+ All Categories
Home > Documents > Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK...

Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK...

Date post: 09-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
34
Technical Handbook for Radio Monitoring VHF/UHF Edition 2011
Transcript
Page 1: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

Technical Handbook for

Radio Monitoring

VHF/UHF

Edition 2011

Page 2: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

2

Page 3: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

3

Dipl.- Ing. Roland Prösch Dipl.- Inf. Aikaterini Daskalaki-Prösch

Technical Handbook for

Radio Monitoring

VHF/UHF

Edition 2011

Books on Demand GmbH

Description of modulation techniques and waveforms with 181 pictures and 75 tables

Page 4: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

4

© 2011 Dipl.- Ing. Roland Prösch, Dipl.- Inf. Aikaterini Daskalaki-Prösch Email: [email protected], [email protected] Production and publishing: Books on Demand GmbH, Norderstedt, Germany Cover design: Anne Prösch Cover fotos: Mike Höhn, Roland Prösch Printed in Germany Webpage: technicalhandbook.frequencymanager.de ISBN 9783842351622

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Page 5: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

5

Acknowledgement: Thanks for those persons who have supported us in the preparation of this book. Disclaimer: The information in this book have been collected over years. The main problem is that there are not many open sources to get information about this sensitive field. Although we tried to verify these information from different sources it may be that there are mistakes. Please do not hesitate to contact us if you discover any wrong description.

Page 6: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

6

Page 7: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

7

Content

1. LIST OF PICTURES 15

2. LIST OF TABLES 21

3. GENERAL 23

4. DESCRIPTION OF WAVEFORMS 24

Analogue Waveforms 24 Amplitude Modulation (AM) 24

Double Sideband reduced Carrier (DSB-RC) 25 Double Sideband suppressed Carrier (DSB-SC) 25 Single Sideband full Carrier 26 Single Sideband reduced Carrier (SSB-RC) 27 Single Sideband suppressed Carrier (SSB-SC) 27 Single Sideband Modulation (SSB) 27 Independent Sideband Modulation (ISB) 28 Vestigal Sideband Modulation (VSB) 29

Frequency Modulation (FM) 30 Wide Frequency Modulation (WFM) 31

Digital Waveforms 32 Amplitude Shift Keying (ASK) 32 Frequency Shift Keying (FSK) 33

Continuous Phase Frequency Shift Keying (CPFSK) 34 Double Frequency Shift Keying (DFSK) 34 Constant Envelope 4-Level Frequency Modulation (C4FM) 35 Minimum Shift Keying (MSK) 36 Tamed Frequency modulation (TFM) 37 Gaussian Minimum Shift Keying (GMSK) 37 Multi Frequency Shift Keying (MFSK) 37

Phase Shift Keying (PSK) 39 Binary Phase Shift Keying (BPSK) 39 Quadrature Phase Shift Keying (QPSK) 41 Offset Quadrature Phase Shift Keying (OQPSK) 43 Staggered Quadrature Phase Shift Keying (SQPSK) 43 Compatible Differential Offset Quadrature Phase Shift Keying (CQPSK) 43 Coherent Phase Shift Keying (CPSK) 44 Differential Coherent Phase Shift Keying (DCPSK) 44 8PSK Modulation 44 Differential Phase Shift Keying (DPSK) 45 Differential Binary Phase Shift Keying (DBPSK) 45 Differential Quadrature Phase Shift Keying (DQPSK) 45 Differential 8 Phase Shift Keying (D8PSK) 45

Quadrature Amplitude Modulation (QAM) 46

Page 8: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

8

Orthogonal Frequency Division Multiplexing (OFDM) 48 Spread Spectrum (SS) 50

Direct Sequence Spread Spectrum (DSSS) 50 Frequency Hopping Spread Spectrum (FHSS) 51

Incremental Frequency Keying (IFK) 51 Analogue Pulse Modulation 52

Pulse Amplitude Modulation (PAM) 52 Pulse Width Modulation (PWM) 52 Pulse Position Modulation (PPM) 52

Digital Pulse Modulation 53 Pulse Code Modulation (PCM) 53 Delta Modulation 53

Description of modulation states 55 Asynchronous Data Transmission 55 Synchronous Data Transmission 55 Simplex 56 Duplex 56 Half duplex 56 Semi duplex 56

Bit Rate, Symbol Rate, Baud Rate 57 Bit rate 57 Symbol rate 57 Baud rate 57

Data formats 58 NRZ (Non Return to Zero) 59 NRZ (S) (Non Return to Zero - Space) 59 NRZ (M) (Non Return to Zero - Mark) 59 Bi-Ф-L (Biphase Level) 59 Bi-Ф-S (Biphase Space) 59 Bi-Ф- M (Biphase Mark) 59

Coding 60 Code 60 Codes in communication used for brevity 60 An example: the ASCII code 60 Codes to detect or correct errors 61 Error-correcting code (ECC) 61 Forward Error Correction (FEC) 61 Convolutional code 62 Viterbi algorithm 62 Reed-Solomon error correction 63

Overview of the method 63 Properties of Reed-Solomon codes 63 Use of Reed-Solomon codes in optical and magnetic storage 64 Timeline of Reed-Solomon development 64 Satellite technique: Reed-Solomon + Viterbi coding 64

Turbo code 65 Shannon-Hartley theorem 65

Page 9: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

9

Theorem 65 Examples 66

Used code tables 67 ITA2, ITA2P and ITA3(CCIR342-2) 67 Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69

ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70

Channel access methods 75 Frequency-division multiple access (FDMA) 75 Time division multiple access (TDMA) 75 Code division multiple access (CDMA) 76 Orthogonal Frequency multiple access (OFDMA) 76

