+ All Categories
Home > Documents > Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a...

Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a...

Date post: 11-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
53
For Supporting Information Functionalization of silica with amine and ammonium alkyl chains, dendrons and dendrimers: synthesis and antibacterial properties María Sánchez-Milla, a,b,c Rafael Gómez, a,b,c Jorge Pérez-Serrano, d Javier Sánchez-Nieves, *,a,b,c and F. Javier de la Mata *,a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Campus Universitario; Universidad de Alcalá (UAH); E-28805 Alcalá de Henares (Madrid) Spain; e-mail [email protected] ; [email protected]. b Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). c Institute Ramón y Cajal for Health Research (IRYCIS). d Department of Biomedicina y Biotecnología, Facultad de Farmacia, Universidad de Alcalá (UAH), E-28805 Alcalá de Henares, Madrid, Spain. 1
Transcript
Page 1: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

For Supporting Information

Functionalization of silica with amine and ammonium alkyl chains, dendrons and

dendrimers: synthesis and antibacterial properties

María Sánchez-Milla,a,b,c Rafael Gómez,a,b,c Jorge Pérez-Serrano,d Javier Sánchez-Nieves,*,a,b,c

and F. Javier de la Mata*,a,b,c

a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación Química

"Andrés M. del Río" (IQAR), Campus Universitario; Universidad de Alcalá (UAH); E-28805

Alcalá de Henares (Madrid) Spain; e-mail [email protected];

[email protected].

b Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-

BBN).

c Institute Ramón y Cajal for Health Research (IRYCIS).

d Department of Biomedicina y Biotecnología, Facultad de Farmacia, Universidad de Alcalá

(UAH), E-28805 Alcalá de Henares, Madrid, Spain.

1

Page 2: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

S1. Experimental Section

S1.1. General Considerations. All reactions were carried out in an inert atmosphere and

solvents were purified employing MBraun Solvent Purification System if necessary. Thiol-ene

reactions were carried out with an HPK 125W Mercury Lamp from Heraeus Noblelight with

maximum energy at 365 nm in normal glassware after deoxygenation bubbling argon. NMR

spectra were recorded on a Varian Unity VXR-300 (300.13 MHz (1H), 75.47 (13C)) or on a

Bruker AV400 (400.13 MHz (1H), 100.60 (13C), 79.49 (29Si) MHz)). Chemical shifts (δ) are

given in ppm. 1H and 13C resonances were measured relative to solvent peaks considering TMS =

0 ppm, whereas 29Si resonances were measured relative to external TMS. Elemental analyses

were done on a LECO CHNS-932. UV-visible absorption was measured with a Perkin-Elmer

Lambda 18 spectrophotometer. The spectra were recorded by measuring dilute samples in a

quartz cell with a path length of 1 cm. Compounds [GnX(S-NH2)m] (X = Si, n = 0, m = 4;1 X =

Si, n = 1, m = 8;2 X = O3, n = 1, m = 6;3 X = O3, n = 2, m = 123), NH2Gn(S-NMe2)m,4 PhtG3V84

were synthesized as previously published.5 All other compounds were obtained from commercial

sources and used as received but SiO2, which was dried at 120ºC for three days and store under

inert atmosphere.

S1.2. Synthesis of compounds.

[G0Si(S-NH2)3(Si(OEt)3)] (1). Dendrimer [G0Si(SNH3Cl)4] (0.766 g, 1.30 mmol) was

suspended in dry CH2Cl2 (50 ml) and excess NEt3 (5.20 mmol) was added to neutralize the

dendrimer. The suspension was stirred for 10 min and then slightly default of 3-(triethoxysilyl)-

propylisocyanate ((EtO)3Si(CH2)3NCO, 1.25 mmol) was also added. The reaction was stirred for

16 h, hexane (50 ml) was mixed with the solution and the solution was filtered. Volatiles were

removed under vacuum and the crude product was washed first with Et2O (25 ml), second with

hexane (25 ml) and finally dried under vacuum, leading to compound 1 as yellowish wax (yield

76%). This compound was used without further purification for grafting to silica. Data for 1

(C26H61N5O4S4Si2, Fw = 692.22 g/mol): NMR (DMSO-d6): 1H NMR: 0.58 (m, 2 H, OSiCH2),

0.95 (m, 8 H, SiCH2), 1.20 (m, 2 H, SiCH2CH2CH2N), 1.38 (m, 9 H, CH3CH2O), 2.62 (m, 8 H,

2

Page 3: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

SiCH2CH2S), 2.78 (m, 8 H, SCH2CH2N), 3.23 (m, 10 H, CH2NH2, SCH2CH2NHC(O),

NHC(O)NHCH2CH2CH2Si), 3.83 (m, 6 H, CH3CH2O); 13C{1H}NMR: 13.5 (SiCH2CH2S), 13.8

(OSiCH2), 18.6 (CH3CH2OSi), 25.1 (OSiCH2CH2CH2N), 26.9 (SiCH2CH2S), 36.2 (SCH2CH2N),

41.1 (SCH2CH2N), 45.6 (OSiCH2CH2CH2N), 58.3 (CH3CH2OSi), 158.3 (C=O). IR (KBr, cm-1):

3368 υ(N-H), 1636 υ(C=O).

[G1Si(S-NH2)7(Si(OEt)3)] (2). Following the procedure described for compound 1, [G1Si(S-

NH3Cl)8] (0.981 g; 0.66 mmol), (EtO)3Si(CH2)3NCO (0.159 ml; 0.65 mmol), and NEt3 (2.93 ml;

2.62 mmol) afforded compound 2 as yellowish wax (97% yield, 0.923 g). Data for 2: NMR

(DMSO-d6): 1H NMR: 0.01 (s, 12 H, SiMe), 0.64 (m, 8 H, SiCH2), 0.67 (m, 10 H, CH2Si), 0.85

(m, 16 H, SiCH2CH2S), 1.38 (m, 19 H, CH2CH2CH2 and CH3CH2O) 2.62 (m, 16 H, SiCH2CH2S),

2.77 (m, 16 H, SCH2CH2N), 3.08-3.18 (m, 18 H, SCH2CH2NH, SCH2CH2NC(O),

NC(O)NCH2CH2CH2Si), 3.55 (m, 6 H, CH3CH2O); 13C{1H} NMR: -5.7 (SiMe), 13.5 (SiCH2),

13.8 (OSiCH2), 16.4, 17.4 and 17.6 (CH2), 18.6 (CH3CH2), 25.1 (OSiCH2CH2CH2N), 26.9

(SiCH2CH2S), 36.2 (SCH2CH2N), 41.1 (CH2N), 45.6 (CH2N), 58.3 (CH3CH2O), 158.3 (C=O);

29Si NMR: 1.1 (G0–SiMe), 2.4 (G1–SiMe). IR (KBr, cm-1): 3367 υ(N-H), 1642 υ(C=O).

