+ All Categories
Home > Documents > TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF...

TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF...

Date post: 20-Aug-2018
Category:
Upload: voanh
View: 219 times
Download: 0 times
Share this document with a friend
56
AD-/M>55 93^ AD TECHNICAL REPORT ARLCB-TR-77047 COLLAPSED 12-NODE TRIANGULAR ELEMENTS AS CRACK TIP ELEMENTS FOR ELASTIC FRACTURE S.L. Pu M.A. Hussain W.E. Lorensen TECHNICAL LIBRARY December 1977 US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND LARGE CALIBER WEAPON SYSTEMS LABORATORY BENET WEAPONS LABORATORY WATERVLIET, N. Y. 12189 AMCMS No. 6in02.H54001 PRON No. lA-7-51701-(02)-M7 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
Transcript
Page 1: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

AD-/M>55 93^

AD

TECHNICAL REPORT ARLCB-TR-77047

COLLAPSED 12-NODE TRIANGULAR ELEMENTS AS CRACK

TIP ELEMENTS FOR ELASTIC FRACTURE

S.L. Pu M.A. Hussain W.E. Lorensen

TECHNICAL LIBRARY

December 1977

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND LARGE CALIBER WEAPON SYSTEMS LABORATORY

BENET WEAPONS LABORATORY WATERVLIET, N. Y. 12189

AMCMS No. 6in02.H54001

PRON No. lA-7-51701-(02)-M7

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Page 2: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

DISCLAIMER

The findings in this report are not to be construed as an official

Department of the Army position unless so designated by other author-

ized documents.

The use of trade name(s) and/or manufacturer(s) does not consti-

tute an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it

to the originator.

Page 3: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Enitrmd)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM

I. REPORT NUMBER

ARLCB-TR-77047 2. SOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE fand SubHde)

COLLAPSED 12-NODE TRIANGULAR ELEMENTS AS CRACK TIP ELEMENTS FOR ELASTIC FRACTURE

S. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfs;

S.L PU M.A HUSSAIN W.E. LORENSEN 8. CONTRACT OR GRANT NUMBERfa.)

9. PERFORMING ORGANIZATION NAME AND ADDRESS Benet Weapons Laboratory Watervliet Arsenal, Watervliet, N.Y. 12189 DRDAR-LCB-RA

10. PROGRAM ELEMENT, PROJECT. TASK AREA a WORK UNIT NUMBERS

AMCMS No. 611102.H54001 PRON No. lA-7-51701-(02)-M7

IK-CONTROLL^IG OFFICE NAME AND ADDRESS rmy Armament Research and Development Command

Large Caliber Weapon Systems Laboratory Dover, New Jersey 07081

12. REPORT DATE

December 1977 13. NUMBER OF PAGES

49 t4. MONITORING AGENCY NAME » ADDRESSf/f d///aren( Irom Controltlnt Olllce) 15. SECURITY CLASS, fo/ ihlt raport)

UNCLASSIFIED

ISa. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT fo/r/if• Raporf)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of (he abstract entered In Block 30, It diUerent from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If neceaeary and Identity by block number)

Fracture Mechanics Finite-Element Method

Isoparametric Elements Singular Elements

Cubic, quadrilateral Elements

Stress intensity Factors

20. ABSTRACT (Continue on reverse aide II neceaamry and Identity by block number)

For the 12-node bicubic, quadrilateral, isoparametric elements, it is shown that the inverse square root singularity of the strain field at the crack tip can be obtained by the simple technique of collapsing the quadrilateral elements into triangular elements around the crack tip and placing the two mid-side nodes of each side of the triangles at 1/9 and 4/9 of the length of the side from the tip. This is analgous to placing the mid-side nodes at quarter points in the

(See Other Side)

OD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE fOTian Data Entered)

Page 4: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

SECURITY CLASSIFICATION OF THIS PAGEQWian Data Entered)

Block No. 20.

vicinity of the crack tip for the quadratic, isoparametric element.

The advantage of this method are that the displacement compatibility is satisfied throughout the region and that there is no need of special crack tip? elements. The stress intensity factors can be accurately obtained by using general purpose programs having isoparametric elements such as NASTRAN. The use of 12-node isoparametric element program APES may be simplified by eliminating the special crack tip elements.

SECURITY CLASSIFICATION OF THIS P AGE(Wben Data Entered)

Page 5: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

TABLE OF CONTENTS

Page

INTRODUCTION 1

THE 12-NODE QUADRILATERAL ISOPARAMETRIC ELEMENT 3

THE CRACK TIP ELEMENT 6

DETERMINATION OF STRESS INTENSITY FACTORS 12

1. One Term Expansion 14

2. Two-Term Expansion 15

3. Four Term Expansion 16

4. Collocation Method 16

NASTRAN IMPLEMENTATION 17

NUMERICAL RESULTS 18

THE STABILITY OF COLLAPSED TRIANGULAR ELEMENTS 33

CONCLUSIONS 35

REFERENCES 36

ILLUSTRATIONS

1. Shape Functions and Numbering Sequence for a 12-Node Quadrilateral Element. 39

2. A Normalized Square in (£,n) Plane Mapped Into a Collapsed Triangular Element in (x,y) Plane with the side ? = -1 Degenerated into a Point at the Crack Tip. 40

3. Three Tension Test Specimens. 41

4. Idealization of a Half of the Single-Edge Cracked Tension Specimen. 42

Page 6: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

Page

5. (a) Three Collapsed Triangular Elements Surrounding a Mode I Crack Tip. 43

(b) Special Core Element and Three Quadrilateral Elements Surrounding a Mode I Crack Tip. 43

6. (a) Six Collapsed Triangular Elements Surrounding a Mixed Mode Crack Tip. 44

(b) Special Core Element and Six Quadrilateral Elements Surrounding a Moxed Mode Crack Tip. 44

7. Idealization of a 45-Degree Slant Edge Cracked Panel in Tension. 45

8. (a) Node 5 Perturbed to 5*. 46

(b) Nodes 20, 21, 23, 24, 26, 27 Perturbed From Their Nominal Positions. 46

TABLES

RATIOS OF K] (APES) TO ^ (EXACT) 21

K, (FINITE ELEMENT)/^ (EXACT) BY ONE-TERM EXPANSION USING APES WITH COLLAPSED TRIANGULAR ELEMENTS 22

K, (FINITE ELEMENT)/^ (EXACT) BY ONE-TERM EXPANSION Utim APES WITH COLLAPSED TRIANGULAR ELEMENTS 23

K, (FINITE ELEMENT)/^ (EXACT) BY ONE-TERM EXPANSION USim APES WITH COLLAPSED TRIANGULAR ELEMENTS 24

Kn (FINITE ELEMENT)/^ (EXACT) BY TWO-TERM EXPANSION mm APES WITH COLLAPSED TRIANGULAR ELEMENTS 25

K-. (FINITE ELEMENT)/^ (EXACT) BY TWO-TERM EXPANSION USim APES WITH COLLAPSED TRIANGULAR ELEMENTS 26

Ki (FINITE ELEMENT)/^ (EXACT) BY TWO-TERM EXPANSION U^ING APES WITH COLLAPSED TRIANGULAR ELEMENTS 27

Kn (FINITE ELEMENT) BY FOUR-TERM EXPANSION USING APES

K] (EXACT) WITH COLLAPSED TRIANGULAR ELEMENTS 28

11

Page 7: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

Page

9. Ki (FINITE ELEMENT) FOR SINGLE EDGE CRACK USING C6LLOCATION METHOD. NODAL DISPLACEMENTS OBTAINED FROM APES WITH 3-COLLAPSED TRIANGULAR ELEMENTS. COLLOCATION POINTS ARE EQUALLY SPACED ON r=0.01. 29

10. K] (NASTRAN)/Ki (EXACT) 30

11. K] (APES)/^ (EXACT) 31

12. !<! AND K2 FOR 45° EDGE CRACK BY NASTRAN 33

111

Page 8: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

INTRODUCTION

The direct application of the finite element method to crack

problems was studied by a number of investigators [1-3]. No special

attention was given to the singular nature of stress and strain of a

crack tip. Because of the large strain gradients in the vicinity of a

crack tip, it requires the use of an extremely fine element grid near

the crack tip. By comparing the finite element result of displacement

components or stress components at a nodal point with the corresponding

asymptotic result of displacement or stress components at that node, the

stress intensity factor can be estimated. The estimated values of a

stress intensity factor vary over a considerable range, depending on

which node is taken for computation. This results in poor estimates if

displacements are taken at nodal points either very close to or far

away from the crack tip.

An improved finite element technique was developed by Wilson [4].

It combined the asymptotic expansion of displacements in a small

circular core region surrounding a crack tip and the finite element

approximation outside a polygon approximating the circular arc of the

1Swedlow, J. L., Williams, M. L., and Yang, W. H., "Elasto-Plastic Stresses and Strains in Cracked Plates," Proceedings First International Conference on Fracture, 1, p. 259, 1966.

2Kobayashi, A. S., Maiden, D. E. and Simon, B. J., "Application of the Method of Finite Element Analysis to Two-Dimensional Problems in Fracture Mechanics," ASME 69-WA/PVP-12 (1969).

3chan, S. K., Tuba, I. S. and Wilson, W. K., "On Finite Element Method in Linear Fracture Mechanics," Engineering Fracture Mechanics, 2, p. 1, 1970.

4Wilson, W. K., "Combined Mode Fracture Mechanics," Ph.D. Dissertation, University of Pittsburgh, 1969.

Page 9: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

core region. The displacement fields obtained from these two approx-

imations are not, in general, continuous along the asymptotic expansion-

finite element interface except at discrete nodal points.

An alternative finite element approach to crack problems is the

use of special elements in the region of the crack tip, e.g. [5-7].

In [5], Tracey employs quadrilateral isoparametric elements which

become triangular around the crack tip. The displacement functions of

the two types of elements are selected such that displacements are

continuous everywhere, and the near tip displacements are proportional

to the square root of the distance from the crack tip.

Henshell and Shaw [8] and Barsoum [9] showed that special crack

tip elements were unnecessary. For two-dimensional 8-node quadrilateral

elements, the inverse square root singularity of the strain field at

the crack tip is obtained by collapsing quadrilateral elements into

triangular elements and placing the mid-side nodes at quarter points

5Tracey, D. M., "Finite Elements for Determination of Crack Tip Elastic Stress Intensity Factors," Engineering Fracture Mechanics, Vol. 3, 1971.

6Blackburn, W. S., "Calculation of Stress Intensity Factors at Crack Tips Using Special Finite Elements," The Mathematics of Finite Elements and Applications, Brunei University, 1973.

7Benzley, S. E. and Beisinger, A. E., "Chiles - A Finite Element Computer Program that Calculates the Intensities of Linear Elastic Singularities," Sandia Laboratories, Technical Report SLA-73-0894, 1973.

henshell, R. D., and Shaw, K. G., "Crack Tip Finite Elements Are Unnecessary," International Journal for Numerica" Methods in Engineering, Vol. 10, 1975.

9Barsoum, R. S., "On the Use of Isoparametric FinJte Elements in Linear Fracture Mechanics," International Journal for Numerical Methods in Engineering, Vol. 10, 1976.