The OSI Reference Model 77 The Physical Layer 77 The Data Link Layer 78 The Network Layer 78 The Transport Layer 79 The Session Layer 80 The Presentation Layer 80 The Application Layer 80

Protocols 81 ACP127 81 STANAG 4406 Messaging 81 STANAG 5066 82 X.25 83 RSX.25 89

Designation of Emissions 90 Determination of Necessary Bandwidths 94

5. VHF MODES 103 ACARS 103 ADS-B 107 AIS 109 AMPS 112 APCO 25 113 ARDIS 115 ATCS 118 ATIS 120 BIIS 121 Bluetooth 122

Bluetooth 1.0 and 1.0B 123

Page 10: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

10

Bluetooth 1.1 123 Bluetooth 1.2 123 Bluetooth 2.0 + EDR 123 Bluetooth 2.1 + EDR 124 Bluetooth 3.0 + HS 124 Bluetooth 4.0 124

Broadcast WFM 125 Pre-emphasis and de-emphasis 126

CCIR-1 127 CCIR-2 128 CCITT 129 CDMA One 130 CDMA2000 131 CDPD 132 Cordless Phone 136

Analogue Standard CT0 136 Analogue Standard CT0 (Extended) 137 Analogue Standard CT1 137 Analogue Standard CT1+ 137 Digital Standard CT2 137 Digital Standard CT2+ 138 Digital Standard CT3 138

CTCSS 139 DAB 140

DAB Bands and modes 140 Audio codec 141 DAB Error-correction coding 141 DAB Single-frequency networks 142 DAB Bit rates 142 DAB Frequencies 142

D-AMPS 146 DCSS 149 DECT 150 DSTAR 152

DSTAR Framing 153 DSTAR Radio Header 153 DSTAR data 155 DSTAR voice 155

DTMF 157 DVB-T 158 EEA 163 EIA 164 EPIRB 165 EPLRS 167 ERMES 168 Data Format 169

Hierarchy 169 EUROSIGNAL 170 EXICOM EX7100 171 FLEX 172 FMS BOS 175 FSK 441 176

Page 11: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

11

GMDSS-DSC VHF 178 GSM 180

The system components in GSM 182 MS (Mobile Station) 182 BSS (Base Station System) 182 NSS (Network and Switching Subsystem) 183 OSS (Operations Support System or Operation Subsystem) 183

Overview of the network architecture 184 GSM Interfaces 185 Logical Channels of the radio channel 186

Broadcast Channel (BCH) 187 Common Control Channel (CCCH) 188 Dedicated Control Channel (DCCH) 188

Bursts and frame structure 188 Normal burst 189 Frequency correction burst 189 Synchronization burst 189 Dummy burst 190 Access burst 190

Frequency Hopping 191 Have Quick 193 INMARSAT 194

INMARSAT-A 194 INMARSAT Aero H 195 INMARSAT Aero H+ 195 INMARSAT Aero I 195 INMARSAT Aero L 195 INMARSAT Aero Mini-M 195 INMARSAT-B 195 INMARSAT-C 196 INMARSAT Mini-C 197 INMARSAT D 197 INMARSAT D+ 197 INMARSAT-E 197 INMARSAT-M 198 INMARSAT mini-M 198 INMARSAT Fleet F33 199 INMARSAT Fleet F55 199 INMARSAT Fleet F77 200 INMARSAT GAN/M4 200 INMARSAT Regional BGAN 200 INMARSAT Swift64 200 INMARSAT TDM channel details 201

ITU Fax and Modem Standards 204 Modem Standards 204

V.19 Modem Standard 205 V.21 Modem Standard 205 V.22 Modem Standard 205 V.22 bis Modem Standard 206 V.23 Modem Standard 207 V.26 Modem Standard 207 V.26bis Modem Standard 207

Page 12: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

12

V.26ter Modem Standard 208 V.27 Modem Standard 208 V.32 Modem Standard 208 V.32bis Modem Standard 208 V.33 Modem Standard 208 V.36 Modem Standard 208 V.37 Modem Standard 208 V.38 Modem Standard 209 V.90 Modem Standard 209

Fax Standards 210 Fax Standards 210

V.17 FAX Standard 210 V.29 FAX Standard 210 V.27bis FAX Standard 210 V.27ter FAX Standard 211 V.34 FAX Standard 212

DSVD and H.324 Standards 212 JT2 213 JT44 214 JT6M 215 LINK 4A/C 216

LINK 4A 216 LINK 4C 216

LINK 11 CLEW 217 LINK 11 SLEW 220 LINK 14 221 LINK Y 222 LINK Z 223 LINK 16 224 LINK 22 225 MDC-600/MDC-1200 226 MDC-4800 227 Mobitex-1200 229 Mobitex-8000 230

RAM 230 MPT 1327 232 NATEL 233 NMT-450 234 NOAA Weather Radio 235

Elements of NWR SAME Messages 235 Message Format of NRW SAME 237 Codes of NWR SAME 240

EAS Event (NWR-SAME) Codes 240 ORBCOMM 243

ORBCOMM Downlink 244 ORBCOMM SDPSK modulation 244 ORBCOMM Downlink Data Format 244 ORBCOMM subscriber uplink 246 ORBCOMM uplink GES to Satellite Channels 246 ORBCOMM beacon 246

Packet Radio 247 POCSAG 248

Page 13: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

13

Preamble Structure 248 Batch Structure 249 Frame Structure 249

Address codeword 249 Message codeword 250 Idle Codeword 250 Numeric Message Format 250 Alpha-Numeric Message Format 251

Radiosondes 252 VAISALA RS80 15GH 253 VAISALA RS92 KL 254 VAISALA RS92 SGPD 255 M2 K2 256 Table of Radiosondes 257