[G1O3(S-NH2)5(Si(OEt)3)] (3). Following the procedure described for compound 1, [G1O3(S-

NH3Cl)6] (0.277 g; 0.22 mmol), (EtO)3Si(CH2)3NCO (0.05 ml; 0.21 mmol), and NEt3 (0.73 ml;

0.88 mmol) afforded compound 3 as yellowish wax (97% yield, 0.275 g). Data for 3: NMR

(DMSO-d6): 1H NMR: 0.06 (s, 9 H, SiMe), 0.56 (m, 6 H OCH2CH2CH2CH2Si), 0.81 (m, 12 H,

SiCH2CH2S), 1.18 (t, 9 H, CH3CH2O), 1.38 (m, 6 H, OCH2CH2CH2CH2Si), 1.65 (m, 6 H,

OCH2CH2CH2CH2Si), 2.54 (m, 12 H, SiCH2CH2S), 2.76 (m, 12 H, SCH2CH2N), 3.00-3.10 (m,

14 H, SCH2CH2NH, SCH2CH2NC(O), NC(O)NCH2CH2CH2Si), 3,56 (m, 6 H OCH2), 3.71 (m, 6

H, CH3CH2O); 13C{1H} NMR: -5.7 (SiMe), 12.8 (OCH2CH2CH2CH2Si), 13.5 (SiCH2CH2S), 13.8

(OSiCH2), 18.6 (CH3CH2OSi), 19.5 (OCH2CH2CH2CH2Si), 25.1 (OSiCH2CH2CH2N), 27.0

(SiCH2CH2S), 32.1 (OCH2CH2CH2CH2Si), 36.2 (SCH2CH2N), 41.1 (SCH2CH2N), 45.6

(OSiCH2CH2CH2N), 58.3 (CH3CH2OSi), 66.8 (OCH2CH2CH2CH2Si), 93.1 (C6H3O3; C-H), 158.3

(C=O), 160.0 (C6H3O3; Cipso). IR (KBr, cm-1): 3374 υ(N-H), 1620 υ(C=O).

3

Page 4: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

[G2O3(S-NH2)11(Si(OEt)3)] (4). Following the procedure described for compound 1, [G2O3(S-

NH3Cl)12] (0.387 g; 0.15 mmol), (EtO)3Si(CH2)3NCO (0.035 ml; 0.15 mmol), and NEt3 (1.0 ml;

0.62 mmol) afforded compound 4 as yellowish wax (95% yield, 0.350 g). Data for 4: NMR

(DMSO-d6): 1H NMR: -0.07 (s, 9 H, SiMe), 0.02 (s, 18 H, SiMe), 0.58 (m, 30 H, CH2Si), 0.86

(m, 24 H, SiCH2CH2S), 1.18 (t, 9 H, CH3CH2O), 1.30 (m, 14 H, CH2CH2CH2), 1.65 (m, 6 H,

OCH2CH2CH2CH2Si), 2.62 (m, 24 H, SiCH2CH2S), 2.77 (m, 24 H, SCH2CH2N), 3.08-3.18 (m,

26 H, CH2NH), 3.75 (q, 6 H, CH3CH2O); 13C{1H} NMR: -5.7 and -5.4 (SiMe), 12.8

(OCH2CH2CH2CH2Si), 13.5 (SiCH2CH2S), 13.8 (OSiCH2CH2CH2N), 17.2–17.6 (CH2CH2CH2),

18.6 (CH3CH2OSi), 19.5 (OCH2CH2CH2), 25.1 (OSiCH2CH2CH2N), 27.0 (SiCH2CH2S), 32.1

(OCH2CH2CH2CH2Si), 36.2 (SCH2CH2N), 41.1 (SCH2CH2N), 45.6 (CH2N), 58.3 (CH3CH2OSi),

66.8 (OCH2), 93.1 (C6H3O3; C-H), 158.3 (C=O), 160.0 (C6H3O3; Cipso); 29Si NMR: 1.7 (G1–

SiMe), 2.4 (G2–SiMe). IR (KBr, cm-1): 3403 υ(N-H), 1616, υ(C=O).

[G0PAMAM(NH2)3(Si(OEt)3)] (5). Following the procedure described for compound 1,

[G0PAMAM(NH2)4] (1.00 g, 1.93 mmol), (EtO)3Si(CH2)3NCO (0.47 ml, 1.89 mmol), and NEt3

(0.27 ml, 1.93 mmol) afforded compound 5 as yellowish wax (95% yield, 1.449 g). Data for 5

NMR (DMSO-d6): 1H NMR: 0.58 (t, 2 H, CH2Si), 1.20 (t, 9 H, CH3CH2O), 2.36 (m, 8 H,

NCH2CH2C(O)NH), 2.51 (s, 4 H, NCH2CH2N), 2.64 (m, 6 H, C(O)NHCH2CH2NH2), 2.73 (m, 8

H, NCH2CH2C(O)NH), 3.10-3.16 (m, 10 H, C(O)NHCH2CH2NH2 and NC(O)NCH2CH2CH2Si),

3.78 (q, 6 H, CH3CH2O); 13C{1H} NMR: 13.8 (OSiCH2), 18.6 (CH3CH2OSi), 26.0

(OSiCH2CH2CH2N), 32.7 (NCH2CH2C(O)NH). 39.7 (C(O)NHCH2CH2NH2), 41.6

(C(O)NHCH2CH2NH2), 49.1 (NCH2CH2C(O)NH), 50.0 (NCH2CH2N), 58.5 (CH3CH2OSi), 160.0

(C=O), 174.9 (NHC(O)NH). IR (KBr, cm-1): 3403 υ(N-H), 1619, υ(C=O).

[G1PAMAM(NH2)7(Si(OEt)3)] (6). Following the procedure described for compound 1,

[G1PAMAM(NH2)8] (1.00 g; 0.70 mmol), (EtO)3Si(CH2)3NCO (0.16 ml; 0.65 mmol), and NEt3

(0.10 ml; 0.70 mmol) afforded compound 6 as yellowish wax (95% yield, 1.150 g). Data for 6

NMR (DMSO-d6): 1H NMR: 0.58 (t, 2 H, NC(O)NCH2CH2CH2Si), 1.20 (t, 9 H, CH3CH2O), 2.47

(m, 24 H, NCH2CH2C(O)NH), 2.56 (m, 12 H, NCH2CH2N and C(O)NHCH2CH2N), 2.77 (t, 38

4

Page 5: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

H, NCH2), 3.21 (m, 26 H, C(O)NHCH2), 3.78 (c, 6 H, CH3CH2O). 13C NMR: 13.8 (OSiCH2),

18.6 (CH3CH2OSi), 25.1 (OSiCH2CH2CH2N), 33.0 (NCH2CH2C(O)NH, G0), 33.2

(NCH2CH2C(O)NH, G1), 40.2 (C(O)NHCH2CH2NH2), 42.1 (C(O)NHCH2CH2NH2), 45.6

(OSiCH2CH2CH2N), 49.5 (NCH2CH2C(O)NH), 50.3 (NCH2CH2N), 51.6

(C(O)NHCH2CH2N),58.5 (CH3CH2OSi), 162.3 (C-O), 174.9 (C(O)NH, G0), 175.4 (C(O)NH,

G1). IR (KBr, cm-1): 3405 υ(N-H), 1623, υ(C=O).