Page 10: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

from the tip. The quarter-point quadratic isoparametric elements, as

singular elements for crack problems, have been implemented in NASTRAN

by Hussain et al [10].

In order to reduce the computer core requirement and to simplify

the modeling of a structure, better known but lower order finite

elements have been abandoned in favor of cubic 12-node, isoparametric,

quadrilateral elements as described by Zienkiewicz [11]. In this paper,

the concept of quarter-point, quadratic, isoparametric elements is

extended to 12-node cubic isoparametric elements. The correct order of

strain singularity at the crack tip is achieved in a simple manner by

collapsing the quadrilateral elements into triangular elements and by

placing the two middle nodes of a side at 1/9 and 4/9 of the length of

the side from the tip. The 12-node, isoparametric elements have been

implemented in NASTRAN. Both mode I and mixed mode crack problems are

computed by NASTRAN using the collapsed elements to assess the accuracy.

The stability of results is discussed when the collapsed triangular

elements are used.

THE 12-NODE QUADRILATERAL ISOPARAMETRIC ELEMENT

A typical 12-node, quadrilateral element in Cartesian coordinates

(x,y) which is mapped to a square in the curvilinear space (^,ri) with

vertices at (± 1, ± 1) is shown in Figure 1. The assumption for

displacement components takes the form:

10Hussain, M. A., Lorensen, W. E., and Pflegl, G., "The Quarter-Point Quadratic Isoparametric Element As a Singular Element for Crack Problems," NASA TM-X-3428, 1976, p. 419.

^Zienkiewicz, 0. 0., The Finite Element Method in Engineering Science, McGraw Hill, London, 1971.

Page 11: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

12 u = I Ni(?,n)ui

i=l

12 v = I Ni(?,n)vi

1-1

(1)

where u,v are x,y components of displacement of a point whose natural

coordinates are £,n; u.j.v.j are displacement components of node 1 and

N.|(£;5n) is the shape function which is given by [11]

Ni(?'^ = 256 0 + 5^)0 + miK-W + 9{e + n2)][-lo + 9(q + nf)]

81 + ^L.(I + ^1)(l + 9m.)0 - n2)(l - nj)

81 + ^L(1 +nni)(l + g^Od - ?2)(1 - q) (2)

for node i whose Cartesian and curvilinear coordinates are (x^.y^) and

(^j.ni) respectively. The details of the shape functions and the

numbering sequence are given in Figure 1.

The same shape functions are used for the transformation of

coordinates, hence the name isoparametric.

12

i=l 1

12 y = I M^n)y,

1=1 1 1

(3)

n7,- Zienkiewicz, 0.0., The Finite Element Method in Engineering Science. McGraw Hill, London, 1971.

Page 12: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

The element stiffness matrix is found in the usual way and is

given by [9,10]

[K] = / / [B]I[D][B] det iJld^dn -1 -1

where [B] is a matrix relating joint displacements to strain field

(4)

[B] - [.. .B.j.... J, [B,] =

9Ni

9x

0

9y

0

9^

9y

9Ni

9x

(5a)

and [D] is the material stiffness matrix and is given for the case of

plane stress by

[D] = v

1 v 0

v 1 0

0 0 (1 - v)/2

(5b)

in which E is Young's modulus and v is Poisson's ratio.

The Jacobian matrix [J] is given by

9Barsoum, R. S., "On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics," International Journal for Numerical Methods in Engineering, Vol. 10, 1976.

10Hussain, M. A., Lorensen, W. E., and Pflegl, G., "The Quarter-Point Quadratic Isoparametric Element as a Singular Element for Crack Problems," NASA TM-X-3428, 1976, p. 419.

Page 13: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

[J] =

— - "- ■■

3X 9x K 9?

9x 9^ 9n 9ri

=

... 9N-J ...

9?

• •• oNi • • •

9n

• •

• • • •

_ _ — __ —

(6)

whenever the determinant of [J] is zero, the stresses and strains become

singular [8-10]. The derivatives of shape functions are

9Ni . l ^ 256 (1 + nni)C-10 + 9(Cf + nfnHOd + m + 27^ + 9qn2)

+ ^^(1 + 9Tin1)(l - n2)(l - nf)

+ ^L(1 +nni)(l - K])^ - 2? - 27^) (7a)

9Ni 9TI

2^6 0 + ^i)[-10 + 9(52 + n^HOn-i + 18n + 27nin2 + 9^)

+ ^^.(1 +95^)0 - ?2)(i - q)

81 256

THE CRACK TIP ELEMENT

(1 + ^i)(l - n12)(9ni - 2n - 27nin

2) (7b)

In an 8-node quadratic isoparametric element, Henshell and Shaw [8]

and Barsoum [9] found independently that the strain became singular at

the corner node if the mid-side nodes were placed at the quarter points

8Henshell, R. D., and Shaw, K. G., "Crack Tip Finite Elements Are Unnecessary," International Journal for Numerical Methods in Engineering, Vol. 9, 1975.

9Barsoum, R. S., "On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics," International Journal for Numerical Methods in Engineering, Vol. 10, 1976.

"■OHussain, M. A., Lorensen, M. E., and Pflegl, G., "The Quarter-Point Quadratic Isoparametric Element as a Singular Element for Crack Problems," NASA TM-X-3428, 1976, p. 419.

6

Page 14: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

of the sides from the corner node. This singularity is achieved in a

similar way for a 12-node isoparametric element by placing the two

middle nodes at the 1/9 and 4/9 of the length of the sides from the

common node of two sides.

For simplicity, let us consider the singularity along the side

n = -1 of Figure 1. In general, the cubic mapping functions are

x = a0 + a^ + a2C2 + a^3 (8)

u = b0 + b1? + b2e + b3e (9)

For £ ■ -1, -1/3, 1/3 and 1, the corresponding values of x and u

are x = 0, ai, {&• &

u = u-j, u2, u3, u4

The constants a's and b's in terms of these values of x and u are

a0 = IT M + 9a + 93) . ai = IT (-■' " 27a + 27^ ]

\ (10)

a2 = f| (1 - a - 0) , 83 = -yf (1 + 3a - 3B) J

b0 = T6 {-Ul + 9U2 + 9U3 " U4) ' bl = II (U1 " 27U2 + 27u3 " U4)

(11) b2 = ^ (ul " u2 ■ "3 + U4) ' b3 = IT (-Ul + 3u2 " 3u3 + U4)

dx To have singular strain at x = 0 (£; = -1), the reduced Jacobian, ^F »

must vanish at 5 ■ •!. From (8) we have

^-= a1 + 2a2? + 3a3K2 (12)

Page 15: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

dx For £; = -IJ HF = 0 leads to the equation dC

3 = 2a + I (13)

In order to have the inverse square root singularity for -^ ,

x must be a quadratic function of 5 so that the inverse gives ^ as a

function of x'2. This leads to 83 = 0 or

1 + 3a - 36 = 0 (14)

The solution of (13) and (14) gives

a = 1/9 and 3 = 4/9 (15)

Equations (8) and (9) become

x = A (1 + O2 or ir » -1 + zJI" (16)

u = u1 + I (-11^ + 18u2 - 9U3 + 2u4)Jf + j (2u1 - 5u2 + 4U3 - u4) j

H-fC-U! + 3u2 - 3u3 + u4)(^)3/2 (17)

From (17) it is clear ^ has singularity of the order - at x = 0.

The inverse square root singularity at x = 0 along any other ray

emanating from node 1 can be achieved by degenerating the quadrilateral

element into a triangular element with the side 10, 11, 12, 1 collapsed

to a point at the crack tip and placing grid points 2, 9 at 1/9 and 3,

8 at 4£/9 from the tip (Figure 2), where £ is the length of the sides

corresponding to n = ± 1• The Cartesian coordinates of nodal points are

shown in Figure 2 . Using (3),

Page 16: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

x = I (1 + 02f(n,a,B)

y = | (l + U2f'(n.a.g)

where f and f are abbreviations

f(n.a,B) = (1 - n)cos3 + (1 + n)cosa

f(n»a,B) = (1 - n)sin3 + (1 + n)sina

The Jacobian matrix is given by

(18)

9x 9^ 9C 9^

[0] = 9x 9y.

_9n 9TI_

1 (1 + C)f(n.a.B) | (1 + Of (n,a,B)

4 (1 + 5)2(cosa - cosp) I (1 + ?)2(sina - sinB) 8 o

and the determinant

|J| =^(1 + C)3sin(a - 3) (19)

This shows the strain is singular at x = 0 (^ = -1) along any ray from

x = 0 since |J| = 0 at ^ = -1 for all n.

For the inverse functions, we have

[0] ■1

'E. in" 9x 9x

K la 9y 9y

2(sina - sing) -2(cosa - cosg) £(1 + ^)sin(a - 3) 5,(1 + ?)sin(a - 3)

-4f'(n»a»3) 4f(rua,3) £(1 + ?)2sin(a - 3) £(1 + C)2sin(a - 3)_

(20)

In terms of polar coordinates (r,0) we have from (18)

1 + C = 2v^ , R = (r/il)cos(e - ^)/cos(^)

n = tan(e - S^/tan^)

(21)

Page 17: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

The displacements components u,v at a point (g.n) of the trian-

gular element of Figure 2 are

12 u = I Ni(5,n)ui = Agdi.Ui) + A-jCn.u^O +5) ^

+ A^n.u^d + K)2 + A3(n.u1)(l + K)3

12 v = I Ni(5,T1)vi = AoCn.v^ + A^n.v^d + 5)

+ A2(T1>vi)(i + d2 + AgCn.v^d + c)3

where

Aodn.^) = {2(-i + 9n2)[(i - n)u1 + (1 + n)u10]

+ 18(1 - n2)[(l + Sn)^ + (1 - 3n)u12]}/32

The displacement derivatives are

3A 9u_=3u_ci£+3u_3n= 1 -4f'(n,a.B) 0 8x 9C 9x 8n 9x (1 + C)2 Jisinja - 3) 9n

1 SA,

(1 + 5) ilsin(a - 3)

BA, 9u=3u9£+9u9ii_ 1 4f(n,a»g) 0 8y " 85 8y 8n 8y "' (1 + C)2 ^sin(a - g) 3n

1 9A,

: . r ^-{-(cosa - cosB)A1 + 2f(n,a,B)—!-} + (1 + 5) Jlsin(a - B) ' 8n

where

8A0(n.ui)

3n = {(2 + 36n - 54TI2)U1 - (2 - 36n - 54TI2)U1|

(22)

(23)

{(sina - sinB)A1 - 2f,(n,a,B) g-1} + ... (24)

(25)

+ 18(3 - 2n - 9T12)U11 - 18(3 + Zr] - 9n2)u12}/32 (26)

Similar expressions for 9v/3x and 9v/9y can be obtained by replacing

u-j with v.,-.

