+ All Categories
Home > Documents > TECHNICAL REPORT Water 2070 - 1000 Friends of...

TECHNICAL REPORT Water 2070 - 1000 Friends of...

Date post: 26-Jun-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
53
TECHNICAL REPORT Water 2070 Mapping Florida’s Future – Alternative Patterns of Water Use in 2070 A research project prepared for the Florida Department of Agriculture and Consumer Services & 1000 Friends of Florida Prepared by the Geoplan Center at the University of Florida P. O. Box 115706 Gainesville, Florida 32611-5706 Margaret H. Carr Professor Department of Landscape Architecture Paul D. Zwick, Ph.D Professor Department of Urban and Regional Planning November, 2016
Transcript
Page 1: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

TECHNICAL REPORT

Water 2070 Mapping Florida’s Future – Alternative Patterns of Water Use in 2070 A research project prepared for the

Florida Department of Agriculture and Consumer Services & 1000 Friends of Florida

Prepared by the

Geoplan Center at the University of Florida

P. O. Box 115706 Gainesville, Florida 32611-5706

Margaret H. Carr Professor

Department of Landscape Architecture

Paul D. Zwick, Ph.D Professor

Department of Urban and Regional Planning

November, 2016

Page 2: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

2

About the Florida Department of Agriculture and Consumer Services The Florida Department of Agriculture and Consumer Services supports and promotes Florida agriculture, protects the environment, safeguards consumers, and ensures the safety and wholesomeness of food. Our programs and activities are so varied and extensive, they touch the life of just about every Floridian. www.freshfromflorida.com

About 1000 Friends of Florida The state’s leading not-for-profit smart growth advocacy organization, 1000 Friends of Florida is building better communities and saving special places in one of the fastest growing states in the nation. We promote vibrant, sustainable, walkable, livable communities which provide residents with affordable housing choices and transportation alternatives. We work to protect natural lands that cleanse and store fresh water needed for residents, agriculture and the environment, provide refuge for wildlife, and support abundant recreational opportunities for residents and visitors alike. Above all, we strive to give citizens a meaningful role in shaping the futures of their communities and state. Founded in 1986, 1000 Friends of Florida is a 501(c)(3) nonprofit membership organization. www.1000friendsofflorida.org

About the GeoPlan Center Established in 1984, Geoplan is a multidisciplinary GIS laboratory located in the University of Florida’s School of Landscape Architecture and Planning, College of Design, Construction and Planning. It was developed in response to the need for a teaching and research environment for Geographic Information Systems, or GIS. Under its auspices spatial analysis is conducted in support of a broad range of academic disciplines. www.geoplan.ufl.edu

Page 3: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

iii

Table of Contents Page Acknowledgements v

1. Executive Summary 1 2. Introduction 4 3. A Word on Water Supply 5 4. Water Demand for the 2010 Baseline 6 5. Water Demand for the 2070 Trend Scenario 10 6. Water Demand for the 2070 Alternative Scenario 11 7. Results, Comparisons and Observations 12 8. References 27 9. Appendices

1. Table of projected population by county 2010 – 2070 29 2. GPD Per Capita Water Demand from USGS for Urban 33

Areas by County for Use in 2010 Baseline and 2070 Trend Projections

3. Counties with greater than 1 million freshwater GPD 36 2010 mining and industrial demand (from Marella, R, 2014)

4. Regional Results – Supporting Tables and Figures 37

List of Figures Page

Figure 1. Statewide water demand for the 2010 Baseline scenario and 3 2070 Trend and Alternative scenarios in gallons per day Figure 2. Urban census block groups in 2010 Baseline, 2070 Trend 7 and 2070 Alternative using the >=2000 people/square mile threshold Figure 3. A comparison of the state development scenarios, with 13 demand mapped in gallons/day/acre. Figure 4. Statewide water demand for the 2010 Baseline scenario and 14 2070 Trend and Alternative scenarios in gallons per day Figure 5. A comparison of the water demand for the Panhandle Region 15 scenarios mapped in gallons per day per acre Figure 6. A comparison of the water demand for the Northeast Region 16 scenarios mapped in gallons per day per acre Figure 7. A comparison of the water demand for the Central Region 17 scenarios mapped in gallons per day per acre Figure 8. A comparison of the water demand for the South Region 18 scenarios mapped in gallons per day per acre Figure 9. A comparison of total (development plus agriculture) demand 19 for the four regions of the state and the three scenarios in gallons per day Figure 10. A comparison of regional development and agriculture water 20 demand for the four regions of the state and the three scenarios in gallons per day Figure 11. The map at left shows Florida’s protected lands (in dark green) 24 in 2010. The map at right depicts the recommendation of Florida 2070 Alternative, which includes protected lands as of 2010 with the addition of lands included on the Florida Forever Acquisition list and lands identified as Priorities 1 & 2 in the Florida Ecological Greenways Network.

Page 4: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

iv

List of Tables Page

Table 1. A comparison of statewide water demand for the 2010 2 Baseline scenario, 2070 Trend and Alternative scenarios Table 2. Simplified water budget for Florida 5 Table 3. Urban – Suburban/Rural Population split where urban census 7 block groups were defined as those having a >=2000 people/square mile threshold. Block groups for 2010 Baseline were based on 2010 population distribution. Block groups for the 2070 scenarios were based on the projected population distribution for each. Table 4. Calculation of Weighted Average for SF (Suburban/Rural) 8 and Apt/Condo (Urban) and a ratio between the two Table 5. Alachua County GPD Demand using 2010 USGS GPD/capita 9 Table 6. 2010 Baseline Public Supply for Alachua County using >= 2000 9 threshold to determine Urban Block Groups Table 7. Projected agriculture GPD water demand for three scenarios 11 Table 8. A comparison of statewide water demand for the 2010 Baseline 12 scenario, 2070 Trend and Alternative scenarios Table 9. Total demand (development plus agriculture) for the four regions 19 of the state and the three scenarios in gallons per day

Page 5: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

v

Acknowledgements

The working team for this project was comprised of representatives of 1000 Friends of Florida, The Department of Agriculture and Consumer Services (DACS), and the University of Florida’s GeoPlan Center. 1000 Friends representatives include Ryan Smart, President, Vivian Young, AICP, Communications Director and Charles Pattison, FAICP, former Policy Director. The Florida Department of Agriculture and Consumer Services (DACS) was represented by Corinne Hermle. GeoPlan was represented by Dr. Paul Zwick, and Peggy Carr, Professors in the School of Landscape Architecture and Planning. At the time of this study DACS was under the leadership of Secretary Adam Putnam. Members of 1000 Friends of Florida Board of Directors in place at the time of this study were:

Board of Directors Tim Jackson, Chair

Lester Abberger F. Gregory Barnhart

Robert S. Davis Lee Constantine

Courtney Cunningham James Nicholas Nathaniel Reed

Roy Rogers Earl Starnes

Susan Trevarthen Victoria Tschinkel

Terry Turner Jacob D. Varn

Mark Watts

Funding for this project was provided by the Florida Department of Agriculture and Consumer Services and the Curtis and Edith Munson Foundation.

Generous and critical support was provided for the water demand modeling by University of Florida and USGS colleagues. We particularly acknowledge the careful review of our methodology by Jennison Kipp Searcy, Lynn M. Jarrett, and Pierce Jones, all part of the University of Florida’s Program for Resource Efficient Communities. Their study Envision Alachua: Resource Efficiency, Establishing Water Consumption Baselines for Alachua County, 2014 provided important demand data for Alachua County. Carol Lippincott and Wendy Graham of UF’s Water Institute provided project-shaping suggestions and helped greatly with tracking down water demand data. Richard Marella of the U. S. Geological

Page 6: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

vi

Survey also provided critical input and review. His report Florida Water Demand 2010 served as the foundation for our water demand modeling. Thanks also to Scott King, President, Florida Irrigation Society, who reviewed and provided input on irrigation demand reduction strategies.

Page 7: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 1

1. Executive Summary

The purpose of Water 2070 is to explore the impact on water demand of alternative future population distribution scenarios that accommodate Florida’s projected 2070 population. The land use scenarios came from the companion study, Florida 2070. Complete results and methodologies are described in the Florida 2070 Technical Report (Carr and Zwick, 2016). Both the Florida 2070 and Water 2070 projects are a joint effort of the Florida Department of Agriculture and Consumer Services, 1000 Friends of Florida and the University of Florida’s Geoplan Center. Water 2070 is based upon three population scenarios identified in the companion report, Florida 2070:

2010 Baseline – the pattern of land use and associated population distribution

for the year 2010

2070 Trend – the land use pattern most likely to occur if 2070 population

projections are met and counties continue to develop at 2010 gross development

densities. The population increase projected for 2070 uses the Bureau of

Economic and Business Research medium projection of roughly 15 million

additional residents as the basis.

2070 Alternative – the land use pattern that accommodates the projected 2070

population more compactly than in the 2070 Trend and increases protected

lands.32

This report summarizes the methodology used to estimate water demand for these three population distribution scenarios. This methodology distinguishes between per capita rates of consumption in urban areas and suburban/rural areas, with the rates being higher in the latter due to the additional water demands of residential landscape irrigation. This approach was grounded in work done by the University of Florida’s Program for Resource Efficient Communities, Envision Alachua: Resource Efficiency, Establishing Water Consumption Baselines for Alachua County (Taylor et al. 2014). Water 2010 Baseline, as noted, is based on the actual 2010 population distribution as identified in Florida 2070. Water demand for this scenario was derived from the US Geological Survey report prepared by Richard Marella, Water Withdrawal, Use and Trends in Florida, 2010 (2014). A per capita gallons per day (GPD) water demand quantity was derived for each county in the state from the Marella report. This, combined with the 2010 population of each county, provided a total GPD demand. Water 2070 Baseline provides a basis of comparison for water demand projections for the two 2070 population distribution scenarios. Water 2070 Trend is based on the addition of 15 million new residents, assuming 2010 development patterns continue. The water demand projection for this scenario began with the same 2010 per capita GPD county estimates used for the 2010 Baseline, but each county’s quantities were increased to reflect its population increase and the spatial distribution of that population.

Page 8: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 2

Water 2070 Alternative is based on accommodating 15 million new residents with more compact development patterns and increased protected lands. The water demand projection for this scenario began with the 2010 per capita GPD county estimates, but these estimates were conservatively reduced to reflect:

A potential reduction in water demand that would result from a more compact

pattern of development, and

Widespread adoption of water conservation measures.

