+ All Categories
Home > Documents > Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor...

Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor...

Date post: 12-Jun-2020
Category:
Upload: others
View: 11 times
Download: 0 times
Share this document with a friend
25
ETLCE - A2 23/09/2009 © 2009 DDC 1 23/09/2009 - 1 TLCE - A2 - © 2009 DDC Politecnico di Torino ICT School Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, » Small signal models » Gain and bandwidth » Limits of linear analysis ETLCE - A2 23/09/2009 © 2009 DDC 2 23/09/2009 - 2 TLCE - A2 - © 2009 DDC Amplifiers Op Amp amplifiers Previous courses Transistor amplifiers (lesson A2 and A3) Reference circuit and design procedures Linear model Nonlinear model » Distortion, harmonics, gain compression Lab 1: small signal analysis (linear model) Lab 2: large signal behaviour (nonlinear model) • References: Transistor circuits 1.1, 1.2
Transcript
Page 1: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 1

23/09/2009 - 1 TLCE - A2 - © 2009 DDC

Politecnico di TorinoICT School

Telecommunication Electronics

A2 – Transistor amplifiers

» Bias point and circuits, » Small signal models» Gain and bandwidth» Limits of linear analysis

ETLCE - A2 23/09/2009

© 2009 DDC 2

23/09/2009 - 2 TLCE - A2 - © 2009 DDC

Amplifiers

• Op Amp amplifiers– Previous courses

• Transistor amplifiers (lesson A2 and A3)– Reference circuit and design procedures– Linear model

– Nonlinear model» Distortion, harmonics, gain compression

• Lab 1: small signal analysis (linear model)

• Lab 2: large signal behaviour (nonlinear model)

• References:– Transistor circuits 1.1, 1.2

Page 2: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 3

23/09/2009 - 3 TLCE - A2 - © 2009 DDC

Amplifiers in positioning radio receiver

LNA:

Low Noise Amplifier

VGA: Variable Gain Amplifier

IF tunedamplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 4

23/09/2009 - 4 TLCE - A2 - © 2009 DDC

GPS radio IC

LNA:

Low Noise Amplifier

Wide dynamic range, low distorsion

VGA: Variable Gain Amplifier

Page 3: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 5

23/09/2009 - 5 TLCE - A2 - © 2009 DDC

Amplifiers in radio structure

PA (power amplifier)

TX output amplifiers

- High efficiency, low distorsion

IF channel

LNA (low noise amplifier)

RX input amplifiers

- Low noise, wide dynamic

ETLCE - A2 23/09/2009

© 2009 DDC 6

23/09/2009 - 6 TLCE - A2 - © 2009 DDC

OpAmp–based Amplifers: where ?

Audio interface (mike and earphones)

IF channel amplifiers

Amplifiers and filtersfor A/D converters

Page 4: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 7

23/09/2009 - 7 TLCE - A2 - © 2009 DDC

Fully differential OpAmp

• Differential input AND differential output

– Double feedback loop

– Better balance

ETLCE - A2 23/09/2009

© 2009 DDC 8

23/09/2009 - 8 TLCE - A2 - © 2009 DDC

Transistor-based amplifiers: where ?

LNA (low noise amplifier)

RX input amplifiers:

- Low noise

- Wide dynamic range

PA (power amplifier)

TX output amplifier:

- High efficiency

- Low harmonic contents

Page 5: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 9

23/09/2009 - 9 TLCE - A2 - © 2009 DDC

Amplifiers or ….

• What matters in an amplifier– Gain

– Bandwidth – Linearity (no distorsion)– Noise (low)

• There is always some nonlinearity – Reduce, counteract

» Negative feedback, tuned circuits, …

– Used to build» VGA/dynamic compressor» Mixers» oscillators

ETLCE - A2 23/09/2009

© 2009 DDC 10

23/09/2009 - 10 TLCE - A2 - © 2009 DDC

Lesson A2: Amplifiers

• Types of amplifiers

• Transistor amplifiers– Basic circuit

– Linear transistor model– Biasing– Small signal analysis

– Frequency response

• Design of amplifiers– Specifications – Design sequence

– Lab experiment

Page 6: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 11

23/09/2009 - 11 TLCE - A2 - © 2009 DDC

Transistor models

• Small signal– BJT, MOS, MOS-FET

– Same linear model (gm or hybrid)

• Large signal: same method, different models– BJT: exponential large signal model (rather simple)– MOS: lin/log/quad large signal model (complex !)