[(EtO)3SiG1(S-NMe2)2] (7). A solution of neutral dendron NH2G1(S-NMe2)2 (0.363g; 1.47

mmol) and NEt3 (1.50 mmol) in dry CH2Cl2 (50 ml) was treated with slightly default of 3-(

triethoxysilyl)-propylisocyanate (1.39 mmol) and the reaction was stirred for 16 h. Aftewards,

hexane was added (50 ml), the solution was filtered and volatiles removed under vacuum. The

crude product was washed first with Et2O (25 ml), second with hexane (25 ml) and finally dried

under vacuum, leading to compound 2 as yellowish wax (yield 90%, 0.540 g). This compound

was used without further purification for grafting to silica. Data for 7: NMR (CDCl3): 1H NMR: -

0.09 (s, 3 H, SiMe), 0.43 (m, 4 H, CH2Si), 0.80 (m, 4 H, SiCH2CH2S), 1.21 (m, 13 H,

NCH2CH2CH2CH2Si, C(O)NHCH2CH2CH2Si and CH3CH2O), 1.38 (m, 2 H,

NCH2CH2CH2CH2Si), 2.14 (s, 12 H, NMe2), 2.48 (m, 4 H, SiCH2CH2S), 2.52 (m, 4 H,

SCH2CH2N), 2.57 (m, 4 H, CH2N), 3.18 (m, 4 H, CH2NH), 3.83 (m, 6 H, CH3CH2O); 13C{1H}

NMR: -5.5 (SiMe), 13.2 (CH2Si), 14.3 (SiCH2), 18.6 (CH3CH2OSi), 20.9 (NCH2CH2CH2CH2Si),

25.1 (OSiCH2CH2CH2N), 27.4 (SiCH2CH2S), 29.6 (SCH2CH2N), 36.8 (NCH2CH2CH2CH2Si),

45.2 (NMe2), 45.6 (OSiCH2CH2CH2N), 58.3 (CH3CH2OSi), 59.0 (SCH2CH2N), 158.3 (C=O); 29Si

NMR: δ 2.5 (G1–SiMe). IR (KBr, cm-1): 3374 υ(N-H), 1658 υ(C=O). Anal. Calcd.

C27H62N4O4S2Si2 (627.11 g/mol): C, 51.71; H, 9.97; N, 8.93; S, 10.23.

[(EtO)3SiG2(S-NMe2)4] (8). Following the procedure described for compound 7,

NH2G2(SNMe2)4 (0.372 g; 0.46 mmol), 3-( triethoxysilyl)-propylisocyanate (0.11 ml; 0.43 mmol)

and NEt3 (0.48 mmol) afforded 8 as as yellowish wax (yield 88%, 0.427 g). Data for 8: NMR

(CDCl3): 1H NMR: -0.10 (s, 3 H, SiMe), 0.00 (s, 6 H, SiMe), 0.54 (m, 12 H, SiCH2), 0.88 (m, 8

H, SiCH2CH2S), 1.22 (t, 9 H, CH3CH2O), 1.27 (m, 4 H, SiCH2CH2CH2Si), 1.39 (m, 2 H,

5

Page 6: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

NCH2CH2CH2CH2Si), 1.65 (m, 2 H, NCH2CH2CH2CH2Si), 2.24 (s, 24 H, NMe2), 2.48 (m, 8 H,

SCH2CH2N), 2.52 (m, 8 H, SiCH2CH2S), 2.57 (m, 8 H, SCH2CH2N), 2.65 (m, 2 H,

NCH2CH2CH2CH2Si), 3.08-3.18 (m, 18 H, CH2NH). 3.83 (m, 6 H, CH3CH2O); 13C{1H} NMR: -

5.2 (SiMe), 13.7 (CH2Si), 13.8 (OSiCH2), 14.6 (SiCH2CH2S), 18.3–18.6 (SiCH2 and

CH3CH2OSi), 21.2 (NCH2CH2CH2CH2Si), 25.1 (OSiCH2CH2CH2N), 27.7 (SiCH2CH2S), 29.6

(SCH2CH2N), 37.8 (NCH2CH2CH2CH2Si), 41.9 (NCH2), 45.3 (NMe2), 45.6 (CH2N), 58.3

(CH3CH2OSi), 59.1 (SCH2CH2N), 158.3 (C-O); 29Si NMR: 2.1 (G2–SiMe), 1.8 (G1–SiMe).

MALDI: [M+H]+ = 1063.0 uma, [M+2H]2+ = 532 uma. IR (KBr, cm-1): 3374 υ(N-H), 1660

υ(C=O). Anal. Calcd. C47H108N6O4S4Si4 (1062.00 g/mol): C, 53.15; H, 10.25; N, 7.91; S, 12.08.

Obt.: C, 53.33; H, 10.56; N, 7.84; S, 12.01.

[(EtO)3SiG3(S-NMe2)8] (9). Following the procedure described for compound 7,

NH2G3(SNMe2)8 (0.480 g; 0.28 mmol), 3-(triethoxysilyl)-propylisocyanate (0.070 ml; 0.26

mmol) and NEt3 (0.29 mmol) afforded 9 as yellowish wax (yield 91%, 0.500 g). Data for 9:

NMR (CDCl3): 1H NMR: -0.13 (s, 9 H, SiMe), -0.04 (s, 9 H, SiMe), 0.46 (m, 24 H, SiCH2), 0.54

(m, 4 H, NCH2CH2CH2CH2Si and SiCH2CH2CH2NC(O)N)), 0.83 (m, 16 H, SiCH2CH2S), 1.23

(m, 21 H, SiCH2CH2CH2Si and CH3CH2O), 1.40 (m, 2 H, NCH2CH2CH2CH2Si), 1.65 (m, 2 H,

NCH2CH2CH2CH2Si), 2.19 (s, 48 H, NMe2), 2.42 (m, 16 H, SiCH2CH2S), 2.49 (m, 16 H,

SCH2CH2N), 2.57 (m, 16 H, SCH2CH2N), 2.65 (m, 2 H, NCH2CH2CH2CH2Si), 3.08-3.18 (m, 18

H, CH2NH). 3.83 (m, 6 H, CH3CH2O); 13C{1H} NMR: -5.4 and -5.1 (SiMe), 13.7 (CH2Si), 13.8

(OSiCH2), 14.5 (SiCH2CH2S), 18.2–18.8 (CH2 and CH3CH2OSi), 21.2 (NCH2CH2CH2CH2Si),

25.1 (OSiCH2CH2CH2N), 27.6 (SiCH2CH2S), 29.7 (SCH2CH2N), 37.8 (NCH2CH2CH2CH2Si),

41.9 (NCH2CH2CH2CH2Si), 45.3 (NMe2), 45.6 (CH2N), 58.3 (CH3CH2OSi), 59.2 (SCH2CH2N),

158.3 (C-O); 29Si NMR: 2.1 (G3–SiMe), 0.9 (G2–SiMe). IR (KBr, cm-1): 3374 υ(N-H), 1662

υ(C=O). Anal. Calcd. C87H200N10O4S8Si8 (1931.79 g/mol): C, 54.09; H, 10.44; N, 7.25; S, 13.28.

Anal. Exp.: C, 54.34; H, 10.76; N, 7.35; S, 13.11.