The final county water demand estimates also reflect each county’s population increase and its spatial distribution within each county. The report also incorporates agriculture irrigation demand estimates for all scenarios. These were derived from the Florida Statewide Agriculture Irrigation Demand study (Balmoral Group, 2015), which addressed water demand for crop, livestock and aquaculture for the period from 2015 to 2035. Statewide Water Demand estimates are summarized in Table 1 and Figure 1 for the three scenarios, distinguishing between the water demand for development and agricultural irrigation but excluding water demand for mining and power generation. It reveals a substantial increase in total demand for both 2070 scenarios, but the more compact pattern of development and increased water conservation measures incorporated into the modeling assumptions for the Alternative result in an estimated development-related demand savings of roughly 1.7 billion GPD from the Trend. The Alternative scenario has an increase in agricultural irrigation of approximately 536 million GPD over the Trend scenario. This results from the fact that substantial acres of irrigated agricultural land is protected in the Alternative scenario. Table 1. A comparison of statewide water demand for the 2010 Baseline scenario, 2070 Trend and Alternative scenarios

2010 Baseline 2070 Trend

% Change Baseline - Trend

2070 Alternative

% Change Baseline - Alternative

% Change Trend - Alternative

Development Demand (GPD) 3,139,370,035 6,480,557,237 106% 4,704,530,221 50% -27%

Agriculture Demand (GPD) 2,129,941,436 1,614,305,600 -24% 2,150,253,570 1% 33%

Total 5,269,311,481 8,094,862,839 54% 6,854,783,791 30% -15%

Page 9: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 3

Figure 1. Statewide water demand for the 2010 Baseline scenario and 2070 Trend and Alternative scenarios in gallons per day

As described above, this study only examines two categories of water use on the demand side, water to support development and water to support agriculture, leaving other demand numbers unprojected. Of particular concern, and not within the scope and budget of this project, is the water needed for the health and function of natural systems. Key observations from this study include:

1) Water 2070 Trend reflects that population growth, water use habits and irrigation

will increase development-related demand for freshwater in Florida by as much as 100 percent over the 2010 Baseline.

2) Water 2070 Alternative shows that if more compact development patterns, increased land conservation, and water conservation measures are adopted, there is the potential to decrease total water demand for development from the Trend projections. The 2070 Alternative will have roughly 27% less development-related water demand than the 2070 Trend.

3) Because Water 2070 Alternative has more area classified as urban than does the Water 2070 Trend (due to the more compact development), the per capita development-related demand for the Alternative is less than the Trend.

4) Statewide agriculture irrigation demand in the 2070 Alternative is slightly greater than in the 2010 Baseline because irrigated agricultural lands are protected from development in the Alternative scenario.

5) Total water demand is greatest in the Central Region, followed by the South, Northeast and then the Panhandle in all scenarios. This is correlated with population.

6) Agriculture irrigation demand remains relatively unchanged in the Panhandle and Northeast Regions across all the scenarios, suggesting that projected development will not significantly impact irrigated agricultural lands. The Trend scenario results in a decrease in agriculture demand in the Central and South Regions due to the projected loss of agricultural land.

Page 10: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 4

2. Introduction

The purpose of Water 2070 is to explore the impact on water demand of alternative future population distribution scenarios that accommodate Florida’s projected 2070 population. The land use scenarios came from the companion study, Florida 2070. Complete results and methodologies are described in the Florida 2070 Technical Report (Carr and Zwick, 2016). Both the Florida 2070 and Water 2070 projects are a joint effort of the Florida Department of Agriculture and Consumer Services, 1000 Friends of Florida and the University of Florida’s Geoplan Center. Water Demand Water 2070 is based upon three population scenarios identified in the companion report, Florida 2070:

2010 Baseline – the pattern of land use and associated population distribution

for the year 2010

2070 Trend – the land use pattern most likely to occur if 2070 population

projections are met and counties continue to develop at 2010 gross development

densities. The population increase projected for 2070 uses the Bureau of

Economic and Business Research medium projection of roughly 15 million

additional residents as the basis.

2070 Alternative – the land use pattern that accommodates the projected 2070

population more compactly than in the 2070 Trend and increases protected

lands.

This report summarizes the methodology used to estimate water demand for these three population distribution scenarios. This methodology distinguishes between per capita rates of consumption in urban areas and suburban/rural areas, with the rates being higher in the latter due to the additional water demands of residential landscape irrigation. This approach was grounded in work done by the University of Florida’s Program for Resource Efficient Communities, Envision Alachua: Resource Efficiency, Establishing Water Consumption Baselines for Alachua County (Taylor et al. 2014). Water 2010 Baseline, as noted, is based on the actual 2010 population distribution as identified in Florida 2070. Water demand for this scenario was derived from the US Geological Survey report prepared by Richard Marella, Water Withdrawal, Use and Trends in Florida, 2010 (2014). A per capita gallons per day (GPD) water demand quantity was derived for each county in the state from the Marella report. This, combined with the 2010 population of each county, provided a total GPD demand. Water 2070 Baseline provides a basis of comparison for water demand projections for the two 2070 population distribution scenarios. Water 2070 Trend is based on the addition of 15 million new residents, assuming 2010 development patterns continue. The water demand projection for this scenario began with the same 2010 per capita GPD county estimates used for the 2010 Baseline, but

Page 11: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 5

each county’s quantities were increased to reflect its population increase and the spatial distribution of that population. Water 2070 Alternative is based on accommodating 15 million new residents with greater infill and redevelopment in existing communities, more compact patterns for new development, and increased protected lands. The water demand projection for this scenario began with the 2010 per capita GPD county estimates, but these estimates were conservatively reduced to reflect:

A potential reduction in water demand that would result from a more compact

pattern of development, and

Widespread adoption of water conservation measures.

The final county water demand estimates also reflect each county’s population increase and its spatial distribution within each county. The report also incorporates agriculture water demand estimates for agricultural irrigation for all scenarios. These were derived from the Florida Statewide Agriculture Irrigation Demand study (Balmoral Group, 2015), which study addressed water demand for crop, livestock and aquaculture for the period from 2015 to 2035. The mapping and modeling undertaken in this study primarily used a 30 meter x 30 meter (approximately ¼ acre) grid or cells. Data from the Florida Geographic Data Library (FGDL) was used extensively.

3. A Word on Water Supply Modelling water supply is an extremely complex endeavor well beyond the scope and budget of this study. If one assumes water mining (taking more water from groundwater sources than is replenished) is unsustainable and that the environmental and financial costs of desalinization are too great to employ, then Florida must live off a water budget based on annual rainfall. However, as total annual rainfall is not a constant amount, water storage for the years of below normal annual rainfall should also be factored in. A gross simplification of that budget is in Table 2. Table 2. Simplified water budget for Florida

Supply Demand

Average annual rainfall

Annual water for development Annual water for agriculture

Annual water for mining Annual water for power generation Annual water for natural systems (including evapotranspiration and

freshwater flows into estuarine and marine environments)

Page 12: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 6

As described above, this study tackles two estimates on the demand side, water to support development and water to support agriculture, leaving many additional demand numbers unprojected. Of particular concern, and not within the scope and budget of this project, is the annual water needed for the health and function of natural systems.

4. Water Demand for the 2010 Baseline Per Capita Demand – This was based on estimates of per capita water demand for each county from USGS data found in Water Withdrawals, Use, and Trends in Florida, 2010, Report 2014-5088 (see Appendix 2):

1. The 2010 USGS estimate of recreational landscape irrigation per county was

divided by the 2010 county population resulting in a per capita recreational

landscape irrigation value (e.g., 6 GPD/capita for Alachua County).

2. The 2010 USGS Public Supply Gross GPD Per Capita. (e.g., 129 GPD/capita for

Alachua County). The public supply per capita includes water delivered to all

other users, e.g., commercial and industrial users, as well as system losses.

3. Because the water demand for mining skewed the results significantly, it was not

included in these calculations. And for the 2070 scenarios it is unclear whether

water for mining will still be in as high a demand and in the same counties.

Appendix 3 includes a list of those counties with 2010 mining demand taken

directly from the USGS report.

4. Freshwater used in power generation was not included in the per capita demand

calculations. As much as 98% of the freshwater used is returned to its source,

so little water is lost to other potential uses. (Marella, personal communication

7/2016)

Agricultural water demand – Estimates were based on the Department of Agriculture

and Consumer Services’ Florida Statewide Agricultural Irrigation Demand (FSAID)

study. In this study the Balmoral group estimated irrigation demand for 2015

agricultural lands in three categories, crop, livestock and aquaculture lands. The

volumes for each census block group and each county were summed to give 2010

estimated agriculture demand in GPD.

Urban and Suburban/Rural Demand Differential - The Taylor et al 2014 Envision

Alachua study suggests that a distinction should be drawn between water demand in

urban areas and suburban/rural areas. This was achieved by first identifying urban and

suburban/rural census block groups. After evaluation of multiple block group values,

those with >=2000 people/square mile were determined to be urban, while those with

less than 2000 people/square mile were identified as suburban/rural. Table 3 shows the

breakdown of the population totals and percentages in each category for the three

scenarios. And Figure 2 maps the urban census block groups for the 2010 Baseline.

Page 13: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 7

Table 3. Urban – Suburban/Rural Population split where urban census block groups were defined as those having a >=2000 people/square mile threshold. Block groups for 2010 Baseline were based on 2010 population distribution. Block groups for the 2070 scenarios were based on the projected population distribution for each.

Category 2010 Baseline

% 2070 Trend % 2070 Alternative

%

Urban > = 2000/Sq. Mile

11,792,893 63% 17,424,661 52% 20,068,561 59%

Suburban/Rural < 2000/Sq. Mile

6,983,656 37% 16,360,650 48% 13,701,258 41%

Total Population 18,776,549 33,785,311* 33,769,819*

*Population totals vary slightly due to the coarseness of GIS modeling. Figure 2. Urban census block groups in 2010 Baseline, 2070 Trend and 2070

Alternative using the >=2000 people/square mile threshold.

BASELINE

TREND

Page 14: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 8

ALTERNATIVE

Calibration of Statewide Factors to distinguish between urban and suburban/rural

water demand - The second step was to use Alachua county data from Taylor et al. to

calibrate statewide factors that could subsequently be used to modify the per capita

GPD figures for each county. Determining these factors was based on the following

assumptions:

Water demand from Taylor et al. for single family units with irrigation plus single

family units without irrigation is roughly equivalent to water demand generated in

suburban/rural census block groups, and

Water demand from Taylor et al. for apartments plus condos is roughly

equivalent to water demand generated in urban census block groups.

Table 1 (page 15) from Taylor et al. was used to derive a weighted average GPD for

Single Family and for Apartment/Condos and then a ratio between those two weighted

averages was calculated. The suburban/rural – urban ratio that resulted is 2.26 to 1

(Table 4).

Table 4. Calculation of Weighted Average for SF (Suburban/Rural) and Apt/Condo (Urban) and a ratio between the two

SFD Homes Apts. + Condos

Weighted Average GPD: 308 109

Weighted Average GPD per person (GPD/person)* 123 55

Ratio 2.26 1 *From Taylor et al., Table 1, page 15; GPPD numbers derived assuming 2.5 people/household in SFD homes and 2.0 people/household in apartments and condos.