10

Page 18: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

It can be seen that the strain field is singular at r = 0. The

order of singularity is (1/r). The leading term vanishes together with

3AO/8TI for all n if

Ul = U10 = U11 = U12 ' Vl = V10 = Vll = V12 (27)

In this case, the order of singularity becomes (l//r). This is analo-

gous to the constraints given in [12] for quadratic, isoparametric

elements. Hence we have two types of strain singularity at our

disposition. If nodes 1, 10, 11, 12, which are collapsed into one

point at the crack tip (Fig. 2), are tied together during deformation,

the elastic singularity is obtained. If these nodes are allowed to

slide with respect to each other, then the strain singularity is of the

order of (1/r), the perfect plastic singularity.

Using the multiple constraint conditions, equations (27), the

displacement components at (C,n) relative to the tip may be written in

the form

u = yL ,/R[36Fl(n.u1) + Fgdi,^) + 36^2(11,^) - F^n.Uj)}^

- 36F2(n,ui)R] (28)

v = lV ^seF^n.v.,) + F3(n,vi) + 36{F2(r1,vi) - F^n.V^}^

- SeFgCn.v^R] (29)

n

Page 19: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

where

F^n,^) = (1 - n)(2u2 - U3) + (1 + n)(2u9 - u8)

F2(n,ui) = (1 - n){-3u2 + 3U3 - u4) + (1 + n)(-3u9 + 3u8 - u7)

FgCn.u^ = 9(1 - n2)[(l - 3n)u5 + (1 + 3n)u6]

- (1 - 9n2)[(l - n)u4 + (1 + n)u7]

and Fi(ri,v.) etc. are obtained by replacing u^ with v^.

(30)

DETERMINATION OF STRESS INTENSITY FACTORS

The collapsed, triangular elements around the crack tip have the

correct elastic singularity at the tip if all nodes at the tip are tied

together during deformation. Only one set of displacement functions is

used for regular quadrilateral elements and the collapsed triangular

elements. Hence the continuity of displacement components is insured

throughout the region. The nodal displacements obtained from the finite

element method using higher order polynomials for the displacement field

should be quite accurate. In this section, we will briefly discuss

various techniques to estimate the stress intensity factors from the

nodal displacements thus obtained. The discussion is limited to the

use of nodal displacements. Other techniques, such as J-integral, the

strain energy release rate etc. are not included.

The well known classical near crack tip displacements are given

by [13]

^Williams, M. L., "On the Stress Distribution at the Base of a Stationary Crack," Journal of Applied Mechanics, Vol. 24, 1957.

12

Page 20: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

2Gu <9) = „.li....<("1)n"lrn"1/2cd2„-lDul<n"e) ' a2n-.Aul("-6)] n n

+ (-1) r [d2nDu2(n,e) + a2nAu2(n,e)]} (31)

n-1 n-1/2 2Gv(e) = I {(-1) r [d D (n.e) + a A (n.e)]

n=l,2,... 2n-l vl 2n-1 vl

n n + (-1) r [d D (n.e) + a A (n.e)]}

2n v2 2n v2 (32)

where

Dul(n,8) = (n - l/2)cos(n - |)e - (< + n - |)cos(n - 1)6 ^

Du2(n,e) = ncos(n - 2)6 - (K + n + 1)cosne

Aul(n,0) = (n - l/2)sin(n - |)0 - (K + n + l/2)sin(n - 1/2)e

Au2(n,e) = nsin(n - 2)9 - (K + n - l)sine (33)

D (n,9) = -(n - l/2)sin(n - |)e - (K - n + |)sin(n - ^)8

D 2(n,e) = -nsin(n - 2)6 - (K - n - l)sin n0

1 5 A (n,6) = (n - 2)cos(n - ^e + (ic - n - 1/2)cos(n - 1/2)6

A „(n,6) = ncos(n - 2)6 + (K - n + 1)cos n( 1v2 in which

(3 - v)/(l + v) for plane stress

3 - 4v for plane strain (34)

13

Page 21: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

The coefficients d's and a's are to be determined from the boundary

conditions of a problem. The stress intensity factors K, and K2 are

related to d-j and a-, by

K} = -d^ , K2 = -a1^¥ (35)

In (31) and (32),u and v are displacement components referring to

the local Cartesian coordinates with crack tip as the origin and the

crack on the negative x-axis. A simple transformation can be used to

change the nodal displacements in global coordinates, obtained from

the finite element method, to displacements in local coordinates. For

simplicity, we will assume the local coordinates and the global coor-

dinates are the same.

1. One Term Expansion:

If we retain only the /r term and drop all higher order terms

in the right hand sides of (31) and (32), we shall obtain a set of d-|

and a-i by substituting the displacement components of a nodal point

into the left hand sides of (31) and (32). Numerical results thus

obtained for K-] and l^ vary considerably depending on the locations of

nodal points and the values of displacement components used. From

(28) and (29), the displacement components of a collapsed triangular

1/2 3/2 element are functions of r , r and r . If u* and v* designate the

leading portion of displacements (r ' term only) in (28) and (29),

we have specifically

14

Page 22: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

1 1/2 U*(TI = -1) = 2 ir/l) (18u2 - 9U3 + 2u4)

(36) u*(n - 1) = 1 (rA)1/2(18u9 - 9U8 + 2u7)

and similar expressions for v* (replacing u by v). The stress

intensity factors obtained from (35) with d1 and a, computed from

(31) and (32) using u*, v* on the left hand sides and using only the

Jr term in the right hand sides, are independent of r. The use of

the leading portion of displacements u* or v* on the left hand sides

of (31) and (32) is suggested by Tracey [14] and discussed by

Barsoum [15]. For a mode I (or mode II) crack, all a's (or d's) of

(31) and (32) vanish. The stress intensity factor ^ (or K2) can be

obtained by either (31) or (32).

2. Two-Term Expansion: 1 /p

In (31) and (32), if r and r terms are considered, we have

four unknown constants dp a-,, d2, a2 to be determined. Four displace

ment components of any two nodal points should suffice to compute K,

and K2. In practice, we use either the pair of nodes (2,9) or (3,8)

of Figure 2. Two nodes of different r such as (2,3) or (8,9) usually

give poorer results. On the left hand side of (28) and (29), we may

use actual nodal displacements (u2,v2), (iig.Vg) or we may use (u2**,

v2**) and (u9**,v9**) where u2** is the part of u2 corresponding to 1/2

r ' and r terms in (28). For n = ± 1

14Tracey, D. M., "Discussion of 'On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics' by R. S. Barsoum," Int. Journal for Numerical Methods in Engineering, Vol. 11, 1977,

15Barsoum, R. S., "Author's Reply to the Discussion by Tracey," Int, Journal for Numerical Methods in Engineering, Vol. 11, 1977.

15

Page 23: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

u**(n = -1) = ^ (r/£)1/2(18u2 - 9U3 + 2u4) - f (rA)(5u2 - 4u3 + u4)'

u**(n = 1) = 1 (r/£)1/2(18u9 - 9u8 + 2u7) - f (r/Jl)(5ug - 4u8 + u7)

(37)

For a mode I crack, both a-i and a2 vanish. Only two displacement

components of a node are needed to determine d, and d2. Any of the

following pairs may be used for this purpose: ^.VgK (u3»v3)» ("g'

Vg), (Ug.Vg).

3. Four Term Expansion:

If we take r1/2 up to r2 terms in (31) and (32), the eight

constants di and a-, i = 1, 2, 3, 4 are to be determined from displace-

ment components of four nodal points. We may take two mid-nodes (£/9

and 4J!,/9 from the tip) of the two sides of a collapsed triangular

element as the four nodal points, or we may take four consecutive

nodes of the same radius from the tip (r = Jl/9 or r = 4)1/9). For the

three collapsed triangular elements around a mode I crack shown in

Figure 5(a), displacement components are taken from one of the

following three groups: (i) nodes 11, 12, 13, 14; (ii) nodes 15, 16,

17, 18; (111) nodes 11, 12, 15, 16 of the element (1), nodes 12, 13,

16, 17 of the element (2) and nodes 13, 14, 17, 18 of the element (3).

4. Collocation Method:

Let us, vs be displacements from the asymptotic expansions (31)

and (32) and let u. and vp be displacements from finite elements given

by (28) and (29). For an arbitrarily fixed r, we define

16

Page 24: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

e = .1 (CusOi) - u^)]2 + [v^e^ - ^(e^]2} (38)

The unknown coefficients d's and a's in (31) and (32) are the set

which minimizes e. In other words, d's and a's are solutions of

3dj

9e-= 0 9aj

^ = 1.2.....n<i ^ 2

where n = 2p, p is the highest exponent of r in the asymptotic

expansion.

NASTRAN IMPLEMENTATION

The NASTRAN implementation of the 12-node quadrilateral follows

that of the 8-node quadrilateral as described in [10]. The dummy

users element facility of NASTRAN is used. This requires coding

routines to calculate element stiffness matrices and stress recovery

computations. Modifications to existing NASTRAN source codes are

made to provide proper output formats for the element. Three-point

Gaussian quadrature is normally used to calculate each partial

integration of the double integral (4). As an option a four-point

Gaussian quadrature may be used instead. All stiffness computations

are performed in double precision while stress recovery is performed

in single precision. Element stiffness matrix computation requires

10 seconds/element on an IBM 360/44. Stress intensity factors are

calculated from nodal displacements by various techniques. Equations

10Hussain, M. A., Lorensen, W. E., and Pflegl, G., "The Quarter-Point Quadratic Isoparametric Element As a Singular Element for Crack Problems," NASA TM-X-3428, 1976, p. 419.

17

Page 25: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

(40) are finally adopted to compute stress intensity factors for

mode I, mode II and mixed mode cracks.

NUMERICAL RESULTS

Computer program APES [16] utilizes the same 12-node quadrilateral

isoparametric elements shown in Figure 1. The high order element

greatly reduces the total number of elements as well as nodal points

needed to model either elasticity or fracture problems. The program

has been designed primarily for user convenience. There are many

convenient features such as the automatic generation of middle nodes

of a side which is a straight line, and the automatic computation of

nodal force for a given distributed and/or concentrated tractions.

However, APES requires the use of special crack tip elements for

fracture problems. There are two different types of crack tip elements

used in APES. One is a small circular core element which completely

encloses a crack tip and which reproduces the singular nature of the

strains there. The other consists of several "enriched" 12-node

elements around a crack tip all having a corner node corresponding to

the tip. In an enriched element, the displacement assumption is

augmented by the leading terms of the singular near field solution

(an extension of the work of Benzley and Beisinger [7]). Both models

lead to about the same high degree of accuracy in stress intensity

factors K-j and Kp.

7Benzley, S. E. and Beisinger, A. E., "Chiles - A Finite Element Computer Program That Calculates the Intensities of Linear Elastic Singularities," Sandia Laboratories, Technical Report SLA-73-0894, 1973.

^6Gifford, L. N., "Apes - Second Generation Two-Dimensional Fracture Mechanics and Stress Analysis by Finite Elements," Naval Ship Research and Development Center, Report 4799, December 1975.