[(EtO)3SiG1(S-NMe3I)2] (10). To a solution of neutral dendron 7 (0.157 g; 0.25 mmol) in dry

THF (50 ml) excess MeI was added (0.30 mmol). The reaction was stirred for 16 h. Afterwards,

6

Page 7: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

volatiles were removed under vacuum and the crude product was washed with Et2O (2 x 25 ml)

and dried under vacuum, leading to compound 10 as yellowish solid (yield 76%, 0.164 g). Data

for 10: NMR (DMSO-d6): 1H NMR: -0.07 (s, 3 H, SiMe), 0.60 (m, 4 H, CH2Si), 0.90 (m, 4 H,

SiCH2CH2S), 1.22 (m, 9 H, CH3CH2O), 1.33 (m, 4 H, NCH2CH2CH2CH2Si and

OSiCH2CH2CH2NH), 1.56 (m, 2 H, NCH2CH2CH2CH2Si), 2.67 (m, 4 H, SiCH2CH2S), 2.92 (m, 4

H, SCH2CH2N), 3.14 (s, 18 H, NMe3+), 3.18 (m, 4 H, CH2NHC(O)), 3.58 (t, 4 H, SCH2CH2N),

3.83 (m, 6 H, CH3CH2O); 13C{1H} NMR: -5.7 (SiMe), 12.3 (NCH2CH2CH2CH2Si), 13.5

(SiCH2CH2S), 13.8 (OSiCH2CH2CH2N), 18.6 (CH3CH2OSi), 19.8 (NCH2CH2CH2CH2Si), 23.1

(SCH2CH2N), 25.1 (OSiCH2CH2CH2N), 26.3 (SiCH2CH2S), 30.3 (NCH2CH2CH2CH2Si), 38.5

(NCH2CH2CH2CH2Si), 45.6 (OSiCH2CH2CH2N), 51.7 (NMe3+), 58.3 (CH3CH2OSi), 63.9

(SCH2CH2N), 158.3 (C=O). Anal. Calcd. C29H68I2N4O4S2Si2 (910.98 g/mol): ESI: q = 1 (783.33

[M-I]+), q = 2 (328.01 [M-2I]2+). IR (KBr, cm-1): 3354 υ(N-H), 1632 υ(C=O).

[(EtO)3SiG2(S-NMe3I)4] (11). Following the procedure described for compound 10, neutral

dendron 8 (0.485 g; 0.46 mmol) and MeI (0.139 ml; 0.55 mmol) led to compound 11 as

yellowish solid (yield 86%, 0.450 g). Data for 11: NMR (DMSO-d6): 1H NMR: -0.07 (s, 3 H,

SiMe), 0.04 (s, 6 H, SiMe), 0.57 (m, 12 H, SiCH2), 0.86 (m, 8 H, SiCH2CH2S), 1.22 (t, 9 H,

CH3CH2O), 1.29 (m, 6 H, SiCH2CH2), 1.52 (m, 2 H, NCH2CH2CH2CH2Si), 2.64 (m, 8 H,

SiCH2CH2S), 2.78 (m, 2 H, NCH2CH2CH2CH2Si), 2.90 (m, 8 H, SCH2CH2N), 3.10 (s, 36 H,

NMe3+), 3.15 (m, 4 H, CH2NC(O)), 3.54 (m, 8 H, SCH2CH2N), 3.83 (m, 6 H, CH3CH2O);

13C{1H} NMR: -5.6 (SiMe), -4.4 (SiMe), 12.7 (CH2Si), 13.6 (SiCH2CH2S), 13.8 (OSiCH2), 17.2,

17.4 and 17.5 (CH2), 18.6 (CH3CH2OSi), 20.0 (NCH2CH2CH2CH2Si), 23.1 (SCH2CH2N), 25.1

(OSiCH2CH2CH2N), 26.4 (SiCH2CH2S), 30.4 (NCH2CH2CH2CH2Si), 38.4

(NCH2CH2CH2CH2Si), 45.6 (CH2N), 51.7 (NMe3+), 58.3 (CH3CH2OSi), 63.9 (SCH2CH2N), 158.3

(C-O); 29Si NMR: 2.5 (G2–SiMe). ESI: q = 1 (1501.45 [M-I]+), q = 2 (687.27 [M-2I]2+), q = 3

(415.88 [M-3I]3+). IR (KBr, cm-1): 3370 υ(N-H), 1635 υ(C=O). Anal. Calcd. C51H120I4N6O4S4Si4

(1629.75g/mol): C, 37.59; H, 7.42; N, 5.16; S, 7.87. Obt.: C, 37.43; H, 7.31; N, 5.08; S, 7.94.

7

Page 8: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

[(EtO)3SiG3(S-NMe3I)8] (12). Following the procedure described for compound 10, neutral

dendron 9 (0.59 g; 0.30 mmol) and MeI (0.16 ml; 2.57 mmol) led to compound 12 as yellowish

solid (yield 83%, 0.510 g). Data for 12: NMR (DMSO-d6): 1H NMR: -0.08 (s, 9 H, SiMe), 0.05

(s, 12 H, SiMe), 0.53 (m, 28 H, SiCH2), 0.86 (m, 16 H, SiCH2CH2S), 1.29 (m, 14 H,

CH2CH2CH2), 2.64 (m, 16 H, SiCH2CH2S), 2.91 (m, 16 H, SCH2CH2N), 3.13 (s, 72 H, NMe3+),

3.56 (m, 16 H, SCH2CH2N), 3.83 (m, 6 H, CH3CH2O); 13C{1H} NMR: -5.3 (SiMe), -4.3 (SiMe),

12.8 (CH2Si), 13.7 (SiCH2CH2S), 13.9 (OSiCH2), 16.9-17.6 (CH2), 18.6 (CH3CH2OSi) 20.1

(NCH2CH2CH2CH2Si), 23.2 (SCH2CH2N), 25.1 (CH2CH2CH2N), 26.4 (SiCH2CH2S), 30.4

(NCH2CH2CH2CH2Si), 38.4 (NCH2CH2CH2CH2Si), 45.6 (CH2N), 51.7 (NMe3+), 58.3

(CH3CH2OSi), 63.9 (SCH2CH2N), 158.3 (C-O); 29Si NMR: 1.0 (G2-SiMe), 2.5 (G3–SiMe). ESI:

q = 2 (1405.39 [M-2I]2+), q = 3 (810.02 [M-3I]3+), q = 4 (575.79 [M-4I]4+). IR (KBr, cm-1): 3374

υ(N-H), 1662 υ(C=O). Anal. Calcd. C95H224I8N10O4S8Si8 (3067.30 g/mol): C, 37.20; H, 7.36; N,

4.57; S, 8.36. Obt.: C, 37.16; H, 7.45; N, 4.32; S, 8.67.

PhtG3(S-NHBoc)8 (13). To a mixture of vinyl dendron PhtG3V8 (0.217 g, 0.22 mmol) and 2-

(Boc-amino)ethanethiol (0.358 g, 1.94 mmol) in THF/MeOH (9 ml, 1:2), DMPA (2,2-

dimethoxy-2-phenylacetophenone) was added (0.02 g, 0.09 mmol, 2.5% with respect to total

number of vinyl groups). The mixture was bubbled with Ar and stirred under UV irradiation for

1.5 h. Then, again the same amount of DMPA was added (0.02 g, 0.09 mmol), the suspension

was bubbled with Ar and stirred for other 1.5 h. Afterwards, volatiles were removed under

vacuum and crude product was purified by size exclusion chromatography (acetone as eluent).