Next, factors that could be applied to each county’s per capita GPD demand for the two block group classifications were tested, maintaining the 2.26:1 ratio. Factors of 1.4:0.6 suburban/rural to urban proved to be most appropriate. This was determined by using data for Alachua County from Taylor et al. as described below.

Page 15: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 9

Calculations for Alachua County - Alachua County public supply water demand

calculated for 2010 in the USGS study served as the starting point (Table 5). This

number was calculated based on a 129 GPD per capita demand regardless of the

population distribution between urban and suburban/rural block groups. It is the total

GPD demand of 31,906,344 that must be matched when dividing the county block

groups into urban and suburban/rural, multiplying each block group each class by a

GPD value and summing the two.

Table 5. Alachua County GPD Demand using 2010 USGS GPD/capita

USGS Avg. GPD/capita for Alachua County

Alachua County 2010 Population

Estimated 2010 GPD Demand for Alachua County

Public Supply 129 247,336 31,906,344

Table 6 uses the > = 2000 people/square mile threshold to divide the county block groups into urban and suburban/rural, the USGS 2010 average public supply GPD/capita and the factors of 0.6 (urban) and 1.4 (suburban/rural) to generate a total 2010 GPD demand. Given the result is roughly equivalent to that estimated for the county by USGS without distinguishing between per capita demand for urban and suburban/rural census block groups, it was determined the factors of 0.6 and 1.4 could reasonably be applied to urban and suburban/rural per capita GPD demand rates for all counties. Table 6. 2010 Baseline Public Supply for Alachua County using >= 2000 threshold to determine Urban Block Groups

Population USGS Avg. GPD/capita Factor Total GPD

Urban Block Groups 127,750 129 0.60 9,887,850

Suburban/Rural Block Groups 119,586 129 1.40 21,597,232

Totals 247,336

31,485,082

Calculations for Block Groups - Using the > = 2000 people/square mile threshold, the 1.4 factor for suburban/rural census block groups, and the 0.6 factor for urban census block groups, demand estimates were generated as follows:

1. Calculate the population of each suburban/rural and urban block group for each

county

2. Multiply each county’s suburban/rural block group populations by the 1.4 factor

and then by the USGS county average per capita public supply GPD

3. Multiply each suburban/rural block group population by the recreation landscape

average GPD/capita, to yield recreation landscape demand.

4. Sum these two totals for each suburban/rural block group to yield development

demand.

5. Repeat steps 2 – 4 for urban block groups, using the .6 factor.

Page 16: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 10

6. The sum for each block group (public supply + recreation demand) equals total

development demand.

7. Agricultural demand as described above is added to the development total for

each block group.

Calculations for Counties – Census block group totals for each county were summed

to arrive at county demand for development, agriculture and both combined.

Mapping - To map the 2010 Baseline results, the GPD development demand and the

GPD agriculture demand for each census block groups were summed. Given that each

block group has a different area, the total block group daily demand was divided by the

acres of each block group, yielding gallons/day/acre (GPDA). These are the values

represented in the Baseline map series. A geometric scale was used in mapping

because of the large range of high and low GPDA values.

5. Water Demand for the 2070 Trend Scenario

Agricultural water demand – Estimates of 2070 demand were based on the

Department of Agriculture and Consumer Services’ Florida Statewide Agricultural

Irrigation Demand (FSAID) study. The study’s 2035 GPD demand projections (the

latest projected in the study) and associated spatial extent of agriculture lands served

as the starting point. However, because the Trend scenario allowed any agricultural

land (irrigated or not) to become developed if needed to accommodate the projected 15

million population increase, the total acres of agricultural land in the Trend scenario was

roughly 2 million less than in the 2010 Baseline. This results in lower statewide GPD

demand for agriculture in the 2070 Trend than in the 2010 Baseline with the same trend

occurring in many census block groups and counties.

Per capita demand for Block Groups - Exactly the same methodology and values

were used to estimate development-related demand for the 2070 Trend as for the 2010

Baseline. This was done to demonstrate how demand would increase as a function of

population growth while maintaining the status quo patterns of development and rates of

water consumption.

Calculations for Counties – Census block group totals for each county were summed

to arrive at county demand for development, agriculture and both combined.

Mapping - To map the 2070 Trend results, the GPD development demand and the

GPD agriculture demand for each census block group were summed. Given that each

block group has a different area, the total block group daily demand was divided by the

acres of each block group, yielding gallons/day/acre (GPDA). These are the values

represented in the Trend map series. The same geometric scale was used for mapping

the Trend as for the Baseline.

Page 17: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 11

6. Water Demand for the 2070 Alternative Scenario Agricultural water demand – Estimates of 2070 demand were based on the

Department of Agriculture and Consumer Services’ Florida Statewide Agricultural

Irrigation Demand (FSAID) study. The study’s 2035 GPD demand projections (the

latest projected in the study) and associated spatial extent of agriculture lands served

as the starting point. One of the key modeling assumptions distinguishing the

Alternative scenario from the Trend scenario was the protection from development of all

irrigated agriculture lands. This resulted in approximately 1.3 million more agriculture

acres in the Alternative than in the Trend. So not surprising, the GPD agriculture

demand is greater in the 2070 Alternative than in the 2070 Trend (Table 7). It is also

greater than the Baseline. This is attributable to the fact that in the FSAID study greater

irrigated agricultural demand was projected for 2035 than existed in 2015.

31. Projected agriculture GPD water demand for three scenarios

2010 Baseline 2070 Trend 2070 Alternative

Agriculture Demand (GPD)

2,129,941,436

1,614,305,600

2,150,253,570

Calculations for Block Groups – To project development demand for each block group in the Alternative scenario, it was assumed that per capita GPD demand for each county was reduced by 20%. In Taylor et al., they predict the savings from water conservation might be as great as 40%, but a more conservation 20% was used in this study. Otherwise, the same > = 2000 people/square mile threshold, the 1.4 factor for suburban/rural census block groups, and the 0.6 factor for urban census block groups, were used to estimate demand as follows:

1. Calculate the population of each suburban/rural and urban block group for each

county

2. Multiply each county’s suburban/rural block group populations by the 1.4 factor

and then by the USGS county average per capita public supply GPD reduced by

20%

3. Multiply each suburban/rural block group population by the recreation landscape

average GPD/capita, to yield recreation landscape demand.

4. Sum these two totals for each suburban/rural block group to yield development

demand.

5. Repeat steps 2 – 4 for urban block groups, using the .6 factor.

6. The sum for each block group (public supply + recreation demand) equal total

development demand.

7. Agricultural demand as described above is added to the development total for

each block group.

Calculations for Counties – Census block group totals for each county were summed

to arrive at county demand for development, agriculture and both combined.

Page 18: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 12

Mapping - To map the 2070 Alternative results, the GPD development demand and the

GPD agriculture demand for each census block group were summed. Given that each

block group has a different area, the total block group daily demand was divided by the

acres of each block group, yielding gallons/day/acre (GPDA). These are the values

represented in the Trend map series. The same geometric scale was used for mapping

the Alternative as for the Trend and the Baseline.

7. Results, Comparisons, and Observations State and regional water demand for the 2010 Baseline, 2070 Trend and 2070 Alternative are mapped using gallons per day per acre (GPDA) per census block group. The visual comparison of these maps reveals significant differences among the three scenarios and among the four regions of the State. Supporting tables and graphs assist with comparing the three scenarios and are particularly useful for comparing 2070 Trend with 2070 Alternative.

STATEWIDE RESULTS

From the maps and comparative data below it is clear that the 2070 Alternative scenario accommodates the projected population increase with significantly lower water demand for development, and results in greater water demand for agriculture than 2070 Trend (Table 8). The development savings can be attributed to two factors:

1. Its more compact development pattern (i.e., more of the future population are in

urban block groups than in suburban/rural block groups) which creates less water

demand than a more sprawling development pattern, and

2. The reduction in per capita demand rates assumed for this scenario. The

increased agricultural demand resulted from the protection from development

that was afforded irrigated agriculture lands identified in the FSAID study (The

Balmoral Group, 2015).

Table 8. A comparison of statewide water demand for the 2010 Baseline scenario, 2070 Trend and Alternative scenarios

2010 Baseline 2070 Trend

% Change Baseline - Trend

2070 Alternative

% Change Baseline - Alternative

% Change Trend - Alternative

Development Demand (GPD) 3,139,370,035 6,480,557,237 106% 4,704,530,221 50% -27%

Agriculture Demand (GPD) 2,129,941,436 1,614,305,600 -24% 2,150,253,570 1% 33%

Total 5,269,311,481 8,094,862,839 54% 6,854,783,791 30% -15%

Page 19: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 13

Figure 3. A comparison of the state development scenarios, with demand mapped in gallons/day/acre.

Page 20: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 14

Figure 4. Statewide water demand for the 2010 Baseline scenario and 2070 Trend and Alternative scenarios in gallons per day

REGIONAL RESULTS

Figures 5, 6, 7 and 8 contain three scenario maps of the total water demand (development and agriculture) for each of the four regions of the state. Total demand is mapped in gallons per day per acre for each census block group.

Page 21: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 15

Figure 5. A comparison of the water demand for the Panhandle Region scenarios mapped in gallons per day per acre.

Page 22: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 16

Figure 6. A comparison of the water demand for the Northeast Region scenarios mapped in gallons per day per acre.

Page 23: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 17

Figure 7. A comparison of the water demand for the Central Region scenarios mapped in gallons per day per acre.

Page 24: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 18

Figure 8. A comparison of the water demand for the South Region scenarios mapped in gallons per day per acre.

Page 25: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 19

Figures 9 and 10 and Table 9 provide comparative results for the 4 regions of the state for each scenario. More detailed results for each region, including county demand totals are provided in Appendix 4. All four regions demonstrate a similar pattern for total demand (development plus agriculture) among the three scenarios (Figure 9 and Table 9), with the 2010 Baseline having the lowest total water demand, and the Alternative having the lowest demand of the two 2070 scenarios. It is also clear that the counties grouped in the Panhandle have the lowest total demand, followed by the Northeast Region. The Central Region has the greatest total demand in all scenarios. Figure 9. A comparison of total (development plus agriculture) demand for the four regions of the state and the three scenarios in gallons per day.

Table 9. Total demand (development plus agriculture) for the four regions of the state and the three scenarios in gallons per day.

BASELINE TREND ALTERNATIVE

PANHANDLE 404,082,159 651,241,141 516,383,928

NE REGION 655,354,495 1,231,911,829 972,862,097

C REGION 2,101,627,664 3,262,758,689 2,791,869,395

S REGION 2,108,247,153 2,948,951,178 2,573,668,371

Figure 10 shows the development and agriculture demand for each region, revealing a more complex pattern. In the Panhandle and Northeast Regions, development-related demand in all three scenarios is significantly greater than the agriculture demand, and the agriculture demand is relatively flat for all scenarios. This suggests that the irrigated agriculture lands in these regions are not likely to be significantly impacted by projected development.

