaluefrombeingreached.ThelimitationcoefficientCofthedeviceistheratiobetweentheactualpeakcurrentIPLandtheestimatedpeakcurrentIP.

ThelimitationcoefficientCisdirectlyproportionaltothepre-archingtimeandinverselyproportionaltothearchvoltage.

Fromthediagramquantifyingthisphenomenon,itispossibletodeductthatalsostandardcircuitbreakerswithlongpre-archingtimes(3ms)andlowarchingvoltages(25%ofthelinemaxV)havelimitationcoefficientaround0.8(whichis,theylimitapproximately20%oftheestimatedpeakcurrent).Latestgenerationlimitingcircuitbreakerscanhavepre-archingtimesoflessthan1msandhigharchvoltages,givinglimitationcoefficientslowerthan0.2.Thismeansthatanestimatedpeakcurrentof10kA(correspondingtoanIccof6kA)islimitedatC=2kAonly(correspondingtoanIccof1.5kA).

C = IPIPL

Limitation curves

68 DESIGN CRITERIA68

Page 58: Tech Guide

Protected sections based on short intentional time delays with selective circuit breakers

MEGATIKERMccb’sandMEGABREAKAcb’shaveavariabletimedelays,from0to300ms(MEGATIKER),andfrom0to1s(MEGABREAK).Thespecificfeed-throughpowercanbecalculatedusingthefollowingrelation:

whereIccistheestimatedshortcircuitcurrent,andtthetotalcut-offtime.

Type of line Estimated short circuit current in kA 10 15 20 25 30 35 40 45 50 60 70PVC insulated cable 70 95 120 150 185 185 240 240 300 2x185 2x185G2 rubber insulated cable 50 70 95 120 150 185 185 240 240 2x150 2x150G5 rubber insulated cable 50 70 95 120 150 150 185 240 240 2x150 2x150copper busbars 38 57 76 95 114 133 152 171 190 228 266

Type of line Estimated short circuit current in kA 10 15 20 25 30 35 40 45 50 60 70PVC insulated cable 50 70 95 95 120 150 150 185 185 240 300G2 rubber insulated cable 35 50 70 95 120 120 150 150 185 185 240G5 rubber insulated cable 35 50 70 95 95 120 120 150 150 185 240copper busbars 26 39 52 64 77 90 103 115 128 154 178

Type of line Estimated short circuit current in kA 10 15 20 25 30 35 40 45 50 60 70PVC insulated cable 25 35 50 70 70 95 95 120 120 150 185G2 rubber insulated cable 25 35 50 50 70 70 95 95 120 120 150G5 rubber insulated cable 25 35 50 50 70 70 95 95 95 120 150copper busbars 16 24 32 40 48 56 65 72 81 97 113

Minimum sections protected for zero time delay (mm2)

Minimum sections protected for a 100 ms time delay (mm2)

Minimum sections protected for a 300 ms time delay (mm2)

I (t)[ ]2 dt = Icc2t0

t∫

ThefollowingtablesshowtheminimumprotectedsectionsforcoppercablesinsulatedwithPVC(K=115),G2rubber(K=135),G5rubber(K=143)andfornakedcopperbusbars(K=159).“Asfarasthebusbarsareconcerned,theKvalueistheonethatcorrespondstoafinaltemperatureof200°C,validwhennotemperaturerelatedrisksaretobeexpected.”

DESIGN CRITERIA TECHNICALGUIDE

69GENERAL fEATURES 69

Page 59: Tech Guide

Losses in busbars due to the Joule effect

LossesduetotheJouleeffectarecausedbythebusbarelectricresistance.Thepowerlostistransformedinheat,andcontributestoheatingthebusbarandtheenvironment.Thecalculationofthepowerlostisausefulparameter,forcorrectsizingofthebuildingairconditioningsystem.Three-phaseregimelossesare:

Pj = 3•rt•I2B•L1000

one-phase:

Pj = 2•rt•I2B•L1000

where:

IB= Operatingcurrent(A)rt= Phaseresistanceperlengthunitofthebusbar, measuredatstandardthermalconditions(mΩ/m)L= Lengthofthebusbar(m)

Foranaccuratecalculation,thelossesmustbeassessedsectionbysection,takingintoaccountthecurrentspassingthroughthesections;forexample,fortheloadsdistributionshownintheFigurewehave:

length current passing through losses1st section L1 I1+I2+I3 P1=3rtL1(I1+I2+I3)2

2nd section L2-L1 I2+I3 P2=3rt(L2-L1)(I2+I3)2

3rd section L3-L2 I3 P3=3rt(L3-L2)(I3)2

TotallossesinthebusbarPtot=P1+P2+P3

L1L2

L3

L L L

l1 l3l2

I1+I2+I3 I2+I3 I3

Connections among SCP Zucchini busbars

70 DESIGN CRITERIA70

Page 60: Tech Guide

Selection of circuit breakers with several transformers in parallel

SELECTION Of CIRCUIT BREAKERS fOR CIRCUITS WITH 2 OR 3 TRANSfORMERS IN PARALLELWhenconnectingseveraltransformersinparallel,itisnecessarythatalltransformersbeingconnectedhavethesameVdcandthesamenoloadconversionratio.Theratiobetweenthepowersofthetransformersmustnotexceed2.BcircuitbreakerscanhaveanIculowerthantheCIcc,providedtheyareassociatedtostandardcircuitbreakers,withwhichtheywillworkinback-up.However,whenassociatedtoselectivecircuitbreakers,theymusthaveanIcu>thanIcc.

Transformer power (kVA) 200 260 315 400 500 630 800Icc max 1) (A) 14280 17800 22400 28300 35300 44200 38600In transformers 1) (A) 290 360 456 580 720 910 1155 A1 and A2 type circuit breakers MA400 MA400 MA630 MA630ES MA630 MA630ES MA800 MA800ES MA1250ES MA1250ESIcu of A1 and A2 (kA) 35 35 50 50 50 50 50 50 50 50B circuit breaker MA125 MA125 ME125B ME160H ME125B ME160N ME125B MA160 MH160 MH160 (minimum valid size) 2) ME125B MA250 MH250 MH250

Transformer power (kVA) 200 260 315 400 500 630 800Icc max 1) (A) 21420 26700 33600 42450 52950 66300 74400In transformers 1) (A) 290 360 456 580 720 910 1155A1-A2-A3 type circuit breakers MA400 MA400 MA630 MA630ES MA630 MA630ES MH800 ML12 ML12Icu of A1-A2-A3 (kA) 35 35 50 50 50 50 70 70 70B circuit breaker ME125B ME125B ME160N MA160 ME160N MH160 ME160H ML250 ML400 (minimum valid size) 2) MA250 MH250

Diagram for the coupling of the circuit breakers with 3 transformersDiagram for the coupling of the circuit breakers with 2 transformers

id

A1 A2

B B B

C*

A1 A3

B B B

C*

A2

id Coupling of circuit breakers with 3 transformers

Coupling of the circuit breakers with 2 transformers

id

A1 A2

B B B

C*

A1 A3

B B B

C*

A2

id

1) Values relating to 400V three-phase systems.2) All circuit breakers with higher Icu are obviously suitable.

Example with 2 transformers

Power of transformers = 400 kVAIcc = 28300AMA630 e ME125B = backup coordination MA630ES e ME160N = selective coordination.

DESIGN CRITERIA TECHNICALGUIDE

71GENERAL fEATURES 71

Page 61: Tech Guide

SECTION CONTENTS

Thefollowingtableshowsthestartingcircuitbreakersolutionsrecommendedfortheprotectionofsystemswithseveraltransformersinparallel.Theshortcircuitcurrentvalueslistedinthetablehavebeencalculatedtakingintoaccounttheinfinitepowerupstreamthetransformers,whilstnotconsideringboththecontributionsfromthedevicesinstalleddownstreamthetransformers,

Pa In Vcc Icc0 Transformer secondary Icc1 Starting circuit breakers (kVA) (A) % (kA) circuit breaker (kA) 125 160 250 400 630 800 1250

1 transformer 50 72 4 1.8 MA125 - ME125B 1.8 MA125100 144 4 3.6 MA160 - ME160B 3.6 MA125 ME160B160 231 4 5.8 MA250 5.8 MA125 ME160B MA250250 361 4 9.1 MA400 - MA400E 9.1 MA125 ME160B MA250 MA400E315 455 4 11.4 MA630E - MA630 11.4 MA125 ME160B MA250 MA400E MA630E400 577 4 14.4 MA630ES - MA630 14.4 MA125 ME160B MA250 MA400E MA630E500 722 4 18 MA800ES - MA800 18 ME125B ME160B MA250 MA400E MA630E MA800630 909 4 22.7 MA1250ES - MA1250 22.7 ME125B ME160B MA250 MA400E MA630E MA800 MA1250800 1154 6 19.3 MA1250ES - MA1250 19.3 ME125B ME160B MA250 MA400E MA630E MA800 MA12501250 1804 6 30 MH20 30 ME125N ME160N MA250 MA400E MA630E MA800 MA12501600 2310 6 38 MH25 38 ME160H MH250 MH400E MH630E MH800 MH12502000 2887 6 48 MH32 48 MH250 MH400E MH630E MH800 MH12502500 3608 6 60.1 MH40 60.1 MH250 MH400E MH630E MH800 MH1250

2 transformers50 72 4 1.8 MA125 - ME125B 3.6 MA125100 144 4 3.6 MA160 - ME160B 7.2 MA125 ME160B160 231 4 5.8 MA250 11.6 MA125 ME160B MA250250 361 4 9.1 MA400 - MA400E 18.2 MA125 ME160B MA250 MA400E315 455 4 11.4 MA630E - MA630 22.8 MA125 ME160B MA250 MA400E MA630E400 577 4 14.4 MA630ES - MA630 28.8 MA125 ME160B MA250 MA400E MA630E500 722 4 18 MA800ES - MA800 36 ME125N ME160N MA250 MA400E MA630E MA800630 909 4 22.7 MA1250ES - MA1250 45.4 ME160H MH250 MH400E MH630E MA800 MA1250800 1154 6 19.3 MA1250ES - MA1250 38.6 ME160H MH250 MH400E MH630E MA800 MA12501000 1443 6 24 MA1600ES 48 ME160H MH250 MH400E MH630E MA800 MA12501250 1804 6 30 MH20 60 MH160 MH250 MH400E MH630E MH800 MH12501600 2310 6 38 MH25 76 ML250 ML400E ML630E ML800 ML12502000 2887 6 48 MH32 96 ML250 ML400E ML630E ML800 ML1250

3 transformers50 72 4 1.8 MA125 - ME125B 5.4 MA125100 144 4 3.6 MA160 - ME160B 10.8 MA125 ME160B160 231 4 5.8 MA250 17.4 ME125B ME160B MA250250 361 4 9.1 MA400 - MA400E 27.3 ME125N ME160N MA250 MA400E315 455 4 11.4 MA630E - MA630 34.2 ME125N ME160N MA250 MA400E MA630E400 577 4 14.4 MA630ES - MA630 43.2 ME160H MH250 MH400E MH630E500 722 4 18 MA800ES - MA800 54 MH160 MH250 MH400E MH630E MH800630 909 4 22.7 MA1250ES - MA1250 68.1 MH160 MH250 MH400E MH630E MH800 MH1250800 1154 6 19.3 MA1250ES - MA1250 58 MH160 MH250 MH400E MH630E MH800 MH12501000 1443 6 24 MA1600ES 72 ML250 ML400E ML630E ML800 ML12501250 1804 6 30 MH20 90 ML250 ML400E ML630E ML800 ML1250

suchasasynchronousmotors,alternatorsetc.,andtheimpedancesofthetransformer-distributionboardanddistributionboard-subdistributionboardconnectionbusbars.Inanycase,thetableistobeconsideredasindicative,becauseduringthedesignofsystems,furtherconsiderationsmustalsobemadeonselectivityorback-upcoordination.

Selection of circuit breakers with several transformers in parallel

72 DESIGN CRITERIA72

Page 62: Tech Guide

SECTION CONTENTS74 Reactivepowercompensationinlowvoltage

REACTIVE ENERGY COMPENSATION

DESIGN CRITERIA TECHNICALGUIDE

73CONTENTS

Page 63: Tech Guide

ϕ - impedance angle before compensationϕ1 - impedance angle after compensationI - non-compensation apparent currentI1 - compensation apparent currentIc - capacitive currentIb - residual inductive current (after compensation)

Inanalternatecurrentelectricsystem,thepoweractuallyusedbytheuser(activepower)fortheoperationofthemachine,isonlyonepartofthepowerdeliveredbytheDistributionCompany.Anotherpartofthispower(reactivepower),isInfactusedtocreatethemagneticfieldneededfortheoperationofthepoweredusers.Thepowerswithinanelectricsystemsarethefollowing:

Active power “P” (kW)Istheactualpowerusedbytheloadspowered,forthedevelopmentofmechanicorthermalpower.

P = V x I x cosϕ (kW)

Reactive power “Q” (kVAR)Isthepowerusedbythemagneticcircuitoftheuserunits,tocreatethemagneticfieldneededfortheiroperation(motors,transformersetc.)

Q = V x I x senϕ (kVAR)

Apparent power “Pa” (kVA)Isthepowerconsumedbytheuserequipment.

Pa = √ P2 + Q2 = V x I

POWER fACTORThepowerfactorofanelectricsystemistheratiobetweentheactivepower“P”actuallydeliveredandtheapparentpower“PA”consumedbytheload.

Thepowerfactorrepresentstheperformanceoftheelectricsystem.Itcanvaryfromthezerovaluetotheunitvalue,dependingonthedisplacementbetweencurrentandvoltage.Ensuringthatthepowerfactorremainsclosetotheunit(between0.9and1),providesgreatadvantagessuchas:

• eliminationoffinancialburdensduetothepenalties,appliedbytheDistributionCompany,incaseofexcessiveconsumptionofreactivepower(cosϕ <di0.9).

• reductionofcurrentvalues,andthereforelimitationofcableactivepowerlossesduetotheJouleeffect.

• reductionofthecablesection.• improvementofequipmentperformance,duetohigherutilisationofactivepoweronsamesizedevice(transformers,cablesetc.).

• reductionoflinevoltagedrops(withequalcablesections)

Cosϕ = Pa

P

REACTIVE POWER COMPENSATION Inindustrialsystems,thepresenceofloadswithahighreactivecomponentnormallyresultsinapowerfactorsensiblylowerthantheunit.Itisthereforenecessarytoensurethecompensationofthereactivepowerconsumedbytheusers,byinstallingbatteriesofcapacitors,whichwilltakeaphasedisplacedcurrentinadvance(approx.90%)ofthevoltagefromtheline.Theinclusionofreactivepowerofasignoppositetotheoneconsumedbytheusers,causesanincreaseofthepowerfactorvalue.Thisisduetothedecreaseoftheimpedanceanglebetweenvoltageandcurrent.

Reactive power compensationin low voltage

II1

Ic

Ib

Ic

Vϕ ϕ1

74 DESIGN CRITERIA74

Page 64: Tech Guide

COMPENSATION SYSTEMS Therearemanyreactivepowercompensationsystems(powerfactorcorrection).Inordertoselectthemostsuitableone,oneneedstotakeintoaccountthetypeofdistribution(natureandpoweroftheloads),thedailyloadsvariationlevels,thequalityoftheservicethatneedstobeensured,andthetechnicalandfinancialobjectives.Thebestcompensationintechnicalterms,consistsinsupplyingreactivepowerdirectlyatthepointwherethisisneeded,inthequantitythatisstrictlynecessaryforthepowereduser.However,thissolutionisnotveryviableduetoeconomicconstraints.Thechoiceamongthepossiblealternativesmusttakeintoaccountthetotalcostofthebatterytobeinstalled,theneedsformodulationofthereactivepowertobesupplied,thecomplexityandreliabilityofthepowerfactorcorrectionsystemtobeinstalled.Inpracticalterms,compensationsystemscanbeofthefollowingtypes:a)distributedb)centralisedc)mixed

Distributed compensationPowerfactorcorrectioncapacitorsareinstalledneareachuserneedingreactivepower.Thissolutionisrecommendedforsystemswheremostofthereactivepowerisconcentratedinafewhighpoweruserswithbasicallycontinuousactivityatreducedload.Thecapacitorsareswitchedonandoffatthesametimeastheloadandareprotectedbythesamelineprotectiondevices.Thistypeofcompensationhastheadvantageofreducingtheexistingcurrent,allowingforsmallersectioncablesandcausinglowerlevelsoflossesduetotheJouleeffect.

DESIGN CRITERIA TECHNICALGUIDE

75GENERAL fEATURES 75

Page 65: Tech Guide

Reactive power compensation in low voltage

Centralised compensation Thepowerfactorcorrectionbatteryofcapacitorsisconnectedupstreamallloads,inthedistributionboardornearthesame.Thissolutionisadvantageouswithsmallsizesystemswithstableandcontinuousloads,orsystemswithheterogeneousloadsandoccasionaloperation.Inthefirstcase,thebatteryofcapacitorsisalwayson,adaptingtheactualequipmentneeds(kW)tothecontractualapparentpower(kVA),withlowercostswhencomparedtoadistributedtypecompensation.Inthesecondcase,withanextremelyvariabletypeofreactivepowerconsumptionduetothefeaturesoftheloads,themosteffectivesolutionistheonewithautomaticstep-by-stepregulation.Thebatteryofcapacitorsissubdividedforseveralgroups,whichconnectionisautomaticallymanaged,basedonthereactivepowerusedbytheloads.

Mixed compensation Thistypeofpowerfactorcorrectionisrecommendedinsystemswithextendedlines,poweringuserswithdifferentloadcapacityfeatures.Theuserswiththemostpowerandthemostcontinuousoperationarecompensateddirectlyoringroups,whilealltheotherswithreducedloadanddiscontinuousoperationarecompensatedbygroupsorbymeansofautomaticpowerfactorcorrection.Inthiscase,automaticstep-by-stepcompensationoptimizesthepowerfactorofthewholesystem,avoidingovercompensationswhichmayoccurduetohighloadvariationsofsomelargeusersdirectlypowerfactorcorrected.

76 DESIGN CRITERIA76

Page 66: Tech Guide

DETERMINATION Of THE POWER Of CAPACITORSThepowerofthecapacitorsbatteryneededforensuringthepowerfactorcorrectionoftheequipment,withacentralisedcompensationsystem,dependsonthepoweroftheloadtobecorrected,theinitialcosϕvalue,andtheneededcosϕvalue.Withanactivepoweroftheusersdefinedas“P”(kW),the“Qc”(kVAR)powerofthebatteryofcapacitorstobeusedtomovethesystemfromtheinitialcosϕ,tothedesired“1”value,canbeeasilycalculatedusingthe“k”multiplicationcoefficientshowninthefollowingtable.The“k”valueindicatesthepowerofthecapacitorsinkvarforeachkWoftheload.

Qc = k x P (kVAR)

Pa apparent power before compensationPa1 apparent power after compensationQ reactive power consumed by the loads of the line

Pa

Pa1

Qc

Q11

P

Q

RATED VOLTAGES AND REACTIVE POWER Of THE CAPACITORS Thereactivepowerthatthecapacitorsareabletodeliverchangesbasedonthevoltageandthefrequencyatwhichtheyarepowered.Attheratedvoltagevaluesof“U1”,andratedfrequencyvalueof“F1”,thereactivepowercorrespondstotheratedvalue“Qn”.Withvoltagesandfrequenciesotherthantheratedvalue,thepowerthatcanbedeliveredcanbecalculatedusingthefollowingformula:

Qc = Qn x x

Inordertoobtainthereactivepower“Qn”,forthepowerfactorcorrectionofequipmentpoweredwithavoltagevalue“U”,itwillbenecessarytoinstallabatteryofcapacitorswithratedpowerequalto:

Qn = Qc xInordertoensuretheoptimumchoiceonatechnical/financialpointofyou,inrelationtothefeaturesofone-phaseconductorsoneshouldrememberthatwiththesamereactivepowersupplied,thecapacityusedinastarconnectionwillbethreetimethecapacityusedinatriangleconnection.

APPLICATION EXAMPLE Powerfactorcorrectionofanelectricsystemwiththefollowingfeatures:Activepowerinstalled:P=200kWThree-phaselinewithvoltage:U=380V50HzInitialpowerfactor:cosϕ=0.65Requiredpowerfactor:cosϕ=0.90Typeofuser:unevenloadswithveryvariableconsumptionTheproposedpowerfactorcorrectionisofthecentralisedtype.Itincludesabatteryofcapacitorssubdividedthroughoutseveralgroups,withanautomaticconnectionproportionaltotheloadvariationandthepowerfactor.