– analytic model for BJT– euristic models for MOS

– Similar effects and countermeasures

ETLCE - A2 23/09/2009

© 2009 DDC 12

23/09/2009 - 12 TLCE - A2 - © 2009 DDC

Bulding the BJT amplifier

• Basic bias circuit– Ic depends on current gain

• Improved bias– Ic depends on temperature (Vbe)

• Feedback bias– R1 to Vc

• Final bias– Stable Ic– Gain depend on bias

VAL

Vi

R1 Rc

C1

VAL

Vi

R1 Rc

Re

C1

VAL

Vi

R1

R2

Rc

Re2

C1

Page 7: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 13

23/09/2009 - 13 TLCE - A2 - © 2009 DDC

BJT reference circuit

• Common Emitter circuit

RE1

RE2

ETLCE - A2 23/09/2009

© 2009 DDC 14

23/09/2009 - 14 TLCE - A2 - © 2009 DDC

Amplifier features and analysis

• AC amplifier: BJT Common Emitter circuit

• Input and output AC coupling: C1, C4

• Emitter feedback– DC: stabilize the bias point– AC control the gain

• Analysis or design:– Bias point– AC passband gain (linear model)– Cutoff frequency

– Nonlinear model analysis

Page 8: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 15

23/09/2009 - 15 TLCE - A2 - © 2009 DDC

Analysis of BJT circuit: step 2

• CE amplifier with bipolar transistor (BJT)– Find bias point:

(IC, VCE)

– The bias pointmust be in the active region:

VCE > 0,2 VVCE

ETLCE - A2 23/09/2009

© 2009 DDC 16

23/09/2009 - 16 TLCE - A2 - © 2009 DDC

Analysis of BJT circuit: step 3

• CE amplifier with bipolar transistor (BJT)– Find bias point:

(IC, VCE)

– The bias pointmust be in the active region:

VCE > 0,2 V

– Compute small signalparametares:

hie, hfe, gm...

hie, hfe

Page 9: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 17

23/09/2009 - 17 TLCE - A2 - © 2009 DDC

BJT (simplified) models

• Simplified model for bias point analysis (active area)

• Simplified model for small signal analysis, CE configuration.Parametershfe iB or gm vBE

hie = VT * hfe/IC

gm = IC/VT

B C

E

IB β IB

gm vBE

vBE

B C

E

ETLCE - A2 23/09/2009

© 2009 DDC 18

23/09/2009 - 18 TLCE - A2 - © 2009 DDC

Bias point analysis

• DC bias point– Small signal parameters depend on IC and (to a lesser

extent) on VCE solve bias point first

– IC ≈ IE is fixed by Base-Emitter mesh– VCE is related with Collector-Emitter mesh

• Step 1: compute IC– Equation on BE mesh

– First approximation: IB = 0 (hFE →∞)

• Step 2: check VCE value; – Equation on CE mesh– if > 0,2 V active area

Page 10: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 19

23/09/2009 - 19 TLCE - A2 - © 2009 DDC

BE net

• Ic depends fromthese devices

– Ic depends only from Base-Emitter mesh

– Vcc, R1, R2are mapped to a unique mesh, with equivalent Theveninparameters

VBB, RB

ETLCE - A2 23/09/2009

© 2009 DDC 20

23/09/2009 - 20 TLCE - A2 - © 2009 DDC

BE mesh

• BE equivalent circuit

VBB

Page 11: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 21

23/09/2009 - 21 TLCE - A2 - © 2009 DDC

Vce

CE net

• Vce depends fromdevices in the CEmesh

– Vce depends from Ic and devices at the Collectornode

– Vce =Vcc-IcRc-IeRe

ETLCE - A2 23/09/2009

© 2009 DDC 22

23/09/2009 - 22 TLCE - A2 - © 2009 DDC

Design choices

• If hfe is large, – IB = (VBB – VBE)/RB

• Design variables (for a given Ic)– VBB, RB/VB

• Large VBB

– Good stability vs ∆VBE(mainly due to temperature)