18

Page 26: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

In this report, we have used the collapsed triangular elements to

eliminate the use of these special crack tip elements. The same

displacement functions are used for quadrilateral elements and trian-

gular elements, and there is no question regarding the continuity of

displacement between the special crack tip elements and conventional

QUAD-12 elements. There is no need for the use of 8 x 8 Gaussian

quadrature for numerical integration of element stiffness matrix as is

required for the enriched QUAD-12 elements. From the numerical results,

the collapsed triangular elements as singular crack tip elements will

be assessed.

Three mode I crack problems and one mixed mode crack problem are

chosen for numerical computation of stress intensity factors. The

geometries and loads of mode I tension test specimens are given in

Figure 3. The idealization of a half of the single edge crack is

shown in Figure 4. Similar idealization is used also for a quadrant

of a center crack or a double edge crack. Three collapsed triangular

elements surrounding a mode I crack tip are shown in Figure 5(a). The

same idealization is used for NASTRAN and APES (with collapsed trian-

gular elements). For comparison, a circular core with 10-core nodes

around the crack tip is also used in APES and is shown in Figure 5(b).

Around a mixed mode crack tip, six collapsed triangular elements,

shown in Figure 6(a), are used and the corresponding singular 'core'

element surrounded by six QLIAD-12 elements are shown in Figure 6(b).

A 45° slant edge crack, in a rectangular panel under tension, is taken

as an example of mixed mode cracks and is shown in Figure 7. The

19

Page 27: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

sixteen-element idealization of the cracked panel is also shown in the

same figure, and the six elements around the crack tip are enlarged

and shown in Figure 6.

Our first goal in the numerical analysis is to find a simple and

accurate way to estimate the stress intensity factor from nodal

displacements obtained from the finite element method. For the

purpose of comparison, stress intensity factors obtained from the

finite element method are normalized by corresponding values which a^e

considered a. exact. Referring to Figure 3, K-j = 1.966 [17] is taken

as exact for the central crack and K-| = 2.00 [18] for the double edge

crack. For the single edge crack ^ = 3.728 for a/b = 0.4, H/b = 4

and K-i = 5.009 for a/b = 0.5, H/b = 3 (first F(a/b) on page 2.11 of

[19]). Normalized stre? . intensity factors for the three mode I crack

specimens are computed ^y APES, using singular 'core' elemest with

10-core nodes. Figure 5(b). Results are tabulated in Table 1 for

h/r = 6 and r0 = 0.01, 0.02 and 0.03. The overall results are better

for r0/a = 0.01. Here and in tables 1 through 8, r0 = 0.01, 0.015,...

should be understood as r0/a = 0.01, 0.015,.., since a = 1 is used for

all mode I crack examples.

17Isida, M., "Analysis of Stress Intensity Factors for the Tension of a Centrally Cracked Strip with Stiffened Edges," Engineering Fracture Mechanics, Vol. 5, 1973.

18Brown, W. F., and Srawley, J. E., "Plane Strain Crack Toughness Testing of High Strength Metallic Materials," ASTM STP-410, 1966.

19Tada, H., Paris, P., and Irwin, G., The Stress Analysis of Cracks Handbook, Del Research Corp., 1973.

20

Page 28: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

TABLE 1. RATIOS OF ^ (APES) TO K, (EXACT)

r0 = 0.01 r0 = 0.02 r0 = 0.03

Center crack (exact K-| = 1.966)

Double edge crack (exact K-] = 2.00)

Single edge crack (exact K-, = 5.009)

0.996

1.001

0.974

0.976

0.993

0.964

0.969

0.989

0.966

Replacing the special core element and the regular 12-node, quad-

rilateral elements surrounding the core with collapsed triangular

elements, we can use the APES program for general structures (no cracks)

to obtain displacement components at all nodes. Stress intensity

factors are then obtained from displacements at nodes close to the

crack tip by various techniques mentioned previously. If only one

term expansion is used, the ratios of K-j (Finite Element) to K-. (Exact)

for the three tension test specimens are given in Tables 2-4. The use

of v* (leading term of v) does not always give better results (e.g.

Table 4). Using two term expansion, the same ratios are given in

Tables 5-7. The results from two term expansion show little improve-

ment. Similar results using four term expansion are tabulated in

Table 8. The values in the last column of Table 8 are the linear

average of three values of K-j obtained from three different elements.

Careful study of results tabulated in Tables 2 through 8 reveals that

one term expansion using v at node 14 or 18, Figure 5(a), with r =

1% - 2% of the crack length is the simplest way to estimate K-j and

K-j thus obtained is quite accurate. This technique is adopted in our

NASTRAN to compute K-|.

21

Page 29: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

D. <C

CD ^r i—i oo 33

z o >—< to r^ QL

X LU

(yO a 1— oi ^ Ui IJJ i- >-

i UJ UJ _J ■^L UI O

Cd >- < CO _l

rs ' v C'5 1— z o <r < i—i X en

^ oo <-N < t- —I

LU O

CD

o «-~. S- CD ^^ CM 00 OsJ «* OO CO 00 ^J- co r-~. CD CD oo en oo co ti coco oo cc 00 CO OO 00 oo co oo oo ex) oo co oo &- s~ 1 CTi CT> CT> CTl i CTi en en CT» i ot o^ CT* <n i o^ en en en —' o • • • • • • • a

> o o o o o o o o o O O CD O O CD CD CD

t-

o CD CD oo r^ ^)- co en evi r-» ^j- r-. oo i— oo o CO S- O 00 (Ti «*• i— CM 00 ^i- CM CM 1^ •* ^j- CM r~- «*

«=1- 1 r— o en o i i— CD en CD i i— CD en o i ^- o en o II • * • ■

c S- r-r- O r- r— t— O r- r— t— O i— i— ^ O i—

o^~- CD

T3 • 0) S- (/) —■ LDLD oo <n CO <T> O LO ^- en co CD co en CD r^ (0 > o <d-1— en i— <d- o en i— LD O 00 r— tn O 00 r—

CO L. 1 oo en o i o o en o i o o en o i o o en o II • ■ • • • • • • • mm* • • • • s- ^-i— o ■— I— r— O .— r-,- O^- r- r- O r-

o ^~~ t. cj i— r^ o <- CD LT) 0O i— 1^ CD i— CD co en CM CD <d- CT) O 1-^ CD oo en r^ co co oo t^ oo co co r^ oo ^ CTl O CTl 1 CTl en en en i en en en oi i o^ en o^ ci i o> S- S- • • • ■

—- o

3 O

O i—O o O CD CD CD o o o o CD O O O

S-

o CJI CD n CD r^ en co en oo en CM oo «d- i— 'i- O i~ i^- en >^- o OO CD ^»- 00 0*3-10 CO f^ CO LO LO

II i^ oo o i en t^ co o i oo r^ oo o i oo CO 00 O 1 00

c S- O CDP-^ CD O CD r-^ CD O O i-^ o O O r— O

CD T3 1 <U S- (/) —■ en en en en CVJ CM 0O CO CD CM CO 00 r~ oo «^- i— re 3 o r-^ «*^- ^s- en oo CVJ oo OO CM CM CM r— >— 00 CM

CO i- II

co cno i en oo en o i en co en o I en oo en o i en S- CD CD^ o O CD ^ o O O i-^ CD o o' ^ o

o * s- > 'i- oo en en co «d- en r^ «d- CM o CNJ en en <d- o .— O CD LO i—

r— O ^— r-~ p— O O i— i— r- o o .— .— .— O i— i— i— i— o3 S-

o

3 O

O OO o o o o o o o o o o o o o o o o o

S-

^^ o en en en oo LD i~. r~ CO LD CT) 0O i— OO 1^ c» LO CD CM O I— CD S- r*- «d- co en CD 00 «d- CM 00 «* O LD CM 1^ 0O r~~ LO CM o~. oo S-

3 a>

II r^- o o en en r~ o o en en r~. o o en <n CD o o en en

O r-^i-^ CD CD o ■— ^ CD o* O i-^r-^ o o CD r-^i-^ O CD

c s- o—- >

T3 en <n ^a- oo oo CM en en o co 0O LO CO 00 >— i^ r^ oo co t^ a; oa o i^- i— ^- en r^ en i— o en co oo i— o oo co i— i— O CO LO CO

re CO

S- II

co CD o en en co o CD en en oo o o en en co o o tn en

O i—n- CD o CD .-^ .—' CD o* • • • • •

O .— r- O O O r- r-^ O CD

UJ LU UJ UJ 0 o CD 0 0 CD o o CD o o CD

o O O ct o oe\j oo c2

0 O O cC o o o =a: o o o <: o o CM oo Q: o o CM oo Q: o o CM co Q:

O CD F- >— LU CD CO .— I— LU O CD I— r— UJ O CD t— ^- LU II > II > II > II >

CD KC CD et CD <C CD <:

^r co II CD

^: JS cri • re n: r- S- II O « r— o co o LO

>=r ^ r— CM CM 4. • o o o O OJ O 1— • -M II O o o o o C J2 CC II II II II cu -^x o o o o

CJ re UJ s_ s- (. s-

22

Page 30: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

m Q-

CJ3

o 1—1

f 1 z ---I Q. X LU

to > 1— S z Ul Ijj

h- £ i UJ

UJ —1 -^*- LU O

rv >- < CO _J

r^i ^—^ UJ f— 7^" u ■=r d i—<

X Qi

LiJ _J LU

o

en

o —- s- o >* O^ i— VO lO o r^- LD «* co r^ r- co LO oo oo t--

oo o cri cr. o^ en cn CTI en en en en en en en en S- s- i CTI o en en i en en a^ ot i en en en en i en o^ en CTi

»—' o • • • • • ■ ■ • • • • • • • • • * o ^ o o O CD O O o o o o o o o o > o

S-

o en co co o O 1-^ CM CO CO CO CO CM CD ■— CM CO t_ LT) CM o ro co r- en CM CD c— 00 CM t>^ t— CO CM

^1- 1 o o o o i o o en o i o o en o i o o cn o H • • • • ■ • • • • ■ • ■ • • • •

c: s- 1— 1— 1— 1— I— I— O r— .— r— O .— .— r— CD f— o —<

CD "O - QJ S- </) —- ro r-- LT) LO CD o r^ en co co cn en r~- r-~ «* en ra > o C\J i— O i— CM i— en o CM CD en o CM o en o

CO S- 1 O O O O i o o en o i o o en o i o o en o II • > ■ • • • • • • • • • • • • • i.