0

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

3,000,000,000

3,500,000,000

PANHANDLE NE REGION C REGION S REGION

BASELINE TREND ALTERNATIVE

Page 26: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 20

However, the results for the Central and South Regions differ. In the Central Region, the Trend development-related demand is roughly double the Baseline development demand and even the Alternative development demand is projected to exceed 2 billion GPD. These high development demand projections reflect that the Central Region has the highest projected population increase of all the regions. Because of this, agricultural lands will be lost to development in both 2070 scenarios. This results in lower agriculture irrigation demand in the Central Florida Region in both 2070 scenarios. The South Region Baseline scenario has a higher agriculture demand than development demand. It is the only region and scenario in which this occurs. This is attributable to the large acreage in the region currently under irrigation including portions of the Everglades Agricultural Area and the nurseries in south Miami-Dade County. In the 2070 scenarios, the development demand outstrips the agriculture demand, but agriculture demand in the Alternative scenario is projected to be greater than for the 2010 Baseline. This results because additional irrigated agricultural lands were projected to be added in the South Region by 2035 in the FSAID study (The Balmoral Group, 2015). Figure 10. A comparison of regional development and agriculture water demand for the four regions of the state and the three scenarios in gallons per day

0

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

3,000,000,000

PANHANDLE NE REGION C REGION S REGION

BASELINE Development BASELINE Agriculture

TREND Development TREND Agriculture

ALTERNATIVE Development ALTERNATIVE Agriculture

Page 27: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 21

OBSERVATIONS One of the biggest issues facing Florida today is the availability of sufficient water to meet the needs of people, agriculture and the environment. Diminishing water supply and declining quality combined with a growing population make the historic competition between users even more intense. In poll after poll, protection of drinking water consistently ranks as a top environmental concern for the public. Clean and abundant water also is needed to ensure that Florida’s multi-billion dollar agriculture and tourism industries—the two mainstays of this state’s economy—remain strong and viable over the long term. Water 2070 reveals both challenges and opportunities for managing water demand in the future:

1) Water 2070 Trend reflects that population growth, water use habits and irrigation will increase development-related demand for freshwater in Florida by as much as 100 percent over the 2010 Baseline.

2) Water 2070 Alternative shows that if more compact development patterns, increased land conservation, and water conservation measures are adopted, there is the potential to decrease total water demand for development from the Trend projections. The 2070 Alternative will have roughly 27% less development-related water demand than the 2070 Trend.

3) Because Water 2070 Alternative has more area classified as urban than does the Water 2070 Trend (due to the more compact development), the per capita development-related demand for the Alternative is less than the Trend.

4) Statewide agriculture irrigation demand in the 2070 Alternative is slightly greater than in the 2010 Baseline because irrigated agricultural lands are protected from development in the Alternative scenario.

5) Total water demand is greatest in the Central Region, followed by the South, Northeast and then the Panhandle in all scenarios. This is correlated with population.

6) Agriculture irrigation demand remains relatively unchanged in the Panhandle and Northeast Regions across all the scenarios, suggesting that projected development will not significantly impact irrigated agricultural lands. The Trend scenario results in a decrease in agriculture demand in the Central and South Regions due to the projected loss of agricultural land.

The results of this study and findings in the Florida Conservation Coalition’s Water Conservation White Paper (March 11, 2014), indicate there are two basic options: 1) to increase supply (through alternative water supply such as reclaiming water and desalinization plants) or 2) to reduce demand (through water conservation and increased efficiency). While desalinization is a multi-billion dollar proposition that raises serious environmental concerns, the other options – water conservation, increased efficiency, and reclaiming water – all provide significant and cost-effective results. As Florida’s 2070 population grows by another 15 million residents, what can realistically be done to reduce water demand and increase water supply to ensure sufficient water exists for people, farming and nature?

Page 28: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 22

Reduce Water Demand Water 2070 Alternative shows that the combination of a modest reduction of 20% in per capita rate of water consumption along with more compact development patterns and increased conservation lands as outlined in Florida 2070 reduces statewide development-related water demand by 27% when compared to the Water 2070 Trend. Several studies indicate that reducing the use of and increasing the efficiency of automated irrigation systems would result in a significant reduction in development-related water demand in Florida. According to the University of Florida IFAS Florida-Friendly Landscaping™ Program (Landscaping Principles cards at http://www.floridayards.org/landscape/FFY-TipCards.pdf), at least 50% of water used by households is used outdoors for landscape irrigation. The Taylor et al. report, Establishing Water Consumption Baselines for Alachua County (2014) reports that Alachua County single family homes that have an automated irrigation system (indicated either by a sprinkler system or irrigation meter) consumed an average of 358 gallons of water per day (GPD), while those without such a system consumed an average of 190 GPD, a 47% reduction. Another study by the same group, Reduced Impact Development Practices at ‘Restoration’ (Jones et al. 2009) reveals that installing soil moisture sensors which override timer-based controls on irrigation systems can reduce the amount of water used for landscape irrigation by more than 50%.

Thus, the single most effective strategy to reduce water demand in Florida is to significantly reduce the amount of water used for landscape irrigation.

Not only does this conserve water, but it also will result in savings to homeowners through reduced water bills. Additionally, if enough people conserve water, community costs associated with supplying water and addressing sewage and stormwater can be significantly reduced, resulting in tax savings. Two statewide initiatives already exist to promote significant reductions in water demand in Florida:

Florida Water Star (www.floridawaterstar.com) is this state’s water conservation certification program for new and existing homes and commercial developments and addresses both outdoor and indoor water conservation. Initially established by the St. Johns River Water Management District in 2006, it became a statewide initiative in 2012.

Florida-Friendly Landscaping™ (www.ffl.ifas.ufl.edu/), a joint program of the University of Florida’s IFAS Extension and the Florida Department of Environmental Protection, provides residents, developers and landscaping professionals with water conservation and other strategies to better protect Florida’s environment.

Page 29: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 23

But much more needs to be done to expand awareness of and participation in these programs. Efforts to reduce residential water demand in particular should also focus on reaching Homeowner Associations and landscape professionals who often promote irrigated landscapes. Providing meaningful incentives to increase participation in the above programs is essential. An example of a successful incentive program is the South Florida Water Management District’s Water Savings Incentive Program (Water Sip) which funds such conservation measures as rain and soil moisture sensors, water conserving appliances, rain barrels and the like. In another example, the City of Clermont requires that all new homes be dual metered for potable water, with one meter for inside use and one for outdoor use. Homeowners are given a “budget” for outdoor use, with disincentives for those who exceed that budget. Some states require water efficiency standards be met through their state building codes resulting in uniform standards statewide. For example, Georgia and North Carolina require the use of Water Sense-labeled products in new development. In Florida, Appendix F of the State Building Code recommends that irrigation systems be installed to meet certain efficiency standards, but it is not required. Additionally, Chapter 373.62 in the Florida Statutes requires “any person who purchases and installs an automatic sprinkler system after May 1, 1991, shall install a rain sensor device or switch which will override the irrigation cycle of the sprinkler system when adequate rainfall has occurred.” Some counties have melded requirements and incentives to increase water efficiency. In 2015, Alachua County adopted a new landscape irrigation efficiency code for unincorporated areas. Among other things it requires all new irrigation systems installed after April 1, 2016 be approved by the County and inspected. Professionals installing or maintaining irrigation systems within the county must register their business. County inspection fees on newly installed systems are waived for irrigation professionals who are certified to inspect their own work or who hire a Florida Water Star Certifier for the inspection. Certain county fees also are waived for new construction that achieves Florida Water Star Certification resulting in savings in both initial construction costs and long-term water bills. In the Orlando area, the Toho Water Authority has mandated compliance with Florida Water Star standards as a condition of service for all new residential construction, and preliminary results are showing considerable water bill savings for homeowners. As shown in the Water 2070 Alternative, significant water savings result from more compact development patterns. Establishing Water Consumption Baselines for Alachua County (Taylor et al. 2014) shows that on average, apartments and condominiums represent 41% of the total residential sample but use only 20% of the water, showing significant water savings associated with increased density. Not only does more compact development help with reducing water demand, there are also economic benefits for the community and developer alike. Reduced Impact Development Practices at ‘Restoration,’ (Jones et al. 2009) notes that the redesign of the 3500-acre Volusia county development, Restoration, from typical sprawl to compact development would result in a net savings to the developer of $14 million through

Page 30: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 24

eliminating the golf course, reducing earthwork by using low impact development strategies, and reducing roadways that results in reduced stormwater infrastructure. Finally, a brief note on water budgeting is in order. With the increased pressure brought by an additional 15 million residents by 2070, it becomes more important to monitor the amount of groundwater used by major permitted water users and require them to submit goal-based water conservation plans as part of the permit approval process. Increase Water Supply The above strategies all relate to reducing water demand which remains the most cost-effective approach. With regard to increasing water supply in Florida, viable options are available. Some communities have already implemented innovative water reclamation efforts geared to irrigation. As one example, the City of Pompano Beach constructed the OASIS water reuse plant to treat wastewater to higher standards, and is incentivizing single-family residential connections to the plant to use this reduced cost, reclaimed water for outdoor irrigation. Another example can be found on the campus of the University of Florida where all water for irrigation comes from reclaimed water. A Few Words on Protected Lands It is important to understand the value of protected lands in this whole equation. Florida 2070 Alternative calls for the additional protection of lands on the Florida Forever Acquisition list and lands identified as Priorities 1 & 2 in the Florida Ecological Greenways Network. Figure 11. The map at left shows Florida’s protected lands (in dark green) in 2010. The map at right depicts the recommendation of Florida 2070 Alternative, which includes protected lands as of 2010 with the addition of lands included on the Florida Forever Acquisition list and lands identified as Priorities 1 & 2 in the Florida Ecological Greenways Network.

Page 31: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 25

These protected lands provide boundless recreational opportunities for residents and visitors alike, and shelter and sustain Florida’s flora and fauna. They also are essential to recharge Florida’s aquifer – the source of much of the state’s water supply – and to cleanse our drinking water. While not within the scope of this study, the value of natural lands in the protection of Florida’s water supply should not be underestimated.