– Reduced output dynamic range (VCE)

• Small RB

– Good stability vs ∆β (mainly due to parameters spreading)– High power consumption (RB = R1//R2)

Page 12: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 23

23/09/2009 - 23 TLCE - A2 - © 2009 DDC

R1 120 kΩR2 82 kΩRe1 330 ΩRe2 12 kΩRc 10 kΩ

Vcc 12 Vhfe 100

Vbb = Rb =

Ie =Vce = hie = gm =

VccR1

R2

Rc

Re2

Re1

C1

C3

C2

Q1I1

Ie

Example: bias point, SS parameters

ETLCE - A2 23/09/2009

© 2009 DDC 24

23/09/2009 - 24 TLCE - A2 - © 2009 DDC

R1 120 kΩR2 82 kΩRe1 330 ΩRe2 12 kΩRc 10 kΩ

Vcc 12 Vhfe 100

Vbb = 12 * 82 / 202 = 4,9 V Rb = 48,7 kΩ

Ie = 4,3 / (12,33 + 48,7/100) = 0,335 mAVce = 4,35 V hie = 7,76 kΩ gm = 12,88 mA/V

VccR1

R2

Rc

Re2

Re1

C1

C3

C2

Q1I1

Ie

Example: bias point, SS parameters

Page 13: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 25

23/09/2009 - 25 TLCE - A2 - © 2009 DDC

MOS reference circuit

• CommonSource

RE1

RE2

G

D

S

ETLCE - A2 23/09/2009

© 2009 DDC 26

23/09/2009 - 26 TLCE - A2 - © 2009 DDC

Lesson A2: Amplifiers

• Types of amplifiers

• Transistor amplifiers– Basic circuit

– Linear transistor model– Biasing– Small signal analysis

– Frequency response

• Design of amplifiers– Specifications – Design sequence

– Lab experiment

Page 14: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 27

23/09/2009 - 27 TLCE - A2 - © 2009 DDC

BJT circuit: small signal analysis

• Parts related with in-band gain (C3 open, C1, C2, C4 shorted)

• Reminders – In signal analysis

Vcc = 0

– R1, R2 are connected as parallel resistances to Vi

ETLCE - A2 23/09/2009

© 2009 DDC 28

23/09/2009 - 28 TLCE - A2 - © 2009 DDC

• Compute the gain using the linear model

vO = iC ZC; iC = iB hfe; vi = iB hie + iB(1+hfe) ZE

Vo

ZC

ViR1//R2

IB hfeIB

hie

ZE

Gain analysis equivalent circuit

Page 15: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 29

23/09/2009 - 29 TLCE - A2 - © 2009 DDC

Results with linear model

• Gain with linear model

• If hfe >> 1 – hie becomes negligible with respect to ZE (hfe+1)

(hfe+1)

ETLCE - A2 23/09/2009

© 2009 DDC 30

23/09/2009 - 30 TLCE - A2 - © 2009 DDC

hie = 8,96khfe = 100gm = 12,9 mA/V

Rc 12 kΩRe1 330 ΩRL 10 kΩ

Total load on the Collector: Rc//RL

Av = - (12k//10k)*100 / (8,96k + 330*100) = -13

Vo

RL

ViR1//R2

Ib

Rc

Re1

hfe Ib

hie

Example: gain with linear model 1

Page 16: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 31

23/09/2009 - 31 TLCE - A2 - © 2009 DDC

hie = 8,96khfe = 100gm = 12,9 mA/V

Rc 12 kΩRe1 330 ΩRL 10 kΩ

Total load on the Collector: Rc//RL

Av =

Vo

RL

ViR1//R2

Vbe

Rc

Re1

gm Vbe

hie

Example: gain with linear model 2

ETLCE - A2 23/09/2009

© 2009 DDC 32

23/09/2009 - 32 TLCE - A2 - © 2009 DDC

hie = 8,96khfe = 100gm = 12,9 mA/V

Rc 12 kΩRe1 330 ΩRL 10 kΩ

Ri = ?