RD-LAP 259 RDS/RBDS 261

RDS data structure 262 SENOA MSK Hopping System 265 TACAN 266 TETRA 267 TETRAPOL 273 Thuraya 275 Traffic Light Control Fehler! Textmarke nicht definiert. Trunked Radio 278 Terrestrial Television Analogue 280 Terrestrial Television Digital 285 VDEW 286 VHF Digital Link Modes 287 Frequency Allocation 287 VDL Mode 1 289 VDL Mode 2 290 VDL Mode 3 292 VDL Mode 4 293 ZVEI 1 297 ZVEI 2 298 ZVEI 2 xx tones 299

6. HINTS FOR RADIO MONITORING 300

Recognizing of PSK-, MSK- and TFM - Signals 300

Different PSK modulation 300

7. TABLES FOR RADIO MONITORING 302

Allocation of International Call Signs 302

Alphabetical List of Country Codes 307

Page 14: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

14

Selective Calling 311

Allocation of Maritime Identification Digits 315

Notice to Airmen (NOTAM) 320

Weather Forecast (TAF and METAR) 327 TAF 327 METAR 327

Q , X and Z - Code 330 Q-Codes 330 X-Codes 340 Z-Codes 341

Abbreviations 350

8. INDEX 357

Page 15: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

15

1. List of Pictures

Picture 1: Different AM waveforms ................................................................................................. 24 Picture 2: Spectrum and sonagram of an amplitude modulation .................................................... 25 Picture 3: Spectrum of a double sideband suppressed carrier signal.............................................. 26 Picture 4: Spectrum and sonagram of a single sidband modulation with full carrier..................... 26 Picture 5: Spectrum and sonagram of a single sidband modulation with reduced carrier ............. 27 Picture 6: Spectrum of a single sideband modulation ..................................................................... 28 Picture 7: Spectrum of an independent modulated signal ............................................................... 28 Picture 8: Frequency Modulation.................................................................................................... 30 Picture 9: Spectrum and sonagram of a frequency modulation....................................................... 30 Picture 10: Spectrum of a wide FM broadcast transmitter.............................................................. 31 Picture 11: Amplitude Shift Keying (ASK)....................................................................................... 32 Picture 12: Spectrum of an ASK with 100 Bd .................................................................................. 32 Picture 13: Oscilloscope display of an ASK .................................................................................... 33 Picture 14: Frequency Shift Keying (FSK) ...................................................................................... 33 Picture 15: Spectrum of an FSK ...................................................................................................... 33 Picture 16: Spetrum of a CPFSK with 100 Bd................................................................................. 34 Picture 17: Spectrum of a DFSK ..................................................................................................... 35 Picture 18: IQ Plot of C4FM ........................................................................................................... 35 Picture 19: Sonagram and spectrum of C4FM in idle mode ........................................................... 36 Picture 20: Minimum Shift Keying................................................................................................... 37 Picture 21: Spectrum of a Tamed Frequency Modulation (TFM 3) with 100 Bd ............................ 37 Picture 22: Spectrum of a MFSK with 12 tones............................................................................... 38 Picture 23: Phase shift Keying......................................................................................................... 39 Picture 24: BPSK-A ......................................................................................................................... 39 Picture 25: Phase plane of a BPSK ................................................................................................. 40 Picture 26: Spectrum of a BPSK with 600 Bd.................................................................................. 40 Picture 27: BPSK-B ......................................................................................................................... 40 Picture 28: QPSK-A......................................................................................................................... 41 Picture 29: QPSK-B......................................................................................................................... 42 Picture 30: Spectrum of a QPSK with 600 Bd ................................................................................. 42 Picture 31: Phase plane of a QPSK................................................................................................. 42 Picture 32: Phase plane of an OQPSK (right) compared to QPSK (left) ........................................ 43 Picture 33: Phase Plane of an 8PSK ............................................................................................... 44 Picture 34: Spectrum of an 8PSK with 600 Bd ................................................................................ 45 Picture 35: Example of an 8QAM and 16QAM in the Phase Plane ................................................ 46 Picture 36: Spectrum of a QAM8 with 600 Bd ................................................................................ 47 Picture 37: Spectrum of a QAM16 with 600 Bd .............................................................................. 47 Picture 38: Comparison of FDM and OFDM.................................................................................. 48 Picture 39: Spectrum of an audio OFDM with 45 channels............................................................ 48 Picture 40: Spectrum of an OFDM for DAB.................................................................................... 49 Picture 41: Function of DSSS .......................................................................................................... 50 Picture 42: Function of FHSS.......................................................................................................... 51