RECOMMENDATIONS How do we move this discussion from the theoretical to what steps actually should be taken? Below are a series of recommendations to more effectively manage Florida’s water supply for the benefit of residents, agriculture and the environment alike: Expand Public Water Conservation Efforts

Increase funding and outreach for the Florida Water Star and Florida-Friendly

Landscaping™ programs to promote greater water conservation in new and

existing development

Require Florida Friendly Landscaping™, manual irrigation, soil moisture sensors,

or comparable water conservation technology for all new development

Require permitted water users to monitor the amount of groundwater used

Partner with developers and local governments to establish conservation goals,

water budgets and water use monitoring strategies prior to the approval of new

development

Update the Florida Building Code to require indoor and outdoor water efficiency

standards for new construction and major remodeling

Adopt registration and training standards for irrigation professionals

Establish conservation rate structures that incentivize lower levels of water

consumption

Construct and incentivize the use of reclaimed water facilities

Reduce Personal Water Use

Use Florida-Friendly Landscaping™ and other measures to reduce or eliminate

landscaping water use, and seek formal Florida-Friendly Landscaping™

recognition

Lessen the need for irrigation by using the right plants in the right locations,

grouping them according to water needs, and using rain barrels or cisterns to

capture rainwater for irrigation

Reduce stormwater runoff through mulching plant beds, using porous surfaces

for patios, walkways and driveways, and creating swales or low areas to hold and

filter water on your property

If an automated irrigation system is used, ensure that it is designed and operated

to meet strict water conservation criteria including drip systems, soil moisture

sensors, automatic rain shutoff sensors and/or other technology to significantly

reduce water use

Page 32: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 26

Make sure the irrigation system is calibrated correctly and check it regularly for

breaks and head alignment

Do not water if it has rained in the last 24 hours or if rain is forecast in the next 24

hours

Select Florida Water Star certified properties when purchasing a new home, and

follow Water Star guidelines when remodeling an existing home

Use Water-Sense labeled high-efficiency appliances to significantly reduce

indoor water consumption

As Florida’s population continues to grow, less water will be available for per capita human use. Now is the time to move forward on serious water conservation efforts before it is too costly, or too late. Not only is water conservation the smart thing to do, but it can result in significant savings on Floridians’ water bills and taxes. Water conservation helps to protect Florida’s rivers, lakes and aquifer – and the people, wildlife and farms that depend on them now and in the future.

Page 33: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 27

8. References 1. Carr, M. and P. D. Zwick, Florida 2070 Technical Report, 2016, Prepared for

Florida Department of Agriculture and Consumer Services and 1000 Friends of Florida.

2. Florida Bureau of Economic and Business Research, Florida Estimates of

Population 2015, College of Liberal Arts and Sciences, University of Florida, 2015. https://www.bebr.ufl.edu/sites/default/files/Research%20Reports/estimates_2015.pdf

3. Florida Conservation Coalition, Water Conservation White Paper, March 11, 2014.

4. Florida Geographic Data Library. Since 1998, the GeoPlan Center has housed and maintained the Florida Geographic Data Library (FGDL), an online statewide clearinghouse of geospatial data. The FGDL contains over 400 geospatial layers from 35 different local, state, federal and private agencies. www.geoplan.ufl.edu

5. Marella, Richard L., Water Withdrawal, Use and Trends in Florida, 2010 US

Geological Services, Department of the Interior, Scientific Investigations Report 2014–5088, 2014.

6. Taylor, Nick and J.K. Searcy, L. Jerome and P. Jones, Envision Alachua:

Resource Efficiency, Establishing Water Consumption Baselines for Alachua County, Prepared for Plum Creek by Program for Resource Efficient Communities, University of Florida, 2014.

7. The Balmoral Group, LLC, Florida Statewide Agricultural Irrigation Demand, 2015,

Prepared for Office of Agricultural Water Policy, Florida Department of Agriculture and Consumer Services. http://www.freshfromflorida.com/Divisions-Offices/Agricultural-Water-Policy/Agricultural-Water-Supply-Planning

8. US Census Bureau http://www.census.gov 9. Jones, Pierce H., Barbra C. Lawson and Mark W. Clark, University of Florida

Program for Resource Efficient Communities, University of Florida, Reduced

Impact Development Practices at ‘Restoration,’ 2009: American Institute of

Physics.

10. Zwick, P.D., and M. Carr, Florida 2060, a population distribution scenario for the State of Florida, 2006, Prepared for 1000 Friends of Florida.

.

Page 34: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 28

Page 35: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 29

8. Appendices

Appendix 1. Table of projected population by county 2010 – 2070

County BEBR

Estimate Census Estimates

and State April 1, 2014 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070

2010 2070 dif % chg

ALACHUA 250,730 Medium 247,336 253,200 265,600 277,300 288,300 299,100 309,100 319,961 330,668 341,375 352,082 362,789 373,495 126,159 33.78%

BAKER 26,991 Medium 27,115 27,400 29,300 31,200 33,000 34,700 36,200 37,781 39,408 41,035 42,662 44,289 45,916 18,801 40.95%

BAY 170,781 Medium 168,852 172,500 181,200 189,300 197,300 205,000 211,800 219,414 226,912 234,410 241,908 249,406 256,904 88,052 34.27%

BRADFORD 27,323 Medium 28,520 27,600 28,400 29,200 29,900 30,500 31,000 31,409 31,935 32,461 32,988 33,514 34,041 5,521 16.22%

BREVARD 552,427 Medium 543,376 557,700 584,500 609,000 631,100 650,700 668,000 692,978 714,638 736,298 757,957 779,617 801,277 257,901 32.19%

BROWARD 1,803,903 Medium 1,748,066 1,818,700 1,891,300 1,953,100 2,009,000 2,059,300 2,105,600 2,179,510 2,239,206 2,298,903 2,358,599 2,418,296 2,477,992 729,926 29.46%

CALHOUN 14,592 Medium 14,625 14,600 15,100 15,500 15,900 16,300 16,600 16,964 17,326 17,688 18,049 18,411 18,772 4,147 22.09%

CHARLOTTE 164,467 Medium 159,978 166,100 174,200 181,500 187,500 192,600 197,600 205,521 211,919 218,318 224,717 231,116 237,515 77,537 32.64%

CITRUS 140,798 Medium 141,236 142,500 150,900 158,900 166,300 172,700 178,500 185,518 192,218 198,918 205,617 212,317 219,017 77,781 35.51%

CLAY 197,403 Medium 190,865 201,800 224,600 247,000 268,400 288,300 306,100 327,081 347,171 367,260 387,350 407,439 427,529 236,664 55.36%

COLLIER 336,783 Medium 321,520 343,200 376,100 406,900 435,400 461,700 487,300 517,966 546,310 574,654 602,999 631,343 659,687 338,167 51.26%

COLUMBIA 67,826 Medium 67,531 68,400 72,000 75,500 78,600 81,200 83,600 86,748 89,620 92,492 95,363 98,235 101,107 33,576 33.21%

DE SOTO 34,426 Medium 34,862 34,400 34,700 34,700 34,600 34,500 34,300 34,354 34,297 34,240 34,184 34,127 34,071 -792 -2.32%

DIXIE 16,356 Medium 16,422 16,600 17,500 18,400 19,200 19,900 20,500 21,294 22,027 22,760 23,494 24,227 24,961 8,539 34.21%

DUVAL 890,066 Medium 864,263 899,300 945,900 989,600 1,030,400 1,067,900 1,102,300 1,147,925 1,188,490 1,229,054 1,269,619 1,310,184 1,350,748 486,485 36.02%

ESCAMBIA 303,907 Medium 297,619 305,900 310,500 314,700 318,600 322,000 324,900 330,909 335,271 339,633 343,996 348,358 352,720 55,101 15.62% FLAGLER Medium 95,696 101,900 122,100 141,700 160,000 177,200 193,300 210,458 227,648 244,838 262,027 279,217 296,407 200,711 67.71%

Page 36: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 30

April 1, 2014 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070

2010 2070 dif

FRANKLIN 11,794 Medium 11,549 11,800 11,900 12,000 12,000 12,100 12,100 12,257 12,341 12,426 12,510 12,594 12,678 1,129 8.90%

GADSDEN 48,096 Medium 46,389 48,400 49,200 50,000 50,800 51,400 51,900 53,175 54,036 54,898 55,760 56,622 57,484 11,095 19.30%

GILCHRIST 16,853 Medium 16,939 16,900 17,800 18,600 19,400 20,100 20,700 21,389 22,078 22,766 23,455 24,144 24,832 7,893 31.79%

GLADES 12,852 Medium 12,884 13,000 13,600 14,100 14,700 15,100 15,500 16,005 16,474 16,944 17,413 17,883 18,352 5,468 29.80%

GULF 16,543 Medium 15,863 16,500 16,900 17,200 17,400 17,700 18,000 18,411 18,743 19,076 19,408 19,741 20,073 4,210 20.97%

HAMILTON 14,351 Medium 14,799 14,600 15,000 15,500 15,900 16,200 16,500 16,815 17,143 17,472 17,801 18,129 18,458 3,659 19.82%

HARDEE 27,712 Medium 27,731 27,700 27,900 28,000 28,000 28,100 28,200 28,277 28,359 28,442 28,524 28,606 28,689 958 3.34%

HENDRY 37,895 Medium 39,140 38,000 38,700 39,300 39,700 40,100 40,300 40,560 40,870 41,180 41,490 41,800 42,110 2,970 7.05%

HERNANDO 174,955 Medium 172,778 177,300 194,900 212,100 228,400 244,000 257,600 272,635 287,684 302,732 317,781 332,830 347,879 175,101 50.33%

HIGHLANDS 99,818 Medium 98,786 100,800 105,800 110,300 114,400 117,800 121,100 125,504 129,416 133,328 137,241 141,153 145,065 46,279 31.90%

HILLSBRGH 1,301,887 Medium 1,229,226 1,328,200 1,463,200 1,586,400 1,697,600 1,796,200 1,883,100 2,016,564 2,128,422 2,240,280 2,352,138 2,463,996 2,575,854 1,346,628 52.28%

HOLMES 20,025 Medium 19,927 20,100 20,500 20,900 21,200 21,400 21,600 21,992 22,289 22,587 22,884 23,181 23,478 3,551 15.12%

INDIAN RIV. 140,955 Medium 138,028 143,200 154,500 165,300 175,700 185,600 194,600 204,663 214,510 224,357 234,204 244,051 253,898 115,870 45.64%

JACKSON 50,231 Medium 49,746 50,300 50,800 51,200 51,600 51,700 51,800 52,415 52,764 53,113 53,461 53,810 54,159 4,413 8.15%

JEFFERSON 14,597 Medium 14,761 14,700 15,000 15,400 15,700 16,000 16,200 16,483 16,755 17,027 17,299 17,571 17,843 3,082 17.27%

LAFAYETTE 8,696 Medium 8,870 8,700 9,200 9,600 10,000 10,400 10,700 11,023 11,369 11,715 12,061 12,407 12,753 3,883 30.45%

LAKE 309,736 Medium 297,052 317,300 356,600 395,300 432,600 466,400 497,300 533,928 568,747 603,567 638,386 673,206 708,025 410,973 58.04%

LEE 653,485 Medium 618,754 670,400 758,300 845,900 928,600 1,004,000 1,073,900 1,157,542 1,236,218 1,314,894 1,393,571 1,472,247 1,550,924 932,170 60.10%

LEON 281,292 Medium 275,487 284,100 298,300 311,200 323,800 335,800 346,400 359,532 371,734 383,935 396,136 408,338 420,539 145,052 34.49%