Bycrossingthecolumncorrespondingtotherequestedcosϕof“0.9”,withthelinecorrespondingtotheinitialcosϕof“0.65”,the“k”coefficientcanbeidentified.The“k”valueobtainedis0.685.Thebatteryofcapacitorstobeinstalledupstreamallloads,shallhaveapowerof:

Qc = P x k = 200 x 0.685 = 137 kVAR

Ifcapacitorswithratedvoltage“U1”equalto400Vareinstalled,theratedpowershallbe:

Qn = Qc x = 137 x = 151.8 kvar

U

U1( )2

2

F1U1F( U )

380400

UU1( ) ( )

DESIGN CRITERIA TECHNICALGUIDE

77GENERAL fEATURES 77

Page 67: Tech Guide

Reactive power compensation in low voltage

Multiplication coefficient “k”, for the calculation of the capacitors power (kvar/kW)

Initial cosϕ Cosϕ needed 0.8 0.85 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 10.40 1.557 1.669 1.805 1.832 1.861 1.895 1.924 1.959 1.998 2.037 2.085 2.146 2.2880.41 1.474 1.605 1.742 1.769 1.798 1.831 1.860 1.896 1.935 1.973 2.021 2.082 2.2250.42 1.413 1.544 1.681 1.709 1.738 1.771 1.800 1.836 1.874 1.913 1.961 2.022 2.1640.43 1.356 1.487 1.624 1.651 1.680 1.713 1.742 1.778 1.816 1.855 1.903 1.964 2.1070.44 1.290 1.421 1.558 1.585 1.614 1.647 1.677 1.712 1.751 1.790 1.837 1.899 2.0410.45 1.230 1.360 1.501 1.532 1.561 1.592 1.626 1.659 1.695 1.737 1.784 1.846 1.9880.46 1.179 1.309 1.446 1.473 1.502 1.533 1.567 1.600 1.636 1.677 1.725 1.786 1.9290.47 1.130 1.260 1.397 1.425 1.454 1.485 1.519 1.532 1.588 1.629 1.677 1.758 1.8810.48 1.076 1.206 1.343 1.370 1.400 1.430 1.464 1.497 1.534 1.575 1.623 1.684 1.8260.49 1.030 1.160 1.297 1.326 1.355 1.386 1.420 1.453 1.489 1.530 1.578 1.639 1.7820.50 0.982 1.112 1.248 1.276 1.303 1.337 1.369 1.403 1.441 1.481 1.529 1.590 1.7320.51 0.936 1.066 1.202 1.230 1.257 1.291 1.323 1.357 1.395 1.435 1.483 1.544 1.6860.52 0.894 1.024 1.160 1.188 1.215 1.249 1.281 1.315 1.353 1.393 1.441 1.502 1.6440.53 0.850 0.980 1.116 1.144 1.171 1.205 1.237 1.271 1.309 1.343 1.397 1.458 1.6000.54 0.809 0.939 1.075 1.103 1.130 1.164 1.196 1.230 1.268 1.308 1.356 1.417 1.5590.55 0.769 0.899 1.035 1.063 1.090 1.124 1.156 1.190 1.228 1.268 1.316 1.377 1.5190.56 0.730 0.865 0.996 1.024 1.051 1.085 1.117 1.151 1.189 1.229 1.277 1.338 1.4800.57 0.692 0.822 0.958 0.986 1.013 1.047 1.079 1.113 1.151 1.191 1.239 1.300 1.4420.58 0.665 0.785 0.921 0.949 0.976 1.010 1.042 1.076 1.114 1.154 1.202 1.263 1.4050.59 0.618 0.748 0.884 0.912 0.939 0.973 1.005 1.039 1.077 1.117 1.165 1.226 1.3680.60 0.584 0.714 0.849 0.878 0.905 0.939 0.971 1.005 1.043 1.083 1.131 1.192 1.3340.61 0.549 0.679 0.815 0.843 0.870 0.904 0.936 0.970 1.008 1.048 1.096 1.157 1.2990.62 0.515 0.645 0.781 0.809 0.836 0.870 0.902 0.936 0.974 1.014 1.062 1.123 1.2650.63 0.483 0.613 0.749 0.777 0.804 0.838 0.870 0.904 0.942 0.982 1.030 1.091 1.2330.64 0.450 0.580 0.716 0.744 0.771 0.805 0.837 0.871 0.909 0.949 0.997 1.058 1.2000.65 0.419 0.549 0.685 0.713 0.740 0.774 0.806 0.840 0.878 0.918 0.966 1.007 1.1690.66 0.388 0.518 0.654 0.682 0.709 0.743 0.775 0.809 0.847 0.887 0.935 0.996 1.1380.67 0.358 0.488 0.624 0.652 0.679 0.713 0.745 0.779 0.817 0.857 0.905 0.966 1.1080.68 0.329 0.459 0.595 0.623 0.650 0.684 0.716 0.750 0.788 0.828 0.876 0.937 1.0790.69 0.299 0.429 0.565 0.593 0.620 0.654 0.686 0.720 0.758 0.798 0.840 0.907 1.0490.70 0.270 0.400 0.536 0.564 0.591 0.625 0.657 0.691 0.729 0.769 0.811 0.878 1.0200.71 0.242 0.372 0.508 0.536 0.563 0.597 0.629 0.663 0.701 0.741 0.783 0.850 0.9920.72 0.213 0.343 0.479 0.507 0.534 0.568 0.600 0.634 0.672 0.712 0.754 0.821 0.9630.73 0.186 0.316 0.452 0.400 0.507 0.541 0.573 0.607 0.645 0.685 0.727 0.794 0.9360.74 0.159 0.289 0.425 0.453 0.480 0.514 0.546 0.580 0.618 0.658 0.700 0.767 0.9090.75 0.132 0.262 0.398 0.426 0.453 0.487 0.519 0.553 0.591 0.631 0.673 0.740 0.8820.76 0.105 0.235 0.371 0.399 0.426 0.460 0.492 0.526 0.564 0.604 0.652 0.713 0.8440.77 0.079 0.209 0.345 0.373 0.400 0.434 0.466 0.500 0.538 0.578 0.620 0.687 0.8290.78 0.053 0.182 0.319 0.347 0.374 0.408 0.440 0.474 0.512 0.552 0.594 0.661 0.8030.79 0.026 0.156 0.292 0.320 0.347 0.381 0.413 0.447 0.485 0.525 0.567 0.634 0.7760.80 0.130 0.266 0.294 0.321 0.355 0.387 0.421 0.459 0.499 0.541 0.608 0.7500.81 0.104 0.240 0.268 0.295 0.329 0.361 0.395 0.433 0.473 0.515 0.582 0.7240.82 0.078 0.214 0.242 0.269 0.303 0.335 0.369 0.407 0.447 0.489 0.556 0.6980.83 0.052 0.188 0.216 0.243 0.277 0.309 0.343 0.381 0.421 0.463 0.530 0.6720.84 0.026 0.162 0.190 0.217 0.251 0.283 0.317 0.355 0.395 0.437 0.504 0.6450.85 0.136 0.164 0.191 0.225 0.257 0.291 0.329 0.369 0.417 0.478 0.6200.86 0.109 0.140 0.167 0.198 0.230 0.264 0.301 0.343 0.390 0.450 0.5930.87 0.083 0.114 0.141 0.172 0.204 0.238 0.275 0.317 0.364 0.424 0.5670.88 0.054 0.085 0.112 0.143 0.175 0.209 0.246 0.288 0.335 0.395 0.5380.89 0.028 0.059 0.096 0.117 0.149 0.183 0.230 0.262 0.309 0.369 0.5120.90 0.031 0.058 0.089 0.121 0.155 0.192 0.234 0.281 0.341 0.484

OPERATION WITH CAPACITIVE LOADSTheIEC70standardacceptsthateachbatteryofcapacitorscanconstantlywithstanda30%overloadcausedbyharmoniccurrents.Asaconsequence,thepowersupplycablesandthedrivingandprotectiondevicesmustbeoversized.Inadditiontothepresenceofharmonics,itmustalsobeconsideredthata+10%toleranceontherealcapacityvalueisalsoallowed.Thismeansthattheratedcurrentof

thecircuitbreakermustbeatleast1.43timestheratedcurrentofthebattery.Overloadprotectionisnotnecessarywhentheuserscannotbeoverloaded.Inselectingtheshortcircuitprotectiondevices,itisimportantthatthehightransientcurrentsconsumedduringstart-uparetakenintoaccount.

78 DESIGN CRITERIA78

Page 68: Tech Guide

SELECTION Of SWITCHES fOR CAPACITORS POWER LINES Thecontrolandprotectioncircuitbreakersofthepowerfactorcorrectionbatteriesofcapacitorsmustmeetthefollowingconditions:

• guaranteethestabilityoftheinstantaneousprotection(magnetic)againsttransientcurrentsoccurringduringtheconnectionofthebattery.

• withstandanyovercurrentsduetothepresenceofvoltageharmonicsintheline(+30%),andthetoleranceontheratedcapacitydataofthecapacitors(+10%).

Themaximumcurrentforthesizingofthecircuitofacapacitorisequalto1.43timesthecapacitor’sratedcurrent.

• musthaveabreakingcapacitysuitableforthefaultlevel(shortcircuit)expectedinthesystem.

Theautomaticcircuitbreakersusedmusthavehighinstantaneousbreakingcapacity(magnetic)curvesandInratedcurrentequalorhigherthan1.43Ic(IcisthecurrentconsumedbythebatteryofcapacitorsatthesystemvoltagevalueU).

SECTION Of POWER SUPPLY CABLES ThesectionofthecablestobeusedforthepoweringofthebatteryofcondensersmustbecapableofwithstandingacurrentIB=1.43Ic.Thisisrecommended,totakeintoaccountboththeharmoniccomponentswhichmaybepresent,+30%,andthetoleranceontheratedvalueofthecapacityofthecapacitors,+10%.

IB = 1.3 x 1.1 . Ic = 1.43 Ic

IBmaximumcurrentusedbythebatteryof capacitorsIc currentusedbythebatteryofcapacitorsatthe systemvoltage

Three-phase line at 230V a.c. 50Hz Three-phase line at 400V a.c. 50Hz Power of the In (A) Type of Power of the In (A) Type of battery (kVAR) circuit breakers circuit breakers battery (kVAR) circuit breakers circuit breakers5 20 MA/ME125 5 16 MA/ME125 7.5 25 MA/ME125 7.5 16 MA/ME125 10 40 MA/ME125 10 25 MA/ME125 15 63 MA/ME125 15 40 MA/ME125 20 100 MA/ME125 20 40 MA/ME125 25 100 MA/ME125 25 63 MA/ME125 30 125 MA/ME125 30 100 MA/ME125 35 125 MA/ME125 35 100 MA/ME125 40 160 MA/ME/MH160 40 100 MA/ME125 50 250 MA/MH/ML250 50 100 MA/ME125 60 250 MA/MH/ML250 60 125 MA/ME125 70 250 MA/MH/ML250 75 160 MA/MH160 80 320 MA/MH/ML400 90 250 MA/MH/ML25090 320 MA/MH/ML400 100 250 MA/MH/ML250100 400 MA/MH/ML400 110 250 MA/MH/ML250110 400 MA/MH/ML400 120 250 MA/MH/ML250120 500 MA/MH/ML630 135 320 MA/MH/ML400135 500 MA/MH/ML630 150 320 MA/MH/ML400140 500 MA/MH/ML630 160 400 MA/MH/ML400150 630 MA/MH/ML630 180 400 MA/MH/ML400175 630 MA/MH/ML630 190 400 MA/MH/ML400180 800 MA/MH/ML800 200 500 MA/MH/ML630200 800 MA/MH/ML800 225 500 MA/MH/ML630240 1000 MA/MH/ML1250 240 500 MA/MH/ML630275 1000 MA/MH/ML1250 275 630 MA/MH/ML630300 1250 MA/MH/ML1250 300 630 MA/MH/ML630 360 800 MA/MH/ML800 400 1000 MA/MH/ML1250

DESIGN CRITERIA TECHNICALGUIDE

79GENERAL fEATURES 79

Page 69: Tech Guide

GLOSSARY AND DEfINITIONS

80 DESIGN CRITERIA

Page 70: Tech Guide

82 Definitionsandsizes

SECTION CONTENTS

DESIGN CRITERIA TECHNICALGUIDE

81CONTENTS

Page 71: Tech Guide

Belowarethemostcommondefinitions,withashortdescriptionofwhattheymean.

AS distribution boards:distributionboardssubjectedtoalltestsasrequiredbytheIEC60439Standard,orcorrespondingtoafullytestedtype.

ANS distribution boards:madebyassemblingcomponentstestedusingtypetestswithcomponentsnottestedusingtypetests,butderivingfromtestedcomponents.TheANSdistributionboardispartlysubjectedtotypetests,andpartlycheckedusingcalculations.

ASD distribution boards:fullytesteddistributionboards(AS)tobeusedbynontrainedpersonnel(e.g.domesticenvironments).

ASC job site distribution boards:standardcombi-nationsofoneormoreconversionorcircuitbreakingdeviceswiththeassociatedcontrol,metering,si-gnalling,protectionoradjustmentdevices,includingallelectricandmechanicconnections,designedandbuilttobeusedinjobsites. Rated voltage of use (Ue)

Thisisthevoltagevalueamongthephases,which,togetherwiththeratedcurrent,definestheuseofthedeviceitself.ForcircuitbreakersinaccordancewithIEC60898standard,thevoltagelimitissetto440Va.c..ForthoseinaccordancewithIEC60947-2standard,thelimitissetto1000Va.c.or1500Vd.c.

Rated insulating voltage (Ui) Thisisthevoltagevaluedielectrictests,aswellassafetydistancesandsurfaceinsulationdistances,referto.Undernocircumstances,cantheratedoperationvoltagebehigherthantheinsulatingvoltage.Ifnoratedinsulatingvoltageisindicated,theoperationvoltagemustbetakeninstead.

Rated impulse withstand voltage (Uimp) Thisisthepeakvalueofanimpulsevoltagethatthedevicecanwithstandwithoutincurringanydamage.Thetestisperformedwiththecircuitbreakeropen,checkingthattherearenodischargesbetweencontactsofthesamephase,orbetweenonephaseandthemass.

Rated current of use (In)Thisisthefreeaircurrentvaluethatthedevicecancarryduringuninterruptedservice.FordevicesinaccordancewithIEC60898standard,thisvaluecannotexceed125A.NolimitsaresetforcircuitbreakersinaccordancewithIEC60947-2standard.

Standard non tripping current (Inf) Istheovercurrentwithwhichtheopeningofathermalmagnetic(orelectronic)circuitbreakerdoesnotoccurwithinthestandardtime.

Standard tripping current (If) Istheovercurrentwithwhichtheopeningofathermalmagnetic(orelectronic)circuitbreakerdoesoccurwithinthetimedelayindicatedintheofficialstandards.

Standard Inf If Standard timeIEC 60898 1.13 In 1.45 In 1 hour for In ≤ 63A 2 hour for In > 63AIEC 60947-2 1.05 In 1.3 In 1 hour for In ≤ 63A 2 hour for In > 63A

Definitions and sizes

82 DESIGN CRITERIA82

Page 72: Tech Guide

Service breaking capacity during short circuit (Ics) ThisisthemaximumshortcircuitcurrentvaluethatthecircuitbreakercanbreakfollowingthetestingsequenceO-t-CO-t-CO.Followingthetest,thecircuitbreakermustbecapableofoperatingcorrectlyduringopeningandclosing,ofguaranteeingoverloadprotection,andmustbeableofcontinuouslycarryingitsratedcurrent.FordevicesinaccordancewithIEC60947-2standard,thisvalueisexpressedinIcupercentage(%Icu),choosingbetween25(cat.Aonly)-50-75-100%.FordevicesinaccordantewithIEC60898standard,thevaluemustbeinaccordancewiththefollowingtable,multiplyingIcnbytheKfactor.

Icn K Ics ≤ 6000A 1 Ics = Icn > 6000A 0.75 Ics = 0.75 Icn≤ 10000A (minimum value 6000A) > 10000A 0.5 Ics = 0.5 Icn (minimum value 7500A)

Ultimate breaking capacity during short circuit (Icu)Thisisthemaximumshortcircuitcurrentvaluethatthecircuitbreaker.inaccordancewithIEC60947-2.canbreakfollowingthetestingsequenceO-t-CO.Followingthetest.thecircuitbreakermustbecapableofoperatingcorrectlyduringopeningandclosing.ofguaranteeingoverloadprotection.butcannotbeableofcontinuouslycarryingitsratedcurrent.

Rated short-circuit capacity (Icn) Thisfollowsthesameconceptastheultimatebreakingcapacity.butforcircuitbreakersinaccordancewithIEC60898standard.Contrarytowhatdiscussedinthepreviouspoint.itisnotrequiredthatafterthetestthecircuitbreakeriscapableofcarryingaloadcurrent.FortheIEC60898standard.amaximumIcnlimitof25kAisset.

Utilisation category “A” ThistypeofclassificationdefinedbytheIEC60947-2standardenablessubdividingthecircuitbreakersaccordingtotwotypes,dependingontheircapacityofperformingchronometerselectivityduringshortcircuit.Duetotheirconstructionandfeatures,classAcircuitbreakersarenotsuitableforperformingchronometerselectivityduringshortcircuit.

Utilisation category “B”Duetotheirconstructionandfeatures,classBcircuitbreakersaresuitableforperformingchronometerselectivityduringshortcircuit.Theyareinfactcapableofinterveningontheshortcircuitwithaintentionalfixedoradjustabletimedelay.ThesecircuitbreakersmustbecapableofwithstandingtheIcwvaluessetbythestandard.

Rated short-time withstand current (Icw) ThisisthecurrentthatthecategoryBcircuitbreakercanwithstandforthewholetimedelayset,withoutincurringanydamage.ThepreferentialtimedelayssuggestedbythestandardforIcwassessmentare0.05-0.1-0.25-0.5-1s.Forthesetimedelayvalues,theminimumIcwvaluesofthecircuitbreakersmustbeasindicatedinthetablethatfollows.

In ≤ 2500A Icw = the highest between 12 In and 5 kAIn > 2500A Icw = 30 kA

Rated closing capacity during short circuit (Icm)Thisisthemaximumpeakvalueoftheestimatedcurrentinsetconditions.Itreferstoasetvoltageandasetpowerfactor.TherelationshipbetweenIcmandbreakingcapacityduringshortcircuitisshowninthefollowingtable.

Pdi (kA) Power Minimum closing power (rms value) factor factor value Icu4.5 < Icu ≤ 6 0.7 1.5 6 < Icu ≤ 10 0.5 1.7 10 < Icu ≤ 20 0.3 2.0 20 < Icu ≤ 50 0.25 2.1 50 < Icu 0.2 2.2

n =

DESIGN CRITERIA TECHNICALGUIDE

8383GLOSSARY

Page 73: Tech Guide

B-C-D magnetic tripping curvesThesearethethreemagnetictrippingthresholdsatwhichcircuitbreakerscanintervene,inaccordancewithIEC60898standard.

Curve Tripping Field of application thresholdB 3-5 In Protection of generators or extremely long cable C 5-10 In Protection of cables and systems powering standard users D 10-20 In Protection of cables powering users with high starting currents

K-Z-MA magnetic tripping curvesThesecurvesaredefinedbythemanufacturerforacertaintypeofcircuitbreakers,inaccordancewithIEC60947-2standard.

Curve Tripping Field of application threshold Z 2.4-3.6 In Protection of electronic circuitsK 10-14 In Protection of cables powering users with high starting currentsMA 12-14 In Protection of motor power lines (without thermal protection)

MA curve (magnetic only)

B - C - D curves K - Z curves

Definitions and sizes

84 DESIGN CRITERIA84

Page 74: Tech Guide

A type pulsating unidirectional 0.35 I∆n 1.4* In also suitable (6 mA direct current) for alternated applied instantaneously current with certain tripping current equal to 1 I∆n

AC type only alternate current 0.5 I∆n 1 In not suitable applied for pulsating instantaneously unidirectional current

ʺ 6 mA

Type of earth Type of current Non tripping Certain tripping Notesleakage device current current

only slowly increasing alternate current

Features of AC and A type earth leakage devices

≥ 150ϒ

ʺ 6 mA

pulsating unidirectional 0.25 I∆n 1.4* In with 90° angle

* 2 In per I∆ = 10 mA

pulsating unidirectional (6 mA direct current) increasing slowly

pulsating unidirectional 0.211 I∆n 1.4* In with 135° angle

Rated earth leakage tripping current (I∆n) Thisisthecurrentvalueassignedbythemanufacturertoanearthleakagecircuitbreakerthatmustoperateintheconditionsspecifiedbythestandards(IEC61008-1,IEC61009-1).

Rated earth leakage non tripping current (I∆no)Thisisthecurrentvalueassignedbythemanufacturerandindicatedbythestandardsasthe50%oftheI∆n,atwhichthecircuitbreakermustnottripintheconditionsdefinedbythestandarditself.

Rated closing and breaking earth leakage capacity (I∆m) Thevalueofthealternatecomponentoftheearthleakagecurrentthattheearthleakagecircuitbreakercanestablish,carryandbreakintheconditionsdefinedbytheapplicablestandards.Accordingtothestandards,theminimumvalueaccordingtothestandardsmustbethehighestvaluebetween10Inand500A.

Rated conditional short circuit current (I∆nc)Thistheshortcircuitcurrentvaluethatanearthleakagecircuitbreaker,inaccordancewithIEC61008-1,canwithstandwithoutjeopardisingitsperformancewhencombinedwithanoverloadprotectiondevice.

Rated conditional earth leakage short circuit current (I∆c) Thisisaparameterthatreferstoearthleakagecircuitbreakerswithoutbuilt-inovercurrentreleasesin

AC typeEarthleakagedevicescapableofguaranteeingprotectionwithinstantlyappliedorslowlyincreasingalternatefaultcurrents.Duetotheirprotectioncurves,thesetypesofdevicesarewidelyusedindomesticapplicationsandthelikes.

A typeEarthleakagedevicesguaranteeingthesametypeofprotectionasACdevices,withtheadditionofalsobeingabletoprotectagainstalternatefaultcurrentswithpulsatingorunidirectionalcomponents.Thesedevicesarelargelyusedintheservice/industrialsector,insystemswithelectronicdevicescapableofgeneratingcontinuousdangerouscomponents.

S typeSelectiveortimedelayearthleakagedevicesthatmaybelongtoeithertheAorACtype,offeringthepossibilityofadelayedactionincomparisontostandardtypeearthleakagedevices(intentionalfixedoradjustable).Thesedevicesarewidelyusedasgeneralcircuitbreakersinsystemswhereearthleakageselectivityisrequired.

S

accordancewithIEC61008-1standard.Itrepresentstheestimatedearthleakagecurrentvaluethattheearthleakagecircuitbreaker,combinedwithandprotectedbyanovercurrentprotectiondevice,canwithstandwithoutanyalterationsthatmaycompromiseitsfunctionality.

DESIGN CRITERIA TECHNICALGUIDE

8585GLOSSARY

Page 75: Tech Guide

SECTION CONTENTS

Rated peak current (Ipk):maximumpeakvaluethateachshortcircuitmustwithstandtobeabletowithstandelectro-dynamicstressesthatcouldoccurduringashortcircuitontheinsulators,cableholdersandbusbars

Rated diversity factor according to IEC 60439-1:relationbetweenthehighestvalueofthesumoftheeffectivecurrentsthattransitatethroughthemainoutputcircuitsandthesumoftheirratedcurrents

Diversity factor (K) according to CEI 23-51*:Coefficienttobeappliedtooutputcircuitstoallowforthepossibilitythatallconnectedloadsmaybeusedatthesametime.

Room temperature (Rt):Roomtemperatureforindoorinstallations.Theroomtemperaturemustnotexceed40°C.Itsaveragevalueforaperiodof24hoursmustnotexceed35°C.

Input rated current (Ine): valueapplicableinaccordancewithCEI23-51standard,calculatedbymultiplyingthecurrentorsumofallratedcurrentsofallinputprotectionandcontroldevicesthatareintendedtobeusedatthesametimebytheutilisationfactor(Ke).

Output rated current (Inu): sumofallthenominalcurrentsofalloutputprotectionandcontroldevicesthatareintendedtobeusedatthesametime,asdefinedbyCEI23-51standard.

Distribution board rated current (Inq): lowestvaluebetweentheinputratedcurrent(Ine)andtheoutputratedcurrent(Inu)definedbytheCEI23-51standard.Ifnoinputprotectionorcontroldevicesarepresent,thedistributionboardratedcurrentisidentifiedwiththeoutputcurrent.

Efficiency (Ke):coefficientdefinedbytheCEI23-51standard,whichtakesintoaccounttheinstallationconditionsoftheprotectiondevicesanddistributionboardinputoperations,reducingtheirratedcurrentinordertoensureappropriateutilisation.Efficiency(Ke)isequalto0.85.

Power consumption of protection and operation devices (Pdp): sumofthepowerconsumptionoftheinputandoutputprotectiondevices:thepowerconsumedbyeachdeviceiscalculatedasfollows:

Pdi = (K*)2 x n x Ppwhere:

K* =KeforinputcircuitsandKforoutputcircuits;n =no.ofactivepoles;Pp =powerconsumptionforeachpoleasdeclared bythemanufacturerofthedevice.

Maximum power consumption of the enclosure (Pinv):maximumvalueofthepowerthatcanbeconsumedinsidetheenclosures,asdeclaredbythemanufacturer,incompliancewithovertemperaturelimitsandintheexpectedinstallationconditions.

Total distribution board power consumption (Ptot):sumofthepowerconsumptionoftheprotectionandcontroldevices(Pdp),increasedby20%toallowforconnections,plugsockets,staircaselights,timers,smalldevicesetc,andthepowerconsumptionofanyothercomponentsinstalledonthedistributionboard.Thetotalpower(Ptot)iscalculatedasfollows:

Ptot = Pdp + 0.2xPdp + Pau

Legend

Pdp = power consumption of protection and operation devices in W, calculated taking into account the Ke and K factors

0.2xPdp = increase percentage of the Ptot to allow for “miscellaneous connections”

Pau = power in W of other components with significant losses (auxiliary circuits)

Ke = efficiency: it applies to input circuits and is equal to 0.85.