"" _o^ r- 1— O I—

o

CD >* to O r-~ «d- 00 i— CO i--~ cn eo co co •^ oo en r-~ *\ cn o 00 cri oo en co co oo oo co co oo co oo oo s- s-

—• o *

CTl O CTt 1 CTl <n en en i en en cn en i en en en c* i en

O i-^ O O d d o d d d d d d d d d 13 O

s- -^—-^^^—^——— o 00 lO ■=!- ro m CM ^i- o 00 CO CO CO ^d- co r^. cn

S- CTl vj" r— IT) r^ co i— ^t cn CM r— co «J- i— r— CM

II s-

oo cri o i ai oo en o i en co en o i en co en o i en

c:

CD

d O r-^ d d d i-^ d d dr-^ o d d.—' d

-o " O) S- UD i— LD ^t o CM Ln eo o r~. r^ i— CM CO o co cn —- o <d-1--. o r- CO CO O CO CM LD CD CO i— LD i— LO 03 3 S- CT» CTl O 1 CTt en en o i en en en o i en en en o \ <y\

D3 II • • « • • • • • • • • • • • • • s- o o^- o CD O .— O O O r— O O O r— O

O

> 'i- ID O CM UD r— r^ en o r- oo LD o i— en en co r- CM CM en

■>a s- r-- r~. r^. ^o r^ CD CD r~. CO CO co i^- r-v co co co i^ i^- r^ CD o

3 o

CT) CT> CT» O*! CTl en en en en en en cn o> cn en en en en en CTI

d d d o o d d d d d d d d d d d dd d d

o oo oo cyi co en LO LO r^ CM r^ 00 CO CO CO i— <d- CM i— CM t^ ^—^ 5- en CM CM O 00 r^ CM r— en i~~ LO CM r— oo r^ «* CO r— 00 CO CD

s_

^1- II

co o o o en co o o en en oo o o en cn eo o o en en

d r-^ i-^ ^ d d ^ ^ d d d i-^r-^ d d d r-^ i—' d o S --^^

13 CD

o^ > T3 eo en oo LD «d- o «* O 1^ LT) O LO CO LD CM CM CD 1^ «* CD O) 08 o «* o r— o en co o r— en CO CM o o cn co ^ o o en co 10

II en o o o en en o o en en en o o en en en o o cn en

dt-^ i-^ t-^ d d i-^ r-^ d d d i-^i-^ d d df— r-^ o o

UJ LU LU LU o o CD 0 o CS o o CD O 0 CJ3

o o o <: o CD O <C o o o ca: o O O < o o CM oo Q; o o CM oo or o o CM oo Q: o o CM oo ct O CD i— i— LU O CD i— i— LU O CO i— i— LU O CD .— r— UJ

JKi II > II > II > II > u o « • CD cC CD <S. CD <t. CD <;

O II O ja o

cu -^ • Ol^ CVJ -a n LU ^ i— o LT) O cn

"* i^ r— CM CNJ cu • CD o O o r- O I— • • • • J3 II (-> o o o o Z! -Q < II II II II O -^ X o o o o a a3 LIJ s- s- s- s-

23

Page 31: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

□u

o I—I

D- X

>- D; CQ <

—i ^—^ ZD h- tD CJ Z eC ■< X i—t LU C^

K- , Q

■^ UJ ^-^ U~> y—^ D- h- < z _J UJ —I E o LU <_>

o s-

CD ^d- o r^ co CM CM "3- 00 i— ^- LD O CO co r-. CM LD »« io co in io CO CO LO CO CD CO CD CD CO CD CO CD

S- S- 1 CTt CT> CTi CTl 1 CT) CD CT) 0*1 1 O^ CD CD CD 1 CD CD C* Ci — o • • • • ■ • • • • • • • • • • • * o o o o o o o o CD O O O o o o o > o

S-

o CSJ r- CO LT) O CD CO O co r^ r~- CD r^ CD CM o S- CO CTi 00 CO r^ oo co oo co oo oo r~-. LO CD CD 00

«^ 1 CTl CT> CTl O 1 CT» CD CTt en I CD CD CD CD 1 CD CD CD O^i II • ■ • • • • • • • • • •

c S- o o o o O O CD O o o o o O O O O o---

CD

<u s- P^ <n CM CD CM "^- CTl CM i— «a- o CM i— CO CM CO co o 1^. 1^, I-- t^ r^ T^- CD t^ i^. r^ r-^ r^ I--, r^- r~-~ t^. ro > S- 1 CTl CTl CTl CTl i cn cn cn cn i en CD CD CD 1 CD CD CD CD

CQ II ■ • • • • • • • • • • • • ■ • «

s- o o o o o o o o o o o o o o o o

O *—. S- <D ^d"

•V C71 «d- >^- CM CO LD CM 00 CD CD CM r-~- CO r^ O LD S- S- co LO n ^a- >* LD "d" ^d" LD CD LD LD CO CO CD CO O * 3 O

CTt CTt CTl 1 CT* cri en cri i oi CD CD CD 1 CD CD en CD i en

O O O O O CD C3 O CD CD CD O CD O CD O

o CO cn ^l" i— en co co r-^ 00 ^ f— 1— LD CM CM CD s- cn >^- r-- «* CTl LD CTl P-. CD CD CM CD r^ i-» >=i- CD

II 00 CTl (Tl 1 CTl oo en en i en CO CD O 1 CD en en o i en

c O O O O C5 o o" o CD CD ^ CD O CD r-^ CD

o^-- CD _

XI " <U i- O i— ■— i— P~~ LD CM ■* >* n- ID CD O CD CO «d- l/l —- o CM tn LD «a- CM CD CD LO CO CD 1^. LO «J- CO 00 CO re 3 s- CTl CTl CTi 1 CTl en en en i crt CD D) CTl 1 <D CD CD CD 1 Ot

CQ II ■ • • • • • • • • • • ■ • ■ • •

s- o o o o o o o o O O O CD o o o o

o •K S-

CTl CTl CO 00 CO 00 O LD 00 00 CD CO CO O CM 00 CO f*. CM CD oa s- ro LO co in LD «d- CD CD LD en LD CD CD CO CD CO CD CO CD CD

o

3 o

CJ^ CTt CTl CTl cr> <n en en en CD CD CD CD CD CD <D en <n o^ o>

o o o o o <3 O CD o o CD CD CD O O O CD CD O O

o CO CO CM CO i— <n co co co oo 00 LD CO f^ CD co i— oo CM en ^—^ s- CTl r~^ en CO CO en co oo oo LD CD CD 00 00 LD CD co oo en en CD

S- II S-

00 CTt CTt CT» CTl co en CD <n CD CO 00 CD CD CD 00 CD CD CD CD

O O O CD O o o o o o O O CD CD CD O O O O O s^-^*-—- 3 CD

c sT O — > -o O O O CM O r^ P~-. >=d- CD CD >* 00 ^ CD CM CD CD LD CM >* QJ oa o CM r^- co i^ co CM co r^ CO LD co co r^ r^ CD ^t- r^ r^. i^ CD t/l (0

CQ

S- II s-

CTt CTi CT> CTt CT) CD CTl CD CD O^ CD CD CD CD CD CD CD CD CD CD

o o o o o O O CD O CD O* CD CD CD O CD CD CD CD CD

LU LU LU LU 0 O CD o o CD O 0 C3 0 O t3

o O O < o O O cE o O <M 00 DC

o O O cC o CD CD < o o CM oo o: 0 O CM 00 Qi O CD CM 00 o; O CD I— r— LU O CO i— r— LU CD CD .— r- LU O CD I— I— LU

^. 11 >• II > 11 5: 11 3 o o S- M OT

CD cC CD <C CD <: CD cC

O II o J3 O

cu -^ • O)^ LO -o II I i [ M r— CD LT) o LT)

Lf) ii r— CM CM

a • O o O O

t— O I— ■ • • • en ii o o o o O c ja ct II 11 11 II

•r- -^ X o o o o C/1 (O UJ S- S- S- S-

24

Page 32: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

(SI

CL <c

tT ^ l—l l/l =i

2;

o 1—1 CO :=r <r a. X UJ

> oo cz I— LU Z i— UJ

> O UJ 3 _J h- UJ

>■ Di ca «a

_i ,—^ —> h- CD C_) z: •* < X 1 1

UJ Q^

00 D-

O

o vo cor- CTl IT) CM oo r-. co cn o ^a- t. CTt CTi CT^ i^. oo oo UD r--. r-» LO h~. CO * 1 0*i CT\ CTt 1 CTt 0^ CTi i o^i en en i en en cn II • • • ■ ■ ■ • • • • • • s- o oo o o o o o o o o o .—^

CD ^ t-

1— 00 00 CO en o o CD CX3 P-- «d- CO IT) z > o O^ CTt CT> oo en en 00 00 CO 00 CO 00 UJ s- 1 Ot O^ CT> 1 en CTi CTl i en cn en i CTJ cn en z; II • • • • • • • • ■ • • • UJ S- o OO o o o o o o o o o _i UJ

cC _l o <NJ 1^ «* CO CD U3 C3-1 cl- •^- 00 ID CM CM cn co i— ZD s- r-. <X3 l^D to ir> in ^i- LO ^t- «d- co 'd- CO CO CM CO CD ^1-

II S-

O't CT» cr» CTt c* en en ^ en ^ o^ cn CTI cn en en

O C3 O O d d d d d d d d d d d d i—i I—

CD •

S- ct ^—- <^- ro co co ^j- CD O O en ^i- LD co LT) CM CM CO

3 o en oo oo oo oo i~^ oo co r-^ r^ i^ i^ r-, r-, r^ i^

o CTl CTl O"! Ct O^ CTl Ct O"* cn en en o^ en cn cn en

d d o'd dd d d d d d d d d d d CO UJ Q r_. o CD z: A

s- o oo i~^ oo oo cyi co r-- en O LD 00 00 ^t o cn r— 1— ^^ s- r— r— VO U3 en o ro r^ en en -^ r-. oo en co r~.

UJ o > 11

s-

O O 00 CTl o^ o en ci en cn cn en cn en cn en

^ i-^ d d di-^ d d d d d d d o o o <:

oB

<: ^—, CD r— >* co«d■ r— un LD t^. f- CM ^t- .— un cn i— cn

o ^ o o O o o d en CD en co en en cn 00 00 CO CO 3 1—

S- s- II S-

o o o o en en o en en en en o^ o> c^ cn CT»

K 1—• 1— I— 1— dd r-^ d d d o d d d d d U- * o CO

=>

1— ^—. 2: CD o UJ ^ s- z: (- ^a- o •^^ II Q. * S- ^- i— CD i— CO co r^ LD ^t co o 'S- in cn co cn s: > co en >* ^d- COCO CM t— oo oo ^J- o oo oo CM cn o o oS o

CTi CTl c— O <n en o o en cn o o cn cn o en

d d ^ r-^ dd r-^ i-^ d d i-^ r-^ d d ^-' d 1- o

CD 1- UJ e\ II s s- s_ UJ o •K

=3

a. o CM LO r~. CM tD LD UD CM 00 i— LT) LT) .— cn co i— CO s- CM r— 00 ^f i— O ^1- CM i— O CM i— CM cn ■— i— i—i CD

II 5-

o o o o OO o o o o o o o cn o o

S_ 1—' 1-^ t-^ 1-^ 1-^1-^ 1-^ 1-^ t-^ i-^ i—' i-^ i-^ d .-^ .-^ ^ O

Q

>

UJ CO •=c CD CM ^J- CO 00 LT) CO CM 00 «* CO CO o <d- CM o cn CO «- o O O CD CM en en co o en cn ^- o cn en o en

S-

I o o o o enen o o cn cn o o en CTi o cn

3 •-•-'-•- do ^- ^- d d r-^ r-* d d r—" d

0@©uu 00© ^ 00© g e©e ^ <c <c < —• ss z: oi s: on s: £ s: Q;