Compound 13 was obtained as white solid (71% yield, 0.378 g). Data for 13: NMR (CDCl3): -

0.13 (s, 9 H, SiMe), -0.04 (s, 12 H, SiMe), 0.46 (m, 24 H, SiCH2CH2CH2Si), 0.62 (m, 2 H,

NCH2CH2CH2CH2Si), 0.83 (m, 16 H, SiCH2CH2S), 1.23 (m, 14 H, SiCH2CH2CH2Si and

NCH2CH2CH2CH2Si), 1.38 (s, 72 H, CMe3), 1.66 (m, 2 H, NCH2CH2CH2CH2Si), 2.55 (m, 16 H,

SiCH2CH2S), 2.62 (m, 16 H, SCH2CH2N), 3.26 (m, 16 H, SCH2CH2N), 3.63 (t, 2 H,

NCH2CH2CH2CH2Si), 5.17 (s, 8 H, NH), 7.64 (m, 2 H, Pht), 7.82 (m, 2 H, Pht). 13C{1H} NMR: -

5.4 and -5.1 (SiMe), 14.5 (SiCH2CH2S), 18.2–18.8 (CH2), 27.0 (SiCH2CH2S), 28.2 (CMe3), 31.9

8

Page 9: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

(SCH2CH2N), 39.6 (SCH2CH2N), 78.9 (CMe3), 123.0 (C-H. Pht), 132.1 (Cipso, Pht), 133.9 (C-H,

Pht), 155.4 (C=O, Boc), 167.9 (C=O, Pht). 29Si NMR: 2.1 (G3–SiMe), 0.9 (G2–SiMe). ESI: q =

1 (2389.22 [M+H]+). Anal. Calcd. C109H213N9O18S8Si7 (2391.03 g/mol): C, 54.75; H, 8.98; N,

5.27; S, 10.73. Obt.: C, 54.83; H, 9.05; N, 5.38; S, 10.82.

NH2G3(S-NHBoc)8 (14). Compound PthG3(S-NHBoc)8 (13) (0.378 g, 0.16 mmol) and excess

hydrazine (0.10 ml, 1.58 mmol) were heated in a teflon valved ampoule at 80ºC for 4 d, using

MeOH as solvent (30 ml). Afterwards volatiles were removed under vacuum and Et2O/NH4Cl

(aq) extraction was done. The organic phase was dried with MgSO4 and volatiles were removed

under vacuum, yielding 14 as yellowish wax (83%, 0.26 g). Data for 14: NMR (CDCl3): 1H

NMR: -0.13 (s, 9 H, SiMe), -0.04 (s, 12 H, SiMe), 0.46 (m, 24 H, SiCH2CH2CH2Si) 0.62 (m, 2H,

NCH2CH2CH2CH2Si), 0.83 (m, 16 H, SiCH2CH2S), 1.23 (m, 14 H, SiCH2CH2CH2Si and

NCH2CH2CH2CH2Si), 1.38 (s, 72 H, CMe3), 1.66 (m, 2 H, NCH2CH2CH2CH2Si), 2.55 (m, 16 H,

SiCH2CH2S), 2.62 (m, 16 H, SCH2CH2N), 3.26 (m, 16 H, SCH2CH2N), 3.43 (t, 2 H,

NCH2CH2CH2CH2Si), 5.17 (s, 8 H, NHC(O)O); 13C{1H} NMR: -5.4 and -5.1 (SiMe), 14.5

(SiCH2CH2S), 18.2–18.8 (CH2), 27.0 (SiCH2CH2S), 28.2 (CMe3), 31.9 (SCH2CH2N), 39.6

(SCH2CH2N), 79.0 (CMe3), 155.5 (C=O); 29Si NMR: 2.1 (G3–SiMe), 0.9 (G2–SiMe). ESI: q = 1

(2259.21 [M+H]+). Anal. Calcd. C101H211N9O16S8Si7 (2260.93 g/mol): C, 53.65; H, 9.41; N, 5.58;

S, 11.35. Obt.: C, 53.49; H, 9.47; N, 5.72; S, 11.21.

(EtO)3SiG3(S-NHBoc)8 (15). Following the procedure described for compound 7, NH2G3(S-

NHBoc)8 (14) (0.2897 g; 0.13 mmol), 3-(triethoxysilyl)-propylisocyanate (0.031 ml; 0.11 mmol)

and NEt3 (0.16 mmol) afforded 15 as yellowish wax (98%, 0.315 g). Data for 15: NMR (CDCl3):

1H NMR: -0.13 (s, 9 H, SiMe), -0.04 (s, 12 H, SiMe), 0.46 (m, 26 H, SiCH2), 0.83 (m, 16 H,

SiCH2CH2S), 1.23 (m, 21 H, SiCH2CH2CH2Si and CH3CH2O), 1.38 (s, 76 H, Boc CH3C,

SiCH2CH2CH2NC(O)N and NCH2CH2CH2CH2Si), 2.42 (m, 16 H, SiCH2CH2S), 2.49 (m, 16 H,

SCH2CH2N), 3.18 (m, 16 H, SCH2CH2N), 3.38 (m, 6 H, CH3CH2O), 5.17 (s, 10 H, NH and

NHC(O)O); 13C{1H} NMR: -5.4 and -5.1 (SiMe), 7.9 (SiCH2CH2CH2N), 14.5 (SiCH2CH2S),

18.2–18.8 (CH2 and CH3CH2O), 25.1 (SiCH2CH2CH2N), 27.0 (SiCH2CH2S), 28.2 (Boc(CH3)),

9

Page 10: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

31.9 (SCH2CH2N), 39.6 (SCH2CH2N), 45.7 (SiCH2CH2CH2N), 58.2 (CH3CH2O), 78.9 (CH3C),

155.4 (C=O); 29Si NMR: 2.1 (G3–SiMe), 0.9 (G2–SiMe). FTIR (KBr, cm-1): 1661 υ(C=O). Anal.

Calcd. (%) (C111H232N10O20S8Si8, 2508.29 g/mol): C, 53.15; H, 9.32; N, 5.58; S, 10.23. Obt.: C,

53.15; H, 9.32; N, 5.58; S, 10.23.

[(EtO)3Si(CH2)2S(CH2)2NH3Cl] (16). Following the procedure described for 17,

vinyltriethoxysilane (0.98 ml; 4.6 mmol), cysteamine hydrochloride (0.55 g; 1.9 mmol) and

DMPA (0.06 g; 0.2 mmol) afforded 16 as yellowish solid. This compound was used for silica

grafting without further purification, since excess thiol and DMPA were easily removed from the

material. Data for 16: NMR (CDCl3): 1H NMR: 0.91 (t, 2 H, SiCH2CH2S), 1.18 (m, 9 H,

CH3CH2O), 2.69 (t, 2 H, SCH2CH2N), 2.96 (t, 2H, SiCH2CH2S), 3.41 (t, 2 H, SCH2CH2N), 3,78

(c, 6 H, CH3CH2O); 13C{1H} NMR: 11.8 (SiCH2CH2S), 18.5 (CH3CH2O), 25.3 (SCH2CH2N),

27.3 (SiCH2CH2S), 42.4 (NMe2H), 39.9 (SCH2CH2N), 58.6 (CH3CH2O).