K = diversity factor it applies to output circuits and is calculated based on the effective operating conditions, or implementing the values suggested by the standard based on the number of circuits

Diversity factor according to IEC 60439-1

No. of main circuits Diversity factor (K)2 and 3 0.94 and 5 0.8 from 6 to 9 included 0.710 (and more) 0.6

Definitions and sizes

86 DESIGN CRITERIA86 * Note: CEI 23-51 is an Italian Standard

Page 76: Tech Guide

SECTION CONTENTS

BTDIN

88 Generalfeatures

96 Technicalinformation

111 Operationinparticularconditions

123 Selectionofcontactors

126 Protectionofilluminationcircuits

148 Interventioncurves

165 Dimensionaldata

DESIGN CRITERIA TECHNICALGUIDE

87CONTENTS

BTDIN TECHNICALGUIDE

Page 77: Tech Guide

bTdiN: modular devices

BTDIN is the modular range of DIN35 rail devices. It includes: Thermal magnetic Mcb’s: for overcurrent protection (short circuit and overload),Combinable earth leakage modules: when coupled with thermal magnetic Mcb’s, they provide integration of earth leakage protection,

Thermal release

Mobile contact

Fixed contact

Magnetic release

Cable and plug-in terminal

Blow-out cell

Thermal magnetic earth leakage Mcb’s: one single device for overcurrent protection and earth leakage protection,Simple earth leakage circuit breakers: earth leaka-ge protection only.

CoNSTRUCTioN FEATURESThe whole BTDIN range features:

• modular dimensions;• spring lock installation on DIN35 rail;• control for contemporary opening and closing on all

poles;• free release control;• no. of mechanical and electric operations 20000/10000;• temperature range -25/60°C;• resistance to abnormal heat and fi re according to IEC

60898 (glow wire test at 960°C and at 650°C);• insulation voltage 500V;• can be fi tted with up to 3 accessories;• resistance to corrosion [°C/RH]: constant climate:23/83-40/93-55/20 variable climate:25/95-55/95;• mechanical shock resistance in the X-Y-Z directions: (according to IEC 68.2.7 CEI 50-6);• resistance to vibrations according to IEC 68.8.35: 3g -10-55Hz duration 30’.

88 bTdiN88

Page 78: Tech Guide

Advantages of the range

pLUG-iN TERmiNALS FoR TiFAST CombiNATioN BTDIN Mcb’s are fi tted with pLUG-IN terminals for quick connection to TIFAST distribution systems. Compared with traditional connection methods, this system reduces connection times and space requirements, on distribution boards and inside cabinets, to the minimum.

PLUG-IN type connection

CommoN ACCESSoRiESThe whole BTDIN range can be fi tted with up to 3 accessories.The various combinations include:

• auxiliary contacts;• undervoltage releases; • shunt trips;• emergency releases.As an alternative to the installation of auxiliary con-tacts and releases, it is also possible to install motor operators, remote controls, or SALVAVITA STOP&GO reset kits.

STANdARdS BTDIN devices have been manufactured in accordan-ce with the specifi c standards listed in the table.Thanks to their construction features, BTDIN Mcb’s also comply with the current standards of the main foreign countries.

Type of Mcb’s StandardThermal magnetic Mcb’s IEC 60898Combinable earth leakage Mcb’s IEC 61009-1Monobloc thermal magnetic earth leakage circuit breakers IEC 61009-1Simple earth leakage circuit breakers IEC 61008-1

Accessorised thermal magnetic earth leakage Mcb

BTDIN TECHNICAL GUIDE

89GENERAL FEATURES 89

Page 79: Tech Guide

bTdiN: mcb’s for overcurrent protection

The range of BTDIN Mcb’s includes devices, manufactured in accordance with IEC 60898 standard, with rated Icn breaking capacity from 4.5 to 25 kA, and rated current from 0.5 to 125A.The circuit breakers are available with B, C, D, K, Z, MA magnetic tripping curves.

STANdARdS ANd mARkSCompliance with national and international standards has also enabled BTDIN Mcb’s to obtain several quality marks and approvals, such as RINA approval (Registro Italiano Navale) , for installation on cruise ships, merchant vessels, ferries and leisure craft.

28LOVAGLow VoltageAgreement GroupSecretariat: ASTAHouse ChestnutField Rugby, WarwickshireUK CV21 2TL United Kingdom

24Consiliului TehnicPermanent pentruConstructiiRomania

1Istituto Italiano del Marchio di QualitàMilanItaly

Range of high performance BTDIN thermal magnetic Mcb’s

8Registro Italiano Navale(Italian Naval Register)

Mcb’s Intervention curves No. of poles In Icn (kA)BTDIN45 C-B 1-4 0.5-63 4.5BTDIN60 C-B-D 1-4 0.5-63 6BTDIN100 C-B-D-Z-K 1-4 1-63 10BTDIN100 (80-125A) C-D 1-4 80-125 10BTDIN250 C 1-4 6-63 25BTDIN250H C 1-4 25-63 25BTDIN250 magnetic only 12-14 In 2-3 1.6-63 25

Range

9090 bTdiN

Page 80: Tech Guide

Curves of thermal magnetic releases

The IEC 60898 standard defines three tripping curves (B-C-D). These represent the magnetic

B curve

MA curve (magnetic only) Z curve K curve

C curve D curve

The range of modular BTDIN Mcb’s is also available with curves other than those defined by the IEC

60898 standard: K-Z and MA curves, as defined by the manufacturer.

Curve Magnetic intervention threshold Typical useB 3-5 In Generator protection and very long lines C 5-10 In Standard system protection D 10-20 In Protection of lines for users with high breakway starting currents K 10-14 In Protection of lines for users with high breakway starting currents Z 2.4-3.6 In Protection of electronic circuits MA 12-14 In Protection of motor power lines (without thermal protection)

tripping threshold and identify the various fields of application.

Magnetic intervention threshold

BTDIN TECHNICAL GUIDE

91GENERAL FEATURES 91

Page 81: Tech Guide

bTdiN: SALvAviTA mcb’sfor earth leakage protection

The range of BTDIN SALVAVITA Mcb’s, includes of 3 types of devices:

• Combinable earth leakage modules;• Monobloc thermal magnetic earth leakage circuit breakers;• Earth leakage circuit breakers without overcurrent releases (simple).

For all types, the range offers a wide selection of rated currents, earth leakage currents and types of protections.

Among the earth leakage circuit breakers without overcurrent release, the new SALVAVITA ID4H range includes A and AC type circuit breakers, with earth leakage current of 0.03A, and rated currents of 25 and 40A.An important feature of the new SALVAVITA, is the top input and output connection. This enables side-by-side installation and wiring with 1p+N thermal magnetic Mcb’s in 1 module.

3P combinable earth leakage module

Compact 4P thermal magnetic earth leakage circuit breaker

rated currents, earth leakage currents and types of

Compact 4P thermal magnetic Compact 4P thermal magnetic

Monobloc thermal magnetic earth leakage circuit breaker

module

4P earth leakage module forBTDIN100

2P simple earth leakage circuit breaker

92 bTdiN92

Page 82: Tech Guide

4P combinable earth leakage module

NEW SALvAviTA id4h RANGE WiTh Top iN/oUT CoNNECTioN

Comb for ID4H to 1P+N connection in 1 Module

Integrated thermal magnetic earth leakage

circuit breakers

Earth leakage circuit breakers without overcurrent releases (simple)

Combinable earth leakage

modules

In 0.5-40 16-63 0.5-63 80-125IDn 0.01-0.03 0.01-0.03-0.3-0.5 0.03-0.3-0.5-1 0.03-0.3-1Type A-AC A-AC-AS A-AC-AS A-AC-ASPoles 2-4 2-4 2-3-4 2-4

BTDIN100 combinable earth leakage

modules

1Istituto Italiano del Marchio di QualitàMilanItaly

STANdARdS Circuit breakers and earth leakage modules have been awarded the IMQ (Italian Quality Mark), in complian-ce with their norms of reference, IEC 61008-1 and IEC 61009-1.

BTDIN60 4P thermal magnetic circuit breaker

BTDIN TECHNICAL GUIDE

93GENERAL FEATURES 93

Page 83: Tech Guide

SALvAviTA STop&Go:service continuity

Lightning, electric disturbance and other external occurrences, can damage the electric system, cutting off the power supply of the house and putting the essential circuits out of service.An unwanted tripping of the general circuit breaker could result in high costs, due to the lack of power supply (freezer defrosting, alarm systems not working etc.).In order to prevent this type of problems, and improve

System without SALVAVITA STOP&GO System fi tted with SALVAVITA STOP&GO

94 bTdiN94

the effi ciency and safety of the system, BTicino offers the possibility of integrating the protection device with an automatic reset of the system.After checking the isolation status of the system, SALvAviTA STop&Go reactivates the general circuit breaker. If a fault is present, only the damaged section of the system remains isolated.SALvAviTA STop&Go has been awarded the IMQ-CSV Italian quality mark.

Page 84: Tech Guide

Constant safety and functionality guarantee

With SALvAviTA STop&Go, even the system maintenance operations become much easier and safer.By moving the sectioning switch at the front of the device to the oFF position, automatic closing of the circuit breaker is prevented, providing the maximum level of security during work on the line.

SALvAviTA STop&Go is also available with the BTest function. Using an internal circuit, this function checks the effi ciency of the earth leakage circuit, without the need for the monthly trial button check. SALvAviTA STop&Go also includes an audible/visual device, which notifi es any system faults that may be present.

SALvAviTA STop&Go operates in two ways:

1. UNWANTEd TRip:The earth leakage circuit breaker has tripped, but no system fault has been detected: SALvAviTA STop&Go reinstates the power supply and guarantees service continuity.

2. pERmANENT FAULT:The earth leakage circuit breaker has tripped, and SALvAviTA STop&Go detects a system fault: an audible-visual warning is issued to notify the presence of a fault, and the earth leakage circuit breaker remains open to ensure maximum safety.

of a fault, and the earth leakage to

is issued to notify the presence of a fault, and the earth leakage

to

BTDIN TECHNICAL GUIDE

95GENERAL FEATURES 95

Page 85: Tech Guide

TEChNiCAL iNFoRmATioN

96 bTdiN

Page 86: Tech Guide

98 Thermal magnetic Mcb’s

106 Earth leakage thermal magnetic circuit breakers

109 Earth leakage modules

110 Earth leakage circuit breakers

114 Switch disconnectors

117 Relays

126 Contacts and shunt trips

131 SALVAVITA STop&Go

135 protection devices

137 Devices for command and control

138 Devices for signalling

140 Devices for timing command

145 Devices for measuring

SECTioN CoNTENTS

BTDIN TECHNICAL GUIDE

97CoNTENTS

Page 87: Tech Guide

bTdiN45 - icn = 4.5 kA (iEC 60898)thermal magnetic mcb’s

Mcb’s BTDIN45

Standards IEC 60898Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Rated breaking capacity Icn (kA) IEC 60898 4.5Rated frequency (Hz) 50-60Temperature range (°C) -25-60Max. no. of electrical/mechanical manoeuvres 10000/20000Tripping curves C–B (only 1P+N - 1 module)Protection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test) Limitation class (IEC 60898) 3Maximum no. of usable accessories 3Section of flexible/rigid cable (mm2) 25/35 (10/16 - 1P+N 1 mod.)

Specific features for BTDIN45 circuit breakers

Poles Modules Curve Ue (Va.c.) In (A) 1P 1 C 230/400 - - - - - 6 10 16 20 25 32 40 - - -1P+N 1 B-C 230 0.5 1 2 3 4 6 10 13 16 20 25 32 40 - -1P+N 2 C 230 - - - - - 6 10 13 16 20 25 32 40 50 632P 2 C 400 - - - - - 6 10 13 16 20 25 32 40 50 633P 3 C 400 - - - - - 6 10 13 16 20 25 32 40 50 634P 4 C 400 - - - - - 6 10 13 16 20 25 32 40 50 63

Breaking capacity in AC

Icn (kA) IEC 60898 Icu (kA) IEC 60947-2 In (A) 0.5-20 25 32 40 50 63 0.5-20 25 32 40 50 63230Va.c. 1P 4.5 4.5 4.5 - - - 6 6 6 - - - 1P+N-4P 4.5 4.5 4.5 4.5 4.5 4.5 6 6 6 6 6 6400-440Va.c. 1P-4P 4.5 4.5 4.5 4.5 4.5 4.5 6 6 6 6 6 6

Note: The Ics values are equal to Icn values according to IEC 60898 standard and to Icu values according to IEC 60947-2 standard

Breaking capacity in DC

Icu (kA) IEC 60947-2 Ics (kA) IEC 60947-2 In (A) 1P 2P 3P 4P 1P 2P 3P 4P24-48Vd.c. 0.5-63 3 4.5 - - 3 4.5 - -110Vd.c. 0.5-63 - 4.5 4.5 - - 4.5 4.5 -230Vd.c. 0.5-63 - - - 4.5 - - - 4.5

Power consumption for each pole (W)

In (A) 0.5 1 2 3 4 6 10 16 20 25 32 40 50 631P+N 2.2 2.4 2.4 2.1 2.1 2.5 3 3.4 3.7 4.2 3.7 4.7 - -1P-4P 1.4 2.1 2.1 2.4 2.5 1.1 1.1 1.5 1.7 2.4 3.1 4 4.5 5.5

98 bTdiN98

Page 88: Tech Guide

Mcb’s BTDIN60

Standards IEC 60898Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Rated breaking capacity Icn (kA) IEC 60898 6Rated frequency (Hz) 50-60Temperature range (°C) -25-60Max. no. of electrical/mechanical manoeuvres 10000/20000Tripping curves B-C-DProtection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test) Limitation class (IEC 60898) 3Maximum no. of usable accessories 3Section of flexible/rigid cable (mm2) 25/35 (10/16 - 1P+N 1 mod.)

Specific features for BTDIN60 circuit breakers

Poles Modules Curve Ue (Va.c.) In (A) 1P 1 B-C-D 230/400 0.5* 1* 2* 3* 4* 6 10 16 20 25 32 40 50 631P+N 1 B-C 230 - - - - - 6 10 16 20 25 32 40 - -1P+N 2 C 230 0.5* 1* 2* 3* 4* 6 10 16 20 25 32 40 50 632P 2 B-C-D 400 0.5* 1* 2* 3* 4* 6 10 16 20 25 32 40 50 633P 3 B-C-D 400 0.5* 1* 2* 3* 4* 6 10 16 20 25 32 40 50 634P 4 B-C-D 400 0.5* 1* 2* 3* 4* 6 10 16 20 25 32 40 50 63

* C curve only

Breaking capacity in AC

Icn (kA) IEC 60898 Icu (kA) IEC 60947-2 In (A) 0.5-20 25 32 40 50 63 0.5-20 25 32 40 50 63230Va.c. 1P 6 6 6 6 6 6 10 10 10 10 10 10 1P+N-4P 6 6 6 6 6 6 20 20 20 20 20 20400-440Va.c. 1P-4P 6 6 6 6 6 6 10 10 10 10 10 10

Note: The Ics values are equal to Icn values according to IEC 60898 standard to the 75% of Icu values according to IEC 60947-2 standard

Breaking capacity in DC

Icu (kA) IEC 60947-2 Ics (kA) IEC 60947-2 In (A) 1P 2P 3P 4P 1P 2P 3P 4P24-48Vd.c. 0.5-63 6 6 - - 6 6 - -110Vd.c. 0.5-63 - 6 6 - - 6 6 -230Vd.c. 0.5-63 - - - 10 - - - 10

Power consumption for each pole (W)

In (A) 0.5 1 2 3 4 6 10 16 20 25 32 40 50 631P+N 2.2 2.4 2.4 2.1 2.1 2.5 3 3.4 3.7 4.2 3.7 4.7 - -1P-4P 1.4 2.1 2.1 2.4 2.5 1.1 1.1 1.5 1.7 2.4 3.1 4 4.5 5.5

bTdiN60 - icn = 6 kA (iEC 60898)thermal magnetic mcb’s

BTDIN TECHNICAL GUIDE

9999TEChNiCAL iNFoRmATioN

Page 89: Tech Guide

Mcb’s BTDIN100

Standards IEC 60898Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Rated breaking capacity Icn (kA) IEC 60898 10Rated frequency (Hz) 50-60Temperature range (°C) -25-60Max. no. of electrical/mechanical manoeuvres 10000/20000Tripping curves C-DProtection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test) Limitation class (IEC 60898) 3Maximum no. of usable accessories 3Section of flexible/rigid cable (mm2) 25/35

Specific features for BTDIN100 circuit breakers

Poles Modules Curve Ue (Va.c.) In (A) 1P 1 C-D 230/400 6 10 16 20 25 32 40 50 631P+N 2 C 230 6 10 16 20 25 32 40 50 632P 2 C-D-K-Z 400 6 10 16 20 25 32 40 50 633P 3 C-D 400 6 10 16 20 25 32 40 50 634P 4 C-D-K-Z 400 6 10 16 20 25 32 40 50 63

NOTE: for K and Z curves the calibrations 1, 1.6, 2, 3 and 8A are also available

Breaking capacity in AC

Icn (kA) IEC 60898 Icu (kA) IEC 60947-2 In (A) 0.5-20 25 32 40 50 63 0.5-20 25 32 40 50 63230Va.c. 1P 10 10 10 10 10 10 15 15 10 10 10 10 1P+N-4P 10 10 10 10 10 10 30 30 30 20 20 20400-440Va.c. 1P-4P 10 10 10 10 10 10 15 15 15 10 10 10

Note: The Ics values are equal to the 75% of Icn values according to IEC 60898 standard and to the 75% of Icu values according to IEC 60947-2 standard

Breaking capacity in DC

Icu (kA) IEC 60947-2 Ics (kA) IEC 60947-2 In (A) 1P 2P 3P 4P 1P 2P 3P 4P24-48Vd.c. 0.5-63 8 8 - - 8 8 - -110Vd.c. 0.5-63 - 8 8 - - 8 8 -230Vd.c. 0.5-63 - - - 12 - - - 12

Power consumption for each pole (W)

In (A) 0.5 1 2 3 4 6 10 16 20 25 32 40 50 631P-4P 1.4 2.1 2.1 2.4 2.5 1.1 1.1 1.5 1.7 2.4 3.1 4 6 5.5

bTdiN100 - icn = 10 kA (iEC 60898)thermal magnetic mcb’s

100 bTdiN100

Page 90: Tech Guide

(in = 80, 100, 125A) - icn = 10 kA (iEC 60898) bTdiN100 thermal magnetic mcb’s

Mcb’s BTDIN100 (In =80-100-125A)

Standards IEC 60898Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Rated breaking capacity Icn (kA) IEC 60898 10Rated frequency (Hz) 50-60Temperature range (°C) -25-60Max. no. of electrical/mechanical manoeuvres 10000/20000Tripping curves C-DProtection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test) Limitation class (IEC 60898) 3Maximum no. of usable accessories 3Section of flexible/rigid cable (mm2) 50/70

Specific features for BTDIN100 circuit breakers (In = 80-125A)

Poles Modules Curve Ue (Va.c.) In (A) 1P 1.5 C 230/400 80 100 1252P 3 C-D 400 80 100 1253P 4.5 C-D 400 80 100 1254P 6 C-D 400 80 100 125

Breaking capacity in AC

Icn (kA) IEC 60898 Icu (kA) IEC 60947-2 In (A) 80 100 125 80 100 125230Va.c. 1P 10 10 10 10 10 10 2P 10 10 10 25 25 25 3P-4P 10 10 10 16 16 16400-440Va.c. 1P-2P 10 10 10 16 16 16 3P-4P 10 10 10 10 10 10

Note: The Ics values are equal to the 75% of Icn values according to IEC 60898 standard and to the 75% of Icu values according to IEC 60947-2 standard

Breaking capacity in DC

Icu (kA) IEC 60947-2 Ics (kA) IEC 60947-2 In (A) 1P 2P 3P 4P 1P 2P 3P 4P24-48Vd.c. 0.5-63 10 10 - - 10 10 - -110Vd.c. 0.5-63 - 10 10 - - 10 10 -230Vd.c. 0.5-63 - - - 15 - - - 15

Power consumption for each pole (W)

In (A) 80 100 1251P-4P 8.8 10 15.6

BTDIN TECHNICAL GUIDE

101TEChNiCAL iNFoRmATioN 101

Page 91: Tech Guide

bTdiN250 - icn = 25 kA (iEC 60898)thermal magnetic mcb’s

Mcb’s BTDIN250

Standards IEC 60898Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Rated breaking capacity Icn (kA) IEC 60898 25Rated frequency (Hz) 50-60Temperature range (°C) -25-60Max. no. of electrical/mechanical manoeuvres 10000/20000Tripping curves CProtection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test) Maximum no. of usable accessories 3Section of flexible/rigid cable (mm2) 25/35

Specific features for BTDIN100 circuit breakers

Poles Modules Curve Ue (Va.c.) In (A) 1P 1 C 230/400 6 10 16 20 25 32 40 50 631P+N 2 C 230 6 10 16 20 25 32 40 50 632P 2 C 400 6 10 16 20 25 32 40 50 633P 3 C 400 6 10 16 20 25 32 40 50 634P 4 C 400 6 10 16 20 25 32 40 50 63

Breaking capacity in AC

Icn (kA) IEC 60898 Icu (kA) IEC 60947-2 In (A) 0.5-20 25 32 40 50 63 0.5-20 25 32 40 50 63230Va.c. 1P 25 20 15 12.5 12.5 12.5 25 20 15 12.5 12.5 12.5 1P+N 25 25 25 25 25 25 45 45 45 25 25 25 2P-3P-4P 25 25 25 25 25 25 45 45 45 45 25 25400-440Va.c. 2P 25 25 20 20 15 15 30 25 20 20 15 15 3P-4P 25 20 15 15 12.5 12.5 25 20 15 15 12.5 12.5 Ics (kA) IEC 60898 Ics (kA) IEC 60947-2 In (A) 0.5-20 25 32 40 50 63 0.5-20 25 32 40 50 63230Va.c. 1P 12.5 10 7.5 7.5 7.5 7.5 20 15 12.5 10 10 10 1P+N 12.5 12.5 12.5 12.5 12.5 12.5 35 35 35 20 20 20 2P-3P-4P 12.5 12.5 12.5 12.5 12.5 12.5 35 35 35 35 20 20400-440Va.c. 2P 12.5 12.5 10 10 7.5 7.5 25 20 15 15 12.5 12.5 3P-4P 12.5 10 7.5 7.5 7.5 7.5 20 15 12.5 12.5 10 10

Breaking capacity in DC

Icu (kA) IEC 60947-2 Ics (kA) IEC 60947-2 In (A) 1P 2P 3P 4P 1P 2P 3P 4P24-48Vd.c. 0.5-63 10 10 - - 10 10 - -110Vd.c. 0.5-63 - 10 10 - - 10 10 -230Vd.c. 0.5-63 - - - 15 - - - 15

Power consumption for each pole (W)