Ro = ?

Vo

RL

ViR1//R2

Ib

Rc

Re1

hfe Ib

hie

Example: Ri and Ro

Page 17: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 33

23/09/2009 - 33 TLCE - A2 - © 2009 DDC

Frequency response

• Wideband AC amplifier– Emitter/source feedback

» stabilize DC bias point and in-band AC gain |AV| ≅ ZC/ZE

• Lower band limit:– interstage series coupling capacitance

– ZE frequency behaviour – transformer coupling (if any)

• Higher band limit– parallel capacitors towards ground

» designed capacitors» wiring parasitic» active device parasitic

ETLCE - A2 23/09/2009

© 2009 DDC 34

23/09/2009 - 34 TLCE - A2 - © 2009 DDC

Wideband AC amplifier

f(Hz)

|Vu/Vi| (dB)

Low cutofffrequency(C1, C2, Ce)

High cutofffrequency(C3, Cp1, Cp2)

Band pass

1 10 100

Page 18: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 35

23/09/2009 - 35 TLCE - A2 - © 2009 DDC

High Frequency: L and C parasitics

• Output Capacitance (load)– insert isolation stage (Common Collector/Drain)

• PCB parasitic L and C– Use SMD devices– Careful PCB design

• Active device parasitic (CBC) – multiplied by Miller effect– use HF devices with low CBC (GaAs, SiGe, ..)

– proper circuit configuration (Common Base, cascode)

ETLCE - A2 23/09/2009

© 2009 DDC 36

23/09/2009 - 36 TLCE - A2 - © 2009 DDC

Cp1: Base-Collector parasitic (Cbc)C3: designed to set high cutoff frequency

Vcc

Vi

R1

R2

Rc

Re2

Re1

C1

C3

C2

Q1

Vo

RL

C4

Ie

Cp1 Cp2

Parasitic capacitances

Page 19: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 37

23/09/2009 - 37 TLCE - A2 - © 2009 DDC

Miller effect

• Parasitic Base-Collector capacitance (CBC) is connected between to nodes with inverting gain –A

– Corrent Icond flowing in CBC:

– Icond = jωCBC (VB–VC) = jωCBC (VB+AVB) = jωCBC (A+1) VB

(multiplied by Miller effect)

– Admittance multiplied by (gain +1)

• Actual equivalent capacitance at Base node:– Cactual = CBC * (A+1)

• This capacitance limits the high frequency response

• Need for Miller free circuit configurations

ETLCE - A2 23/09/2009

© 2009 DDC 38

23/09/2009 - 38 TLCE - A2 - © 2009 DDC

Other circuit configurations: CC

• Common Collector / Common Drain– high Zi

– low Zo– No Miller effect (Av ≈ 1)– Current gain

• Good for– Load separation

– Increasing Zi– Lowering Zo

Vcc

ViRe Vo

Q1

Va

Page 20: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 39

23/09/2009 - 39 TLCE - A2 - © 2009 DDC

Other circuit configurations: CB

• Common Base / Common Gate– low Zi, high Zu

– CBC connected to GND:No Miller effect

– Low Zi

– Low Zo– Voltage gain

• combined with CEin the cascode stage

Vcc

Vi

Rc

Vo

Q2

ETLCE - A2 23/09/2009

© 2009 DDC 40

23/09/2009 - 40 TLCE - A2 - © 2009 DDC

Cascode amplifier

Only basic circuit, no bias network

Vi VaQ1: CE stage, Low Zc low V gainGood current gain- Low ∆Vce- Low Miller effect