[(EtO)3Si(CH2)2S(CH2)2NMe2HCl] (17). Vinyltriethoxysilane ((EtO)3SiV, 3 ml, 13.90

mmol) was solved in THF and a EtOH suspension of 2-(dimethylamino)ethilenethiol

hydrochloride (2.117 g, 14.9 mmol) and DMPA (0.182 g, 0.70 mmol, 2.5% with respect to total

number of vinyl groups) was added. The suspension was bubbled with Ar and stirred under UV

irradiation for 2 h. Then, again DMPA (0.182 g, 0.70 mmol, 2.5% with respect to total number

of vinyl groups) was added, the suspension bubbled with Ar and stirred under UV irradiation for

another 2 h. Afterwards the volatiles were removed under vacuum leading to 17 as yellowish

solid. This compound was used for silica grafting without further purification, since excess thiol

and DMPA were easily removed from the material. Data for 17: NMR (CDCl3): 1H NMR: 0.91

(t, 2 H, SiCH2CH2S), 1.18 (t, 9 H, CH3CH2O), 2.69 (t, 2 H, SCH2CH2N), 2.83 (s, 6 H, NMe2H),

2.96 (t, 2 H, SiCH2CH2S), 3.16 (t, 2 H, SCH2CH2N), 3.78 (q, 6 H, CH3CH2O); 13C{1H} NMR:

1.8 (SiCH2CH2S), 18.5 (CH3CH2O), 25.3 (SCH2CH2N), 27.3 (SiCH2CH2S), 42.4 (NMe2H), 57.3

(SCH2CH2N), 58.6 (CH3CH2O).

(EtO)3Si(CH2)2S(CH2)2NMe2 (18). Compound 17 (0.600 g; 1.81 mmol) was solved in

CH2Cl2, NEt3 was added (1.01 ml; 7.24 mmol) and the mixture was stirred for 30 min.

10

Page 11: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Afterwards volatiles were removed under vacuum and compound 18 was extracted with Et2O,

which after evaporation yielded 18 as pale yellow oil. This compound was used for silica

grafting without further purification, since any impurity is easily removed from the material.

Data for 18: NMR (CDCl3): 1H NMR: 0.91 (t, 2 H, SiCH2CH2S), 1.18 (t, 9 H, CH3CH2O), 2.23

(s, 6 H, NMe2), 2.52 (t, 2 H, SiCH2CH2S), 2.64 (t, 4 H, SCH2CH2N and SCH2CH2N), 3.78 (q, 6

H, CH3CH2O); 13C{1H} NMR: 12.3 (SiCH2CH2S), 18.5 (CH3CH2O), 26.5 (SiCH2CH2S), 29.8

(SCH2CH2N), 45.3 (NMe2), 58.8 (SCH2CH2N), 59.1 (CH3CH2O).

[(EtO)3Si(CH2)2S(CH2)2NMe3I] (19). Following the procedure described for compound 10,

neutral model 18 (0.534 g; 1.81mmol) and MeI (0.143 ml; 2.26 mmol) led to compound 19 as

yellowish solid (86%, 0.681 g). Data for 19: NMR (DMSO-d6): 1H NMR: 0.91 (t, 2 H,

SiCH2CH2S), 1.22 (t, 9 H, CH3CH2O), 2.68 (t, 2 H, SiCH2CH2S), 2.94 (t, 4 H, SCH2CH2N), 3.48

(s, 9 H, NMe3), 3,89 (c, 6 H, CH3CH2O); 13C{1H} NMR: 12.3 (SiCH2CH2S), 18.5 (CH3CH2O),

25.1 (SCH2CH2N), 27.5 (SiCH2CH2S), 55.7 (NMe3), 58.8 (SCH2CH2N), 66.1 (CH3CH2O). Anal.

Calcd. C13H32INO3SSi (437.45 g/mol): C, 35.69; H, 7.37; N, 3.20; S, 7.33. Obt.: C, 35.39; H,

7.61; N, 3.11; S, 7.53.

Pht(CH2)9CH=CH2 (20). In a teflon-valved ampoule 11-bromo-1-undecene (0.4 ml, 1.72

mmol), excess KPht (1.28 g, 6.90 mmol) and catalytic amounts of NaI were stirred in DMF (60

ml) at 90ºC for 16 h. Then, volatiles are removed under vacuum and CHCl3/H2O extraction was

done. The organic phase was dried with MgSO4 and after drying 20 was obtained as pale yellow

oil. The compound was not pure but was used as it for further modification. Data for 20: NMR

(CDCl3): 1H NMR: 1.28 (m, 12 H, PhtCH2CH2(CH2)6CH2CH=CH2), 1.62 (m, 2 H,

PhtCH2CH2(CH2)6CH2CH=CH2), 2.01 (m, 2 H, PhtCH2CH2(CH2)6CH2CH=CH2), 3.65 (m, 2 H,

PhtCH2CH2(CH2)6CH2CH=CH2), 4.91 y 5.81 (m, 3 H, PhtCH2CH2(CH2)6CH2CH=CH2), 7.84 (m,

4 H, C6H4); 13C{1H} NMR: 26.8 (PhtCH2CH2CH2), 29.1 ((CH2)6CH=CH2), 33.8 (PhtCH2CH2),

38.1 (PhtCH2), 114.0 (CH=CH2), 123.6 (Pht), 134.3 (Pht), 139.3 (CH=CH2).

NH2(CH2)11S(CH2)2NMe2 (22). Reaction of 20 (0.5459 g, 1.82 mmol) with 2-

(dimethylamino)ethilenethiol hydrochloride (0.258 g, 1.82 mmol) and DMPA (0.0233 g, 0.091

11

Page 12: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

mmol) was done following the procedure described for 17. This procedure led to

[Pht(CH2)11S(CH2)2NMe2HCl] (21) as yellowish wax. Data for 21: NMR (MeOH-d4): 1H NMR:

1.38 (m, 14 H, (CH2)7CH2S), 1.69 (m, 4 H, PhtCH2CH2CH2), 2.63 (m, 2 H, CH2S), 2.94 (m, 8 H,

NMe2H+), 3.98 (m, 2 H, CH2N), 3.71 (t, 2 H, PhtCH2), 7.84 (m, 4 H, Pht); 13C{1H} NMR: 25.4

(SCH2CH2N), 26.8 (CH2), 27.7 (CH2S), 29.1 ((CH2)6CH2CH2S), 33.8 (PhtCH2CH2), 38.1

(PhtCH2), 42.9 (-NMe2H+), 57.3 (SCH2CH2N), 123.6 (Pht), 134.3 (Pht). ESI: q = 1 (405.26 [M-

Cl-]+ ).