LEVY 40,473 Medium 40,801 40,800 43,000 45,200 47,100 48,700 50,200 51,985 53,703 55,421 57,139 58,856 60,574 19,773 32.64%

LIBERTY 8,668 Medium 8,365 8,700 9,200 9,700 10,100 10,600 11,000 11,467 11,917 12,368 12,818 13,268 13,718 5,353 39.02%

Page 37: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 31

April 1, 2014 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070

2010 2070 dif % chg

MADISON 19,303 Medium 19,224 19,300 19,500 19,700 19,700 19,800 19,900 20,050 20,166 20,281 20,396 20,511 20,627 1,403 6.80%

MANATEE 339,545 Medium 322,833 345,700 377,300 406,900 434,300 460,700 485,000 515,176 542,801 570,426 598,051 625,676 653,301 330,468 50.58%

MARION 337,455 Medium 331,298 341,600 373,800 405,000 434,700 463,100 488,100 515,986 543,640 571,294 598,948 626,601 654,255 322,957 49.36%

MARTIN 148,585 Medium 146,318 149,800 157,300 164,300 170,200 175,400 179,800 186,809 192,686 198,562 204,439 210,316 216,192 69,874 32.32%

MIAMI-DADE 2,613,692 Medium 2,496,435 2,643,800 2,796,800 2,944,400 3,090,200 3,220,700 3,343,700 3,503,576 3,646,040 3,788,504 3,930,968 4,073,432 4,215,896 1,719,461 40.79%

MONROE 74,044 Medium 73,090 74,100 74,400 74,700 74,900 75,200 75,500 75,974 76,329 76,684 77,038 77,393 77,748 4,658 5.99%

NASSAU 75,321 Medium 73,314 76,800 84,400 91,900 99,100 105,700 111,600 118,596 125,287 131,979 138,670 145,361 152,053 78,739 51.78%

OKALOOSA 190,666 Medium 180,822 192,300 200,600 207,700 214,000 219,500 225,400 234,551 241,749 248,946 256,144 263,341 270,539 89,717 33.16%

OKEECHOB 39,828 Medium 39,996 40,000 41,100 42,000 42,600 43,200 43,600 44,458 45,127 45,795 46,463 47,131 47,800 7,804 16.33%

ORANGE 1,227,995 Medium 1,145,956 1,257,400 1,408,100 1,545,600 1,669,700 1,779,700 1,876,700 2,025,941 2,150,885 2,275,829 2,400,773 2,525,717 2,650,661 1,504,705 56.77%

OSCEOLA 295,553 Medium 268,685 306,000 361,100 414,600 463,200 507,900 550,100 603,104 651,324 699,543 747,763 795,982 844,202 575,517 68.17%

PALM BCH 1,360,238 Medium 1,320,134 1,377,300 1,463,900 1,543,200 1,615,100 1,678,700 1,736,500 1,819,705 1,891,244 1,962,783 2,034,322 2,105,861 2,177,401 857,267 39.37%

PASCO 479,340 Medium 464,697 489,700 543,000 595,400 645,400 692,300 733,900 782,801 829,773 876,744 923,716 970,688 1,017,660 552,963 54.34%

PINELLAS 933,258 Medium 916,542 941,200 948,800 956,600 964,100 971,500 978,500 991,288 1,000,637 1,009,986 1,019,335 1,028,684 1,038,033 121,491 11.70%

POLK 623,174 Medium 602,095 634,600 693,100 750,200 805,800 856,100 901,100 956,530 1,008,413 1,060,295 1,112,178 1,164,061 1,215,943 613,848 50.48%

PUTNAM 72,523 Medium 74,364 72,600 73,100 73,500 73,800 74,200 74,400 74,282 74,425 74,568 74,711 74,854 74,997 633 0.84%

ST. JOHNS 207,443 Medium 190,039 214,800 253,400 290,900 325,000 356,500 386,100 422,846 456,531 490,216 523,901 557,586 591,272 401,233 67.86%

ST. LUCIE 282,821 Medium 277,789 286,200 323,200 359,800 394,600 426,100 455,400 486,732 518,304 549,877 581,450 613,022 644,595 366,806 56.90%

SANTA RSA 159,785 Medium 151,372 163,300 178,300 192,300 205,300 217,400 229,300 243,751 256,929 270,107 283,285 296,463 309,641 158,269 51.11%

Page 38: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 32

April 1, 2014 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070

2010 2070 dif % chg

SARASOTA 387,140

Medium 379,448 390,500 412,900 433,600 452,800 469,500 484,300 505,072 523,374 541,676 559,978 578,280 596,582 217,134 36.40%

SEMINOLE 437,086 Medium 422,718 442,800 471,600 498,100 522,300 543,100 562,300 590,423 614,354 638,284 662,214 686,144 710,075 287,357 40.47%

SUMTER 111,125 Medium 93,420 117,100 141,400 165,200 188,200 210,800 232,500 257,151 280,417 303,683 326,949 350,214 373,480 280,060 74.99%

SUWANNEE 44,168 Medium 41,551 44,700 47,300 49,700 52,000 54,100 55,900 58,828 61,205 63,582 65,958 68,335 70,712 29,161 41.24%

TAYLOR 22,932 Medium 22,570 23,000 23,600 24,100 24,700 25,200 25,600 26,194 26,715 27,236 27,758 28,279 28,800 6,230 21.63%

UNION 15,647 Medium 15,535 15,900 16,400 16,900 17,400 17,900 18,300 18,804 19,279 19,754 20,229 20,704 21,178 5,643 26.65%

VOLUSIA 503,851 Medium 494,593 507,800 528,300 547,000 563,900 578,800 592,000 611,745 628,524 645,304 662,083 678,862 695,641 201,048 28.90%

WAKULLA 31,285 Medium 30,776 31,500 33,900 36,100 38,300 40,400 42,300 44,293 46,320 48,348 50,375 52,403 54,430 23,654 43.46%

WALTON 59,793 Medium 55,043 61,300 69,400 77,300 85,000 92,300 98,600 106,745 114,183 121,621 129,060 136,498 143,936 88,893 61.76%

WASHINGTN 24,959 Medium 24,896 25,200 26,200 27,200 28,000 28,900 29,600 30,473 31,305 32,138 32,970 33,803 34,635 9,739 28.12%

FLORIDA 19,507,369

18,801,310 19,789,600 21,236,400 22,600,600 23,872,500 25,027,700 26,081,400 27,480,297 28,728,603 29,976,909 31,225,215 32,473,521 33,721,828 14,920,518 44.25%

Page 39: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 33

Appendix 2. GPD Per Capita Water Demand from USGS for Urban Areas by County for Use in 2010 Baseline and 2070 Trend Projections

County 2010

Population

USGS 2010 Public Supply

Gross GPD Per Capita*

USGS 2010 Public Supply Gross

GPD*

USGS 2010 Recreational Landscape

Irrigation GPD Per Capita^^

USGS 2010 Recreational Landscape Irrigation

GPD^^

Total GPD per capita water

demand (public supply and recreation landscape irrigation)

Total GPD demand (public

supply and recreation landscape irrigation)