In (A) 6 10 16 20 25 32 40 50 631P-4P 1.1 1.1 1.5 1.7 2.4 3.1 4 6 5.5

102 bTdiN102

Page 92: Tech Guide

bTdiN250h - icn = 25 kA (iEC 60898)thermal magnetic mcb’s

Mcb’s BTDIN250H

Standards IEC 60898Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Rated breaking capacity Icn (kA) IEC 60898 10Rated frequency (Hz) 50-60Temperature range (°C) -25-60Max. no. of electrical/mechanical manoeuvres 10000/20000Tripping curves CProtection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test) Maximum no. of usable accessories 3Section of flexible/rigid cable (mm2) 50/70

Specific features for BTDIN250H circuit breakers

Poles Modules Curve Ue (Va.c.) In (A) 1P 1.5 C 230/400 25 32 40 50 632P 3 C 400 25 32 40 50 633P 4.5 C 400 25 32 40 50 634P 6 C 400 25 32 40 50 63

Breaking capacity in AC

Icn (kA) IEC 60898 Icu (kA) IEC 60947-2 In (A) 25 32 40 50 63 25 32 40 50 63230Va.c. 1P-4P 25 25 25 25 25 50 50 50 50 50400-440Va.c. 1P-4P 25 25 25 25 25 50 50 50 50 50

Power consumption for each pole (W)

In (A) 25 32 40 50 631P-4P 2.8 3.5 4.3 4.8 6

Breaking capacity in DC

Icu (kA) IEC 60947-2 Ics (kA) IEC 60947-2 In (A) 1P 2P 3P 4P 1P 2P 3P 4P24-48Vd.c. 0.5-63 10 10 - - 10 10 - -110Vd.c. 0.5-63 - 10 10 - - 10 10 -230Vd.c. 0.5-63 - - 15 - - - 15

BTDIN TECHNICAL GUIDE

103TEChNiCAL iNFoRmATioN 103

Page 93: Tech Guide

bTdiN250 - icn = 25 kA (iEC 60947-2)magnetic only mcb’s

Mcb’s only magnetic BTDIN250

Standards IEC 60947-2Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Rated breaking capacity Icn (kA) IEC 60947-2 25Rated frequency (Hz) 50-60Temperature range (°C) -25-60Max. no. of electrical/mechanical manoeuvres 10000/20000Tripping curves 12-14 InProtection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test) Maximum no. of usable accessories 3Section of flexible/rigid cable (mm2) 25/35

Specific features for BTDIN250 circuit breakers (magnetic only)

Poles Modules Curve Ue (Va.c.) In (A) 2P 2 12-14In 400 1.6 2.5 4 6.3 10 12.5 16 25 40 633P 3 12-14In 400 1.6 2.5 4 6.3 10 12.5 16 25 40 63

Breaking capacity in AC

Icn (kA) IEC 60898 Icu (kA) IEC 60947-2 In (A) <6.3 10-16 25 40-63 <6.3 10-16 25 40-63230Va.c. 2P-3P 50 50 50 20 25 25 25 10400-440Va.c. 2P 25 20 15 10 12.5 10 7.5 7.5 3P 25 15 15 10 12.5 10 10 7.5

Power consumption for each pole (W)

In (A) 6 10 16 20 25 32 40 50 632P-3P 1.1 1.1 1.5 1.7 2.4 3.1 4 6 5.5

104104 bTdiN

Page 94: Tech Guide

md125 - icn = 10 kA (iEC 60898)thermal magnetic mcb’s

Mcb’s MD125

Standards IEC 60898Rated voltage of use Ue (Va.c.) 400Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Rated pulse voltage Uimp (kV) 6Rated breaking capacity Icn (kA) IEC 60898 10Rated frequency (Hz) 50-60Temperature range (°C) -5-70Max. no. of electrical/mechanical manoeuvres 1500/8500Tripping curves CProtection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test) Section of flexible/rigid cable (mm2) 50/70

Specific features for MD125 circuit breakers

Poles Modules Curve Ue (Va.c.) In (A) 3P 4.5 C 400 63 80 100 1254P 6 C 400 63 80 100 125

Breaking capacity in DC

Icu (kA) IEC 60947-2 Ics (kA) IEC 60947-2 In (A) 1P 2P 1P 2P24-48Vd.c. 63-125 15 15 11 11110Vd.c. 63-125 10 10 7.5 7.5230Vd.c. 63-125 7.5 7.5 6 6

Breaking capacity in AC

Icn (kA) IEC 60898 Icu (kA) IEC 60947-2 In (A) 63 80 100 125 63 80 100 125230Va.c. 3P-4P 15 15 15 15 22 22 22 22400-440Va.c. 3P-4P 10 10 10 10 15 15 15 15 Ics (kA) IEC 60898 Ics (kA) IEC 60947-2 In (A) 63 80 100 125 63 80 100 125230Va.c. 3P-4P 11 11 11 11 11 11 11 11400-440Va.c. 3P-4P 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5

Power consumption for each pole (W)

In (A) 63 80 100 1253P-4P 4.2 5 6.5 9.4

Downgrading depending on the RT temperature (°C)

In (A) 10 20 30 40 50 6063 70 68 66 63 60 5880 91 88 85 80 78 75100 112 108 104 100 96 92125 140 135 130 125 120 115

BTDIN TECHNICAL GUIDE

105TEChNiCAL iNFoRmATioN 105

Page 95: Tech Guide

bTdiN45 - icn = 4.5 kA (iEC 61009-1)earth leakage thermal magnetic circuit breakers

Earth leakage thermal magnetic circuit breakers BTDIN45

Standards IEC 61009-1Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Minimum operating voltage for test pushbutton (Va.c.) 100 (170 for 4P)Rated breaking capacity Icn (kA) IEC 60898 4.5Differential breaking capacity IDm (kA) 3Rated frequency (Hz) 50-60Temperature range (°C) -25-60Max. no. of electrical/mechanical manoeuvres 10000/20000Tripping curves CProtection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test) Limitation class (IEC 60898) 3Maximum no. of usable accessories 3Section of flexible/rigid cable (mm2) 25/35

Specific features for BTDIN45 circuit breakers

Poles Modules Curve Ue (Va.c.) IDn (A) Type In (A) 1P+N 2 C 230 0.01-0.03 A-AC 0.5 1 2 3 4 6 10 13 16 20 25 32 401P+N 4 C 230 0.03 AC - - - - - 6 10 13 16 20 25 32 402P 2 C 230 0.03 AC - - - - - 6 10 13 16 20 25 32 404P 4 C 400 0.03 A-AC - - - - - 6 10 13 16 20 25 32 40

Breaking capacity in AC

Icn (kA) IEC 60898 Icu (kA) IEC 60947-2 In (A) 0.5-20 25 32 40 50 63 0.5-20 25 32 40 50 63230Va.c. 1P+N-4P 4.5 4.5 4.5 - - - 6 6 6 - - -400-440Va.c. 4P 4.5 4.5 4.5 4.5 4.5 4.5 6 6 6 6 6 6

Note: The Ics values are equal to the Icn values according to IEC 60898 standard and to the Icu values according to IEC 60947-2 standardThe G8130/... and G8230/... circuit breakers do not have plug-in connection. The breaking capacity of G8130/... and G8230/... circuit breakers is equal both for IEC 60898 and for IEC 60947-2.

Breaking capacity in DC

Icu (kA) IEC 60947-2 Ics (kA) IEC 60947-2 In (A) 1P 2P 3P 4P 1P 2P 3P 4P110Vd.c. 0.5-63 - 4.5 4.5 - - 4.5 4.5 -230Vd.c. 0.5-63 - - - 4.5 - - - 4.5

Total power consumption (W)

In (A) 0.5 1 2 3 4 6 10 16 20 25 32 40 50 631P+N (2 mod.) 2.2 2.4 2.4 2.1 2.1 2.5 3 3.4 3.7 4.2 3.7 4.7 - -1P+N (4 mod.) - - - - - 1.23 1.45 1.92 3.1 4.6 5.3 6.7 8.9 11.74P - - - - - 6 4.8 9 9.3 11 13 - - -

106 bTdiN106

Page 96: Tech Guide

bTdiN60 - icn = 6 kA (iEC 61009-1)earth leakage thermal magnetic circuit breakers

Earth leakage thermal magnetic circuit breakers BTDIN60

Standards IEC 61009-1Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Minimum operating voltage for test pushbutton (Va.c.) 100 (170 for 4P)Rated breaking capacity Icn (kA) IEC 60898 6Differential breaking capacity IDm (kA) 3 (6 for 2P in 4 modules)Rated frequency (Hz) 50-60Temperature range (°C) -25-60Max. no. of electrical/mechanical manoeuvres 10000/20000Tripping curves CProtection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test) Limitation class (IEC 60898) 3Maximum no. of usable accessories 3Section of flexible/rigid cable (mm2) 25/35

Specific features for BTDIN60 circuit breakers

Poles Modules Curve Ue (Va.c.) IDn (A) Type In (A) 1P+N 2 C 230 0.03-0.3 A-AC 0.5 1 2 3 4 6 10 16 20 25 32 402P 2 C 230/400 0.03 AC - - - - - 6 10 16 20 25 32 404P 4 C 400 0.03-0.3 A-AC - - - - - 6 10 16 20 25 32 40

Breaking capacity in AC

Icn (kA) IEC 60898 Icu (kA) IEC 60947-2 In (A) 0.5-20 25 32 40 50 63 0.5-20 25 32 40 50 63230Va.c. 1P 6 6 6 6 6 6 10 10 10 10 10 10 1P+N-4P 6 6 6 6 6 6 20 20 20 20 20 20400-440Va.c. 1P-4P 6 6 6 6 6 6 10 10 10 10 10 10

Note: The Ics values are equal to the Icn values according to IEC 60898 standard and to the 75% of Icu values according to IEC 60947-2 standard

Breaking capacity in DC

Icu (kA) IEC 60947-2 Ics (kA) IEC 60947-2 In (A) 1P 2P 3P 4P 1P 2P 3P 4P110Vd.c. 0.5-63 - 6 6 - - 6 6 -230Vd.c. 0.5-63 - - - 10 - - - 10

Total power consumption (W)

In (A) 0.5 1 2 3 4 6 10 16 20 25 32 40 50 631P+N (2 mod.) 2.2 2.4 2.4 2.1 2.1 2.5 3 3.4 3.7 4.2 3.7 4.7 - -1P+N (4 mod.) - - - - - 1.23 1.45 1.92 3.1 4.6 5.3 6.7 8.9 11.74P - - - - - 6 4.8 9 9.3 11 13 - - -

BTDIN TECHNICAL GUIDE

107TEChNiCAL iNFoRmATioN 107

Page 97: Tech Guide

Single module Type RCbo - icn = 6000A

Earth leakage thermal magnetic circuit breakers

Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Minimum operating voltage for test pushbutton (Va.c.) 100Rated breaking capacity Icn (kA) 6Differential breaking capacity IDm (kA) 3Rated frequency (Hz) 50-60Temperature range (°C) -25-60Max. no. of electrical/mechanical manoeuvres 10000/20000Tripping curves CProtection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test)Maximum no. of usable accessories 3Section of flexible/rigid cable (mm2) 10/16

Specific features

Poles Modules Curve Ue (Va.c.) IDn (A) Type In (A) 1P+N 1 C 240 0.03 A 10 16 20 25 32 45

Breaking capacity in DC

Icu (kA) IEC 60947-2 Ics (kA) IEC 60947-2 In (A) 1P 2P 3P 4P 1P 2P 3P 4P110Vd.c. 0.5-63 - 6 6 - - 6 6 -230Vd.c. 0.5-63 - - - 10 - - - 10

Total power consumption (W)

In (A) 10 16 20 25 32 451P+N 3 3.4 3.7 4.2 3.7 4.7

108 bTdiN108

Page 98: Tech Guide

Combinable earth leakage modules (iEC 61009-1)

Combinable earth leakage modules BDA

Standards IEC 61009-1Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Rated voltage Ue (Va.c.) 230/400Minimum operating voltage for test pushbutton (Va.c.) 170Rated frequency (Hz) 50-60Temperature range (°C) -25-60Max. no. of electrical/mechanical manoeuvres 10000/20000Protection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test) Section of flexible/rigid cable (mm2) 25/35 (10/16 4P-2 modules) - 50/70 (BTDIN100 - 80A-125A)

Specific features for earth leakage modules

Poles Modules In (A) IDn (A) Type2P 2 0.5-32 0.03-0.3 A-AC 0.5-63 0.03-0.3-0.5 A-AC 0.5-63 0.3-1 A-S 4 80-125 0.03-0.3 A-AC 80-125 0.3-1 A-S3P 3 0.5-63 0.03-0.3-0.5 A-AC4P 2 0.5-32 0.03-0.3 A-AC 0.5-32 0.3-1 A-S 4 0.5-32 0.03-0.3-0.5 A-AC 0.5-63 0.03-0.3-0.5 A-AC 0.5-63 0.3-1 A-S 6 80-125 0.03-0.3 A-AC 80-125 0.3-1 A-S

Power consumption for each pole (W)

In (A) 6 10 16 20 25 32 40 50 63 80 100 1252P 0.04 0.1 0.26 0.41 0.64 1.06 0.68 1.07 1.7 1.43 2.23 3.484P 0.07 0.19 0.5 0.78 1.2 2 0.88 1.37 2.17 1.57 2.45 3.83

Notes: The specific earth leakage modules for BTDIN 250H circuit breakers have the same features as those for BTDIN 45/60/100/250 circuit breakers, with the exception of the connection pitch with the thermal magnetic Mcb.Earth leakage A type HPI modules are capable of supporting 8/20µs current pulses of up to 3kA. The values for the number of modules shown in brackets refer to earth leakage modules for BTDIN 100 from 80 to 125 A.

Differential breaking capacity

Mcb In (A) Icn (kA) Ics (%Icn) IDm (kA)BTDIN45 6-63 4.5 100 3BTDIN60 0.5-63 6 100 6BTDIN100 6-63 10 75 6BTDIN250 6-20 20 50 15BTDIN250H 25 20 50 12 32-40 15 50 9 50-63 12.5 50 7.5

BTDIN TECHNICAL GUIDE

109TEChNiCAL iNFoRmATioN 109

Page 99: Tech Guide

(iEC 61008-1)Earth leakage circuit breakers

Circuit breakers Simple earth leakage

Standards IEC 61008-1Rated insulating voltage Ui (Va.c.) 500Maximum operating voltage Umax (Va.c.) 440Rated voltage Ue (Va.c.) 230/400Minimum operating voltage for test pushbutton (Va.c.) 100 (170 for 4P)Rated frequency (Hz) 50-60Temperature range (°C) -25-60Max. no. of electrical/mechanical manoeuvres 10000/20000Protection degree (terminal area/other areas) IP20/IP40Resistance to vibrations (IEC 68.8.35 - CEI 50-6) 3g - 10-55Hz for 30 min.Resistance to corrosion in constant climate (°C/RH) 23/83 - 40/93 - 55/20(Tropical influence according to IEC 68-2) Resistance to corrosion in variable climate (°C/RH) 25/95 - 55/95(Tropical influence according to IEC 68-2) Resistance to abnormal heat and fire (°C) 650 - 960(glow wire test) Section of flexible/rigid cable (mm2) 25/35

Specific features for earth leakage circuit breakers

Poles Modules Ue (Va.c.) Type IDn (A) In (A) 2P 2 230/400 A-AC 0.01 16 - - - - 0.03 - 25 40 63 - 0.3-0.5 - 25 40 63 80 A-S 0.3-0.5 - 25 40 63 804P 4 400 A-AC 0.03 - 25 40 63 - 0.3-0.5 - 25 40 63 80 A-S 0.3-0.5 - 25 40 63 80

Differential breaking capacity

Poles In (A) Im (A) IDm (A)2P 16-25-40 500 1500 63 630 630 80 800 8004P 25-40 500 1000 63 630 1000 80 800 1000

Power consumption for each pole (W)

In (A) 16 25 40 63 802P 2.5 4 5.75 6.5 7.754P - 2.5 4 6.33 9.5

Protection with fuses upstream

Fuse gG upstream In (A) 16 25 32 40 50 63 80 1002P downstr. 16 100 100 100 80 50 30 10 6 25 - 100 100 80 50 30 10 6 40 - - - 80 50 30 10 6 63 - - - - - 30 10 6 80 - - - - - - 10 64P downstr. 25 - 10 10 10 10 10 10 - 40 - - - 10 10 10 10 - 63 - - - - - 10 10 -

Protection with circuit breakers upstream Circuit breaker upstream In (A) BT45 BT60 BT100/250 BT100* M125<63A2P downstr. 16-40 4.5 6 10 6 6 63 - 6 10 6 6 80 - 6 - 6 -4P downstr. 25-40 4.5 6 10 - 6 63 - 6 10 - 6 80 - 6 - - 6

* BTDIN 100 with In = 80-125A

110 bTdiN110 TEChNiCAL iNFoRmATioN

Page 100: Tech Guide

operation of automatic circuit breakers in particular conditions

In direct current circuits, overcurrent can occur due to overload, short circuit or earth fault (see figure). Overloads must be interrupted following the parameters listed in the IEC 60364 standard (Ib ≤_In ≤_Iz). Short circuits must be interrupted using devices with direct current breaking capacity not lower than the estimated short circuit current.

opERATioN iN diRECT CURRENT

Power supply system

2-pole circuit breakers

4-pole circuit breakers

generator with earth connected pole

The first earth fault will have no effect. On the other hand, a second fault may affect both the positive and the negative poles. Both poles must therefore be protected. In this case, the second fault current can not be assessed based on the two fault impedances. Such current is in fact sensibly lower than the generator U/RO short circuit current.

isolated generator or generator with earth connected centre point

To ensure overload protection, it is necessary that current runs through all bimetals of the release (see diagram below): in these conditions, thermal operation of the circuit breaker in direct current is not particularly different from its operation in alternate current. It goes without saying that circuit breakers with TA powered thermal releases, or circuit breakers with electronic release cannot operate with

direct current (unless otherwise specified by the manufacturer). For short circuit protection (or fault / mass protection), it is necessary that the releases operate for both polarities of the circuit, with the possible exclusion of the pole connected to the earth or the mass. The intervention threshold of the short circuit protection can be increased compared to the corresponding 50 Hz threshold.

A fault can occur between the individual poles and the earth. Also in this case, it is therefore necessary that both the negative and the positive pole are protected. The earth fault currents are the same as the generator short circuit current*: in fact, the U0 voltage is 0.5U, and the internal resistance of the generator affected by the fault is also 0.5 RO.

The fault current can never only concern the pole connected to the earth. It is therefore sufficient to only install the protection on the pole insulated from the earth. The earth fault current is the same as the generator short circuit current*:In any case, for disconnection purposes, both poles must be protected.

A - Isolated Generator B - Generator with earth or mass connected centre point

C - Generator with one pole connected to the earth or mass

3-pole circuit breakers

G

G

U0

U0U0 R0R0U

0.5 R0

0.5 R0

Earth faults cause significant levels of overcurrent only if the generator has a pole or an intermediate point connected to the earth, and if the masses are also connected to the earth. Figures A, B and C show the possible overcurrent situations that must be taken into account when selecting the types of protections.

* With lines of non negligible length, the short circuit current is given by U (R0+RL), where RL is the resistance of the line. RL can be calculated using the following formula: RL = 0.04L/S where L is the cable length and S the section of the cable.

111TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 101: Tech Guide

bTdiN mcb’s rated current depending onthe temperature and frequency

bTdiN ThERmAL mAGNETiC mCb’S RATEd CURRENT dEpENdiNG oN ThE FREqUENCy

Type of Mcb Protection from overload Protection from short circuit In at 50 Hz In at 400 Hz Kt correction Im at 50 Hz Im at 400 Hz Km correction coefficient coefficientBtdIn 45/60/100/250 6-63A 6-63A 1 3-5 In (B) 4.32-7.2 In 1.44 0.5-63A 0.5-63A 1 5-10 In (C) 7.2-14.4 In 1.44 6-63A 6-63A 1 10-20 In (D) 14.4-28.8 In 1.44

The curve below shows the magnetic operation property, and the Km correction coefficient that must be applied to BTDIN circuit breakers, depending on frequency.

Example With a BTDIN 60 in B curve (3-5 In), the magnetic intervention threshold at 200 Hz must be multiplied by the Km coefficient of approximately 1.29. This means that at 200 Hz, the circuit breaker will trip in case of currents between 3x1.29 = 3.8 In and 5x1.29 = 6.45 In.

In (A)/°C -25 -5 10 20 30 40 50 60BtdIn45 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.4BtdIn60 1 1.2 1.1 1.1 1 1 0.9 0.9 0.9BtdIn100 2 2.4 2.2 2.1 2 2 1.9 1.8 1.8BtdIn250 3 3.6 3.3 3.2 3.1 3 2.9 2.7 2.6BtdIn250H 4 4.9 4.5 4.3 4.1 4 3.9 3.7 3.6 6 7.3 6.7 6.4 6.2 6 5.8 5.6 5.4 10 12.2 11.2 10.7 10.3 10 9.7 9.3 9 16 19.7 18.4 17.3 16.6 16 15.3 14.7 14.1 20 24.6 22.8 21.6 20.8 20 19.2 18.4 17.6 25 31.2 29 27.2 26 25 24 22.7 21.7 32 40 36.9 34.9 33.3 32 30.7 29.1 27.8 40 50 47 44 42 40 38 36 34 50 62.5 58.8 55 52.5 50 47.5 45 42.5 63 78.1 74.7 69.9 66.1 63 59.8 56.1 52.9 80 102 93 88 84 80 76 72 69 100 124 116 110 105 100 95 90 86 125 155 145 137 131 125 119 113 108

The performance of automatic circuit breakers can be affected by particular types of climate: dry heat, cold heat, humid hot, salt mist in the atmosphere.Bticino circuit breaker features meet the requirements of IEC 60068-2-20 standard,

and can therefore also be used in difficult atmospheric conditions, such as the types of industrial environments specified by the IEC 60947 standard.

bTdiN ThERmAL mAGNETiC mCb’S RATEd CURRENT dEpENdiNG oN ThE TEmpERATURE

112 TEChNiCAL iNFoRmATioNbTdiN

Page 102: Tech Guide

operation of bTdiN earth leakage mcb’s depending on the frequency

Earth leakage modules type AC Earth leakage modules type A

Earth leakage modules type A-S

The curves represent the multiplication coefficient that must be applied to the earth leakage intervention threshold value, depending on frequency.