Next, compound 21 (0.4813 g, 1.09 mmol) was treated with excess hydrazine (0.407 ml, 6.54

mmol) and heated in DMF at 80ºC for 16 h into a teflon-valved ampoule. Afterwards, volatiles

were removed under vacuum and remaining wax was chromatographed with Diaion HP-20 using

MeOH with NEt3 (1%) to obtain 22 as yellowish wax (53 %, 0.159 g). Data for 22: NMR

(MeOH-d4): 1H NMR: 1.35 (m, 14 H, (CH2)7CH2S), 1.59 (m, 2 H, NH2CH2CH2CH2), 1.61 (m, 2

H, NH2CH2CH2), 2.28 (s, 6 H, NMe2), 2.57 (t, 2 H, CH2N), 2.63 (m, 6 H, NH2CH2 and SCH2);

13C{1H} NMR: 26.8 (NH2CH2CH2CH2), 27.7 (CH2S), 29.1 (CH2), 29.6 (SCH2CH2N), 36.8

(NH2CH2CH2), 41.9 (NH2CH2), 45.2 (NMe2), 59.1 (SCH2CH2N). ESI: q = 1 (275.24 [M+H]+).

Anal. Calcd. (%) (C15H34N2S, 274.51 g/mol): C, 65.63; H, 12.48; N, 10.20; S, 11.68. Obt.: C,

64.98; H, 12.91; N, 10.42; S, 11.04.

[(EtO)3Si(CH2)3NHC(O)NH(CH2)11S(CH2)2NMe3I] (24). Following the procedure

described for compound 7, compound 22 (0.300 g; 1.1 mmol), 3-(triethoxysilyl)-

propylisocyanate (0.95% mol) and NEt3 (1.2 mmol) led to

[(EtO)3Si(CH2)3NHC(O)NH(CH2)11S(CH2)2NMe2] (23) as yellowish wax (end of reaction was

checked by IR). Then, without purification and following procedure described for 10, MeI was

added (0.8 ml; 1.3 mmol) to give 24 as yellowish wax (98 %, 0.731 g). Data for 24: NMR

(DMSO-d6): 1H NMR: 0.55 (m, 2 H, SiCH2CH2CH2NC(O)N), 1.13 (m, 9 H, CH3CH2O), 1.16 (m,

12 H, (CH2)6CH2CH2S), 1.21 (m, 2 H, CH2(CH2)7CH2S), 1.51 (m, 6 H, CH2CH2(CH2)6,

(CH2)6CH2CH2S, SiCH2CH2CH2NC(O)N), 2.58 (t, 2 H, CH2S), 2.85 (t, 6 H, SCH2CH2N), 3.02 (t,

4 H, CH2NH), 3.12 (s, 9 H, NMe3), 3.53 (m, 2 H, CH2NMe3+), 3.76 (c, 6 H, CH3CH2O); 13C{1H}

12

Page 13: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

NMR: 13.8 (OSiCH2), 18.6 (CH3CH2O), 23.1 (SCH2CH2N), 25.1 (OSiCH2CH2), 26.8

(CH2(CH2)6), 27.7 (CH2CH2S), 29.1 (CH2)), 36.8 (CH2S), 40.2 (NC(O)NCH2), 45.6 (CH2N), 51.7

(NMe3+), 58.3 (CH2O), 63.9 (SCH2CH2N), 158.3 (C-O). IR (KBr, cm-1): 3376 υ(N-H), 1669

υ(C=O).

1-SiO2. Compound 1 (1.086 g; 1.30 mmol) was solved in DMF (126 ml, 250 ml DMF/1g

compound) and SiO2 was added (0.480 g, 30 g SiO2/0.232 g per amine group). The mixture was

stirred at 80ºC for 72 h. Next, solution wa filtered off and remaining solid was washed with

MeCN, Et2O and n-hexane (three times with 40 ml for each solvent). The yellowish powder was

dried under vacuum to give 1-SiO2 (0.581 g). IR (cm-1): 3402 ( SiO-H, br), 3000-2800 ( C-H),

1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-O-C), 797 (δ

Si-O-Si).

2-SiO2. Following the procedure described for 1-SiO2, compound 2 (1.143 g; 0.657 mmol),

SiO2 (0.594 g) and DMF (148 ml) led to 2-SiO2 (0.802 g). IR (cm-1): 3402 ( SiO-H, br), 3000-

2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-

O-C), 797 (δ Si-O-Si).

3-SiO2. Following the procedure described for 1-SiO2, compound 3 (0.331 g; 0.219 mmol),

SiO2 (0.137 g) and DMF (34 ml) led to 3-SiO2 (0.289 g). IR (cm-1): 3402 ( SiO-H, br), 3000-

2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-

O-C), 797 (δ Si-O-Si).

4-SiO2. Following the procedure described for 1-SiO2, compound 4 (0.360 g; 0.15 mmol),

SiO2 (0.210 g) and DMF (53 ml) led to 4-SiO2 (0.212 g). IR (cm-1): 3402 ( SiO-H, br), 3000-

2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-

O-C), 797 (δ Si-O-Si).

5-SiO2. Following the procedure described for 1-SiO2, compound 5 (1.158 g; 1.51 mmol),

SiO2 (0.751 g) and DMF (150 ml) led to 5-SiO2 (0.842 g). IR (cm-1): 3402 ( SiO-H, br), 3000-

2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-

O-C), 797 (δ Si-O-Si).

13

Page 14: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

6-SiO2. Following the procedure described for 1-SiO2, compound 6 (1.112 g; 0.663 mmol),

SiO2 (0.600 g) and DMF (135 ml) led to 6-SiO2 (0.661 g). IR (cm-1): 3402 ( SiO-H, br), 3000-

2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-

O-C), 797 (δ Si-O-Si).

7-SiO2. Following the procedure described for 1-SiO2, compound 7 (0.307 g; 0.49 mmol),

SiO2 (0.120 g) and DMF (30 ml) led to 7-SiO2 (0.090 g). IR (cm-1): 3402 ( SiO-H, br), 3000-

2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-

O-C), 797 (δ Si-O-Si).

8-SiO2. Following the procedure described for 1-SiO2, compound 8 (0.474 g;0.45 mmol),

SiO2 (0.231 g) and DMF (58 ml) led to 8-SiO2 (0.271 g). IR (cm-1): 3402 ( SiO-H, br), 3000-

2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-

O-C), 797 (δ Si-O-Si).

9-SiO2. Following the procedure described for 1-SiO2, compound 9 (0.198 g; 0.10 mmol),

SiO2 (0.106 g) and DMF (27 ml) led to 9-SiO2 (0.144 g). IR (cm-1): 3402 ( SiO-H, br), 3000-

2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-

O-C), 797 (δ Si-O-Si).

10-SiO2. Following the procedure described for 1-SiO2, compound 10 (0.707 g; 0.78 mmol),

SiO2 (0.201 g) and DMF (50 ml) led to 10-SiO2 (0.200 g). IR (cm-1): 3402 ( SiO-H, br), 3000-

2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-

O-C), 797 (δ Si-O-Si).

11-SiO2. Following the procedure described for 1-SiO2, compound 11 (0.220 g, 0.135 mmol),

SiO2 (0.070 g) and DMF (18 ml) led to 11-SiO2 (0.076 g). IR (cm-1): 3402 ( SiO-H, br), 3000-

2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-

O-C), 797 (δ Si-O-Si).

12-SiO2. Following the procedure described for 1-SiO2, compound 12 (0.376 g; 0.122 mmol),

SiO2 (0.127 g) and DMF (30 ml) led to 12-SiO2 (0.114 g). IR (cm-1): 3402 ( SiO-H, banda

14

Page 15: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

ancha), 3000-2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-

Si and as Si-O-C), 797 (δ Si-O-Si).