Alachua 247,336 129 31,906,344 6 1,430,000 135 33,336,344

Baker 27,115 180 4,880,700 0 0 180 4,880,700

Bay 168,852 323 54,539,196 6 1,090,000 329 55,629,196

Bradford 28,520 179 5,105,080 3 80,000 182 5,185,080

Brevard 543,376 105 57,054,480 14 7,670,000 119 64,724,480

Broward 1,748,066 133 232,492,778 22 39,160,000 155 271,652,778

Calhoun 14,625 154 2,252,250 0 0 154 2,252,250

Charlotte 159,978 122 19,517,316 12 1,950,000 134 21,467,316

Citrus 141,236 145 20,479,220 33 4,640,000 178 25,119,220

Clay 190,865 82 15,650,930 17 3,290,000 99 18,940,930

Collier 321,520 192 61,731,840 133 42,670,000 325 104,401,840

Columbia 67,531 149 10,062,119 6 380,000 155 10,442,119

Desoto 34,862 200 6,972,400 11 370,000 211 7,342,400

Dixie 16,422 135 2,216,970 0 0 135 2,216,970

Duval 864,263 149 128,775,187 7 5,920,000 156 134,695,187

Escambia 297,619 135 40,178,565 13 3,910,000 148 44,088,565

Flagler 95,696 114 10,909,344 14 1,330,000 128 12,239,344

Franklin 11,549 179 2,067,271 26 300,000 205 2,367,271

Gadsden 46,389 142 6,587,238 5 220,000 147 6,807,238

Gilchrist 16,939 133 2,252,887 0 0 133 2,252,887

Glades 12,884 137 1,765,108 54 700,000 191 2,465,108

Gulf 15,863 128 2,030,464 7 110,000 135 2,140,464

Hamilton 14,799 139 2,057,061 0 0 139 2,057,061

Hardee 27,731 93 2,578,983 4 100,000 97 2,678,983

Hendry 39,140 175 6,849,500 5 200,000 180 7,049,500

Page 40: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 34

Hernando 172,778 130 22,461,140 30 5,250,000 160 27,711,140

Highlands 98,786 95 9,384,670 27 2,710,000 122 12,094,670

Hillsborough 1,229,226 96 118,005,696 7 8,810,000 103 126,815,696

Holmes 19,927 180 3,586,860 8 160,000 188 3,746,860

Indian River 138,028 123 16,977,444 107 14,700,000 230 31,677,444

Jackson 49,746 147 7,312,662 6 320,000 153 7,632,662

Jefferson 14,761 161 2,376,521 17 250,000 178 2,626,521

Lafayette 8,870 137 1,215,190 0 0 137 1,215,190

Lake 297,052 169 50,201,788 36 10,740,000 205 60,941,788

Lee 618,754 116 71,775,464 90 55,420,000 206 127,195,464

Leon 275,487 130 35,813,310 5 1,420,000 135 37,233,310

Levy 40,801 120 4,896,120 10 420,000 130 5,316,120

Liberty 8,365 149 1,246,385 0 0 149 1,246,385

Madison 19,224 185 3,556,440 12 230,000 197 3,786,440

Manatee 322,833 87 28,086,471 27 8,590,000 114 36,676,471

Marion 331,298 149 49,363,402 21 7,090,000 170 56,453,402

Martin 146,318 149 21,801,382 52 7,580,000 201 29,381,382

Miami-Dade 2,496,435 131 327,032,985 5 13,110,000 136 340,142,985

Monroe 73,090 236 17,249,240 12 900,000 248 18,149,240

Nassau 73,314 206 15,102,684 40 2,960,000 246 18,062,684

Okaloosa 180,822 126 22,783,572 17 3,110,000 143 25,893,572

Okeechobee 39,996 90 3,599,640 18 700,000 108 4,299,640

Orange 1,145,956 161 184,498,916 8 9,590,000 169 194,088,916

Osceola 268,685 162 43,526,970 28 7,510,000 190 51,036,970

Palm Beach 1,320,134 189 249,505,326 47 61,670,000 236 311,175,326

Pasco 464,697 112 52,046,064 8 3,770,000 120 55,816,064

Pinellas 916,542 100 91,654,200 3 2,930,000 103 94,584,200

Polk 602,095 123 74,057,685 15 9,260,000 138 83,317,685

Putnam 74,364 191 14,203,524 6 410,000 197 14,613,524

St. Johns 190,039 89 16,913,471 29 5,510,000 118 22,423,471

St. Lucie 277,789 120 33,334,680 38 10,430,000 158 43,764,680

Santa Rosa 151,372 123 18,618,756 32 4,810,000 155 23,428,756

Sarasota 379,448 97 36,806,456 17 6,530,000 114 43,336,456

Seminole 422,718 135 57,066,930 4 1,780,000 139 58,846,930

Page 41: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 35

Sumter 93,420 221 20,645,820 27 2,550,000 248 23,195,820

Suwannee 41,551 118 4,903,018 2 80,000 120 4,983,018

Taylor 22,570 170 3,836,900 4 80,000 174 3,916,900

Union 15,535 200 3,107,000 0 0 200 3,107,000

Volusia 494,593 115 56,878,195 7 3,300,000 122 60,178,195

Wakulla 30,776 196 6,032,096 5 160,000 201 6,192,096

Walton 55,043 203 11,173,729 26 1,410,000 229 12,583,729

Washington 24,896 127 3,161,792 6 160,000 133 3,321,792

Florida 18,801,310 134 2,546,713,825 21 391,930,000 155 2,938,643,825

Sources

*USGS - Water Withdrawals Use and Trends in Florida, 2010, page 18 – 19, Table 4. Public-supply population, water use, withdrawals, transfers, and treated water in Florida by county, 2010. Data used: gross per capita water demand ^^USGS - Water Withdrawals Use and Trends in Florida, 2010 page 36 - 37, Table 9. Recreational-landscape irrigation water withdrawals in Florida by county, 2010. Data used were total freshwater for each county.

Page 42: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Water 2070 36

Appendix 3. Counties with greater than 1 million freshwater GPD 2010 mining and industrial demand (from Marella, R, 2014)

County USGS 2010 Mining and

Industrial GPD Bradford 1,300,000 Brevard 6,000,000 Broward 1,480,000 Collier 1,980,000 Duval 16,580,000 Escambia 54,310,000 Glades 7,280,000 Hamilton 25,820,000 Hardee 1,720,000 Hernando 7,540,000 Hillsborough 11,730,000 Jackson 1,510,000 Lake 5,390,000 Lee 8,860,000 Manatee 3,670,000 Marion 6,620,000 Miami-Dade 33,370,000 Nassau 31,780,000 Okaloosa 2,290,000 Orange 19,710,000 Palm Beach 3,670,000 Polk 43,030,000 Putnam 24,930,000 St. Johns 1,040,000 Santa Rosa 1,220,000 Suwannee 1,780,000 Taylor 39,510,000 Volusia 1,550,000 Wakulla 1,120,000

Page 43: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Florida 2070 - LAND 37

Appendix 4. Regional Results – Supporting Tables and Figures

PANHANDLE REGION RESULTS Panhandle Region water demand in gallons per day for the 2010 Baseline scenario, 2070 Trend and Alternative scenarios

BASELINE

Development Agriculture Total

BAY 66,462,838 1,190,695 67,653,533

CALHOUN 4,095,000 2,437,714 6,532,714

ESCAMBIA 54,010,362 2,455,047 56,465,409

FRANKLIN 4,122,993 0 4,122,993

GADSDEN 12,525,030 5,053,481 17,578,511

GULF 3,845,604 139,162 3,984,766

HOLMES 6,615,764 1,360,506 7,976,270

JACKSON 13,879,134 23,234,854 37,113,988

JEFFERSON 4,664,476 4,938,548 9,603,024

LEON 47,238,492 668,740 47,907,232

LIBERTY 2,283,645 24,538 2,308,183

MADISON 6,632,280 14,353,497 20,985,777

OKALOOSA 30,303,504 926,683 31,230,187

SANTAROSA 39,264,176 3,420,387 42,684,563

TAYLOR 6,848,792 366,711 7,215,503

WAKULLA 10,802,376 194,114 10,996,490

WALTON 21,631,899 1,032,292 22,664,191

WASHINGTON 6,199,104 859,721 7,058,825

TOTAL 341,425,469 62,656,690 404,082,159

TREND

Development Agriculture Total

BAY 110,658,151 46,800 110,704,951

CALHOUN 5,269,320 716,145 5,985,465

ESCAMBIA 66,313,994 5,046,777 71,360,771

FRANKLIN 4,281,144 59,002 4,340,146

GADSDEN 15,604,380 3,786,158 19,390,538

GULF 4,406,136 0 4,406,136

HOLMES 7,882,012 773,958 8,655,970

JACKSON 28,248,564 27,446,472 55,695,036

JEFFERSON 5,425,404 6,104,477 11,529,881

LEON 80,106,012 2,647,373 82,753,385

LIBERTY 3,800,433 138,218 3,938,651

MADISON 7,186,005 21,300,249 28,486,254

OKALOOSA 52,641,336 87 52,641,423

SANTAROSA 83,736,516 10,500,134 94,236,650

Page 44: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Florida 2070 - LAND 38

TAYLOR 8,832,792 1,063,446 9,896,238

WAKULLA 19,227,429 315,917 19,543,346

WALTON 56,573,529 509,696 57,083,225

WASHINGTON 8,664,951 1,928,124 10,593,075

TOTAL 568,858,108 82,383,033 651,241,141

ALTERNATIVE

Development Agriculture Total

BAY 86,479,450 46,800 86,526,250

CALHOUN 4,200,750 716,145 4,916,895

ESCAMBIA 52,150,106 5,075,151 57,225,257

FRANKLIN 3,618,645 59,002 3,677,647

GADSDEN 12,504,024 3,792,929 16,296,953

GULF 3,911,460 0 3,911,460

HOLMES 6,243,552 773,958 7,017,510

JACKSON 11,241,440 27,446,472 38,687,912

JEFFERSON 4,526,026 6,111,401 10,637,427

LEON 60,954,791 3,338,294 64,293,085

LIBERTY 3,034,902 138,751 3,173,653

MADISON 5,698,296 21,300,684 26,998,980

OKALOOSA 39,623,822 87 39,623,909

SANTAROSA 64,601,925 10,613,081 75,215,006

TAYLOR 7,038,898 1,063,177 8,102,075

WAKULLA 15,305,080 325,075 15,630,155

WALTON 45,156,825 415,919 45,572,744

WASHINGTON 6,948,200 1,928,809 8,877,009

433,238,192 83,145,736 516,383,928

Panhandle Region water demand for the 2010 Baseline scenario and 2070 Trend and Alternative scenarios in gallons per day

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

BA

Y

CA

LHO

UN

ESC

AM

BIA

FRA

NK

LIN

GA

DSD

EN

GU

LF

HO

LMES

JAC

KSO

N

JEFF

ERSO

N

LEO

N

LIB

ERTY

MA

DIS

ON

OK

ALO

OSA

SAN

TAR

OSA

TAYL

OR

WA

KU

LLA

WA

LTO

N

WA

SHIN

GTO

N

BASELINE

Development Agriculture

Page 45: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Florida 2070 - LAND 39

NORTHEAST REGION RESULTS

Northeast Region water demand in gallons per day for the 2010 Baseline scenario, 2070 Trend and Alternative scenarios BASELINE

Development Agriculture Total

ALACHUA 40,866,672 15,032,078 55,898,750

BAKER 8,489,550 492,890 8,982,440

BRADFORD 9,183,440 1,061,663 10,245,103

CLAY 28,010,466 1,260,704 29,271,170

COLUMBIA 18,477,298 4,210,741 22,688,039

DIXIE 4,138,344 4,924,222 9,062,566

DUVAL 133,975,982 1,630,294 135,606,276

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

BA

Y

CA

LHO

UN

ESC

AM

BIA

FRA

NK

LIN

GA

DSD

EN

GU

LF

HO

LMES

JAC

KSO

N

JEFF

ERSO

N

LEO

N

LIB

ERTY

MA

DIS

ON

OK

ALO

OSA

SAN

TAR

OSA

TAYL

OR

WA

KU

LLA

WA

LTO

N

WA

SHIN

GTO

N

TREND

Development Agriculture

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

BA

Y

CA

LHO

UN

ESC

AM

BIA

FRA

NK

LIN

GA

DSD

EN

GU

LF

HO

LMES

JAC

KSO

N

JEFF

ERSO

N

LEO

N

LIB

ERTY

MA

DIS

ON

OK

ALO

OSA

SAN

TAR

OSA

TAYL

OR

WA

KU

LLA

WA

LTO

N

WA

SHIN

GTO

N

ALTERNATIVE

Development Agriculture

Page 46: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Florida 2070 - LAND 40

FLAGLER 17,948,836 12,750,089 30,698,925

GILCHRIST 4,217,811 10,651,292 14,869,103

HAMILTON 3,818,142 10,408,431 14,226,573

LAFAYETTE 2,261,850 8,859,560 11,121,410

LEVY 9,955,444 18,226,045 28,181,489

MARION 91,517,936 13,611,010 105,128,946

NASSAU 29,240,796 739,863 29,980,659

PUTNAM 24,355,850 15,305,356 39,661,206

STJOHNS 38,237,314 28,524,235 66,761,549

SUWANNEE 9,556,730 26,412,736 35,969,466

UNION 5,437,250 1,563,575 7,000,825

TOTAL 479,689,711 175,664,784 655,354,495

TREND

Development Agriculture Total

ALACHUA 72424380 18240930.57 90665310.57

BAKER 14505320 637055.1579 15142375.16

BRADFORD 11024958 1175813.769 12200771.77

CLAY 75136182 1668669.227 76804851.23

COLUMBIA 28030330 16922493.15 44952823.15

DIXIE 6332760 2757335.853 9090095.853

DUVAL 245663162 261567.7399 245924729.7

FLAGLER 63424136 4092970.549 67517106.55

GILCHRIST 6232968 12272525.19 18505493.19

HAMILTON 4686828 11122204.47 15809032.47

LAFAYETTE 3278535 15113111.94 18391646.94

LEVY 14763464 28329312.52 43092776.52

MARION 270398212 15724099.55 286122311.5

NASSAU 62284988 0 62284988

PUTNAM 30890265 7330701.404 38220966.4

STJOHNS 121322662 3843894.205 125166556.2

SUWANNEE 16353460 36939094 53292554

UNION 7499800 1227639.472 8727439.472

TOTAL 1054252410 177659418.7 1231911829

ALTERNATIVE

Development Agriculture Total

ALACHUA 55,343,005 18,420,358 73,763,363

BAKER 11,598,590 635,899 12,234,489

BRADFORD 8,829,018 1,176,242 10,005,260

CLAY 54,387,222 2,430,594 56,817,816

COLUMBIA 22,367,175 16,953,880 39,321,055

DIXIE 5,025,603 2,829,126 7,854,729

DUVAL 164,628,018 265,277 164,893,295

FLAGLER 38,133,436 5,285,585 43,419,021

GILCHRIST 4,951,800 12,353,481 17,305,281

Page 47: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Florida 2070 - LAND 41