Page 16: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

16

Picture 43: Different types of amplitude modulation ...................................................................... 52 Picture 44: Quantization in a PCM................................................................................................. 53 Picture 45: Delta Modulation.......................................................................................................... 54 Picture 46: Common data formats................................................................................................... 58 Picture 47: Principle of FDMA ....................................................................................................... 75 Picture 48: Principle of TDMA ....................................................................................................... 75 Picture 49: Principle of OFDMA .................................................................................................... 76 Picture 50: The OSI reference model .............................................................................................. 77 Picture 51: STANAG 5066 layers.................................................................................................... 82 Picture 52: Spectrum of ACARS .................................................................................................... 103 Picture 53: Sonagram of ACARS packets...................................................................................... 103 Picture 54: Mode S short squitter frame........................................................................................ 107 Picture 55: Mode S extended squitter frame.................................................................................. 107 Picture 56: PPM of ADS-B............................................................................................................ 108 Picture 57: Framing of ADS-B ...................................................................................................... 108 Picture 58: AIS frame .................................................................................................................... 109 Picture 59: AIS spectrum and sonogram....................................................................................... 109 Picture 60: Framing of APCO25................................................................................................... 113 Picture 61: Spectrum and sonagram of an ARDIS signal with 4800 Bps...................................... 115 Picture 62: Spectrum and sonagram of a 4FSK ARDIS signal with 19200 Bps ........................... 116 Picture 63: Framing of MDC-4800 in an ARDIS signal ............................................................... 116 Picture 64: Framing of RD-LAP in an ARDIS signal.................................................................... 117 Picture 65: Spectrum and sonagram of an ATCS signal ............................................................... 118 Picture 66: Structure of a 5 serie address ..................................................................................... 118 Picture 67: Structure of a 7 serie address ..................................................................................... 119 Picture 68: Spectrum of an ATIS 1200 Bd signal with test loop ................................................... 120 Picture 69: Spectrum of BIIS......................................................................................................... 121 Picture 70: Format of a Bluetooth frame ...................................................................................... 122 Picture 71: Spectrum of a WFM.................................................................................................... 125 Picture 72: Spectrum of FM stereo with sub-channels.................................................................. 126 Picture 73: Spectrum of a CCIR-1 signal ...................................................................................... 127 Picture 74: Spectrum of a CCIR-2 signal ...................................................................................... 128 Picture 75: Spectrum of CCITT signal .......................................................................................... 129 Picture 76: Spectrum of a GMSK with 19200 Bd .......................................................................... 132 Picture 77: CDPD framing of forward channel ............................................................................ 133 Picture 78: CDPD reverse channel framing ................................................................................. 134 Picture 79: Cordless phone standards........................................................................................... 136 Picture 80: Spectrum of a CT2 signal ........................................................................................... 137 Picture 81: Framing of CT2 .......................................................................................................... 138 Picture 82: Spectrum of a DAB signal........................................................................................... 140 Picture 83: Spectrum of a DECT signal ........................................................................................ 150 Picture 84: Slot occupation of DECT............................................................................................ 150 Picture 85: Framing of DECT voice transmission ........................................................................ 151 Picture 86: Spectrum of DSTAR on IF level.................................................................................. 152 Picture 87: Audio spectrum of a DSTAR signal ............................................................................ 152

Page 17: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

17

Picture 88: Sonogram of a DSTAR signal with pre- and post carrier ........................................... 153 Picture 89: DSTAR overall framing............................................................................................... 153 Picture 90: Framing of the DSTAR radio header .......................................................................... 153 Picture 91: Framing of DSTAR data payload................................................................................ 155 Picture 92: Framing of DSTAR voice payload .............................................................................. 156 Picture 93: Spectrum of a DTMF signal........................................................................................ 157 Picture 94: Spectrum of DVB-T in 8k mode................................................................................... 158 Picture 95: Spectrum of DVB-T with 7 MHz bandwidth................................................................ 159 Picture 96: Scheme of a DVB-T transmission system .................................................................... 160 Picture 97: MPEG-2 framing ........................................................................................................ 161 Picture 98: Spectrum of EEA signal .............................................................................................. 163 Picture 99: Spectrum of EIA signal ............................................................................................... 164 Picture 100: Spectrum of a 400 Bd EPIRB signal ......................................................................... 165 Picture 101: Phase plane of a EPIRB............................................................................................ 165 Picture 102: Baudrate measurement with phase spectrum of a EPIRB......................................... 166 Picture 103: Spectrum and sonogram of an ERMES signal .......................................................... 168 Picture 104: ERMES data format .................................................................................................. 169 Picture 105: Spectrum of an EXICOM radio................................................................................. 171 Picture 106: Spectrum of a FLEX signal 2FSK mode ................................................................... 172 Picture 107: Spectrrum of a FLEX signal 4FSK mode.................................................................. 172 Picture 108: Framing of FLEX...................................................................................................... 173 Picture 109: FLEX frame information........................................................................................... 174 Picture 110: Spectrum of a FMS BOS signal................................................................................. 175 Picture 111: Spectrum and sonagram of a FSK441 signal............................................................ 176 Picture 112: MFSK oscilloscope for a FSK441............................................................................. 177 Picture 113: Spectrum of a GMDSS signal with 511 bit test slip .................................................. 178 Picture 114: Spectrum of a GMDSS signal under real conditions ................................................ 178 Picture 115: Spectrum of GSM ...................................................................................................... 180 Picture 116: Architecture of the GSM Interfaces........................................................................... 184 Picture 117: Frequency Reuse....................................................................................................... 185 Picture 118: Logical Channels in GSM......................................................................................... 187 Picture 119: Burst types in GSM ................................................................................................... 189 Picture 120: GSM Frame Structure............................................................................................... 190 Picture 121: Slow Frequency Hopping over three frequencies in GSM........................................ 191 Picture 122: Spectrum of INMARSAT-C 1200 Bd TDMA ............................................................. 196 Picture 123: Phase plane of INMARSAT-C 1200 Bd BPSK TDMA .............................................. 197 Picture 124: Spectrum of INMARSAT M NCS ............................................................................... 198 Picture 125: Spectrum of INMARSAT- mini-M NCS ..................................................................... 198 Picture 126: Spectrum of V.22 modem .......................................................................................... 205 Picture 127: Phase plane of V.22 modem...................................................................................... 206 Picture 128: Spectrum of V.22bis modem with 2400 Bps .............................................................. 206 Picture 129: Phase plane of V.22bis modem ................................................................................. 207 Picture 130: Spectrum of V.23 modem .......................................................................................... 207 Picture 131: Spectrum and sonagram of a JT2 signal................................................................... 213 Picture 132: Spectrum and sonagram of a JT44 signal................................................................. 214