UJ UJ UJ UJ UJ UJ UJ UJ _l > _J > _i > —i >

o UJ <; UJ <c UJ cc UJ <C

^ U3 II UD

-^ J3 CT> O "N» • rO ^ i— S- II

C_) •> r- o in o un ■d-^: r-~ CM CM

s- • o o O o <U O 1— •

-(-> II o o d d o C -Q ct II n II II <u ^,X o o o o <j ns UJ s- S- i- S-

25

Page 33: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

o i— n r~. «* CM 00 «* CD LD un evj en ^_ i— CD o en en CTt 00 00 00 p- oo r^ * 1 o o o i en en en i en en cn i en en cn II s- "r-*

d d o d d d d d d

1— > o LT) LT) O r- O ^-

1 O O O

>3- f- r— CD en o

i o en o

o ir> r-^ o en en

i CD cn en

r-~ <- LD cn en en

i cn cn en ua II

r— i—• ■—■ r-^ d r- i-^ d o d d d UJ _J UJ

OO UJ

Di

_J ^3

o S-

r^ cri <- r^. r~. i— r-~ r-^ C7> O CTl CTt

o CM UD en l~, 1^, to vo en en en en

ID oo o cn CD CD CD ID en cn en en

CM LD "^ O ID CD LD CD en cn cn en

■ • • ■

CD II • • • •

o o o o d d o o d o o o O O O CD

Z <c ■—■

CO 1—1 CD

3

o < 3 o

CX) CX) O CTl co oo en oo en en en CTI

CM M CO CM oo co co co en en en en

o.- o .- 00 00 00 00 CTI en en cn

o i— oo o oo oo r~- oo en en cn CTI • « • «

1—1 u. o

II S- o o o O d d d o o o o o o o o o

u ^-, X c <r>

a:

■z to 1— H

• s- o

■— t. CSJ «d" en m ■— i— un en o o en en

en o r— o en o o o

O CD CO CD en cn CD cn en cn o en

CD co cn co oo cn CD co en en en cn

LU UJ u

: ¥ n 1 > s- ^ .—" d d dr-^ f— I— d O r— o d d d d

1 o 3

111 ca >

_J r ) I— UJ c i <•—■

>- 5 S

: CD - o

> S- s- :— n

e\j vo to o o o evi r- o o o o

ro oo oo n en en r— o en en o o

O CD LD 1— cn en o cn en cn O cn

en «d- oo o oo cn co cn CT» cn cn cn

1— C3 - * s- ,_!,_! r-I ,-1 d o r— i— d d .— o d d o o

(-J z: u - =3

cC cC C 1—1

3 X UJ Qi <J -) <-»

\- 1- -CD O

r„ O U j S- ^i- i^ UJ 2 : ^^ n

1— D. C

3 i . > D oa o

.— en oo <x) en en oo C\J en en o C3

en un UD co oo en CM o en en CD CD

r- cn r-~ oo cn cn o cn en cn o en

CM CD CD 00 en cn o en cn cn o en

UJ _J t o — o d d r-^ ^- d d r- r- d o i— o d d i— o

UJ O H - CD S- 1 Z •> 11 UJ a: L u s_ s-

Z. •—' UJ I—I L U ■)« \— 3 C

c J =s

1—1 i 1—1

U_ i (. \. o /T— S- -i CD * 3 ' 11

S- S-

00 Lf) <JD to i— i— en ^d- o o o o

CO ID r- VO i— O CD CM o o o o

<d- CO LD r— i— O ^t CM o o o o

r- co oo en 1— O CO r— o o o o

1— n- r— r— r~" r— n— ^-

^ C 5 >

• 3 oS tc -U

UJ -1 CO

a: CD CO 1^- oo n o o LD CM o o o o

p^* en i— en en en co o en en o o

CD r~. LD CO cn cn i— o en en o o

I^ t^- LD o cn cn o o en en o o

? •—' 11 => 5- ^r-^r-^,-^ d d .— r— d dr-^ ^ d d r-' ^

Ul Ul -I > ui =a;

0©©y ©©©LU ©©©^

o o

•Z. et- ui Ul

ui <:

Ul Ul _i >■ ui <C

Ul Ul _1 > ui <C

(0 • s- <* O II o

J3 O <u ^. • oirr: CSJ ID II UJ «* r-

(U • o

ID

O

o CM o

LD CM O

^ Ol— -QUO d d d

n o

S-

d 1]

ZJ -Q eC o -^.x £3 (C Ul

II o

s-

n o

S-

o

Page 34: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

oo

< Q. X

uO

1 o UJ s _J

1- UJ

>- o; ca d

_J ,—. =3 1— Cfl c_> z < <c X t—1

UJ DC h-

, a v: UJ ^^ oi ^—, Q. i— ■< z _J UJ _l ?r o UJ C_)

UJ

CO

O <£) CO CTl un co CTI 1— 1^ 'Sj- 00 CM O S- Ol 00 00 CD 00 00 CD co en 0 en 0

■=1- 1 CTi CTt CT> 1 en CD CD 1 0 en en 1 O CD 0 II ■ • • ■ • • • • • • • ■

s- OOO OOO 1—00 ■— 0 1— ^—^ CD

s- CD CM IX) IT) CD CM CD O CO 00 CM in

1— > 0 00 r-- r-~ T-~ CD r-- 1— 1— r-. r-^. 1— r-- z: S- 1 CTi CTi CTi 1 CD CD CD 1 en en CD 1 en CD CD UJ II ■ • • • • « ■ • • • • • 2: S- 000 OOO OOO OOO UJ _J UJ

a: d 0 CM r— 00 eg co CD 0 r^. r»- CM 1— CM CM CD co r^- _J s- 00 vo r-~ r-~. CD r~~ en 00 0 en 0 O CM O CM 1—

II s-

a*» CTi CT» ot en en en o^i 0 CD 0 0 OOOO

0000 O O O CD r-^ d ■—' .-^ r-^ r-^ 1-^ 1-^ 55 ^—^ a:

CD

I— s- -— CM r— O 1— ^1- CD ^)- CD CD 00 1— CM >* CO 1^ CD •a: 3 0 r^. ID to to r~- 10 CD CD 1^ CO 1^- 1^ co r-. r-~ 1^

u. o 00 UJ

S- II S-

<T» CTt 0> CTt en en en (n CD CD en CTI CD CD CD en

0' O O O 0 O CD 0 d d d 0 d d d d

Q CD O •\ z S- 0 r-~ CD 00 co r— en CD CD ^d- e» co tn <T) CO 00 00

s_ r^- 00 C\J <X) 1^ r-^ r^ t^ r^ 1-^ p^ r~- r^ 1^. >* co

z UJ > II

CTl CD CTl CT) en CD <n en en en c^ en CD en en en

0000 CD O CD CD d d d d OOOO o

oa

Q =3; CD ID UD 0 r-- ID CM CO CO CO CM CM 1— CO CO 00 CO

r\ 0 CD r^ CM 00 CD r-~ i— 00 CD 1^ O CO t-~ 1^ 00 r^ 0 3 1—

s- s- II

CT> CD O CT) en en 0 en en en 0 en c^ en en o^

* 3

00^0 0' 0 i-^ 0 d d r-^ d d d d 0

u_ 0

10 ^-^ h^ CD 0 •^ s- UJ s- ^d- py II O * S- 'd- CD CM 1— 00 ^a-1— ■— CO CD CM 1^ co 00 00 r- D. > in CD 1— r- en CD en en 10 co ro 00 CO CO CM CO

0 aa 0 CTl CD ^- O CD CD 0 en en en 0 o^t en en CD en

0* 0 n-^ ^ 0 0' 1-^ 0 d d ^ 0 O O P- CD 0

h- CD !- z Vi II UJ i~ S- s: UJ * 0 3

_J Q- 00 O 0 00 en r^ 0 0 UD 00 «d- r^ uo en en CD 1— CM l-H t- CO r^ LD CD en r^ 1— 1^ ^- 10 en co CO CO 00 CD Q CD

II CT) (D O O^ o^ en 0 en en en en en en en en en

0' CD r-' O 0 CD ^ 0' d d d d d d d d O > O UJ oa 00 <c 1— «* CM CD 0 en co «* r— en 00 en CO O CO CD CQ CD CD r- UO CD CD CD CM CO co co 0 r^ co r^ en r-^

0 s- II

01 en 0 CD en en CD en en en 0 en en en en en

00 I— 0 d 0'.—" d d d ^-' d d d d d 3 s-

0©ey 0©© LU ©0©tu ©0© UJ < < ct <:

s: Q; s: 0; 2: Q£ 2: Oi UJ UJ UJ UJ UJ UJ UJ UJ

JH: _J s> _l > _J > _J > 0 (0 i. CO CD

UJ <C UJ <C UJ <C UJ <:

O II O J3 O

(U^> • oiix un

"O 11 1 1 1 •* r— 0 LCI 0 ID

LD ^ r— f— CM CM OJ • 0 0 O O ^-01— • • • •

C71 II (_J 0 0 O O C-Q < II II II II

•r- --^.X 0 0 O O 00 re UJ 1- s- S- S-

27

Page 35: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

n. LU <c V

UJ CT _l

UJ i—i 00 oi —> et

_l ^T. —> C2 C15 1—1 z 00 < ■^r 1—( < Di D- 1— X UJ UJ

UJ Sf" oo cc D- UJ <C H- —1

1 —1 a: o ZD o o Ll_ J_

\- >- •—i CO ^

o

X UJ

CO

CO

o

II i-

OJ

Ol CO CO CM ID r-~ r^ oo oi ai en <Tl

C3 O O O

00 CTl CO UD oo oo en cn CTi OS Cn Cn

O O O O

ID i— 00 ^1- ^i- LD in UD CTt o> CT» cr»

o o o o

CO Lf> CTl UD i— O Ol CTl o o cri en

o o

tn ID n i— O CTi Ot CTt O CT» CTl CTl

o o o

CM en "* CM CM O O O o o o o

oo ^-1— en i— o o en o o C3 en

i— t— o

o

o LO o un t— i— CM CM o o o o

o o o o

II VO .^ JD en

ra :c i— S- II O " ■—

i. • OJ o i—

4-> n o c J2 <: CD ~^X O (0 UJ

LD UD CO CM oo i^ r~. r-- en en en en

o o CD o

<n oo CM co t^ r-~ r^ t^ en en en en

o o o o

o LO o LO r— i— CM CM o o o o

CD O O O

o o ra . S- ^i-

c ) 11 C 3 JD O

OJ ^^ • en 3: CM -a II Ul #> t—

^f ^ 01 •

O (- n II c ; 3 J3 <: o *^^ X Q ro LJLI

o un O LO r— r— CM CM O O O O

O O CD O

o o

s- co en o II o

J3 CD 0) -^ • cn^: LD

T3 II ■ 11 n i—

in ^ 0) •

t— o l— en ii o c JD <; •r-'—.x e/i ro UJ

28

Page 36: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

The collocation method requires the computation of displacements

along r=r0 at points between nodes. For the single edge tension

specimen with a/b=0.5, H/b=3.0, the numerical results obtained from

the collocation method are given in Table 9. It can be seen that

values of K-] remain nearly a constant no matter how many terms or how

many mid-points are taken. Because of more computations involved and

since as good or even better results can be obtained by other simpler

methods, the collocation method has not been pursued further.