HAMILTON 3,808,800 11,131,636 14,940,436

LAFAYETTE 2,609,568 15,131,271 17,740,839

LEVY 11,865,555 28,446,290 40,311,845

MARION 173,952,117 31,819,140 205,771,257

NASSAU 49,270,706 0 49,270,706

PUTNAM 37,229,640 7,666,550 44,896,190

STJOHNS 90,957,366 26,479,454 117,436,820

SUWANNEE 12,786,454 36,972,175 49,758,629

UNION 5,893,317 1,227,750 7,121,067

TOTAL 753,637,390 219,224,707 972,862,097

Northeast Region water demand for the 2010 Baseline scenario and 2070 Trend and Alternative scenarios in gallons per day

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

BASELINE

Development Agriculture

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

TREND

Development Agriculture

Page 48: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Florida 2070 - LAND 42

CENTRAL REGION RESULTS

Central Region water demand in gallons per day for the 2010 Baseline scenario, 2070 Trend and Alternative scenarios

BASELINE

Development Agriculture Total

BREVARD 75,309,616 18,671,024 93,980,640

CITRUS 42,628,016 1,675,952 44,303,968

DESOTO 11,006,840 93,930,270 104,937,110

HARDEE 4,999,735 66,257,798 71,257,533

HERNANDO 38,805,702 3,712,391 42,518,093

HIGHLANDS 19,512,180 97,985,896 117,498,076

HILLSBOROUGH 134,170,392 53,134,427 187,304,819

INDIANRIVER 41,122,688 63,025,897 104,148,585

LAKE 91,528,136 24,008,645 115,536,781

MANATEE 45,167,828 86,265,818 131,433,646

OKEECHOBEE 8,026,172 31,471,783 39,497,955

ORANGE 169,363,466 10,225,013 179,588,479

OSCEOLA 62,141,306 28,934,529 91,075,835

PASCO 71,386,082 15,812,338 87,198,420

PINELLAS 72,817,120 34,994 72,852,114

POLK 116,591,990 130,728,128 247,320,118

SARASOTA 52,543,204 9,312,840 61,856,044

SEMINOLE 58,525,752 2,564,679 61,090,431

STLUCIE 46,560,744 69,545,887 116,106,631

SUMTER 35,303,220 5,396,715 40,699,935

VOLUSIA 74,651,984 16,770,467 91,422,451

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

ALTERNATIVE

Development Agriculture

Page 49: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Florida 2070 - LAND 43

TOTAL 1,272,162,173 829,465,491 2,101,627,664

TREND

Development Agriculture Total

BREVARD 132,314,176 11,782,948 144,097,124

CITRUS 66,910,490 878,671 67,789,161

DESOTO 11,017,820 112,072,192 123,090,012

HARDEE 47,556,405 35,524,306 83,080,711

HERNANDO 87,582,356 3,836,485 91,418,841

HIGHLANDS 29,923,332 77,058,532 106,981,864

HILLSBOROUGH 241,203,276 4,718,978 245,922,254

INDIANRIVER 83,937,260 70,398,748 154,336,008

LAKE 219,651,509 4,165,913 223,817,422

MANATEE 107,572,558 74,509,480 182,082,038

OKEECHOBEE 9,464,940 24,237,967 33,702,907

ORANGE 298,211,792 3,787,229 301,999,021

OSCEOLA 139,600,588 41,279,424 180,880,012

PASCO 179,388,858 2,231,176 181,620,034

PINELLAS 76,702,300 0 76,702,300

POLK 332,346,530 46,906,344 379,252,874

SARASOTA 86,855,940 7,499,062 94,355,002

SEMINOLE 91,756,066 705,269 92,461,335

STLUCIE 142,647,446 32,539,803 175,187,249

SUMTER 141,605,748 631,578 142,237,326

VOLUSIA 165,647,554 16,097,640 181,745,194

TOTAL 2,691,896,944 570,861,745 3,262,758,689

ALTERNATIVE

Development Agriculture Total

BREVARD 95,575,410 14,121,032 109,696,442

CITRUS 61,810,424 865,936 62,676,360

DESOTO 29,675,068 103,631,000 133,306,068

HARDEE 4,142,528 69,706,595 73,849,123

HERNANDO 62,401,108 8,627,809 71,028,917

HIGHLANDS 35,501,758 58,441,270 93,943,028

HILLSBOROUGH 209,307,424 32,666,211 241,973,635

INDIANRIVER 56,799,750 74,822,674 131,622,424

LAKE 131,763,480 12,579,728 144,343,208

MANATEE 98,331,465 70,994,423 169,325,888

OKEECHOBEE 15,977,226 19,338,748 35,315,974

ORANGE 243,092,340 8,609,220 251,701,560

OSCEOLA 183,898,742 38,719,829 222,618,571

PASCO 127,728,388 12,944,743 140,673,131

Page 50: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Florida 2070 - LAND 44

PINELLAS 64,154,062 0 64,154,062

POLK 223,466,574 122,327,343 345,793,917

SARASOTA 69,248,536 5,782,689 75,031,225

SEMINOLE 69,143,658 1,057,060 70,200,718

STLUCIE 74,026,212 57,205,936 131,232,148

SUMTER 94,604,336 1,853,771 96,458,107

VOLUSIA 108,672,608 18,252,281 126,924,889

TOTAL 2,059,321,097 732,548,298 2,791,869,395

Central Region water demand for the 2010 Baseline scenario and 2070 Trend and Alternative scenarios in gallons per day

050,000,000

100,000,000150,000,000200,000,000250,000,000300,000,000350,000,000400,000,000

BR

EVA

RD

CIT

RU

S

DES

OTO

HA

RD

EE

HER

NA

ND

O

HIG

HLA

ND

S

HIL

LSB

OR

OU

GH

IND

IAN

RIV

ER

LAK

E

MA

NA

TEE

OK

EEC

HO

BEE

OR

AN

GE

OSC

EOLA

PA

SCO

PIN

ELLA

S

PO

LK

SAR

ASO

TA

SEM

INO

LE

STLU

CIE

SUM

TER

VO

LUSI

A

BASELINE

Development Agriculture

050,000,000

100,000,000150,000,000200,000,000250,000,000300,000,000350,000,000400,000,000

BR

EVA

RD

CIT

RU

S

DES

OTO

HA

RD

EE

HER

NA

ND

O

HIG

HLA

ND

S

HIL

LSB

OR

OU

GH

IND

IAN

RIV

ER

LAK

E

MA

NA

TEE

OK

EEC

HO

BEE

OR

AN

GE

OSC

EOLA

PA

SCO

PIN

ELLA

S

PO

LK

SAR

ASO

TA

SEM

INO

LE

STLU

CIE

SUM

TER

VO

LUSI

A

TREND

Development Agriculture

Page 51: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Florida 2070 - LAND 45

SOUTH REGION RESULTS

South Region water demand in gallons per day for the 2010 Baseline scenario, 2070 Trend and Alternative scenarios

BASELINE

Development Agriculture Total

BROWARD 187,082,372 3,129,895 190,212,267

CHARLOTTE 33,017,354 31,831,731 64,849,085

COLLIER 115,810,494 103,067,667 218,878,161

GLADES 4,080,608 78,543,175 82,623,783

HENDRY 11,404,724 260,341,749 271,746,473

LEE 152,419,676 31,061,663 183,481,339

MARTIN 36,434,736 52,374,926 88,809,662

MIAMI-DADE 230,463,836 64,614,062 295,077,898

MONROE 21,593,836 0 21,593,836

PALMBEACH 253,785,046 437,189,604 690,974,650

1,046,092,682 1,062,154,471 2,108,247,153

TREND

Development Agriculture Total

BROWARD 199,555,514 1,946,028 201,501,542

CHARLOTTE 79,153,312 25,716,441 104,869,753

COLLIER 312,263,173 63,131,986 375,395,159

GLADES 58,317,616 155,367,199 213,684,815

HENDRY 63,808,142 194,839,888 258,648,030

LEE 290,081,628 3,580,516 293,662,144

MARTIN 174,200,598 14,533,230 188,733,828

050,000,000

100,000,000150,000,000200,000,000250,000,000300,000,000350,000,000400,000,000

BR

EVA

RD

CIT

RU

S

DES

OTO

HA

RD

EE

HER

NA

ND

O

HIG

HLA

ND

S

HIL

LSB

OR

OU

GH

IND

IAN

RIV

ER

LAK

E

MA

NA

TEE

OK

EEC

HO

BEE

OR

AN

GE

OSC

EOLA

PA

SCO

PIN

ELLA

S

PO

LK

SAR

ASO

TA

SEM

INO

LE

STLU

CIE

SUM

TER

VO

LUSI

A

ALTERNATIVE

Development Agriculture

Page 52: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Florida 2070 - LAND 46

MIAMI-DADE 379,570,402 19,637,028 399,207,430

MONROE 23,055,864 4,964 23,060,828

PALMBEACH 585,543,526 304,644,122 890,187,648

TOTAL 2,165,549,775 783,401,403 2,948,951,178

ALTERNATIVE

Development Agriculture Total

BROWARD 188,546,775 3,488,094 192,034,869

CHARLOTTE 51,708,322 38,296,694 90,005,016

COLLIER 187,168,124 123,990,807 311,158,931

GLADES 9,113,562 198,124,046 207,237,608

HENDRY 23,937,445 254,026,085 277,963,530

LEE 208,211,138 24,040,205 232,251,343

MARTIN 73,757,990 33,608,976 107,366,966

MIAMI-DADE 360,555,268 35,024,891 395,580,159

MONROE 18,138,328 4,964 18,143,292

PALMBEACH 337,196,590 404,730,067 741,926,657

1,458,333,542 1,115,334,829 2,573,668,371

South Region water demand for the 2010 Baseline scenario and 2070 Trend and Alternative scenarios in gallons per day

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

700,000,000

800,000,000

900,000,000

BASELINE

Development Agriculture

Page 53: TECHNICAL REPORT Water 2070 - 1000 Friends of Florida1000friendsofflorida.org/water2070/wp-content/...Water 2070 is based upon three population scenarios identified in the companion

Florida 2070 - LAND 47

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

700,000,000

800,000,000

900,000,000

TREND

Development Agriculture

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

700,000,000

800,000,000

900,000,000

ALTERNATIVE

Development Agriculture


Recommended