Va VuQ2: CB stageGood voltage gain- No Miller effect

Vcc

Vi

Common Base

Rc

Q2

VuRL

Q1

CommonEmitter

Va

Page 21: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 41

23/09/2009 - 41 TLCE - A2 - © 2009 DDC

Cascode amplifier

• Common Base stage (CB)– CBC parasitic towards ground

– no Miller effect (C multiplier)– provides voltage gain

• Common Emitter output to low-Z load– small voltage dynamic

– provides current gain– minimum effect of CBC parasitic capacitance

• Overall result– higher gain at high frequency

ETLCE - A2 23/09/2009

© 2009 DDC 42

23/09/2009 - 42 TLCE - A2 - © 2009 DDC

Lesson A2: Amplifiers

• Types of amplifiers

• Transistor amplifiers– Basic circuit

– Linear transistor model– Biasing– Small signal analysis

– Frequency response

• Design of amplifiers– Specifications – Design sequence

– Lab experiment

Page 22: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 43

23/09/2009 - 43 TLCE - A2 - © 2009 DDC

Lab 1 and lab 2

• Design an amplifier from the provided specs– A real design:

» Multiple solutions» Some specs are implicit» Devices have poorly defined parameters

• Simulate, build, measure– Homework: design, simulation– In the lab: build, measure, debug

• Compare specs/simulation/measurements– Linear model lab 1– Nonlinear model lab 2

ETLCE - A2 23/09/2009

© 2009 DDC 44

23/09/2009 - 44 TLCE - A2 - © 2009 DDC

Amplifier design specs (2009)

• Single-Transistor Amplifier with:– Voltage gain |Vu/Vi| = 18 (nominal)

– Bandwidth -3 dB from 100 Hz to 40 kHz (minimum)– Output dynamic at least 4 Vpp on 10 kΩ load (or higher)– Supply voltage 15 V (nominal)

– 2N2222A Transistor

• All feature within +/-10%, at ambient temperature – Gain and output dynamic at band center

• References:– Text: design procedure: Cap 1, 1.P1

– Lab procedures: Cap 1, 1.L1– web guides: lab 1

Page 23: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 45

23/09/2009 - 45 TLCE - A2 - © 2009 DDC

Design sequence

• Select the circuit: CE with Ze, bias network Vb/Re

• Choose a no-load dynamic, or Ve, or Rc– Stabilty/power/dynamic tradeoff

• Compute Rc, or no-load dynamic , or Ve

• Compute Ic

• Design bias network to get Ic:– R1, R2, Re1+Re2

• Computer Re1 from gain specs

• Get C1, C2, C3, C4 from frequency behaviour specs.

ETLCE - A2 23/09/2009

© 2009 DDC 46

23/09/2009 - 46 TLCE - A2 - © 2009 DDC

Checks and measurements

• Passive devices (R and C) available in normalized values

– Know what they are (E12, E24, …)

– Only E12 values available in the lab– From computed to normalized values

• The transfer function is modified

• Component tolerances expand the Bode plot (a line) to a somewhat wide band

– Specs must lie within the strip

• Compare measurements with allowed variations of Bode plot

Page 24: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 47

23/09/2009 - 47 TLCE - A2 - © 2009 DDC

Theory and practice

f(Hz)

|Vu/Vi| (dB)

1 10 100 1k

Design specification

Design band, takinginto account deviceparameters tolerances

Measured values(with errors)

ETLCE - A2 23/09/2009

© 2009 DDC 48

23/09/2009 - 48 TLCE - A2 - © 2009 DDC

Lesson A2: final questions

• Which different types of amplifiers can be found in a radio system?

• Write an approximate expression for the voltage gain of a CE amplifier.

• Which elements limit the bandwidth of amplifiers?

• Which are the best configurations for high bandwidth amplifiers?

• List the specifications for an amplifier (what you must know to selct an amplifier from a catalogue)

• Define the design procedure for a single transistor amplifier

• Describe the lab procedures to measure the frequency response on an amplifier.

Page 25: Telecommunication Electronics - polito.it · Telecommunication Electronics A2 – Transistor amplifiers » Bias point and circuits, ... – Frequency response • Design of amplifiers

ETLCE - A2 23/09/2009

© 2009 DDC 49

23/09/2009 - 49 TLCE - A2 - © 2009 DDC

Next lesson (A3)

• How to evaluate the effects of nonlinearity • How to reduce the nonlinearity effects

– Feedback

– Tuned circuits

• How to exploit nonlinearity– Exploit harmonics– Exploit gain changes

• Lab 2: – Large signal behaviour (nonlinear)

• Text reference:– Narrowband and tuned amplifiers: 1.2.3


Recommended