Page 18: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

18

Picture 133_ Spectrum and sonagram of a JT6M signal .............................................................. 215 Picture 134: Spectrum of a LINK 11 transmission ........................................................................ 217 Picture 135: Spectrum of the LINK 11 single Tone Modem.......................................................... 220 Picture 136: Sonagram of LINK 11 SLEW.................................................................................... 220 Picture 137: Typical spectrum of a LINK 14 signal ...................................................................... 221 Picture 138: Spectrum of a MDC-1200 signal .............................................................................. 226 Picture 139: Frame structure for a MDC-1200 signal.................................................................. 226 Picture 140: Spectrum and sonagram of MDC-4800 signal with 4800 Bps ................................. 227 Picture 141: Framing of MDC-4800 ............................................................................................. 228 Picture 142: Spectrum of a MOBITEX-1200................................................................................. 229 Picture 143: Sonagram of a MOBITEX-1200 ............................................................................... 229 Picture 144: Frame Structur used in MOBITEX ........................................................................... 231 Picture 145: Spectrum of MPT1327 channel ................................................................................ 232 Picture 146: Spectrum of NWR SAME........................................................................................... 235 Picture 147: Burst sonagram of NWR SAME ................................................................................ 236 Picture 148: Spectrum of an ORBCOMM 4800 bps SDPSK......................................................... 244 Picture 149: Phase spectrum of an ORCOMM SDPSK with peaks at 4800 bps ........................... 245 Picture 150: Phase constellation of an ORCOMM SDPSK .......................................................... 245 Picture 151: Spectrum of a 1200 bd Packet Radio signal ............................................................. 247 Picture 152: Spectrum of a POCSAG signal ................................................................................. 248 Picture 153: Structure of a POCSAG signal ................................................................................. 249 Picture 154: Structure of the POCSAG batches ............................................................................ 249 Picture 155: Frame Structure........................................................................................................ 249 Picture 157: Sonagram of a VAISALA RS15GH ........................................................................... 254 Picture 158: Spectrum and sonagram of a RS 92 KL radiosonde................................................. 254 Picture 159: VAISALA RS92 SGPD IF spectrum.......................................................................... 255 Picture 160: Spectrum of a VAISALA RS92 SGPD ....................................................................... 255 Picture 161: Spectrum of a Mark M2K2 ....................................................................................... 256 Picture 162: Phase spectrum of a Mark2K2 with 400 bd peaks.................................................... 256 Picture 163: Spectrum and sonagram of a 4FSK used in RD-LAP............................................... 259 Picture 164: Framing of RD-LAP ................................................................................................. 260 Picture 165: Spectrum of FM broadcast carrier ........................................................................... 261 Picture 166: Spectrum of a RDS signal within a WFM signal ...................................................... 261 Picture 167: RDS data structure ................................................................................................... 262 Picture 168: Spectrum of TETRA .................................................................................................. 267 Picture 169: Logical Channels in TETRA ..................................................................................... 270 Picture 170: TDMA frame structure of TETRA............................................................................. 271 Picture 171: Burst structure in TETRA ......................................................................................... 272 Picture 172: Spectrum of a TETRAPOL signal ............................................................................. 273 Picture 173: TETRAPOL frame structure ..................................................................................... 273 Picture 174: Spectrum of TETRAPOL signals............................................................................... 274 Picture 175: Coverage area of Thuraya (copyright www.thuraya.com) ...................................... 275 Picture 176: Spectrum of a single trunked radio channel ............................................................. 278 Picture 177: Trunked Radio unused and used channel ................................................................. 279 Picture 178: Scannning and display of television lines ................................................................. 280

Page 19: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

19

Picture 179: Structure of a black&white video signal ................................................................... 281 Picture 180: Structure of a colour video signal............................................................................. 281 Picture 181: Spectrum of ZVEI 1 Signal........................................................................................ 297

Page 20: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

20

Page 21: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

21

2. List of Tables

Table 1: C4FM symbol table ........................................................................................................... 35 Table 2: Bit value for QPSK ............................................................................................................ 41 Table 3: Phase shifts for CQPSK..................................................................................................... 43 Table 4: Bit values for DQPSK........................................................................................................ 45 Table 5: Bit values for QAM ............................................................................................................ 46 Table 6: Different description for data levels .................................................................................. 55 Table 7: Code table for ITA2, ITA2P and ITA3............................................................................... 67 Table 8: Code table for CCIR476-4, HNG-FEC and PICCOLO MK VI alphabets......................... 69 Table 9: ASCII table ........................................................................................................................ 73 Table 10: X.25 Packet frame............................................................................................................ 84 Table 11: Common used transmission modes .................................................................................. 93 Table 12: Terms and their description............................................................................................. 94 Table 13: Determination of necessary bandwidths for emissions.................................................. 102 Table 14: Main ACARS frequencies .............................................................................................. 105 Table 15: ACARS message format ................................................................................................. 106 Table 16: Data structure of AIS..................................................................................................... 109 Table 17: ACL packet types in Bluetooth....................................................................................... 122 Table 18: Tone frequencies of CCIR-1 .......................................................................................... 127 Table 19: Tone frequencies of CCIR-2 .......................................................................................... 128 Table 20: Tone frequencies of CCITT............................................................................................ 129 Table 21: Frequencies of CT0 ....................................................................................................... 136 Table 22: Frequencies of CT0 extended ........................................................................................ 137 Table 23: Tone frequencies of CTCSS ........................................................................................... 139 Table 24: DAB Broadcast band III ................................................................................................ 144 Table 25: DAB Channel 13 frequencies......................................................................................... 144 Table 26: DAB L-band frequencies ............................................................................................... 145 Table 27: Main parameter of D-AMPS.......................................................................................... 147 Table 28: DCSS bit structure ......................................................................................................... 149 Table 29: DCSS tone frequencies .................................................................................................. 149 Table 30: DSTAR radio header flag 1 description ........................................................................ 154 Table 31: DTMF tone frequencies ................................................................................................. 157 Table 32: DVB-T available bitrates............................................................................................... 160 Table 33: EEA tone frequencies..................................................................................................... 163 Table 34: EIA tone frequencies...................................................................................................... 164 Table 35: Frequencies for ERMES ................................................................................................ 169 Table 36: EURO tone frequencies ................................................................................................. 170 Table 37: Structure of FMS BOS messages ................................................................................... 175 Table 38: FSK 441 tone/character combination............................................................................ 177 Table 39: Ten bit error detecting code of GMDSS VHF................................................................ 179 Table 40: GSM Frequencies .......................................................................................................... 181 Table 41: Different GSM frequency ranges by country ................................................................. 182