Earth leakage modules type A-HPI

EARh LEAkAGE iNTERvENTioN ThREShoLd dEpENdiNG oN ThE FREqUENCy

TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

113TEChNiCAL iNFoRmATioN 113

Page 103: Tech Guide

(iEC 60947-3 iEC 60699-1)bTdiN switch-disconnectors

Features common to switch-disconnectors which cannot be fitted with accessories

Standards IEC 60947-3 IEC 60669-1Rated insulating voltage Ui (Va.c.) 400/500Rated pulse voltage Uimp (kV) 4Rated voltage Ue (Va.c) 230/400Max. no. of mechanical manoeuvres 30000(In<32) 5000 (In=63-100A)Temperature range (°C) -10-40Degree of protection (terminal area/other areas) IP20/IP40Rated closing and breaking capacity and AC22utilization category Modular dimensions YesDisplayed isolation YesUpper/lower power supply YesShort-time Icw (kA) withstand current for 1 sec. In<32 500 In=63 750 In=100-125 1200Section of flexible/rigid cable (mm2) 10/16 (In<32A) 25/35 (In=63A) 50/70 (in>100A)

Specific features for switch-disconnectors which cannot be fitted with accessories

Poles Modules In (A)1 1 16 32 63 100 -2 1 16 32 - - - 2 - - 63 100 -3 2 16 32 - - - 3 - - 63 100 1254 2 16 32 - - - 4 - - 63 100 125

Conditioned short-circuit current

In (A) BTDIN45 BTDIN60 BTDIN100 BTDIN25016 4500 6000 6000 600032 4500 4500 4500 450063 3000 3000 3000 3000100 3000 3000 3000 3000

Features common to switch-disconnectors which can be fitted with accessories

Standards IEC 60947-3 IEC 60669-1Rated insulating voltage Ui (Va.c.) 500Rated pulse voltage Uimp (kV) 6Rated voltage Ue (Va.c) 230/400Max. no. of mechanical manoeuvres 30000Temperature range (°C) -25-60Degree of protection (terminal area/other areas) IP20/IP40Rated closing and breaking capacity and utilization category AC22 (>63A) AC23 (≤63A)Modular dimensions YesDisplayed isolation YesUpper/lower power supply YesCan be fitted with motor NoShort-time Icw (kA) withstand current for 1 sec. 20 InSection of flexible/rigid cable (mm2) 50/70

Specific features for switch-disconnectors which can be fitted with accessories

Poles Modules In (A)1 1 16-32 - - -2 2 16-32 63 100 -3 3 16-32 63 100 1254 4 16-32 63 100 125

Power consumption for each pole (W)

In (A) 16 32 63 100 125Pw (W) 1.5 2.5 3.2 7 10

114 bTdiN114

Page 104: Tech Guide

Selection of the non-automatic mcb’s

Non-automatic circuit breakers are devices which must be manually opened or closed, in order to control or disconnect a circuit where no protection devices, that may cause their automatic opening, are installed.These devices must be selected depending on the properties of the line and the utilization category (see table below). It is imperative that they are connected to overcurrent protection devices installed upstream.

UTiLizATioN CATEGoRiES

Utilization category Applications Rated Establishment Breaking current Type of Frequent Non frequent current I/Ie U/Ue cosϕ Ic/Ie Ur/Ue cosϕ No. cyclescurrent operation operation of use alternate AC-20A AC-20B Establishment/no load breaking capacity All values - - - - - - - AC-21A AC-21B Operation of resistive loads All values 1.5 1.05 0.95 1.5 1.05 0.95 5 with limited size overloads AC-22A AC-22B Operation of mixed resistive All values 3 1.05 0.65 3 1.05 0.65 5 and inductive loads with limited size overloads AC-23A AC-23B Operation of motors or other 0 < Ie ≤ 100A 10 1.05 0.45 8 1.05 0.45 5 highly inductive loads 100A < Ie 10 1.05 0.35 8 1.05 0.35 5 Utilization category Applications Rated Establishment Breaking current Type of Frequent Non frequent current I/Ie U/Ue L/R (ms) Ic/Ie Ur/Ue L/R (ms) No. cycles current operation operation of use direct DC-20A DC-20B Establishment/no load breaking capacity All values - - - - - - - DC-21A DC-21B Operation of resistive loads All values 1.5 1.05 1 1.5 1.05 1 5 with limited size overloads DC-22A DC-22B Operation of mixed resistive All values 4 1.05 2.5 4 1.05 2.5 5 and inductive loads with limited size overloads DC-23A DC-23B Operation of motors or other All values 4 1.05 15 4 1.05 15 5 highly inductive loads

Utilization category according to IEC 60947-3

I = establishment currentIe = rated current of use

Ic = breaking currentU = establishment voltage

Ue = rated voltage of useUr = recovery voltage

The selection of a non-automatic circuit breaker, based on the electric properties, must be performed following the same procedure and the same criteria implemented when selecting automatic circuit breakers. The utilization category shows the application the circuit breaker is suitable for.Below is the table of the utilization categories as defined by IEC 60947-3 standard.

BTDIN TECHNICAL GUIDE

115TEChNiCAL iNFoRmATioN 115

Page 105: Tech Guide

bTdiN motor protectors circuit breakers(iEC 60947-2)

Motor protectors MS32

Standards IEC 60947-2No. of poles 3PNo. of modules 2.5Rated insulating voltage Ui (Va.c.) 690Rated pulse voltage Uimp (kV) 6Rated frequency 50-60Maximum rated current (A) 32Adjustment fields (A) 15 diff. settings (from 0.1 to 32)Intervention class 10AMagnetic intervention 12XIeMechanical duration (cycles) 100000Electrical duration 32A (AC3) (cycles) 100000Utilization category AShort-time Icw (kA) withstand current for 1 sec. IP20-IP41/65 with prot. shieldMounting position anyOperating temperature -20-+70Maximum utilisation altitude 3000Maximum terminal torque (Nm) 2.3Maximum conductors section (mm2) 6

Maximum controllable powers with MS32 motor protectors

Operating voltage (kW)Type Imin (A) Imax (A) Magnetic intervention (A) 230V 400V 415V 440V 500V 690VMS32/016 0.1 0.16 1.92 - - - - 0.06 0.06MS32/025 0.16 0.25 3 - 0.06 0.06 0.06 0.09 0.09-0.012MS32/040 0.25 0.4 4.8 0.06 0.09 0.09 0.09 0.12 0.18MS32/063 0.4 0.63 7.56 0.09 0.12-0.18 0.12-0.18 0.12-0.18 0.18 0.25MS32/1 0.63 1 12 0.12 0.25 0.25 0.25 0.25-0.37 0.37-0.55MS32/2 1 1.6 19.2 0.18-0.25 0.37-0.55 0.37-0.55 0.37-0.55 0.55-0.75 0.75MS32/3 1.6 2.5 30 0.37 0.75 0.75 0.75 1.1 1.1-1.5MS32/4 2.5 4 48 0.55-0.75 1.1-1.5 1.1-1.5 1.1-1.5 1.5-2.2 2.2-3MS32/6 4 6.5 78 1.1 2.2 2.2 2.2-3 3 4MS32/10 6.3 10 120 1.5-2.2 3-4 3-4 4 4 5.5-7.5MS32/14 9 14 168 3 5.5 5.5 5.5 5.5-7.5 12.8MS32/18 13 18 216 4 7.5 7.5 7.5 11 15MS32/23 17 23 276 5.5 11 11 11 15 18.5MS32/25 20 25 300 5.5 11 11 11 15 22MS32/32 24 32 384 7.5 15 15 15 18.5 30

Breaking capacity of MS32 IEC 60947-2 motor protectors

Rated short circuit breaking capacity (kA) Protection fuse for I>Icu Fuse gl or gG* (A)Type Icu (230V) Ics (230V) Icu (400V) Ics (400V) 230V 400VMS32/016-10 100 100 100 100 - -MS32/14 100 100 25 12.5 - 80MS32/18-32 100 100 25 12.5 - 100

* fuse necessary only if the short circuit current at the point of installation is higher than the breaking capacity of the circuit breaker itself. - fuse not needed.

Motor protector power consumption

Type Adjustment (A) Resistance (Ω) Pn max (W) Pn min (W)MS32/016 0.1-0.16 81 0.81 2.07 MS32/025 0.16-0.25 29 0.75 1.83MS32/040 0.25-0.4 12 0.76 1.93MS32/063 0.4-0.63 4.7 0.75 1.87 MS32/1 0.63-1 1.96 0.78 1.96 MS32/2 1-1.6 0.76 0.76 1.94 MS32/3 1.6-2.5 0.32 0.83 2.03 MS32/4 2.5-4 0.13 0.78 2.01 MS32/6 4-6.5 0.055 0.88 2.34 MS32/10 6.3-10 0.022 0.86 2.17 MS32/14 9-14 0.0133 1.07 2.6 MS32/18 13-18 0.0075 1.26 2.41 MS32/23 23-17 0.0056 1.62 2.96 MS32/25 20-25 0.0045 1.8 2.81 MS32/32 24-32 0.0032 1.81 3.23

Pn power consumption at the calibration for each phase. PImax power consumption for each pole at the maximum current.

Motor protector accessory power consumption

Type Resistance (Ω) Pm max (W)MSC/… 5 0.18MSV/… - 1.2MST/… * *

* MST/… this is an impulse operation device, and must therefore not be taken into account during power consumption calculations.

116 bTdiN116

Page 106: Tech Guide

Pulse operated latching relays

Standards IEC 60669-2-2No. of modules 1-2Rated pulse voltage Uimp (kV) 4Rated voltage Ue (Va.c.) 400Rated insulating voltage Ui (Va.c.) 250Rated control voltage Uc (Va.c.) 24 o 230Rated current In (A) at 30°C 16Conditioned short-circuit current (kA) 3Rated frequency (Hz) 50-60Temperature range (°C) -5-50Max. no. of mechanical manoeuvres 1000000Power consumption for each pole (W) 0.8Protection degree (terminal area/other areas) IP20Coil consumption (pulse) (VA) 16Coil consumption (held control) (VA) 3.2Maximum section of connectable 4 or 2x2.5 flexible/rigid cable (mm2)

pulse operated latching relays

Field of application

Control for medium and low power devicesCentralised control for lighting managementCyclical control of devices

Features

Bistable type relay with 1, 2 and 4 contacts• The contacts change status with each current pulse• Front lever indicating the status of the contacts, and for manual notification of the status of the control signal (0-I)

Accessories

• Changeover contact for remote notification (1NO+1NC 230V 6A).• Accessories for held and centralised control (maximum 10 for each group).• Impedance compensation accessories for use with lit pushbuttons.

Connection diagrams for the realisation of a held-type control system using pulse operated latching relay

23

11

12

24

LN

F1ACFP.../24FP.../230

A1 A2

1 3

2 4

A1 A2

1 323

11

12

24

LN

F1ACFM...FC...

2 4

OFF ONF51NAC F51NAC

1 3 1 3

A1 A2

2 4

12

14

11

LN

1/3 3/1

A1 A2

2 4

12

14

112/4 4/2

1/3 3/1

2/4 4/2

F2CN/24 + FP.../24F2CN/230 + FP.../230

F2CN/24 + FP.../24F2CN/230 + FP.../230

F2CN/24 + FP.../24F2CN/230 + FP.../230

F2CN/24 + FP.../24F2CN/230 + FP.../230

2 4 2 4

A1 A2

1 312

14

11

LN

A1 A2

1 312

14

11

OFF ON

Connection diagrams for the realisation of a centralised system control using pulse operated latching relays (10 devices for each group maximum)

Connection diagrams for the realisation of a remote indication system using pulse operated latching relay

A1 A2

1 3

2 4

12

14

11

LN

F2CN/24 + FP.../24F2CN/230 + FP.../230

ON OFF

ImportantAlways connect terminal 11 of item F2CN/... to the A1 or A2 terminal of the relay coil, before powering terminals 14 and 12.

Pulse operated latching relays

In (A) Contact type Vn (V a.c.) No.of modules16 1NO 24/230 2 2NO 24/230 2 4NO 24/230 2

BTDIN TECHNICAL GUIDE

117TEChNiCAL iNFoRmATioN 117

Page 107: Tech Guide

Filament 230V, tungsten filament PW (W) 16A40 4060 2675 21100 16150 10200 8300 5500 3

No. oF LAmpS phASE CoNTRoLLAbLE by ThE pULSE opERATEd LATChiNG RELAy (in = 16A)

Halogen 230 V

PW (W) 16A40 4060 2675 21100 16150 10200 8300 5500 3

Halogen 230/12V with transformer PW (W) 16A20 6535 4550 2575 16100 12

Fluorescent, non power factor corrected PW (W) 16A15 3518 3320 3230 3036 2940 2658 1865 15

Fluorescent, power factor corrected in parallel PW (W) 16A15 2918 2820 2730 2636 2540 2358 1665 14

Fluorescent, factor corrected in series PW (W) 16A2x18 442x20 402x30 272x36 262x40 202x58 142x65 124x18 22

Fluorescent compact with electronicstarter

PW (W) 16A11 7515 5520 4523 35

Fluorescent compact with HF starter PW (W) 16A18 2836 2458 142x18 142x36 122x58 7

Fluorescent compact with electromagneticstarter

PW (W) 16A7 4510 4218 3726 23

Low pressure sodium vapors, non powerfactor corrected

PW (W) 16A18 1935 655 590 3135 2150 2180 2200 2

Low pressure sodium vapors, power factorcorrected

PW (W) 16A18 1535 355 390 2135 1150 1180 1200 1

Low pressure iodine, non power factorcorrected

PW (W) 16A70 9150 5250 3330 3400 2

Low pressure iodine, non power factorcorrected

PW (W) 16A70 6150 6250 3330 2400 21000 1

High pressure mercury lamps, non powerfactor corrected

PW (W) 16A50 1180 9125 7250 3400 1

High pressure mercury lamps, powerfactor corrected

PW (W) 16A50 980 7125 5250 3400 1

pulse operated latching relays

118 bTdiN118

Page 108: Tech Guide

Relays Monostable Contactors

Standards IEC 61095 IEC 60947No. of modules 1-2 1-3Rated pulse voltage Uimp (kV) 4 4Rated voltage Ue (Va.c.) 230/400 230/400Rated insulating voltage Ui (Va.c.) 500 500Rated control voltage Uc (Va.c.) 24 or 230 24 or 230Rated current In (A) at 30°C 16 20-40-63Rated frequency (Hz) 50 50-60Maximum permitted I2t value 16000 16000Conditioned short-circuit current Icc (kA) 3 3Temperature range (°C) -5-40 -5-40Max. no. of mechanical manoeuvres 1000000 1000000Power consumption for each pole (W) 0.8 1.5Protection degree (terminal area/other areas) IP20 IP20Coil consumption (pulse) (VA) 16Coil consumption (held control) (VA) 3.2 3.2 Maximum section of connectable 4 or 2x2.5 6 or 2x4 flexible/rigid cable (mm2)

Relaysmonostable and contactors

Field of application

Control for low, medium and high power devices

Features

Monostable type relay with 1, 2 and 4 contactsThe contacts change status only when the excitation state of the coil changes (excited coil = contacts ON; de-excited coil = contacts OFF)Front lever for contacts status indication.Manual selection of the control signal status(0-AUTO-I) (AC-7A, AC-7B)

Accessories

Remote indication contact (1NO+1NC 230V 6A). When several battery contactors are positioned side by side, it is recommended that distancing modules every 2 contactors are also installed, item F80/05D.

Coil consumptions table (VA)

Item number FC1A2/24S FC1AC2/24 FC2AC2/230 FC4A2/24 FC2A4/230N FC4A4/24N FC2A2N24 FC4A2N24 FC4A4N230 FC2A2/24S FC2A2/24 FC3A2/230 FC2A4/24N FC3A4/230N FC4A6/24N FC1A2N230 FC4A2N230 FC2A4N230 FC1A2/230S FC1A2/230 FC4A2/230 FC4A4/230N FC2A2N230 FC2A2/230S FC2A2/230 FC4C2/230 FC4A6/230N FC1AC2/230 FC2C2/230Pulse 13.5 12 35 42 45 36 20 30 5Held control 4 3 3 6 7 6.5 4 6 5

AC-7A, AC-7B, AC-3 contactors

In (A) contact type Vn (V a.c.) No. of modules20 1NO 230 1 1NO+1NC 24/230 1 2NO 24/230 1 2NC 230 1 2NO+2NC 230 2 3NO 230 2 4NO 24/230 2 4NC 230 240 2NO 24/230 2 3NO 230 3 4NO 24/230 363 4NO 24/230 3

Monostable relays

In (A) contact type Vn (V a.c.) No. of modules16 1NO+1NC 24/230 1 2NO+2NC 24/230 2 4NO 24/230 2

AC-7 silent contactors

In (A) contact type Vn (V a.c.) No. of modules20 1NO 24/230 1 2NO 24/230 1

BTDIN TECHNICAL GUIDE

119TEChNiCAL iNFoRmATioN 119

Page 109: Tech Guide

Filament 230V, tungsten filament andhalogen 230V

PW (W) 16A40 4060 3275 27100 21150 13200 11300 8500 41000 2

No. oF LAmpS phASE CoNTRoLLAbLE by moNoSTAbLE RELAyS (in = 16A)

Halogen 230/12V with transformer

PW (W) 16A20 1650 1175 9100 7150 4

Fluorescent with electronic ballast

PW (W) 16A14 4018 3236 2858 172x14 202x18 162x36 142x58 8

Fluorescent, non power factor corrected PW (W) 16A18 2520 2336 2140 1958 1365 12115 7140 7

Fluorescent, power factor corrected in parallel PW (W) 16A18 1420 1336 1540 1458 965 9115 5140 5

Fluorescent, factor corrected in series

PW (W) 16A2x18 312x20 282x36 172x40 162x58 112x65 102x115 62x140 6

Low pressure sodium vapors, non powerfactor corrected

PW (W) 16A18 1935 655 690 3135 2150 2180 2200 2

Low pressure sodium vapors, power factorcorrected

PW (W) 16A18 1535 355 390 2135 1150 1180 1200 1

High pressure sodium vapors and metaliodines, non power factor corrected PW (W) 16A70 9150 5250 3330 3400 21000 -

High pressure sodium vapors and metaliodines, power factor corrected PW (W) 16A70 6150 6250 3330 2400 21000 1

High pressure mercury, non power factorcorrected

PW (W) 16A50 1180 9125 7250 3400 1700 -1000 -

High pressure mercury, power factorcorrected

PW (W) 16A50 980 7125 5250 3400 1700 -1000 -

Maximum power at 230V depending onthe No. of manoeuvres per day (W) no. of manoeuvres 16A<50 3.575 3100 2.5250 1.5500 1

Maximum power at 400V depending onthe No. of manoeuvres per day (W) no. of manoeuvres 16A<50 1075 9100 7250 3500 2

Downgrading at temperature

T (°C) Ie (A)40 1650 1460 1270 10

Motor operators (AC-7B) (kW) Vn (Va.c.) PW (W)230 0.9400 2.7

Ie= 7.5A (AC3 o AC7B)Ie= 16A (AC1A o AC7A)

Relays monostable and contactors

120 bTdiN120

Page 110: Tech Guide

Filament 230V, tungsten filament andhalogen 230V

PW (W) 20A 40A 63A40 47 118 15660 37 87 11575 30 72 96100 23 52 71150 15 36 48200 12 26 35300 8 18 25500 5 11 151000 2 7 8

No. oF LAmpS phASE CoNTRoLLAbLE by AC-1 (LN = 20, 40, 63A) CoNTACToRS

Halogen 230/12V with transformer

PW (W) 20A 40A 63A20 19 45 6450 12 29 4275 10 25 34100 8 20 28150 5 15 19

Fluorescent with electronic ballast

PW (W) 20A 40A 63A14 44 80 10018 35 64 7936 30 35 4658 18 27 312x14 22 41 512x18 17 32 402x36 15 18 222x58 9 14 15

Fluorescent, non power factor corrected PW (W) 20A 40A 63A18 28 72 10620 25 65 9536 24 56 8940 21 50 8058 15 34 5565 14 35 55115 10 21 31140 9 20 32

Fluorescent, power factor corrected in parallel PW (W) 20A 40A 63A18 18 39 6120 16 38 6036 18 38 6040 16 38 5458 11 31 4365 12 28 38115 7 16 22140 6 14 20

Fluorescent, factor corrected in series PW (W) 20A 40A 63A2x18 39 83 1252x20 35 75 1232x36 21 42 682x40 19 43 682x58 13 30 472x65 13 27 422x115 8 16 252x140 8 16 25

Low pressure sodium vapors, non powerfactor corrected

PW (W) 20A 40A 63A18 22 57 9035 7 14 2555 7 14 2590 4 9 20135 2 8 10150 2 8 10180 2 6 9200 2 6 9

Low pressure sodium vapors, power factorcorrected

PW (W) 20A 40A 63A18 17 42 5835 4 11 1555 4 11 1590 3 9 11135 1 5 7150 1 4 7180 1 3 6200 1 3 5

High pressure sodium vapors and metaliodines, non power factor corrected PW (W) 20A 40A 63A70 10 22 30150 6 15 19250 3 9 11330 3 8 9400 2 6 71000 1 2 3

High pressure sodium vapors and metaliodines, power factor corrected PW (W) 20A 40A 63A70 8 20 25150 8 20 25250 3 8 11330 2 8 10400 2 7 91000 1 3 5

High pressure mercury, non power factorcorrected

PW (W) 20A 40A 63A50 12 36 5280 10 27 39125 8 19 27250 3 10 14400 2 7 10700 1 4 61000 - 3 4

High pressure mercury, power factorcorrected

PW (W) 20A 40A 63A50 10 25 3080 8 21 25125 6 14 16250 3 7 9400 2 4 5700 1 3 31000 - 2 2

Maximum power at 230V depending onthe No. of manoeuvres per day (W) no. manoeuv. 20A 40A 63A<50 4.5 9 1475 3.5 7.5 12100 3 6 9.5250 2 4 6500 1 2.5 4.5

Maximum power at 400V depending onthe No. of manoeuvres per day (W) no. manoeuv. 20A 40A 63A<50 13 26 4175 11 22 35100 9 17 26250 4 8 13500 3 6 9

Downgrading at temperature

T (°C) 20A 40A 63A40 20 40 6350 18 36 5760 16 32 5070 14 29 46

Motor operators (AC-7B) (kW) Vn (Va.c.) 20A 40A 63A230 1.1 2.5 4400 3.3 7.5 12

BTDIN TECHNICAL GUIDE

121TEChNiCAL iNFoRmATioN 121

Page 111: Tech Guide

No. oF LAmpS phASE CoNTRoLLAbLE by AC-3 CoNTACToRS

Fluorescent, non power factor corrected PW (W) FC2A2N230/24 FC4A2N230/24 FC2A4N230N FC4A4N230N FC1A2N23018 24 24 90 90 2436 17 20 65 65 1758 10 13 40 40 10

Fluorescent, power factor corrected PW (W) FC2A2N230/24 FC4A2N230/24 FC2A4N230N FC4A4N230N FC1A2N23018 6 8 45 45 636 6 8 45 45 658 4 5 25 25 4

Fluorescent with electronic AC power supply feeder PW (W) FC2A2N230/24 FC4A2N230/24 FC2A4N230N FC4A4N230N FC1A2N2301x18 22 30 60 60 221x36 12 16 30 30 121x58 8 12 22 22 82x18 23 32 40 40 232x36 12 16 20 20 122x58 7 10 10 10 7

Halogen 230 V PW (W) FC2A2N230/24 FC4A2N230/24 FC2A4N230N FC4A4N230N FC1A2N230200 - 5 15 15 -300 - 3 10 10 -500 - 2 6 6 -1000 - 1 3 3 -

Low pressure sodium vapors, non power factor corrected PW (W) FC2A2N230/24 FC4A2N230/24 FC2A4N230N FC4A4N230N FC1A2N23035 5 6 13 13 555 5 6 13 13 590 3 4 9 9 3135-180 2 3 6 6 2

High pressure sodium vapors, non power factor corrected PW (W) FC2A2N230/24 FC4A2N230/24 FC2A4N230N FC4A4N230N FC1A2N23050 12 12 24 24 1270 10 10 20 20 10110 8 7 16 16 8150 6 5 10 10 6250 3 3 6 6 3400 2 2 4 4 21000 1 - 2 2 1