TABLE 9. ^ (FINITE ELEMENT) FOR SINGLE EDGE CRACK USING

COLLOCATION METHOD. NODAL DISPLACEMENTS OBTAINED FROM APES

WITH 3-COLLAPSED TRIANGULAR ELEMENTS. COLLOCATION POINTS

ARE EQUALLY SPACED ON r=0.01

No. of Mid=Points Between Nodes

— —_

Four-Term Expansion Eight-Term Expansion General Mode I (a'^O) General Mode l(a'=0)

0 2 3 5 9

11 14 19

4.82815 4.82753 4.82743 4.82737 4.82734

4.83417 4.83352 4.83337 4.83322 4.83309

4.90392 4.82446

4.81972

4.85093 4.82966

4.82762

Our second goal in the numerical computation is to assess the

accuracy of NASTRAN in linear fracture, using 12-node, isoparametric

elements with collapsed triangular elements around a crack tip and to

examine the effect of multiple constraints. Normalized stress intensity

factors thus obtained are given in Table 10. It indicates a high degree

29

Page 37: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

of accuracy, and the effect of multiple constraints is insignificant.

The multiple constraints tend to increase the stress intensity factors

slightly. In Table 10, by "No" multiple constraint we mean nodes 2 to

10, Figure 5(a), are free to move in both the local x- and y-directions

with respect to node 1, and node 1 has no displacement in the local

y-direction due to the symmetry of the problem (mode I crack). The

column "Yes" gives results obtained by assuming v1 = v2 = ••• = V-JQ = 0

and u-! = ^2 = '" = u-jg-

TABLE 10. ^ (NASTRAN)/^ (EXACT)

■V" 0.01 0.015 0.02

Multiple Constraint No Yes No Yes No Yes

Center Crack a/b=0.4, H/b=4.0 Exact ^=1.966

0.981 1.013 0.982 0.999 0.983 0.994

Double Edge Crack a/b=0.4, H/b=4.0 Exact K-^2.00

1.000 1.021 0.998 1.007 0.999 1.002

Single Edge Crack a/b=0.4, H/b=4.0 Exact ^=3.728

0.980 1.003 0.980 0.991 0.982 0.988

Another goal in the numerical computation is to compare results

using the concept of collapsed triangular elements in APES with results

of APES with singular 'core' element around the crack tip. Ratios of

K-| (APES) to K, (EXACT) are given in Table 11 for the tension test

specimens with r0/a = 0.01. Results in the first column of Table 11

30

Page 38: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

are obtained by using three collapsed triangular Elements around the

crack tip where nodes 1 to 10, Figure 5(a), coincide. All vertical

displacements of nodes 1 to 10 are assumed to vanish while they are

free to slide with respect to one another in the x-direction. Results

in the second column are computed by using a singular 'core' element

surrounded by three quadrilateral elements as shown in Figure 5(b)

with h/r0 = 6. Table 11 shows values of stress intensity factors,

obtained by collapsed triangular element, are as accurate as those

obtained by using singular 'core' element.

TABLE 11. ^ (APES)/^ (EXACT)

Center Crack a/b=0.4, H/b=4.0 Exact K-i=1.966

Double Edge Crack a/b=0.4, H/b=4.0 Exact KyZ.OO

Single Edge Crack a/b=0.5, H/b=3.0 Exact ^=5.009

Collapsed Triangular Elements, Fig. 5(a)

0.998

1.005

0.972

Singular "Core" Elements, Fig. 5(b)

0.996

1.011

0.974

In NASTRAN, it is the user's choice to apply the multiple constraint

conditions, equations (27), at the crack tip. But in APES, it is not

yet available for the application of multiple constraints. Since the

effect of multiple constraints is so small. Table 10, that results

from APES with collapsed triangular elements are considered correct

even if the multiple constraint conditions (27) are not satisfied.

31

Page 39: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

For the integration of the element stiffness matrices, a 3 x 3

Gaussian quadrature is used in all NASTRAN results in this report while

a 4 x 4 Gaussian quadrature is used in APES.

For a mixed mode crack, six collapsed triangular elements shown

in Figure 6(a) are used. An effective way to estimate the stress

intensity factors is to use v(r0,-Tr) for K-] and u(r0,TT) and u(r0,-TT)

for Kp.

„ , , /H 2G v(ro,TT) u . . -Vgjr 2G v(r0,-7T) 1 /F^ (K+1) ' /r^ (K+1) N

SB 2G u(r0,Tr) -^f 2G u(r0,-TT) I , . K2(TT) = , M-TT) = Q- > (40)

/F^ (K+1) ^ /^(K+1)

K-, = \ (K^TT) + K^-u)) , K2 = i (K2(TT) + K2(-7r))

where u(r0,iT) and v(r0,7r) are displacement components of node 26

relative to node 19 in the direction of parallel and normal to the

crack face; r is the distance between nodes 26 and 19. u(r0,-TT) and

v(r0,-Tr) are the same but of node 20 relative to node 1.

For a 45° edge crack shown in Figure 7, NASTRAN results for K-|

and K2 are tabulated in Table 12 for ro/a=0.01 and for various other

conditions. Again the multiple constraint conditions, namely u-| = u2 =

••• = u-jg and vi = v2 = ••• = v-jg, give little effect on values of K-]

and IC. An obliqued edge crack in a rectangular panel under uniform

tension is solved by Freese using a modified mapping collocation method

[20]. K, and K , read from Bowie's graphs (Figure 1.16a and 1.16b of

20Bowie, 0. L., "Solutions of Plane Crack Problems by Mapping Technique," in Mechanics of Fracture, 1, Edited by G. C. Sih, Noordhoff International Publishing, Leyden, The Netherlands, 1973.

32

Page 40: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

[20]), are approximately 1.86 and 0.88 respectively. Numerical results

of the same problem computed by APES, using special crack tip elements

and various idealizations, are given in Figure 12 of [16].

TABLE 12. K} AND K2 FOR 45° EDGE CRACK BY NASTRAN

B.C. Integration Multiple Constraint Kl K2

1 3x3 No 1.89 0.95 1 3x3 Yes 1.89 0.96 1 4x4 No 1.83 0.92 2 4x4 Yes 1.84 0.93

THE STABILITY OF COLLAPSED TRIANGULAR ELEMENTS

In a recent report by Hussain and Lorensen [21], it was found that

a slight perturbation in placing the mid-side node opposite to the

crack tip for a collapsed 8-node, quadrilateral element led to unstable

results in stress intensity factors. This unstability can be shown in

the collapsed 12-node, quadrilateral element if one or both middle

nodes of the side opposite to the crack tip are slightly perturbed from

their nominal positions.

Let node 5 be perturbed as shown in Figure 8. Denoting the

perturbed quantities with an asterix, we have

'6Gifford, L. N., "Apes - Second Generation Two-Dimensional Fracture Mechanics and Stress Analysis by Finite Elements," Naval Ship Research and Development Center, Report 4799, December 1975.

20 Bowie, 0. L., "Solutions of Plane Crack Problems by Mapping Technique,1

in Mechanics of Fracture, 1, Edited by G. C. Sih, Noordhoff Inter- national Publishing, Leyden, The Netherlands, 1973.

21 Hussain, M. A. and Lorensen, W. E., "Isoparametric Elements As Singular Elements for Crack Problems," Watervliet Arsenal Technical Report, to be published.

33

Page 41: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

* .„ 2 + cosa . H'1 = —3 + e

(41)

A general point (x,y) given by equation (18) will be displaced at

x*M = \ (l+d2[(l-n) + (l+n)cosa] + e ^ (l+0(l-n2)(l-3n) (42)

y*/£ = 5 (1H)2(1+Tl)sina + e' ^ (l+U(l-ri2)(l-3n) (43)

Along the line n = -1/3, and replacing y* with r sine in (40), we have

3 1 + ? sina

1/2 1 + M + L 4sinesinou '

(44)

Since (1+?) is a common factor in displacement components, equations

(28) and (29), it is seen that the singularity required, for the

crack problems disappears along at least the ray n = -1/3 in the

collapsed triangular case.

As a numerical example, the central crack tension specimen of

Figure 3(a) is again used. If the idealization remained the same as

shown in Figure 4, except that the collapsed elements of Figure 5 were

replaced by those of Figure 8(b) (where nodal points 20, 21, 23, 24,

26 and 27 are on a circular arc), the computed stress intensity factor

changed from its almost exact value K-| = 1.962 to K-| = 1.421 (nearly

30% error). If only nodal points 26 and 27 were perturbed to their

new locations in Figure 8(b), the stress intensity factor would become

K-] = 1.457 (a 26% error).

34

Page 42: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

CONCLUSIONS

By a simple manner, the 12-node isoparametric elements can be

used to form a singular element for two-dimensional, elastic, fracture

mechanics analysis. The elements have been successfully implemented

in NASTRAN, which can now be more efficiently used for more accurate

prediction of stress intensity factors of complicated crack problems.

The middle nodes of the side opposite to a crack tip in a collapsed

triangular element should be accurately located to avoid unstable

results. The extension of collapsed triangular elements as singular

elements to three-dimensional brick elements can be easily done as in

[9,10].

q ^Barsoum, R. S., "On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics," International Journal for Numerical Methods in Engineering, Vol. 10, 1976.

10Hussain, M. A., Lorensen, W. E., and Pflegl, G., "The Quarter-Point Quadratic Isoparametric Element As a Singular Element for Crack Problems,"NASA TM-X-3428, 1976, p. 419.

35

Page 43: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

REFERENCES

1. Swedlow, J. L.. Williams, M. L., and Yang, W. H., "Elasto-Plastic

Stresses and Strains in Cracked Plates," Proceedings First Inter-

national Conference on Fracture, 1, p. 259, 1966,

2. Kobayashi, A. S., Maiden, D. E. and Simon, B. J., "Application of

the Method of Finite Element Analysis to Two-Dimensional Problems

in Fracture Mechanics," ASME 69-WA/PVP-12 (1969).

3. Chan, S. K., Tuba, I. S. and Wilson, W. K., "On Finite Element

Method in Linear Fracture Mechanics," Engineering Fracture Mechanics,

2. p. 1, 1970.

4. Wilson, W. K., "Combined Mode Fracture Mechanics," Ph.D. Dissertation,

University of Pittsburgh, 1969.

5. Tracey, D. M., "Finite Elements for Determination of Crack Tip

Elastic Stress Intensity Factors," Engineering Fracture Mechanics,

Vol. 3, 1971.

6. Blackburn, W. S., "Calculation of Stress Intensity Factors at

Crack Tips Using Special Finite Elements," The Mathematics of

Finite Elements and Applications, Brunei University, 1973.

7. Benzley, S. E. and Beisinger, A. E., "Chiles - A Finite Element

Computer Program That Calculates the Intensities of Linear Elastic

Singularities," Sandia Laboratories, Technical Report SLA-73-0894,

1973.

8. Henshell, R. D., and Shaw, K. G., "Crack Tip Finite Elements Are

Unnecessary," International Journal for Numerical Methods in

Engineering, Vol. 9, 1975.