Page 22: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

22

Table 42: Power for mobile station (MS) in GSM......................................................................... 182 Table 43: INMARSAT NCS frequencies ........................................................................................ 194 Table 44: INMARSAT modulation overview.................................................................................. 201 Table 45: INMARSAT TDM channel details ................................................................................. 201 Table 46: INMARSAT bit structure of the signalling channel ....................................................... 202 Table 47: ITU Modem Standards .................................................................................................. 205 Table 48: ITU Fax Standards ........................................................................................................ 210 Table 49: LINK 11 frequencies...................................................................................................... 217 Table 50: NATEL tone frequencies................................................................................................ 233 Table 51: Possible subscriber terminal uplink frequencies........................................................... 246 Table 52: POCSAG numeric character ......................................................................................... 251 Table 53: POCSAG alpha numeric message format ..................................................................... 251 Table 54: Tone frequencies of IRIG telemetry standard................................................................ 252 Table 55: Overview of types of radiosondes.................................................................................. 258 Table 56: RDS and RBDS programm types................................................................................... 264 Table 57: Logical channels in Thuraya that are common to GSM................................................ 276 Table 58: Different TV standards ................................................................................................. 283 Table 59: TV standards - signal characterisation ......................................................................... 284 Table 60: Differrent digital terrestrial television standards......................................................... 285 Table 61: VDEW tone frequencies................................................................................................. 286 Table 62: Frequencies for VHF Digital Link (VDL) ..................................................................... 288 Table 63: ZVEI 1 tone frequencies ................................................................................................ 297 Table 64: ZVEI 2 tone frequencies ................................................................................................ 298 Table 65: PSK transmitted bit's/phase shifts ................................................................................. 300 Table 66: International callsigns................................................................................................... 306 Table 67: Country codes................................................................................................................ 310 Table 68: Translation of a four digit number ................................................................................ 311 Table 69: Translation of a five digit number................................................................................. 312 Table 70: Coast station identification numbers by blocks and countries ...................................... 314 Table 71: Allocation of MID's ....................................................................................................... 319 Table 72: Q-codes ......................................................................................................................... 339 Table 73: X-codes.......................................................................................................................... 340 Table 74: Z-codes .......................................................................................................................... 349 Table 75: Abbreviations ................................................................................................................ 356

Page 23: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

23

3. General

The “Technical Handbook for Radio Monitoring HF” is meanwhile well known and used by many radio listeners (official or private) worldwide. Due to the high amount of systems we decided to separate the description of signals in the VHF/UHF range from those heard on HF. This book has been written to help the listener in identifying the different modes or waveforms which are active throughout the VHF/UHF band.

It will never be complete. But it will give a good overview which techniques are state of the art today. It has to be mentioned that most of the pictures are a result of the decoder HOKA CODE 300-32 and PROCITEC PROCEED. For the wide band spectra we have used an AOR5000 with SDR-14 or PERSEUS on the IF-frequency of 10.7 MHz. This book is divided in four main parts:

• Basic information about modulation

• Waveforms used on VHF/UHF

• Tables for Radio Monitoirng

• Abbreviations and Index The part basic information is giving an overview about common modulation techniques with a short description and how they look like in the spectrum or phase plane display. This part also describes standard expressions from the field of coding, error correction and so on which are often used in the field of radio communication. The following section describes most of the waveforms which can be heard on VHF and UHF. The book is finished with some helpful tables taken from th HF edition, the abbreviation table and index.

Page 24: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

24

4. Description of Waveforms

Analogue Waveforms Analogue waveforms are mainly seperated in to different forms: the amplitude modulation in which the carrier frequency is fixed and the amplitude of the signal is modulated related to the information being sent. The other modulation form is the frequency modulation in which the frequency is changed related to the information being sent. The carrier envelope remains on the same level. Amplitude Modulation (AM)

Picture 1: Different AM waveforms

The Ampitude modulation is mainly used for broadcast transmissions or in aeronautic mobile service on VHF. In a AM the strength of the carrier is varried in relation to the information which shall be send. In a pure AM both sidebands are modulated. The following pictures shows the spectrum and sonagram of a typical amplitude modulation with bioth sidebands and the carrier:

Page 25: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

46

Quadrature Amplitude Modulation (QAM) Quadrature amplitude modulation (QAM) is a modulation scheme in which two techniques are combined: amplitude modulation and phase shift keying (PSK). A combination of two amplitude levels and a QPSK would result in an 8QAM with 8 states representing 8 different bit sequences as shown in the following table:

Bit Sequence

Amplitude Level

Phase Shift

000 1 0° 001 2 0° 010 1 90° 011 2 90° 100 1 180° 101 2 180° 110 1 270° 111 2 270°

Table 5: Bit values for QAM

Picture 35: Example of an 8QAM and 16QAM in the Phase Plane

The next two pictures are showing the spectrum of a QAM8 and QAM16 with 600 Bd:

Page 26: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

47

Picture 36: Spectrum of a QAM8 with 600 Bd

Picture 37: Spectrum of a QAM16 with 600 Bd

The main differences which can be seen in this spectrum are lower side lobes with a QAM16 compared to a QAM8.