Motor operators Conventional Utilisation Utilisation Protectionthermal power power fusecurrent A kW 230V kW 400V gG20 2.2 4 3540 5.5 11 63

Relay contactors

122 bTdiN122 TEChNiCAL iNFoRmATioN

Page 112: Tech Guide

Selection of contactors

Coordination among BTDIN 250 Mcb’s only magnetic and LOVATO starters at 440Va.c. (Type 2)

Rated Rated Mcb’s Type of Item Magnetic Type of Type Setting Iqpower current rated Mcb number tripping LOVATO of thermal of thermal conditionedof use (kW) of use (A) current (A) current (A) contactor relays relays (A) (kA)0.12 0.5 1.6 BTDIN250 F83SM/20 22 BF9 RF25 0.45-0.75 150.18 0.6 1.6 BTDIN250 F83SM/20 22 BF9 RF25 0.45-0.75 150.25 0.8 1.6 BTDIN250 F83SM/20 22 BF9 RF25 0.6-1 150.37 1.1 1.6 BTDIN250 F83SM/20 22 BF9 RF25 0.9-1.5 150.55 1.5 1.6 BTDIN250 F83SM/20 22 BF9 RF25 1.4-2.3 150.75 1.8 2.5 BTDIN250 F83SM/32 35 BF9 RF25 1.4-2.3 151.1 2.6 4 BTDIN250 F83SM/50 56 BF9 RF25 2-3.3 151.5 3.4 4 BTDIN250 F83SM/50 56 BF9 RF25 3-5 152.2 4.8 6.3 BTDIN250 F83SM/80 88 BF9 RF25 3-5 152.5 5.5 6.3 BTDIN250 F83SM/80 88 BF9 RF25 4.5-7.5 153 6.5 10 BTDIN250 F83SM/125 140 BF9 RF25 4.5-7.5 153.7 7.6 10 BTDIN250 F83SM/125 140 BF9 RF25 6-10 154 8.2 10 BTDIN250 F83SM/125 140 BF9 RF25 6-10 155.5 11 12.5 BTDIN250 F83SM/160 175 BF16 RF25 9-15 156.3 12 12.5 BTDIN250 F83SM/160 175 BF16 RF25 9-15 157.5 14 16 BTDIN250 F83SM/200 224 BF16 RF25 9-15 1510 19 25 BTDIN250 F83SM/320 350 BF50 RF95 14-23 1511 21 25 BTDIN250 F83SM/320 350 BF50 RF95 14-23 1512.5 24 25 BTDIN250 F83SM/320 350 BF50 RF95 20-33 1515 27 40 BTDIN250 F83SM/500 560 BF50 RF95 20-33 1016 29 40 BTDIN250 F83SM/500 560 BF50 RF95 20-33 1018.5 34 40 BTDIN250 F83SM/500 560 BF50 RF95 28-42 1020 37 40 BTDIN250 F83SM/500 560 BF50 RF95 28-42 10

CooRdiNATioN AmoNG mCb’S ANd LovATo CoNTACToRS

Coordination among BTDIN 250 Mcb’s only magnetic and LOVATO starters at 400Va.c. (Type 2)

Rated Rated Mcb’s Type of Item Magnetic Type of Type Setting Iqpower current rated Mcb number tripping LOVATO of thermal of thermal conditionedof use (kW) of use (A) current (A) current (A) contactor relays relays (A) (kA)0.12 0.5 1.6 BTDIN250 F83SM/20 22 BF9 RF25 0.45-0.75 150.18 0.6 1.6 BTDIN250 F83SM/20 22 BF9 RF25 0.45-0.75 150.25 0.8 1.6 BTDIN250 F83SM/20 22 BF9 RF25 0.6-1 150.37 1.1 1.6 BTDIN250 F83SM/20 22 BF9 RF25 0.9-1.5 150.55 1.5 1.6 BTDIN250 F83SM/20 22 BF9 RF25 1.4-2.3 150.75 1.9 2.5 BTDIN250 F83SM/32 35 BF9 RF25 1.4-2.3 151.1 2.7 4 BTDIN250 F83SM/50 56 BF9 RF25 2-3.3 151.5 3.5 4 BTDIN250 F83SM/50 56 BF9 RF25 3-5 152.2 5 6.3 BTDIN250 F83SM/80 88 BF9 RF25 4.5-7.5 152.5 5.7 6.3 BTDIN250 F83SM/80 88 BF9 RF25 4.5-7.5 153 6.7 10 BTDIN250 F83SM/125 140 BF9 RF25 4.5-7.5 153.7 8 10 BTDIN250 F83SM/125 140 BF9 RF25 6-10 154 8.5 10 BTDIN250 F83SM/125 140 BF9 RF25 6-10 155.5 11 12.5 BTDIN250 F83SM/160 175 BF16 RF25 9-15 156.3 13 16 BTDIN250 F83SM/200 224 BF16 RF25 9-15 157.5 15 16 BTDIN250 F83SM/200 224 BF20 RF25 14-23 1510 20 25 BTDIN250 F83SM/320 350 BF25 RF25 14-23 1511 22 25 BTDIN250 F83SM/320 350 BF50 RF95 20-33 1512.5 25 25 BTDIN250 F83SM/320 350 BF50 RF95 20-33 1515 29 40 BTDIN250 F83SM/500 560 BF50 RF95 20-33 1016 31 40 BTDIN250 F83SM/500 560 BF50 RF95 28-42 1018.5 35 40 BTDIN250 F83SM/500 560 BF50 RF95 28-42 1020 38 40 BTDIN250 F83SM/500 560 BF50 RF95 28-42 1022 41 63 BTDIN250 F83SM/800 882 BF50 RF95 35-50 1025 47 63 BTDIN250 F83SM/800 882 BF65 RF95 35-50 1030 57 63 BTDIN250 F83SM/800 882 BF65 RF95 46-65 1031.5 59 63 BTDIN250 F83SM/800 882 BF65 RF95 46-65 10

123TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 113: Tech Guide

Coordination among MS32 motor protectors and LOVATO contactors at 400Va.c.(type 2)

Rated power Rated current Motor protector thermal Motor protector Magnetic tripping Type of LOVATO of use (kW) of use (A) adjustment field (A) code current (A) contactor Iq (kA)0.12 0.44 0.4 - 0.63 MS32/063 7.56 BF9 500.18 0.6 0.4 - 0.63 MS32/063 7.56 BF9 500.25 0.85 0.63 - 1 MS32/1 12 BF9 500.37 1.1 1 - 1.6 MS32/2 19.2 BF9 500.55 1.5 1 - 1.6 MS32/2 19.2 BF9 500.75 1.9 1.6 - 2.5 MS32/3 30 BF9 501.1 2.7 2.5 - 4 MS32/4 48 BF9 501.5 3.6 2.5 - 4 MS32/4 48 BF9 502.2 4.9 4 - 6.5 MS32/6 78 BF9 503 6.5 6.3 - 10 MS32/10 120 BF9 504 8.5 6.3 - 10 MS32/10 120 BF12 505.5 11.5 9 - 14 MS32/14 168 BF16 257.5 15.5 13 - 18 MS32/18 216 BF16 2511 22 20 - 25 MS32/25 300 BF25 2515 29 24 - 32 MS32/32 384 BF32 25

Maximum size (A) of the protection fuse to be associated if Icc > Icu (IEC60947-2)

Coordination type 2. up to the fuse breaking capacity (400Va.c.) Rated power Rated current Motor protector thermal Motor protector Type of LOVATO In max In max of use (kW) of use (A) adjustment field (A) code contactor fuse gG (A) fuse aM (A)5.5 11.5 9 - 14 MS32/14 BF16 80 637.5 15.5 13 - 18 MS32/18 BF16 100 6311 22 20 - 25 MS32/25 BF25 100 8015 29 24 - 32 MS32/32 BF32 100 80

Selection of contactors

124 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 114: Tech Guide

motor protection

During their normal operation, asynchronous motors turn electric energy into mechanical energy. This mechanical energy is then made available to the rotor shaft for driving various types of machines. During operation, motor rotors and the machines connected to them accumulate a certain amount of energy. The amount of energy depends on their moment of inertia, which is capable of keeping the machines running, should a short term lack of supply occur.When a short circuit occurs, at any point of the motor electric power supply system, for a certain amount of time the motor itself becomes a generator, converting the accumulated kinetic energy into electric energy, and sending its own fault current to the short circuit: this current value must be added to the current supplied by the power supply line, when calculating the total short circuit current value.With asynchronous motors, which include the majority of alternate current electric motors, damping of the rotor currents that support the rotating magnetic field during a short circuit, is very fast. Therefore the current is exhausted very quickly (after some tenths of milliseconds).

SELECTioN oF mCb’S FoR ThE moToR pRoTECTioN

Table for the selection of the automatic Mcb depending on the motor power

Item Rated Magnetic Motor rated features 400V a.c. code current In (A) threshold Im (A)* kW Hp Rated current In (A)F83SM/20 1.6 20 0.37 1/2 1.2 F83SM/32 2.5 32 0.55 3/4 1.6 F83SM/32 2.5 32 0.73 1 2 F83SM/50 4 50 1.1 1.5 2.8 F83SM/50 4 50 1.5 2 3.7 F83SM/80 6.3 80 2.2 3 6.3 F83SM/125 10 125 3 4 7 F83SM/125 10 125 4 5.5 9 F83SM/160 12.5 160 5.5 7.5 12 F83SM/200 16 200 7.5 10 16 F83SM/320 25 320 11 15 23 F83SM/500 40 500 15 20 30 F83SM/500 40 500 18.5 25 37 F83SM/800 63 800 22 30 43 F83SM/800 63 800 30 40 59

* The values are valid for alternate current (for direct current multiply by 1.5).

Motor internal self-protection

Protection from overload

Control

Automatic Mcb for protection from short circuit

Motor internal self-protection

Protection from overload

Control

Automatic Mcb for protection from short circuit

When calculating the maximum short circuit current values, the contribution of the motors installed within the system to the total fault current can have an important effect on the selection of the rated powers of the protection devices, as well as on the assessment of the maximum electro-dynamic stress on the conductors and the components of the system affected by the fault current.The rms value of the maximum short circuit current, from the start of the short circuit fault to the terminals of a motor, has a value equal to 6 to 8 times its rated current. Magnetic only BTDIN250 circuit breakers are only fitted with a magnetic release, with intervention threshold between 12 and 14 In. These devices are particularly suited for short circuit protection in remote control and motor protection set-ups that use starters (contactors and thermal relays). In fact, these last do not ensure protection from short circuits that may occur inside the motor itself, or on the intermediate connection. This function must therefore be performed by a protection device installed upstream.

TEChNiCAL iNFoRmATioN 125TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 115: Tech Guide

protection of illumination circuits

230V a.c. one-phase distribution - three-phase distribution with neutral (400V a.c.) with star connection

In (A) - 2P and 4P Mcb’s 1 2 3 6 10 16 20 25 32 40 50 63 80 100 125Fluorescent Lamp No. of lamps per phase lamps power (W)single, non power 18 4 9 14 29 49 78 98 122 157 196 245 309 392 490 613factor corrected 36 2 4 7 14 24 39 49 62 78 98 122 154 196 245 306cosϕ = 0.6 58 1 3 4 9 15 24 30 38 48 60 76 95 121 152 190single, power 18 7 14 21 42 70 112 140 175 225 281 351 443 556 695 869factor corrected 36 3 7 10 21 35 56 70 87 112 140 175 221 278 347 434cosϕ = 0.86 58 2 4 6 13 21 34 43 54 69 87 109 137 172 215 269double, power 2x18 = 36 3 7 10 21 35 56 70 87 112 140 175 221 278 347 434factor corrected 2x36 = 72 1 3 5 10 17 28 35 43 56 70 87 110 139 173 217cosϕ = 0.86 2x58 =116 1 2 3 6 10 17 21 27 34 43 54 68 86 107 134

230V a.c. three phase distribution with triangle connection

In (A) - 2P and 4P Mcb’s 1 2 3 6 10 16 20 25 32 40 50 63 80 100 125Fluorescent Lamp No. of lamps per phase lamps power (W)single, non power 18 2 5 8 16 28 45 56 70 90 113 141 178 226 283 354factor corrected 36 1 2 4 8 14 22 28 35 48 56 70 89 113 141 177cosϕ = 0.6 58 0 1 2 4 7 14 17 21 28 35 43 55 70 88 110single, power 18 4 8 12 24 40 64 81 101 127 162 203 255 320 401 501factor corrected 36 2 4 6 12 20 32 40 50 64 81 101 127 160 200 250cosϕ = 0.86 58 1 2 3 7 12 20 25 31 40 50 63 79 99 124 155double, power 2x18 = 36 2 4 6 12 20 32 40 50 64 81 101 127 160 200 250factor corrected 2x36 = 72 1 2 3 6 10 16 20 25 32 40 50 63 80 100 125cosϕ = 0.86 2x58 = 116 0 1 1 3 5 10 12 15 20 25 31 39 49 62 77Note: The power of the starter is equal to 25% of the lamp power

230/400V a.c. three-phase distribution - star/triangle connection

High pressure discharge lamp Pw (W)lamp with mercury vapors + fluorescent substances ≤700 ≤1000 ≤2000 lamp with mercury vapors + halogen metals ≤375 ≤1000 ≤2000 lamp with sodium vapors ≤400 ≤1000 In (A) 6 10 16

Automatic circuit breakers can be used for the protection of lighting systems. In order to select the correct circuit breaker, the type of load must be known.

SELECTioN oF mCb’S FoR ThE pRoTECTioN oF iLLUmiNATioN CiRCUiTS

The utilization current of the protected circuit must be calculated starting from the rated power and voltage values. In alternative, it could be supplied directly by the manufacturer of the units. The tables below show the current values of the circuit breakers to be used depending on the lamp type.

126 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 116: Tech Guide

Auxiliary and tripped relay contacts

Auxiliary and alarm contacts are use for remote indication of the status of the circuit breakers or for the notification of any alarms due to short circuits, overloads and earth leakage faults. Auxiliary contacts depend on the status of the contacts of the associated circuit breakers, while alarm (or tripped relay) contacts are dependent on the internal circuit breaker kinematics.

BTDIN contacts properties

• BTDIN auxiliary contacts fitted with cam for changing the function based on the tripped relay contacts.

• Test pushbutton (BTDIN contacts only) to check mechanical coupling.• To be fitted on left of circuit breaker.• Motor protector alarm contact with red flag for short circuit or overload inter-

vention notification.

Technical specifications

BTDIN Motor protectorNo. modules 1 0.5Rated voltage Vn (V d.c.) 24-230 24-230Rated voltage Vn (Va.c.) 230-400 230-400Contacts load (A) 24Vd.c. 4 6 48Vd.c. — 5 60Vd.c. 1 3 110Vd.c. — 1.3 230Vd.c. 0.5 0.5 48Va.c. — 6 110Va.c. — 4.5 230Va.c. 6 3.3 400Va.c. 3 2.2Utilisation category — AC15 – DC13Maximum section of connectable 2.5 2.5 flexible cable (mm2)

BTDIN contacts diagrams

AUXiLiARy ANd ALARm CoNTACTS

Motor protector contact diagrams

F80C

96 95 98

12 11 14

Id

06 05 08

06 05 08

F80SC/05 F80SC

F80A

06 05 08

96 95 98

06 05 08 06 05 08

F80CS

F80R

96 95 98

06 05 08

96 95 98

F80R

MSC/11 MSC/20 MSC/S11

MSC/...

TEChNiCAL iNFoRmATioN 127TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 117: Tech Guide

Shunt trips

Shunt trips can be combined to a control or a NO type contact, which can be used to remotely control the opening of the circuit breaker. The release is caused mechanically by the excitation of the reel of the shunt trip unit. These devices are available with either direct or alternate current power supply voltage. The use of the shunt trip as an emergency function requires (in accordance with IEC 60364 standard) the use of suitable indication of the efficiency of the control circuit.

BTDIN shunt trip features

• Changeover contact (C1/12), for remote indication of the circuit breaker status• Contact change depending on the position of the lever (closed between C1 and

C2).• To be fitted on the left of the circuit breaker for BTDIN and on the right for motor

protectors

Technical specifications

BTDIN Motor protectorNo. modules 1 1Rated voltage Vn (V d.c.) 12-48 — 110-125 Rated voltage Vn (Va.c.) 12-48 110-230-400 110-415 Operating voltage (% Vn) 70-110 70-110Intervention delay (ms) <20 Maximum absorbed power at activation (VA/W) 121 (F80T1) 20 127/10 (F80T2) Total resistance (ohm) 23 (F80T1) 1640 (F80T2) Current absorbed at min/max voltage (mA) 522 / 2610 (F80T1) 69 / 259 (F80T2) Maximum section of connectable 2.5 2.5 flexible cable (mm2)

BTDIN shunt trips diagrams

Shunt trip diagram for MST/... Motor protectors

ShUNT TRipS

12 C1 C2

L N

F80T...

1L/11T/2

2L/32T/4

3L/53T/6

C1

C2

F80T1 MST/...

128 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 118: Tech Guide

F80V3

Undervoltage releases

Undervoltage releases are used to remotely control the opening of the circuit breaker. They can be combined with NC type pushbuttons, and cause the opening of the circuit breaker if the power supply voltage of the release falls below a certain threshold, or if the contact of the associated control is opened. The de-exciting of the reel of the release device causes a mechanical type release. The closing of a circuit breaker fitted with undervoltage release device is only possible when the release is powered.

BTDIN releases features

• Aperture control with voltage below the release rated voltage threshold• Time delay adjustment between 0 and 300 ms• To be fitted on the left of the circuit breaker for BTDIN and on the right for motor

protectors

Technical specifications

BTDIN Motor protectorNo. modules 1 1Rated voltage Vn (V d.c.) 24-48 Rated voltage Vn (Va.c.) 230 110-230-400Release voltage (%Vn) 55 35-70Reset voltage (%Vn) > 55 85-110Intervention delay (ms) 0-300 adjustable 10-15Maximum absorbed power at activation (VA/W) 0.1 (F80V1) 12/8 0.2 (F80V2) 3.5/1.1 1 (F80V3) at power holdingMaximum section of connectable 2.5 2.5 flexible cable (mm2)

BTDIN undervoltage releases diagram

Undervoltage release diagrams for MSV/... Motor protectors

UNdERvoLTAGE RELEASES

N

L

U<F80V...

D1 D2

1L/11T/2

2L/32T/4

3L/53T/6

D1

D2

U<

MSV/...

TEChNiCAL iNFoRmATioN 129TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 119: Tech Guide

The emergency release is used to remotely control the opening of the circuit breaker. It can be combined with NC type pushbuttons. The emergency release is fitted with a buffer battery that keeps the circuit breaker closed. The buffer battery is kept charged through connection to the power line. This device is considered to have a positive security. It can be used in circuits where emergency openings of the circuit breakers is required (car parks, public places etc.) The same pushbuttons can control several releases connected in parallel to each other.

BTDIN release properties

• Changeover contact (C1/12), for remote indication of the circuit breaker status.• Contact change depending on the position of the lever (closed between C1 and

C2).• Lithium buffer battery kept charged through the power line voltage.• To be fitted on left of circuit breaker.• When several item F80E24 releases are connected with parallel connection, they

all must be powered from the same transformer. Before activating the device ensure that the connection pushbuttons are correctly connected between the neutral N and P (not to the phase).

Technical specifications

BTDIN No. modules 1 Rated voltage Vn (Va.c.) 24 Operating voltage (% Vn) 85-110 Maximum number of charge/discharge cycles 50 Reserve after 150 hours of charge >60 (lithium battery) (hours)Maximum absorbed power at activation (VA) 1.4 Total resistance (ohm) 1000* Maximum section of connectable 2.5 flexible cable (mm2)* maximum circuit resistance taking into account the length of the line and the maximum number of pushbuttons connected

BTDIN emergency release diagram

Emergency release

EmERGENCy RELEASES

F80E24

mAXimUm LEvEL oF ACCESSoRiES pERmiTTEd by bTdiN CiRCUiT bREAkERS

MAX no. 3

F80V...F80T...F80E...

F80V...F80T...F80E...

F80AF80RF80CF80CSF80SCF80SC/05

F80AF80RF80CF80CSF80SCF80SC/05

Thermal magnetic Mcb’s, earth leakage thermal magnetic circuit breakers, pure earth leakages and disconnectors that can be fitted

P C1

2

n

A+

130 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 120: Tech Guide

SALvAviTA STop&Go

Field of application

Remote circuit breaker closing.

RESET moToR opERAToR

Features

Closing command from the system control moduleRemote closing of circuit breakerLever position signalling contactTripped relay signalling contactWiring to the control module using plug-in type connectorsDisconnection guaranteed during maintenance operationsVisual indication of the disconnection by means of window and position of front plateLockable in the disconnected positionIt can be coupled to BTDIN 1P+N thermal magnetic earth leakage circuit breakers in two DIN modules, to BTDIN 2P pure earth leakage in two DIN modules and to BTDIN 2P thermal magnetic with associated earth leakage block.

Technical specifications No. of modules 3Rated voltage Vn (Va.c.) 230Minimum operating voltage 85% VnMaximum operating voltage 110% VnRated frequency (Hz) 50Maximum no. of manoeuvres 4000Maximum operations frequencies (man/h) 120Maximum actuation power (VA) 20Operating temperature (°C) -5-60Mounting position in relation to the circuit breaker leftMaximum section of connectable flexible cable (mm2) 1.5

1 2 3 4 5 6 7 8

12 139 10 11

1 2 3 4 5 6 7

8 9 10 11 12 13 14A B C D

UPPERTERMINALSTRIP

LOWER TERMINAL STRIPS

1 = L (input)2 = L1

3 = unwired4 = N (input)5 = unwired6 = L (output)7 = unwired8 = N (output)

230V a.c.

remote closingof switch

connections forsystem controlmodule

9 = 9510 = 9611 = 98

notificationsleverposition

12 = 0513 = 06

fault notification(relay contact)

F80/MMRLN

ON

F80/MMR F80/MC

Ue 230 V ˜Ie 2 (0.5) A Op

erat

ing

grou

nd

TEChNiCAL iNFoRmATioN 131TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 121: Tech Guide

Field of application

It controls the closing of the general circuit breaker.Checks the state of the system in case of intervention of the earth leakage circuit breaker.

SySTEm CoNTRoL modULE

Features

Available in two versions: standard (item F80/MC) and with automatic earth leakage test (BTest) (item F80/MCB)It can be interfaced with the MY HOME systemVisible module operation and system status signalsAcoustic notification of a system faultSound silencing key, automatic reset activation/deactivationWiring to the control module using plug-in type connectorsSaving of fault signalsIt can be installed on earth leakage, thermal magnetic and 2 pole earth leakage thermal magnetic circuit breakers.