36

Page 44: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

9. Barsoum, R. S., "On the Use of Isoparametric Finite Elements in

Linear Fracture Mechanics," International Journal for Numerical

Methods in Engineering, Vol. 10, 1976.

10. Hussain, M. A., Lorensen, W. E., and Pflegl, G., "The Quarter-Point

Quadratic Isoparametric Element As a Singular Element for Crack

Problems," NASA TM-X-3428, 1976, p. 419.

11. Zienkiewicz, 0. 0., The Finite Element Method in Engineering

Science. McGraw Hill, London, 1971.

12. Barsoum, R. S., "Triangular Quarter-Point Elements As Elastic and

Perfectly-Plastic Crack Tip Elements," International Journal for

Numerical Methods in Engineering, Vol. 11, 1977.

13. Williams, M. L., "On the Stress Distribution at the Base of a

Stationary Crack," Journal of Applied Mechanics, Vol. 24, 1957.

14. Tracey, D. M., "Discussion of 'On the Use of Isoparametric Finite

Elements in Linear Fracture Mechanics' by R. S. Barsoum", Int.

Journal for Numerical Methods in Engineering, Vol. 11, 1977.

15. Barsoum, R. S., "Author's Reply to the Discussion by Tracey," Int.

Journal for Numerical Methods in Engineering, Vol. 11, 1977.

16. Gifford, L. N., "Apes - Second Generation Two-Dimensional Fracture

Mechanics and Stress Analysis by Finite Elements," Naval Ship

Research and Development Center, Report 4799, December 1975.

17. Isida, M., "Analysis of Stress Intensity Factors for the Tension

of a Centrally Cracked Strip with Stiffened Edges," Engineering

Fracture Mechanics, Vol. 5, 1973.

37

Page 45: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

18. Brown, W. F., and Srawley, J. E., "Plane Strain Crack Toughness

Testing of High Strength Metallic Materials," ASTM STP-410, 1966.

19. Tada, H., Paris, P. and Irwin, G., The Stress Analysis of Cracks

Handbook, Del Research Corp., 1973.

20. Bowie, 0. L., "Solutions of Plane Crack Problems by Mapping

Technique," in Mechanics of Fracture, 1, Edited by G. C. Sih,

Noordhoff International Publishing, Leyden, The Netherlands, 1973.

21. Hussain, M. A. and Lorensen, W. E., "Isoparametric Elements As

Singular Elements for Crack Problems," Watervliet Arsenal Technical

Report, to be published.

38

Page 46: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

8J

32

9

(i-n)[i-5)[-io+9(Cz+nz)]

N2 = jj Ci-n)(i-5z)(i-3Q

N3 = h d-^Ci-^^Cl+SC)

J7 = jj (l+nlCl+^H-lO+QC^+T!2)]

N8 = ^j (i+nHi-S2)(i+3C)

Ng = ^- (l+r1)(l-52)(l-3?)

^4 = 32 a-n)(l+?)[-10+9(C2+Tiz)]

<5 = ^ (iH)(i-n2)(i-3n)

Nio = 32 (i+n)(i-c:i[-io+9C52+nz:']

Nii = 32 (i-CHi-n2)(i+3n)

N = 32- (iH)(i-n2)(i+3n) Ni2 = 32 (i-5)(i-n2)(i-3n)

Figure 1, Shape Functions and Numbering Sequence For a 12-Node Quadrilateral Element.

39

Page 47: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

10 9 8 7

II' V

— 1 I2<

• I 9

i

0

6

'5

4

NODE x/l y/H

1 0 . o

2 cos 6/9 sinB/9

3 4cosB/9 4sin3/9

4 cosg sing

5 [2cos3+cosc0/3 (2sin3+sina)/3

6 (cos3+2coscO/3 (sin3+2sina)/3

7 cosa sina

8 4cosa/9 4sina/9

9 cosa/9 sina/9

10 0 0

11 0 0

12 0 0

— X

Figure 2. A Normalized Square in (Cn) Plane Mapped Into a Collapsed Triangular Element in (x,/) Plane with the side % - -1 Degenerated into a Point at the Crack Tip.

40

Page 48: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

>D

_JL_

_L

10 T

(a) Center Crack

10

II

10

1

10

(b) Double-Edge Crack

\D

H _l_

(c) Single-Edge Crack

H

Figure 3. Three Tension Test Specimens.

41

Page 49: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

SEE FIG. 5

Figure 4. Idealization of a Half of the Single-Edge Cracked Tension Specimen.

42

Page 50: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

(a)

25 24 23 22

t—IO

ib)

Figure 5(a). Three Collapsed Triangular Elements Surrounding a Mode I Crack Tip.

(b). Special Core Element and Three Quadrilateral Elements Surrounding a Mode I Crack Tip.

43

Page 51: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

(a)

(W

Figure 6(a). Six Collapsed Triangular Elements Surrounding a Mixed Mode Crack Tip.

(b). Special Core Element and Six Quadrilateral Elements Surrounding a Mixed Mode Crack Tip.

44

Page 52: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

3^

UM—1 » • m I c o

•H

C

H

^

^ ^.

II

K> C^

^ LO f\i

s a. T3 C)

o cd u u 0) bO

C cd |H

u be » a

i i-0

o c o

•H

cd

cd o

o

45

Page 53: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

(Q)

Figure 8(a). Node 5 Perturbed to 5*. (b). Nodes 20, 21, 23, 24, 26, 27 Perturbed From

Their Nominal Positions.

46

Page 54: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

WATERVLIET ARSENAL INTERNAL DISTRIBUTION LIST

NO. OF COPIES

COMMANDER 1

DIRECTOR, BENET WEAPONS LABORATORY 1

CHIEF, DEVELOPMENT ENGINEERING BRANCH 1 ATTN: DRDAR-LCB-DA 1

-DM 1 -DP 1 -DR 1 -DS 1 -DC 1

CHIEF, ENGINEERING SUPPORT BRANCH 1

CHIEF, RESEARCH BRANCH 2 ATTN: DRDAR-LCB-RA 1

-RC 1 -RM 1 -RP 1

TECHNICAL LIBRARY 5

TECHNICAL PUBLICATIONS 5 EDITING UNIT 2

DIRECTOR, OPERATIONS DIRECTORATE 1

DIRECTOR, PROCUREMENT DIRECTORATE 1

DIRECTOR, PRODUCT ASSURANCE DIRECTORATE 1

NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: DRDAR-LCB-TL, OF ANY PJEQUIRED CHANGES,

Page 55: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

EXTERNAL DISTRIBUTION LIST (CONT)

COMMANDER US ARMY RESEARCH OFFICE P.O. BOX 12211 RESEARCH TRIANGLE PARK, NC 27709

COMMANDER US ARMY HARRY DIAMOND LAB ATTN: TECH LIB 2800 POWDER MILL ROAD ADELPHIA, MD 20783

DIRECTOR US ARMY INDUSTRIAL BASE ENG ACT ATTN: DRXPE-MT ROCK ISLAND, IL 61201

CHIEF, MATERIALS BRANCH US ARMY mS GROUP, EUR BOX 65, FPO N.Y. 09510

COMMANDER NAVAL SURFACE WEAPONS CEN ATTN: CHIEF, MAT SCIENCE DIV DAHLGREN, VA 22448

NO. OF NO. OF COPIES COPIES

COMMANDER DEFENSE DOCU CEN

1 ATTN: DDC-TCA 12 CAMERON STATION ALEXANDRIA, VA 22314

METALS 5 CERAMICS INFO CEN 1 BATTELLE COLUMBUS LAB

505 KING AVE COLUMBUS, OHIO 4 3201

MPDC 13919 W. BAY SHORE DR.

1 TRAVERSE CITY, MI 49684

DIRECTOR US NAVAL RESEARCH LAB ATTN: DIR, MECH DIV

CODE 26-27 (DOC LIB) WASHINGTON, D.C. 20375

COMMANDER WRIGHT-PATTERSON AFB ATTN: AFML/MXA OHIO 45433

NASA SCIENTIFIC § TECH INFO FAC P.O. BOX 8757, ATTN: ACQ BR BALTIMORE/WASHINGTON INTL AIRPORT MARYLAND 21240

NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY, DRDAR-LCB-TL, WATERVLIET ARSENAL, WATERVLIET, N.Y. 12189, OF ANY REQUIRED CHANGES.

Page 56: TECHNICAL LIBRARY - dtic.mil · Fracture Mechanics Finite-Element Method ... DETERMINATION OF STRESS INTENSITY FACTORS 12 1. ... Stresses and Strains in Cracked Plates…

EXTERNAL DISTRIBUTION LIST

NO. OF COPIES

NO. OF COPIES

ASST SEC OF THE ARMY RESEARCH § DEVELOPMENT ATTN: DEP FOR SCI ^ TECH THE PENTAGON WASHINGTON, D.C. 203IS

COMMANDER US ARMY MAT DEV § READ. COMD ATTN: DRCDE 5001 EISENHOWER AVE ALEXANDRIA, VA 22333

COMMANDER US ARMY ARRADCOM ATTN: DRDAR-TSS

DRDAR-LCA (PLASTICS TECH EVAL CEN)

DOVER, NJ 07801

COMMANDER US ARMY ARRCOM ATTN: DRSAR-LEP-L ROCK ISLAND ARSENAL ROCK ISLAND, IL 61299

DIRECTOR BALLISTICS RESEARCH LAB ATTN: DRDAR-TSB-S ABERDEEN PROVING GROUND, MD 21005

COMMANDER US ARMY ELECTRONICS COMD ATTN: TECH LIB FT MONMOUTH, NJ 07703

COMMANDER US ARMY MOBILITY EQUIP R5D CCMD ATTN: TECH LIB FT BELVOIR, VA 22060

COMMANDER US ARMY TANK-AUTMV R^D COMD

1 ATTN: TECH LIB - DRDTA-UL MAT LAB - DRDTA-RK

WARREN, MICHIGAN 48090

COMMANDER US MILITARY ACADEMY

1 ATTN: CHMN, MECH ENGR DEPT WEST POINT, NY 10996

COMMANDER REDSTONE ARSENAL ATTN: DRSMI-RB

2 DRSMI-RRS 1 DRSMI-RSM

ALABAMA 35809

COMMANDER ROCK ISLAND ARSENAL ATTN: SARRI-ENM (MAT SCI DIV)

1 ROCK ISLAND, IL 61202

COMMANDER HQ, US ARMY AVN SCH ATTN: OFC OF THE LIBRARIAN FT RUCKER, ALABAMA 36362

1 COMMANDER US ARMY FGN SCIENCE § TECH CEN ATTN: DRXST-SD 220 7TH STREET, N.E,

1 CHARLOTTESVILLE, VA 22901

COMMANDER US ARMY MATERIALS 5 MECHANICS

RESEARCH CENTER 1 ATTN:, TECH LIB - DRXMR-PL

WATERTOWN, MASS 02172

NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY, DRDAR-LCB-TL, WATERVLIET ARSENAL, WATERVLIET, N.Y. 12189, OF ANY REQUIRED CHANGES.


Recommended