Page 27: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

75

Channel access methods Frequency-division multiple access (FDMA)

FDMA, or frequency-division multiple access, is the oldest and most important of the three main ways for multiple radio transmitters to share the radio spectrum. The other two methods are Time Division Multiple Access (TDMA), and Code Division Multiple Access (CDMA). In FDMA, each transmitter is assigned a distinct frequency channel so that receivers can discriminate among them by tuning to the desired channel. TDMA and CDMA are always used in combination with FDMA, i.e., a given frequency channel may be used for either TDMA or CDMA independently of signals on other frequency channels.

Picture 47: Principle of FDMA

Time division multiple access (TDMA)

Time Division Multiple Access (TDMA) is a technology for shared medium (usually radio) networks. It allows several users to share the same frequency by dividing it into different time slots. The users transmit in rapid succession, one after the other, each using their own timeslot. This allows multiple users to share the same transmission medium (e.g. radio frequency) whilst using only the part of its bandwidth they require. TDMA is used extensively in satellite systems, local area networks, physical security systems, and combat-net radio systems.

Picture 48: Principle of TDMA

Page 28: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

76

Code division multiple access (CDMA) Generically (as a multiplexing scheme), code division multiple access (CDMA) is any use of any form of spread spectrum by multiple transmitters to send to the same receiver on the same frequency channel at the same time without harmful interference. One important application of CDMA is the Global Positioning System, GPS. CDMA's main advantage over TDMA and FDMA is that the number of available CDMA codes is essentially infinite. This makes CDMA ideally suited to large numbers of transmitters each generating a relatively small amount of traffic at irregular intervals, as it avoids the overhead of continually allocating and de-allocating a limited number of orthogonal time slots or frequency channels to individual transmitters. CDMA transmitters simply send when they have something to say, and go off the air when nothing is to transmit. Orthogonal Frequency multiple access (OFDMA)

Orthogonal Frequency Division Multiple Access (OFDMA) is a multi-user version of the OFDM digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users as shown in the picture below. This allows simultaneous low data rate transmission from several users. OFDMA can also be described as a combination of frequency domain and time domain multiple access, where the resources are partitioned in the time-frequency space, and slots are assigned along the OFDM symbol index as well as OFDM sub-carrier index.

Picture 49: Principle of OFDMA

Page 29: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

125

Broadcast WFM

In the broadcast service, mainly the frequency range from 87.5 MHz to 108 MHz, broadcast transmitter are modulated with a Wide Frequency Modulation WFM. The modulation index is much higher than one. This modulation from has been invented to provide high-fedelity sound over broadcast radios. The following picture shows a typical WFM:

Picture 71: Spectrum of a WFM

The simplest signal is a FM mono transmission with a bandwidth of 15 kHz. In the late 1950’s stereo and sub carriers were added to the WFM broadcast. It was important that FM stereo is compatible with FM mono. Therefore the left and right channel were encoded into the sum (left + right, L+R) and the difference (left – right, L-R) between both channels. The mono receiver will use the sum of both signals to listen to both in a single loudspeaker. A stereo receiver will add the L+R and L-R signals to get the left channel and subtract L+R and L-R to get the right channel. The (L+R) main channel signal is transmitted as baseband audio in the range of 30 Hz to 15 kHz. The (L−R) sub-channel signal is modulated onto a 38 kHz double-sideband suppressed carrier (DSBSC) signal occupying the baseband range of 23 to 53 kHz. A 19 kHz pilot tone, at exactly half the 38 kHz sub-carrier frequency and with a precisely defined phase relationship to it, is also generated. This is transmitted at 8–10% of overall modulation level and used by the receiver to regenerate the 38 kHz sub-carrier with the correct phase. The final multiplex signal from the stereo generator contains the main Channel (L+R), the pilot tone, and the sub-channel (L−R). This composite signal, along with any other sub-carriers (SCA), modulates the WFM transmitter.

Page 30: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

126

Converting the multiplex signal back into left and right audio signals is performed by a stereo decoder, which is built into stereo receivers. The following picture shows these channels in the spectrum display:

Picture 72: Spectrum of FM stereo with sub-channels

On WFM signals also digital services are available. These services are modulated to a 57 kHz sub-carrier which is the third harmonic of the 19 kHz stereo pilot tone. This digital service is called Radio Data System RDS. This system works with a data rate of 1187.5 Bps. Pre-emphasis and de-emphasis Random noise has a triangular distribution in the spectrum of a FM system. This results in the effect that noise occurs in the higher frequencies of the baseband. To work against this effect a process has been developed: pre-emphasis and de-emphasis. Before transmitted the higher frequencies will be amplified by a certain amount and after reception reduced by the corresponding amount. Reducing the high frequencies will also reduce the noise of a broadcast signal. The amount of pre-emphasis and de-emphasis is defined by the time constant of a simple RC filter circuit. In most of the world a 50 µs time constant is used, in North America it is 75 µs. This applies to both mono and stereo transmissions and to baseband audio (not to the subcarriers).

Page 31: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

198

(Emergency Position Indicating Radio Beacons), as well as hand-portable versions for smaller Vessels.

INMARSAT-M INMARSAT-M was introduced in 1993 to complement the existing INMARSAT-A system by providing global telephone/fax and data communications on an MES which is inexpensive and compact in size. The INMARSAT-M MES is smaller and lighter than an INMARSAT-A MES, making this network suitable for smaller vessels such as fishing vessels and yachts. INMARSAT-M is using 6000 Bps DPSK for the NCS or 8000 Bd OQPSK for voice. For the return channel 3000 Bps DPSK or 8000 Bps OQPSK is used.