Technical specifications No. of modules 1Rated voltage Vn (Va.c.) 230Minimum operating voltage 85% VnMaximum operating voltage 110% VnOperating temperature (°C) -5-60Mounting position in relation to the circuit breaker leftMaximum section of connectable flexible cable (mm2) 1.5

UPPER TERMINAL STRIP:1 = L1 (closing control)2 = L3 = unwired4 = N

LOWER TERMINAL STRIP:5 = PEdownstream6 = n.c.7 = SC18 = SC29 = Ldownstream10 = n.c.11 = Ndownstream

EXPANSION CONNECTOR:A = +12VB = GNDC = TXDD = RXD

1 2 3 4

5 6 7 8 9 1011

F80/MC

SALvAviTA STop&GoCoNTRoL modULES

132 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 122: Tech Guide

motor operators for industrial applications

Field of application

Remote circuit breaker opening and closingRemote control of circuit breakers from the attended locations

Features

Integrated auxiliary and tripped relay contactIntegrated electric and mechanical lock in the open position, to guarantee isola-tion during maintenance operationsThermal magnetic and earth leakage intervention resetOverload or no-load manoeuvre protectionAuto protection from prolonged closure of the activation controlPushbutton controlsSelector controls for held type controlCyclical Pushbutton controlPLC maintained controlIt can be installed with circuit breakers of up to 63A

Technical specifications

Standards IEC 60947-2No. of modules 3Rated voltage Vn (Va.c.) 24-48-110-230Minimum operating voltage 85% VnMaximum operating voltage 110% VnMaximum isolation voltage (kV) 2.5 (for 1 minute)Rated frequency (Hz) 50Maximum no. of manoeuvres 20000Maximum operations frequencies (man/h) 120Activation delay (s) < 1Duration of the control to Vn (ms) ≥200Maximum actuation power (VA) 30 Maximum absorbed power at idle state (W) 5 Operating temperature (°C) -5-60Mounting position in relation to the circuit breaker leftMaximum section of connectable flexible cable (mm2) 2.5

Wiring diagrams of motor operators for BTDIN

moToR opERAToRS FoR bTdiN

pushbuttons control selector-held control PLC-held control manual resetcyclical control notification

PLC output contact

It can be installed with BTDIN circuit breakers

Type of circuit breakers 1P+N (2 modules) 2P 3P 4PThermal magnetic BTDIN 45/60/100/250 (0.5-63A)

Earth leakage thermal magnetic BTDIN 45/60/100/250 (0.5-63A)

Disconnectors with accessories

TEChNiCAL iNFoRmATioN 133TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 123: Tech Guide

Automatic reset module

Versions

Version with fixed activation timeVersion with adjustable activation time

Technical specifications

No. of modules 2Rated voltage Vn (Va.c.) 230Contact rated current (A) 6Type of contact 1 NOMaximum connection distance from 0.5 the motor operator (m)Rated frequency (Hz) 50-60Reset attempts 1Protection degree IP20Activation time delay (s) 1-5-10 minutesDuration of the command to Vn (ms) ≥200Maximum section of connectable flexible cable (mm2) 2.5

Wiring diagram of the automatic reset module for BTDIN

AUTomATiC EARTh LEAkAGE CiRCUiT bREAkER RESET modULES Field of application

Reset of earth leakage thermal magnetic motorised circuit breakers or discon-nectors with earth leakage module

Features

• Automatic circuit breaker reset without the need for operator intervention• Combination with BTDIN motor operators• Led indication of reset status• Block function in case of faultNOTE: To avoid closures during short circuit when using the disconnectors, a thermal magnetic protection should be installed downstream.

NL

C S

F80M/230dmax = 0.5m

1 NoIn = 6A

Vn = 230Va.c.

N L1 L0 L

N L1 B1 B2L

95 96 98 05 06 08

08 05

134 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 124: Tech Guide

T/16

FUSE CARRiERS iTEm F3...

Field of application

Protection from overcurrent and short circuitsProtection of contactors and relays, metering instruments, motor parts, electronic cards.

Technical specifications

Standards IEC 60947-3 CEI269-3-1No. of poles 1P-4PNo. modules 1-4Rated pulse voltage Uimp (kV) 6 (4kV for item F311N and F321N)Rated voltage Ue (Va.c.) 400 (8.5x31.5mm fuses) 500 (10.3x38mm fuses)Rated insulating voltage Ui (Va.c.) 500 Rated In (A) current at 30°C 20 (8.5x31.5mm fuses) 32 (10.3x38mm fuses)Rated frequency (Hz) 50/60Rated closing and breaking capacity AC21BConditioned short circuit current Icc (kA) 20 (8.5x31.5mm fuses) 100 (10.3x38mm fuses)Temperature range (°C) -10-40Max. no. of mechanical manoeuvres 20000Power consumption for each pole (W) 4 (6W for item F311N and F321N)Protection degree (terminal area/other areas) IP20/IP40Maximum section of connectable 25/35 (10/16 for 1P+N) flexible/rigid cable (mm2)

BTicino fuses offer a high performance level of protection of L.V. lines from overloads and short circuits. The construction features enable installation also in circuits with high short circuit currents. The main features are:• Breaking capacity 50 kA (type T) and 100 kA (type F) at 230÷500V a.c. for

all power factors between 0.2 and 1.

Fuse carriers

Versions

• Type T (8.5x31.5mm) fuses• Type F (10.3x38mm) fuses

Features

• Double isolation• Guaranteed system disconnection

Accessories

• Fusion completed led• Conversion kit• Block in the open position• Spare fuse module• Open/Close 1NO/MC notification contact

T1/10F312 F311

TEChNiCAL iNFoRmATioN 135TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 125: Tech Guide

G701N

Field of application

Circuits requiring earth leakage selectivity or high earth fault currents

Features

• Selectable tripping point 30mA...30A (19 loads)• 2 wire relay – toroid connection• Harmonic components filter• Positive or negative security selectable on field• Permanent automatic test• Manual or automatic reset (3 attempts)

Earth leakage relay technical features

Operating frequency: 47...63Hz (50Hz fn)PresetI[n tripping point: Selectable, with 7 positions potentiometer, 3 ranges x 1 – x 10 – x 100t tripping delay: Selectable, with 7 positions potentiometert adjustment field: 0 - 0.15 - 0.25 - 0.5 - 1 - 2.5 - 5 secondsNotificationDevice powered: green LED “ON”Alarm activation: Red LED “TRIP” + switching of relayInterruption of relay-toroids connections: Red LED “TRIP” flashing + tripping of relayEnvironmental conditionsTemperature range: -5...50°CSuitable for use in tropical climatesCoverProtection degree (EN60529): IP50 (front cover), IP20 (terminals and cover)

Toroids technical specifications

Standards IEC 755 Toroid diameter (mm) 35-300Maximum rated current In (A) 200-2000Minimum differential rated current I[n(A) 0.03-30Isolation resistance (Mo) ≥10Primary/secondary turns ratio 1/700Short circuit Ith thermal current for 1s (kA) 20Dynamic current I[n for 0.05s (kA) 40Temperature range (°C) -10-55Maximum section of connectable flexible cable (mm2) 2.5

EARTh LEAkAGE RELAy WiTh SEpARATE ToRoidS iTEm G701...

Earth leakage relay and toroids

G701Q

G701T/35N G701T/150A

Ø I[ In internal minimum maximum (mm) (A) (A) G701T/35N 35 0.03 200 G701T/80N 80 0.03 400 G701T/110N 110 0.1 600 G701T/140N 140 0.3 1200 G701T/210N 210 0.3 1800 G701T/150A* 150 0.5 1200 G701T/300A* 300 1 2000* Opening type toroids

In(A)

DELAY (s)

Positive security Standard security

G701

T/...

G701

T/...

G701

T/...

G701

T/...

G701

T/...

G701

T/...

G701

T/...

G701

T/...

136 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 126: Tech Guide

F51NAC F51NA/NC

F61/20D

Field of application

Control of power devices (illumination, conditioning, ventilation, machine tools, motors)

Technical specifications

Standards IEC 60947-3 IEC 60669-1No. modules 1-2Rated pulse voltage Uimp (kV) 4Rated voltage Ue (Va.c.) 230/400Rated isolation voltage Ui (Va.c.) 250/400Rated current In (A) at 30°C 20Rated frequency (Hz) 50/60Rated closing and breaking capacity AC22Temperature range (°C) -10-40Max. no. of mechanical manoeuvres 30000Power consumption for each pole (W) 1.5Degree of protection (terminal area/other areas) IP20/IP40Maximum section of connectable flexible/rigid cable (mm2) 10/16

Wiring diagrams for BTDIN changeover switches and two way switches

Field of application

Control of medium and low power devicesPulse operated latching and monostable relays control

Technical specifications

Standards IEC 60947-5-1 IEC 60669-1No. modules 1Rated pulse voltage Uimp (kV) 4Rated voltage Ue (Va.c.) 230Rated insulating voltage Ui (Va.c.) 250Rated current In (A) at 30°C 20Rated frequency (Hz) 50/60Rated closing and breaking capacity AC12Temperature range (°C) -10-40Max. no. of mechanical manoeuvres 30000Power consumption for each pole (W) 2Maximum lamp power 1.2Degree of protection (terminal area/other areas) IP20/IP40Maximum section of connectable 6 flexible/rigid cable (mm2)

Wiring diagrams for BTDIN changeover pushbuttons

Changeover switches, two-way switches and changeover pushbuttons

ChANGEovER SWiTChES ANd TWo-WAy SWiTChES, iTEm F6...

Versions

• Central zero changeover switches with 1 and 2 contacts• Linear control activation system

ChANGEovER pUShbUTToNS iTEm F5 ...

Versions

• Simple operation (pushbutton only)• Double function (pushbutton + pilot light or double pushbutton)

Accessories

• Coloured pushbutton and diffusers • Lamps (neon, filament, fluorescent) 1.2W, E10 mount

F61/20D F62/20D F62/20NACF61/20C F62/20C

3 3 7 3 73 4 2

2 4 2 4 6 8 2 4 2 4 6 8 3 1

F62/20C

F51NA F51NC F51NAVF52NA F51NAC F51NAC/NCF51NCR

1/3 2/4 1/31/3 1/3 1/3 2/4

3/1 3/1 3/1 4/2 3/1 4/2 3/1 3/1 4/2 3/1 4/24/2

2/4 1/3 2/4 1/3 2/4

F51NA F51NC F51NAVF52NA F51NAC F51NAC/NCF51NCR

1/3 2/4 1/31/3 1/3 1/3 2/4

3/1 3/1 3/1 4/2 3/1 4/2 3/1 3/1 4/2 3/1 4/24/2

2/4 1/3 2/4 1/3 2/4

F51NA F51NC F51NAVF52NA F51NAC F51NAC/NCF51NCR

1/3 2/4 1/31/3 1/3 1/3 2/4

3/1 3/1 3/1 4/2 3/1 4/2 3/1 3/1 4/2 3/1 4/24/2

2/4 1/3 2/4 1/3 2/4

F51NA F51NC F51NAVF52NA F51NAC F51NAC/NCF51NCR

1/3 2/4 1/31/3 1/3 1/3 2/4

3/1 3/1 3/1 4/2 3/1 4/2 3/1 3/1 4/2 3/1 4/24/2

2/4 1/3 2/4 1/3 2/4

TEChNiCAL iNFoRmATioN 137TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 127: Tech Guide

F90/12/24 F94/12/24

Field of application

Power supply of very low voltage devicesPower supply for electric locks, bells and buzzersPower supply of security systems, gas detection systems and low consumption devices

Features

• Double secondary voltage 12 and 24Va.c.• Constant nominal power for both voltages based on continuous operation of the

transformer.• Built in short circuit protection.• Preservation of the internal temperature below acceptable limits thanks to the

automatic thermal breaking device.• Voltage variation from no-load to reduced load.• Complete isolation of the coils

F35/24

Field of application

Acoustic notification of intervention requestSchool bells and similarAcoustic alarm signalsHome bells

Versions

• Bells and buzzers• Bells and buzzers with incorporated SELV transformers FeaturesDouble isolation

Technical specifications

Standards CEI 14-6No. modules 1-3Rated voltage Vn (Va.c.) 12-24-230Primary voltage Vn (Va.c.) (SELV transformer) 230Secondary voltage Vn (Va.c.) (SELV transformer) 12Rated power (VA) (only bells and buzzers) 5 (6 for F3./230))Rated frequency (Hz) 50-60Degree of protection (terminal area/other areas) IP30Maximum section of connectable 6 (4 for devices with flexible/rigid cable (mm2) SELV transformers)

Sound levels and consumed currents table

Item no. F36/12 F36/230 F35/12 F35/24 F35/230 E86 E87 E88 Sound level at 1 m (dB) 82 79 75 75 75 76 77 79 (bell) – 73 (buzzer) Sound level at 3 m (dB) — — — — — 68 69 72 (bell) – 64 (buzzer) Current consumed (mA) 420 27 420 215 27 — — —

bELLS ANd bUzzERS iTEm F3... - E8...

bells buzzers and safety transformers

Technical specifications

Standards IEC 61558-2-6No. modules 2-5Primary voltage Vn (Va.c.) 230Secondary voltage Vn (Va.c.) 12/24Rated frequency (Hz) 50Degree of protection (terminal area/other areas) IP20Maximum section of connectable 6 flexible/rigid cable (mm2)

Transformers power table

Item no. F90/... F91/... F92/... F93/... F94/... F95/...Rated power (VA) 4 8 16 25 40 63 No-load 0.9 1 2.1 2.2 2.6 2.1 power consumption (W)Power consumption in 2 3.5 4.3 6.4 7.2 9.4 loaded conditions (W)

SAFETy TRANSFoRmERS iTEm F9...

138 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 128: Tech Guide

Accessories

Control panels and cabinets metering unit

F40B

Field of application

Visual notification of the power supply statusVisual notification of alarms

Versions

• Simple function (pilot lamp only)• Double function (double pilot lamp)

Features

• Standard replaceable neon pilot lamps• Specific fluorescent pilot lamp bulb for green diffusers• Pilot lamps lights and coloured diffusers can be replaced removing the front

cover

Accessories

1.2W pilot lamp, E10 mountColoured diffusers

pilot lamps and power meters

piLoT LAmpS iTEm F40...

Technical specifications

No. modules 1Lamps rated voltage Vn (Va.c.) 230 (neon and fluorescent) 24 (filament) 8/12 (filament)Lamp power (W) 1.2Rated frequency (Hz) 50-60Rated pulse voltage Uimp (kV) 4Temperature range (°C) -10-40Degree of protection (terminal area/other areas) IP20Maximum section of connectable 6 flexible/rigid cable (mm2)

F40RV

poWER mETER iTEm F4m400...

F4M400TA

Technical specifications

Rated voltage: 3 x 230 V~ 3 x 230/400 V ~ + 3 x 400 V ~Precision class: CI.1 for active power CI.2 for reactive powerConsumption ≤ 4 WPower terminals: 1-16 mm2 rigid 1-10 mm2 flexibleRemote ratio terminals: 0.5 - 4 mm2 rigid 0.5 – 2.5 mm2 flexible ELV/LV isolation voltage: 4 kV – 50HzSPST-NP opto-relay with 1 pulse/kWh free potential contact: 200 ms programmable Imax 50 mA – 110 V dc/ac

L1 L2 L3 N

LOAD

N

L1 L2 L3

kWhPROG

N

L1 L2 L3

kWh

L1 L2 L3

LOAD

3 x 230/400 V ˜ 3 x 400 V ˜3 x 200 V ˜

TEChNiCAL iNFoRmATioN 139TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 129: Tech Guide

F25/230

Field of application

Time control of staircase, cellars or common areas illumination.

Versions

• Simple switch off warning.• Simple staircase light timer.• Time control with switch off warning.

Features

• Electronic devices.• Time control programming from 0.5s to 12 minutes, depending on version• Automatic and manual operation using the front AUTO-MAN selector (auto= time

control active ; man= time control disabled, with the lamps constantly on for an unlimited period)

• 7 settable operating modes for item F25/230S• The switching off warning causes two quick light interruption (0.3s) during the

last 25s of the period set for the lights to stay on • automatic detection of 3 or 4 wire connection (F25/230 and F25/230S)

Technical specifications

No. modules 1-2Rated pulse voltage Uimp (kV) 4Rated voltage Vn (Va.c.) 230Rated insulating voltage Ui (Va.c.) 250Output contact rated current (A) 16 (5 for item F25P) (230Va.c. cosϕ=1)Type of contact 1NORated frequency (Hz) 50-60Time control adjustment 0.5s-12min item F25/230S 0.5s-10min item F25/230Switch off warning (s) 40 (item F25P) 20 (item F25/230S)Temperature range (°C) -10-40Maximum number of manoeuvres 30.000Degree of protection (terminal area/other areas) IP20Maximum section of connectable 6 (2x2.5 item F25P) flexible/rigid cable (mm2)

Staircase light timersand warnings

STAiRCASE LiGhT TimERS iTEm F25...

F25P

140 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 130: Tech Guide

F16C/230N F16D/230N

Field of application

Time control of illumination in common areas, opening/closing of gates, sound warnings, illuminated signs, heating and conditioning systems

Versions

Function C (cyclical): enables activation and deactivation of the connected devices in a cyclical patternFunction E (excitation delay): it delays the powering of a load, with time control starting as soon as the timer is poweredFunction T (de-exciting delay with pulse control): time control is dependant on the closing of a bistable contact, or on a pushbutton connected to the timerFunction D (de-exciting delay with resettable pulse control): similar to the T function, with the only difference being that the activation of the load depends on the trailing edge of the control pulse. Each time a pulse is sent from the control contact, the time delay is reset to zeroMultifunction: possibility of up to 10 time control modes

Technical specifications

No. modules 1Rated voltage Vn (Va.c./d.c.) 12-230Operating voltage 85-115%VnRated insulating voltage Ui (Va.c.) 250Opening power (VA) 1250 (30W)Breaking power (A) 0.01-8Type of contact 1NO (5A)Rated frequency (Hz) 50-60Time control adjustment 0.1s-100 hoursStart factor 100%Maximum absorbed power (W) 0.5 (12Vd.c.) – 1.4 (230Va.c.)Repeat precision ±0.2%Maximum no. of manoeuvres 10.000.000Maximum reset time (ms) 200Minimum pulse duration (ms) 50Maximum section of connectable 2.5 flexible/rigid cable (mm2)

T

A1-A2

Y1

15-18T

K ( = F16L/230N ) L

T1

A1-A2

Y1

15-18

T2 T3

T1 + T2 + T3 ‡ T

E

A1-A2

Y1

15-18T TT T

F

A1-A2

Y1

15-18T T T T

D

T

A1-A2

Y1

15-18T

C ( = F16D/230N )

T

A1-A2

Y1

15-18

B

A1-A2

Y1

15-18

T1 T2 T3

T1 + T2 + T3 ‡ TT

A1-A2

Y1

15-18

A ( = F16E/230N )

T

A1-A2

Y1

15-18

G ( = F16T/230N ) H

T

A1-A2

Y1

15-18T

ELECTRoNiC TimERS iTEm F16...

F16M/230N (multifunction timer with 10 programmable time controls)

* The opening (L function) or the closing (B function) of the 15-18 output contact occurs when the sum of the interruption times (T1 + T2 +....Tn) of the control circuit Y1 is higher or equal to the set time control T. To ensure subsequent closing of the output contact, power supply (A1-A2) to the timer must be disconnected.

T

A1-A2

Y1

15-18T

K ( = F16L/230N ) L

T1

A1-A2

Y1

15-18

T2 T3

T1 + T2 + T3 ‡ T

E

A1-A2

Y1

15-18T TT T

F

A1-A2

Y1

15-18T T T T

D

T

A1-A2

Y1

15-18T

C ( = F16D/230N )

T

A1-A2

Y1

15-18

B

A1-A2

Y1

15-18

T1 T2 T3

T1 + T2 + T3 ‡ TT

A1-A2

Y1

15-18

A ( = F16E/230N )

T

A1-A2

Y1

15-18

G ( = F16T/230N ) H

T

A1-A2

Y1

15-18T

T

A1-A2

Y1

15-18T

K ( = F16L/230N ) L

T1

A1-A2

Y1

15-18

T2 T3

T1 + T2 + T3 ‡ T

E

A1-A2

Y1

15-18T TT T

F

A1-A2

Y1

15-18T T T T

D

T

A1-A2

Y1

15-18T

C ( = F16D/230N )

T

A1-A2

Y1

15-18

B

A1-A2

Y1

15-18

T1 T2 T3

T1 + T2 + T3 ‡ TT

A1-A2

Y1

15-18

A ( = F16E/230N )

T

A1-A2

Y1

15-18

G ( = F16T/230N ) H

T

A1-A2

Y1

15-18T

T

A1-A2

Y1

15-18T

K ( = F16L/230N ) L

T1

A1-A2

Y1

15-18

T2 T3

T1 + T2 + T3 ‡ T

E

A1-A2

Y1

15-18T TT T

F

A1-A2

Y1

15-18T T T T

D

T

A1-A2

Y1

15-18T

C ( = F16D/230N )

T

A1-A2

Y1

15-18

B

A1-A2

Y1

15-18

T1 T2 T3

T1 + T2 + T3 ‡ TT

A1-A2

Y1

15-18

A ( = F16E/230N )

T

A1-A2

Y1

15-18

G ( = F16T/230N ) H

T

A1-A2

Y1

15-18T

T

A1-A2

Y1

15-18T

K ( = F16L/230N ) L

T1

A1-A2

Y1

15-18

T2 T3

T1 + T2 + T3 ‡ T

E

A1-A2

Y1

15-18T TT T

F

A1-A2

Y1

15-18T T T T

D

T

A1-A2

Y1

15-18T

C ( = F16D/230N )

T

A1-A2

Y1

15-18

B

A1-A2

Y1

15-18

T1 T2 T3

T1 + T2 + T3 ‡ TT

A1-A2

Y1

15-18

A ( = F16E/230N )

T

A1-A2

Y1

15-18

G ( = F16T/230N ) H

T

A1-A2

Y1

15-18T

T

A1-A2

Y1

15-18T

K ( = F16L/230N ) L

T1

A1-A2

Y1

15-18

T2 T3

T1 + T2 + T3 ‡ T

E

A1-A2

Y1

15-18T TT T

F

A1-A2

Y1

15-18T T T T

D

T

A1-A2

Y1

15-18T

C ( = F16D/230N )

T

A1-A2

Y1

15-18

B

A1-A2

Y1

15-18

T1 T2 T3

T1 + T2 + T3 ‡ TT

A1-A2

Y1

15-18

A ( = F16E/230N )

T

A1-A2

Y1

15-18

G ( = F16T/230N ) H

T

A1-A2

Y1

15-18T

T

A1-A2

Y1

15-18T

K ( = F16L/230N ) L

T1

A1-A2

Y1

15-18

T2 T3

T1 + T2 + T3 ‡ T

E

A1-A2

Y1

15-18T TT T

F

A1-A2

Y1

15-18T T T T

D

T

A1-A2

Y1

15-18T

C ( = F16D/230N )

T

A1-A2

Y1

15-18

B

A1-A2

Y1

15-18

T1 T2 T3

T1 + T2 + T3 ‡ TT

A1-A2

Y1

15-18

A ( = F16E/230N )

T

A1-A2

Y1

15-18

G ( = F16T/230N ) H

T

A1-A2

Y1

15-18T

T

A1-A2

Y1

15-18T

K ( = F16L/230N ) L

T1

A1-A2

Y1

15-18

T2 T3

T1 + T2 + T3 ‡ T

E

A1-A2

Y1

15-18T TT T

F

A1-A2

Y1

15-18T T T T

D

T

A1-A2

Y1

15-18T

C ( = F16D/230N )

T

A1-A2

Y1

15-18

B

A1-A2

Y1

15-18

T1 T2 T3

T1 + T2 + T3 ‡ TT

A1-A2

Y1

15-18

A ( = F16E/230N )

T

A1-A2

Y1

15-18

G ( = F16T/230N ) H

T

A1-A2

Y1

15-18T T

A1-A2

Y1

15-18T

K ( = F16L/230N ) L

T1

A1-A2

Y1

15-18

T2 T3

T1 + T2 + T3 ‡ T

E

A1-A2

Y1

15-18T TT T

F

A1-A2

Y1

15-18T T T T

D

T

A1-A2

Y1

15-18T

C ( = F16D/230N )

T

A1-A2

Y1

15-18

B

A1-A2

Y1

15-18

T1 T2 T3

T1 + T2 + T3 ‡ TT

A1-A2

Y1

15-18

A ( = F16E/230N )

T

A1-A2

Y1

15-18

G ( = F16T/230N ) H

T

A1-A2

Y1

15-18T

T

A1-A2

Y1

15-18T

K ( = F16L/230N ) L

T1

A1-A2

Y1

15-18

T2 T3

T1 + T2 + T3 ‡ T

E

A1-A2

Y1

15-18T TT T

F

A1-A2

Y1

15-18T T T T

D

T

A1-A2

Y1

15-18T

C ( = F16D/230N )

T

A1-A2

Y1

15-18

B

A1-A2

Y1

15-18

T1 T2 T3

T1 + T2 + T3 ‡ TT

A1-A2

Y1

15-18

A ( = F16E/230N )

T

A1-A2

Y1

15-18

G ( = F16T/230N ) H

T

A1-A2

Y1

15-18T

F16M/230N

*

*

Timers and electronic timers

TEChNiCAL iNFoRmATioN 141TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 131: Tech Guide

F66GR/1

Field of application

Programming of illumination activation timesManagement of heating/conditioning systemsWatering systems activationProgramming of illuminated signs activation

Versions

• Daily vertical dial with charge reserve (item F66GR/1)• Daily horizontal dial with charge reserve (item F66GR/3)• Weekly horizontal dial with charge reserve (item F66SR/3)• Daily horizontal dial without charge reserve (item F66GSW/3)• Daily horizontal dial without charge reserve (item F66WSW/3)

Features

• Electro-mechanic time switches• Programming by means of microswitches• Automatic/manual operation• Normally open output contacts• Possibility of locking the settings

Analogue time switches

ANALoGUE TimE SWiTChES iTEm F66...

Technical specifications

No. modules 1-3Rated voltage Vn (Va.c.) 230Type of contact (16A) 1NO (F66…/1) 1NO/NC (F66…/3)Rated frequency (Hz) 50-60Charge reserve (hours) 100 hours for F66GR/3, F66SR/3, F66GR/1 6 years for F66W/3, F66GSW/3Minimum adjustment (min) 15 (2 hours - F66SR/3 - F66WSW/3)Precision (min) ±5 (±30 - F66SR/3 - F66WSW/3)Maximum section of connectable 2.5 flexible/rigid cable (mm2)

F66GR/3

F66WSW/3 - F66GR/3 - F66SR/3 F66GR/1

NL

U2

U1

4

3

230V~

U1U2 1 4 2

NL

F66G/3 - F66GR/3 - F66SR/3

ON

OFF

F66G/1 - F66GR/1

NL

U2

U1

4

3

230V~

U1U2 1 4 2

NL

F66G/3 - F66GR/3 - F66SR/3

ON

OFF

F66G/1 - F66GR/1

142 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 132: Tech Guide

F67SR/11

Type of programming

Programming of items F67SR/... F68/... F68A/...• Current time adjustment

• Date adjustment

• Solar/summer time adjustment

• Memory reset

• Switch programming

• Holiday period programming

• Program clearing

• Program check and change

• Temporary start/stop switch *• Permanent start/stop switch

• Start/stop switch per “no.” of days

• Weekly program setting

• Monday to Friday program setting

• Daily program setting

• Sunday program setting

• Language setting

• Display contrast adjustment

• Programming using a hardware key (dongle)

• Hour meter

• Pulse operation programming

• Astronomy function programming

• 1 hour test programming

• Access block (Pin code)

* only for F68A/1

Field of application

Programming of illumination activation timesManagement of heating/conditioning systemsWatering systems activationProgramming of illuminated signs activation

digital time switches

diGiTAL TimE SWiTChES iTEm F67...

Technical specifications

No. modules 1-2-6Rated voltage Vn (Va.c.) 230Type of contact (16A) 1NO/NC 2NO/NC (F68/2 - F68A/2) 4NO/NC (F67SR/64)Rated frequency (Hz) 50-60 Charge reserve (hours) 100 (item F67SR/...) 6 years (item F68…)Minimum adjustment (s/day) 1 (1s item F67SR/64)Precision (min) ±2.5 (F67SR/...) ± 0.2 (F68...)Temperature range (°C) -10-40Type of memory Eeprom (charge reserve for item F67SR/…)No. of programs 8 (item F67SR/11) 28 (item F68A/...) 56 (item F67SR/64 – F68/...)Precision (min) ±5 (±30 - F66SR/3)Maximum section of connectable 4 flexible/rigid cable (mm2)

Versions

• Daily with charge reserve • Daily and weekly with charge reserve, with control input for connection of exter-

nal pushbutton for the creation of the primary control.• Time control starts when the input control starts.• Switch on and switch off astronomy function

F68/1 F67SR/64

F68A/1

F68/2F68A/2

F67SR/11

F67SR/64

F68/1

TEChNiCAL iNFoRmATioN 143TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 133: Tech Guide

F11/1P

Field of application

Programming of illumination activation timesProgramming of illuminated signs activation

Versions

• Simple, with separate photosensitive cell• Daily and weekly program adjustment with charge reserve and separate

photosensitive cell

Programming of item F11/8P

• Current time adjustment• Date adjustment• Summer/winter time adjustment• Memory reset• Switch programming (from 20 to 56)• Program clearing• Program correction• Temporary start/stop switch• Permanent start/stop switch

Technical specifications

No. modules 2Rated voltage Vn (Va.c.) 230Type of contact 1NO/NC (10A) (item F11/8P) 1NO (5A) (item F11/1P)Rated frequency (Hz) 50-60 Charge reserve (hours) 100 (item F11/8P)Minimum adjustment (min) 1 Sensitive photocell protection degree IP55Temperature range (°C) -10-40Adjustable brightness threshold (lux) 0.5-2000 (item F11/1P) 2-2000 (item F11/8P)No. of programs 8 (item F11/8P) 1 (item F11/1P)Minimum switching (min) 1Maximum section of connectable 6 flexible/rigid cable (mm2)

Twilight switches, analogue and digital metering instruments

TWiLiGhT SWiTChES iTEm F11...

Features

• Brightness threshold adjustment• Menu programming (F11/8P only)• Automatic/manual operation (F11/8P only)• Switch on delay to avoid unwanted interventions due to sudden brightness chan-

ges• Use with filament, fluorescent and halogene lamps• Control circuit independent from the power supply circuits

F11/8 P

144 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 134: Tech Guide

F1/300

Field of application

Control panel and cabinet metering units

Analogue instruments features

• 300 and 500V Voltmeters, with direct connection• Amperemeters to be connected to CT with secondary connection to 5A• Devices made of 2 thin mild steel plates located inside the coil, and capable of

absorbing any mechanical shocks• Vertical or horizontal mounting position

Versions

• Analogue amperemeters and voltmeters• Digital settable amperemeters/voltmeters

Digital instruments features

• Voltmeters with reading of up to 500V, with direct connection• Amperemeters to be connected to CT with secondary to 5A• Shock and vibration resistant• 3 digit display• Out of scale notification with flashing decimal point• Amperemeter load selection using• Green led display

Technical specifications

Digital instruments Analogue instrumentsStandards IEC 51 IEC 51No. of modules/sizes 4/96x96 4Rated aux voltage Vn (Va.c.) 230 Operating voltage (Va.c.) 500 300-500Rated frequency (Hz) 47-63 40-60 Amperemeter scale ln load (A) 5-8000 50-1000Digital indicator 1000 points (3 digits) -Maximum display 800 -Degree of protection IP20 IP20Temperature range (°C) -5-55 -25-40Operating temperature (°C) -20-70 Storage temperature (°C) -40-70 Precision class 1+1 digit ±1.5 of the bottom scale valueAmperemeter overload 2 In for 5s (max 50A) 10 In for 5s (max 50A) 1.2 In permanent 2 In permanent Voltmeter overload 2 Ue for 5s (max 660A) 2 Ue for 5s (max 660A) 1.2 Ue permanent 1.2 Ue permanentRated input value 0-500Va.c. (voltmeter) 5A (amperemeter) -Aux power supply auto-consumption (VA) 4 -Voltmeter auto-consumption (VA) 2.5 3Amperemeter auto-consumption (VA) 2.5 1.1Maximum section of connectable faston 6.3x0.8mm 3 (In<15A instruments) flexible/rigid cable (mm2) 4 (In<15A instruments)

Analogue and digital metering instruments

ANALoGUE ANd diGiTAL mETERiNG iNSTRUmENTS iTEm F1..., F2..., F3...

F3VA

F3VA/Q

230V~L

N

11 12

5A60 A2A1

12

34

ON

5

Display

SET

Over range

12

34

ON

150100500

5A300

300

In = 5A

SUPPLY

I N P U T500V

L

N

S1

P1L

14

L

N

I N P U T500V

15

230Va.c.

12 20VACOMM

230Va.c.

17SUPPLY

14

I N P U T5A

15

230Va.c.

12 20 17SUPPLYSUPPLY

I N P U T5A

VACOMM

230Va.c.

S1

P1L

SUPPLY

I N P U T500V

L

N

S1

P1L

14

L

N

I N P U T500V

15

230Va.c.

12 20VACOMM

230Va.c.

17SUPPLY

14

I N P U T5A

15

230Va.c.

12 20 17SUPPLYSUPPLY

I N P U T5A

VACOMM

230Va.c.

S1

P1L

F3VA F3VA/Q

TEChNiCAL iNFoRmATioN 145TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 135: Tech Guide

F3/3000

Field of application

Control panels and cabinets metering unit

Features

• Measurement of electrical magnitudes in low voltage applications• Active and reactive energy• Unbalanced three-phase power line, 3 or 4 wires.• Connection to dedicated CT• Pulse output for remote repetition of the energy measure• RS485 communication (F3/3000 COM only)

Measurable magnitudes

• Phase and line-to-line voltage• Phase currents• Frequency• Power factor• Active, reactive and apparent power• Pulse contactor in energy mode

digital multifunction instruments

diGiTAL mULTiFUNCTioN iNSTRUmENTS iTEm F3/3000...

Technical specifications

Programmable parametersMeasurements: CT ratioAverage power: integration, resetting timeRS485 communication: no. of JBUS address, baud rate 1,200...9,600Energy count: weight of output pulsesDisplayDisplay type: red LEDs, 7 segmentsMeasurements: - Phase currents- Phase voltages/line-to-line voltages- Instantaneous active, reactive and apparent power- Average active power and maximum average active power value- Active energy/reactive energy- Frequency and power factor (with inductive/capacitive sector)Reading points: 1,000 (3 digits)Energy count: 9 digit counterPrecision: (reading + 1 digit):- Current: ±0.5% (10...120% In)- Voltage: ±0.5% (100...450V phase - phase)*- Powers: ±1.5% (10.......120% Pn/Qn/Sn, cosϕ 0.5 ind...0.5 cap.)- Frequency: ±1.5Hz- Power factor: ±2%- Active energy: Class 2 (EN 61036)- Reactive Energy: class 3 (EN 61268)ProgrammingProgrammable parameters: front keypadAccess to programming: combination of keysInputConnection on dedicated current transformersType of measurement: real efficient valueEnvironmental conditionsTemperature range: 0...50°cSuitable for use in tropical climates* for ARON connection the precision of the voltage measurement is guaranteed

with dissymmetry – 5%.

F3/3000Q

146 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 136: Tech Guide

F6A/4

Field of application

Control panel and cabinet metering unitsShutter and motor operators

Versions

• 4 position amperemeter switch: (0 - L1 - L2 - L3)• 4 position voltmeter switch: (0 - L1/N - L2/N - L3/N)• 7 position voltmeter switch: (0 - L1/N - L2/N - L3/N - L1/L2- L1/L3 - L2/L3)• Bipolar 2 position switch with central zero• One pole 4 position switch:• Bipolar 2 position switch with automatic return and central zero

Features

• Metering switch in three-phase systems• Utilisation with analogue, digital and CT instruments• Self-extinguishing resin protective cover

Technical specifications

Standards IEC 60947-5-1 IEC 60947-3No. modules 3Rated voltage Vn (Va.c.) 400Rated insulating voltage Ui (Va.c.) 660Rated current In (A) 16 (6A for electromagnetic loads)Utilisation category AC15Degree of protection (terminal area) IP20 Temperature range (°C) -20-70Maximum section of connectable 2.5 flexible/rigid cable (mm2)

ChANGEovER SWiTChES iTEm F6...

F6V/4

F8/250F3 F8/100

Field of application

Control panel and cabinet metering units

Technical specifications

Standards CEI 38-1, IEC 185, VDE0414, BS3938, NFC42-502Isolation voltage (Ui V.a.c.) 720Testing voltage (kV) (for 15A – 50Hz) 3 Rated frequency (Hz) 50Rated In current at the secondary 5Dynamic short circuit current 2.5 IthPermanent heating current 1.2 InDegree of protection (terminal area) IP20 Relative humidity at limit (%) 85Security factor (classes 0.5-1-3) -5Temperature range (°C) -20-70Maximum section of connectable 2.5 flexible/rigid cable (mm2)Thermal class B

CURRENT TRANSFoRmERS iTEm F8...

Features

• Double connection terminals IP20• Utilisation with analogue and digital instruments• Secondary terminals with plate type connection with screw tightening• Possibility of short circuiting the secondary, for the replacement or control of

the amperemeters, without any interruption of the primary current • It can be DIN35 rail or wall mounted• Self-extinguishing resin protective cover

Performance Precision classItem In ø cable Bar 0.5 1 3 (A) (mm) (mm) (VA) (VA) (VA)F8/50 50 21 16x12.5 — 1.25 1.5F8/60 60 21 16x12.5 — 1.25 2F8/80 80 21 16x12.5 — 1.5 2.5F8/100 100 21 16x12.5 2 2.5 3F8/150 150 21 16x12.5 3 4 5F8/200 200 21 16x12.5 4 5.5 6F8/250A 250 21 16x12.5 5 6 7F8/300A 300 23 30x10 7.5 11 13.5F8/400A 400 23 30x10 10.5 15 18F8/600A 600 23 30x10 14.5 21.5 26F8/250B 250 35 40x10 2.5 5 8F8/300B 300 35 40x10 4 8 12F8/400B 400 35 40x10 8 12 15F8/500 500 35 40x10 10 12 15F8/600B 600 35 40x10 12 15 15F8/600C 600 50x12 6 8 10F8/800 800 50x12 8 10 12F8/1000A 1000 50x12 10 12 15F8/1500A 1500 63x10 2x50x10 10 12 15F8/1000B 1000 2x10x60 2x10x50 15 20 25F8/1500B 1500 2x10x60 2x10x50 20 25 30F8/1600 1600 3x10x125 3x10x100 20 30 40F8/2000 2000 3x10x125 3x10x100 25 40 50F8/2500 2500 3x10x125 3x10x100 30 50 60F8/3000 3000 3x10x125 3x10x100 30 50 60F8/3200 3200 3x10x125 3x10x100 30 50 60F8/4000 4000 3x10x125 3x10x100 30 50 60F8/250F3 250 3 (20.5x5.5) — 3 4F8/400F3 400 3 (30.5x5.5) — 4 6

Changeover switches andamperometric transformer

TEChNiCAL iNFoRmATioN 147TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 137: Tech Guide

iNTERvENTioN CURvES

148 bTdiN

Page 138: Tech Guide

150 Features of thermal magnetic releases

151 Features of constant l2t

164 Features of earth leakage circuit breakers

SECTioN CoNTENTS

BTDIN TECHNICAL GUIDE

149CoNTENTS

Page 139: Tech Guide

intervention curves

CURvES oF ThERmAL mAGNETiC RELEASES

BTDIN® 60/100 - "D" curves

Curves measured with cold start-up, at the reference temperatureI = effective currentIr = circuit breaker rated current

Reference temperature for BTDIN: 30°CReference temperature for MEGATIKER: 40°C

MD125 - "C" curves

BTDIN® 45/60 - "B" curves BTDIN® 45/60/100/250 - "C" curves

150 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 140: Tech Guide

GEnERAl notEAll BTDIN circuit breakers with calibrations lower than 2A have a specific feed-through power lower than or equal to 2000 A2s.Instead, the circuit breakers with 3A or 4A calibrations have a specific feed-through power of 6000 A2s and 10000 A2s.

Reference temperature for BTDIN: 30° C

CURvES oF ThERmAL mAGNETiC RELEASES

BTDIN® 100 - "Z" curves BTDIN® 100 - "K" curves

bTdiN® 45 i2t "b" CURvE

Icc = prospective short circuit symmetrical current (efficient value in A)I2t = specific feed-through power (A2s)

1P+N 230V a.c. (1 module) BTDIN250 curves only magnetic

TEChNiCAL iNFoRmATioN 151TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 141: Tech Guide

intervention curves

bTdiN® 45 i2t "C" CURvES

1P+N 230V a.c. (1 module)

Icc = prospective short circuit symmetrical current = (efficient value in A)I2t = specific feed-through power (A2s)

Hot start thermal intervention Θ0 = 70°C

1P+N - 2P 230V a.c. (2 modules)

2P 400V a.c. 1P - 3P - 4P 400V a.c.

152 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 142: Tech Guide

bTdiN® 60 i2t "b" CURvES

2P - 230V a.c.

2P - 400V a.c.

1P + N - 230V a.c. - 1 MODULE

1P-3P-4P - 400V a.c.

Icc = prospective short circuit symmetrical current = (efficient value in A)I2t = specific feed-through power (A2s)

Hot start thermal intervention Θ0 = 70°C

TEChNiCAL iNFoRmATioN 153TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 143: Tech Guide

intervention curves

bTdiN® 60 i2t "C" CURvE

1P + N - 230V a.c. - 1 MODULE 1P + N-2P - 230V a.c. - 2 MODULES

2P - 400V a.c. 1P-3P-4P - 400V a.c.

Icc = prospective short circuit symmetrical current = (efficient value in A)I2t = specific feed-through power (A2s)

Hot start thermal intervention Θ0 = 70°C

154 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 144: Tech Guide

bTdiN® 60 i2t "d" CURvE

2P - 230V a.c. 2P - 400V a.c.

1P-3P-4P - 400V a.c.

Hot start thermal intervention Θ0 = 70°CIcc = prospective short circuit symmetrical current = (efficient value in A)I2t = specific feed-through power (A2s)

TEChNiCAL iNFoRmATioN 155TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 145: Tech Guide

intervention curves

bTdiN® 100 i2t "C" CURvE

1P-N-2P - 230V a.c. 2P - 400V a.c.

1P-3P-4P - 400V a.c.

Hot start thermal intervention Θ0 = 70°CIcc = prospective short circuit symmetrical current = (efficient value in A)I2t = specific feed-through power (A2s)

156 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 146: Tech Guide

bTdiN® 100 i2t "d" CURvE ANd "k" CURvE

2P - 230V a.c. 2P - 400V a.c.

1P-3P-4P - 400V a.c.

Hot start thermal intervention Θ0 = 70°CIcc = prospective short circuit symmetrical current = (efficient value in A)I2t = specific feed-through power (A2s)

TEChNiCAL iNFoRmATioN 157TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 147: Tech Guide

intervention curves

bTdiN® 100 i2t "z" CURvE

2P - 230V a.c. 2P - 400V a.c.

4P - 400V a.c.

Hot start thermal intervention Θ0 = 70°CIcc = prospective short circuit symmetrical current = (efficient value in A)I2t = specific feed-through power (A2s)

158 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 148: Tech Guide

bTdiN® 100 i2t “C” CURvE (in=80-125A)

1P-3P-4P - 400V a.c. 2P - 400V a.c.

2P - 230V a.c.

Hot start thermal intervention Θ0 = 70°CIcc = prospective short circuit symmetrical current = (efficient value in A)I2t = specific feed-through power (A2s)

TEChNiCAL iNFoRmATioN 159TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 149: Tech Guide

intervention curves

bTdiN® 100 i2t “d” CURvE (in=80-125A)

2P - 230V a.c. 2P - 400V a.c.

1P-3P-4P - 400V a.c.

Hot start thermal intervention Θ0 = 70°CIcc = prospective short circuit symmetrical current = (efficient value in A)I2t = specific feed-through power (A2s)

160 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 150: Tech Guide

bTdiN® 250 i2t “C” CURvE

1P+N-2P - 230V a.c. 2P - 400V a.c.

1P-3P-4P - 400V a.c.

Hot start thermal intervention Θ0 = 70°CIcc = prospective short circuit symmetrical current = (efficient value in A)I2t = specific feed-through power (A2s)

TEChNiCAL iNFoRmATioN 161TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 151: Tech Guide

intervention curves

bTdiN® 250h i2t “C” CURvE

2P - 400V a.c. 4P - 400V a.c.

2P only magnetic - 400V a.c.

bTdiN® 250h i2t “C” CURvE

Hot start thermal intervention Θ0 = 70°C Icc = prospective short circuit symmetrical current = (efficient value in A)I2t = specific feed-through power (A2s)

3P only magnetic - 400V a.c.

162 TEChNiCAL iNFoRmATioNbTdiN TEChNiCAL iNFoRmATioN

Page 152: Tech Guide

bTdiN LimiTATioN CURvES

BTDIN 45/60/100/250/250H limitation curve BTDIN 100 (80-125A) limitation curve

2P only magnetic - 400V a.c.

mS32 ThERmAL mAGNETiC moToR pRoTECToRS

Icc = prospective short circuit symmetrical current (efficient value in A)Ip = maximum current peak value

= maximum peak values of the short circuit symmetrical current corresponding to the above listed power factors = maximum peak values of the effective short circuit current

0.60.001

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

1

0

20

50

10

0

200

500

1.00

0

2.000s

5.000

10.000

0.81 2 3 4 6 8 10 20 30 40 60 80

Opening time

100

6040

10

5

2

1

min

x Ie0.5

TEChNiCAL iNFoRmATioN 163TEChNiCAL iNFoRmATioN

BTDIN TECHNICAL GUIDE

Page 153: Tech Guide

intervention curves

SimpLE ANd moNobLoC EARTh LEAkAGE CiRCUiT bREAkERS - TRippiNG CURvES

Simple earth leakage 2P-4P and BTDIN 45/60 - 1P+N-2P-4P (reduced mod.) Combinable earth leakage modules - Type A - AC-AS

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

30 mA

300 mA

300 mAS type

10 mA

1A S type

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

1000010000.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

1000010000.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

30 mA

300 mA

300 mAS type

10 mA

1A S type

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

1000010000.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

Combinable earth leakage modules - Type A-AC (In=80-125A) BTDIN 60 - 2P (full module)

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

30 mA

300 mA

300 mAS type

10 mA

1A S type

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

1000010000.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

30 mA

300 mA

300 mAS type

10 mA

1A S type

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

1000010000.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

0.01

1

0.1

0.05

t (s)

0.5

1 10 100

Id (mA)

100001000

164 bTdiN


Recommended