Picture 124: Spectrum of INMARSAT M NCS

INMARSAT mini-M The INMARSAT mini-M system was launched in January 1997 and offers the same services as INMARSAT-M, but in a smaller, more lightweight and compact unit. This MES can be made smaller because it operates only in the spot-beam coverage of the latest INMARSAT-3 satellites. The receive modulation for voice/fax/data is OQPSK with 5.6 kbps SCPC or 6 kbps BPSK TDM. The forward channel uses a data rate of 5.6 kbps OQPSK for voice/fax/data or 3 kbps BPSK TDMA.

Picture 125: Spectrum of INMARSAT- mini-M NCS

Page 32: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

199

INMARSAT Fleet F33

Fleet F33 offers an integrated data service within the spot beam, delivering a data stream at speeds up to 9.6kbit/s — although an effective throughput of up to seven times faster can be achieved using integrated compression. This service is best used for fax and sending batched transmissions, such as file transfers via e-mail.

The Mobile Packet Data Service (MPDS) provides an "always on" service where charges are made for the amount of data sent and received, rather than the time spent online.

Offering spot beam data and global voice coverage, Fleet F33 has been designed for vessels that require a smaller antenna, lighter above-deck equipment and a low-cost, simple hardware installation.

The following services are possible:

Voice 4.8 kbps Data 9.6 kbps dedicated channel (with compression equivalent to up to 40 kbps) Data MPDS 28.8/64 kbps MPDS (Packed data) Fax 9.6 kbps Group 3 fax

INMARSAT Fleet F55

The Fleet F55 service allows the user to select either or both of two data services with the INMARSAT spot beams — Mobile ISDN or the Mobile Packet Data Service (MPDS). There are some fundamental differences between the two forms of communication, suiting different types of operational needs. Mobile ISDN delivers a data stream at speeds up to 64 kbps.

The Mobile Packet Data Service (MPDS) is best where network transmissions need to be of a higher frequency, are less urgent or involve smaller amounts of data. MPDS also lets you stay on line all the time, since you only pay for the amount of data sent and received rather than the time spent online — making it ideal for e-mail and web browsing.

Offering spot beam data and global voice coverage, Fleet F55 has been designed for vessels that require a smaller antenna, lighter above-deck equipment and a low-cost, simple hardware installation.

The following services are possible:

Voice 4,8 kbps, 64 kbps, 3.1 kHz audio Data 64 kbps MPDS (Packed data) 56/ 64 kbps ISDN Fax 9.6 kbps Group 3 fax, 64 kbps Group 4 fax, 3.1 kHz audio

Page 33: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

261

RDS/RBDS

Radio Data System, Radio Broadcast Data System

Radio Data System (RDS) is a communications protocol standard from the European Broadcasting Union (EBU) for sending digital information using conventional FM radio broadcasts. The RDS system standardises several types of information transmitted, including time, track/artist info and station identification. RDS is a standard in Europe and Latin America since the early 1990s. Radio Broadcast Data System (RDBS) is the official name used for the U.S. version of RDS. The two standards are nearly identical. Slight differences are mainly which numbers are assigned to each of the 31 musical and other program formats the RBDS system can identify. RBDS was approved by the NRSC. RDS and RDBS use a 57kHz subcarrier to carry data at 1187.5 bits per second. The 57 kHz was chosen for being the third harmonic of the pilot tone for FM stereo. This will not cause interference or intermodulation with the pilot tone or with the stereo difference signal at 38 kHz. The data format allows forward error correction (FEC).

Picture 165: Spectrum of FM broadcast carrier

Picture 166: Spectrum of a RDS signal within a WFM signal

RDS is modulated on the subcarrier with a QPSK waveform with a data rate of 1187.5 Bps. This is equal to the frequency of the RDS subcarrier divided by 48.

Page 34: Technical Handbook for Radio Monitoring VHF/UHF · Russian MTK2 68 CCIR476-4, HNG-FEC, PICCOLO MK VI 69 ITA 2 70 ITA 2 P 70 ITA 3 70 CCIR 476 70 ASCII / CCITT 5 70 Channel access

262

Data is transmitted in groups consisting of four blocks. Each block contains a 16 bit information word and a 10 bit check word as shown in the next picture. This means that with the data rate of 1187.5 bit per second approximately 11.4 groups can be transmitted each second. The data groups are structured so that data can be transmitted as efficiently as possible. Different stations will want to transmit different types of data at different times. To cater for this there are a 16 different group structures. Mixing of different types of data within groups is kept to a minimum. However the coding structure is such that messages which need repeating most frequently normally occupy the same position within groups. For example the first block in a group always contains the PI code and PTY and TP are to be found in block 2.

Picture 167: RDS data structure

RDS data structure In order that a radio knows how to decode the data correctly, each type of group has to be identified. This function is performed by a four bit code occupying the first four bits in the second block. Once generated the data is coded onto the subcarrier in a differential format. This allows the data to be decoded correctly whether the signal is inverted or not. When the input data level is "0" the output remains unchanged but when a "1" appears at the input the output changes its state. With the basic signal generated the spectrum has to be carefully limited. This has to be done to avoid any cross talk in phase locked loop decoders. The power density close to 57 kHz is limited by the encoding each bit as a biphase signal. In addition to this the coded data is passed through a low pass filter. The following information fields are normally contained in the RDS data: Alternative Frequencies (AF) This enables a receiver to re-tune to a different frequency providing the same station when the first signal becomes too weak. This is often utilised in car stereo systems. Clock Time (CT)


Recommended