15Boc-SiO2. Following the procedure described for 1-SiO2, compound 15Boc (0.321 g;

0.128 mmol), SiO2 (0.133 g) and DMF (33 ml) led to 15Boc-SiO2 (0.138 g). IR (cm-1): 3402 (

SiO-H, br), 3000-2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 (

Si-O-Si and as Si-O-C), 797 (δ Si-O-Si).

15-SiO2. In a schlenck flask, 7.49 ml of TFA were added over 0.075 g of 15Boc-SiO2 and the

suspension was stirred for 24 h. The material was washed by centrifugation with water (three

times) and MeOH (once) and dry under vacuum (Z potential: -23±1.2 mV). Over this material a

NaCl saturated water solution was added, the suspension was stirred for 10 min and then

centrifuged to remove water. This process was repeated three times. Afterwards, the material

was washed with distilled water and centrifuged (three times) and then was washed with MeOH.

Finally, 15-SiO2 was dried under vacuum (yield 76%). IR (cm-1): 3402 ( SiO-H, br), 3000-2800

( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( ( Si-O-Si and as Si-O-

C), 797 (δ Si-O-Si).

16-SiO2-a. Following the procedure described for 1-SiO2, compound 16 (1.903 g; 7.11

mmol), SiO2 (0.920 g) and DMF (230 ml) led to 16-SiO2-a (1.344 g). IR (cm-1): 3402 ( SiO-H,

br), 3000-2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1094 ( Si-O-Si

and as Si-O-C), 797 (δ Si-O-Si).

16-SiO2-b. Following the procedure described for 1-SiO2, compound 16 (1.240 g; 4.64

mmol), SiO2 (0.300 g) and DMF (75 ml) led to 16-SiO2-b (0.6153 g). IR (cm-1): 3403 ( SiO-H,

br), 3000-2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si

and as Si-O-C), 798 (δ Si-O-Si).

18-SiO2-a. Following the procedure described for 1-SiO2, compound 18 (0.880 g; 2.98

mmol), SiO2 (0.385 g) and DMF (93 ml) led to 18-SiO2-a (0.312 g). IR (cm-1): 3403 ( SiO-H,

br), 3000-2800 ( C-H), 1669 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1096 ( Si-O-Si

and as Si-O-C), 795 (δ Si-O-Si).

15

Page 16: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

18-SiO2-b. 18-SiO2-a (0.021 g) were suspended in MeCN (2.5 ml) and MeI was added (7.19

µl, 0.12 mmol). The reaction was heated with stirring at 60ºC for 3 days. Afterwards, solution

was filtered off, the remaining solid was washed with MeCN (three times) and then with n-

hexane (once). After drying under vacuum, compound 18-SiO2-b was obtained (yield 85%,

0.101 g). IR (cm-1): 3402 ( SiO-H, br), 3000-2800 ( C-H), 1668 ( δSi-O), 1575-1384 (δ C-H,

δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-O-C), 797 (δ Si-O-Si).

19-SiO2. Following the procedure described for 1-SiO2, compound 19 (0.678 g; 1.55 mmol),

SiO2 (0.200 g) and DMF (50 ml) led to 19-SiO2 (0.171 g). IR (cm-1): 3400 ( SiO-H, br), 3000-

2800 ( C-H), 1672 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1095 ( Si-O-Si and as Si-

O-C), 798 (δ Si-O-Si).

24-SiO2. Following the procedure described for 1-SiO2, compound 24 (0.970 g; 1.43 mmol),

SiO2 (0.622 g) and DMF (150 ml) led to 24-SiO2 (0.653 g). IR (cm-1): 3399 ( SiO-H, br), 3000-

2800 ( C-H), 1668 ( Si-O), 1575-1384 (δ C-H, δ C-C and δ C-N), 1096 ( Si-O-Si and as Si-

O-C), 79 (δ Si-O-Si).

Determination of the number of ligands in Silicas.

From TGA information about percentage of non-volatile (silica core) and volatile (linear

models, dendrimers or dendrons) fragments of modified silicas is obtained. These values

correspond with a mass relationship SiO2/ligand. Then, next ecuation is applied taking into

account that the formula weight of ligand is the original formula weight without the (EtO)3Si-

group, which remains attach to the silica core.

amine functions100 g SiO 2

= Ligand mass100 g SiO 2

x number of amines per ligandFormula weight of ligand

4.3 Antimicrobial activity

A) Methods used for microbial susceptibility tests in vitro followed instruction M7-A7 of

Clinical and Laboratory Standards Institute (CLSI).6, 7

Compounds for analysis were suspended in small amount of demineralized sterile water and

then in Mueller-Hinton Broth (BioMaxime) for testing of bacteria, and in RPMI-1640 Medium

16

Page 17: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

(Sigma) for yeasts. Serial two-fold dilutions were prepared in a microtiter tray in range 500-3.9

mg/L.

Test strains were inoculated into each well of a microtiter plate at 106 CFU of bacteria and

104 CFU of yeasts per 1 mL. After 24 h incubation at 37° C for bacteria and 48 h at 25º C for

yeasts, increase in turbidity at 595 nm was measured with microplate reader (MR 680 Bio-Rad).

MIC (minimal inhibitory concentration) values were the lowest concentrations where there was

no measurable increase in optical density. MBC (minimal bactericidal concentration) was the

lowest concentration at which the compound killed all cells, there being no growth in subculture

on the surface of appropriate rich agar for each organism in Petri dish after 24 or 28 h of

incubation at the appropriate temperature.

B) Solutions of 10 mg/ml of silicas were prepared in Muller-Hinton with bacteria

concentration of 2 x 107 UFC. Next, suspensions were stirred at 37ºC, 850 rpm, for 24 h.

Afterwards, 3 µl of supernatant were used to be seeded in petri plates. The plates were incubated

for 24 h and UFC were counted and compared with control.

S2. References

1. C. Rissing and D. Y. Son, Organometallics, 2008, 27, 5394-5397.2. E. Fuentes-Paniagua, J. Sánchez-Nieves, J. M. Hernández-Ros, J. Soliveri, J. L. Copa-

Patiño, R. Gómez and F. J. de la Mata, RSC Adv., 2016, 6, 7022–7033.3. E. Fuentes-Paniagua, J. M. Hernández-Ros, M. Sánchez-Milla, M. A. Camero, M. Maly,

J. Pérez-Serrano, J. L. Copa-Patiño, J. Sánchez-Nieves, J. Soliveri, R. Gómez and F. J. de la Mata, RSC Adv., 2014, 4, 1256–1265.

4. E. Fuentes-Paniagua, C. E. Peña-González, Marta Galán, R. Gómez, F. J. de la Mata and J. Sánchez-Nieves, Organometallics, 2013, 32, 1789−1796.

5. C. E. Peña-González, E. Pedziwiatr-Werbicka, D. Shcharbin, C. Guerrero-Beltrán, V. Abashkin, S. Loznikova, J. L. Jiménez, M. Á. Muñoz-Fernández, M. Bryszewska, R. Gómez, J. Sánchez-Nieves and F. J. de la Mata, Dalton Trans., 2017, DOI: 10.1039/c1036dt03791g.

6. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standards; Seventh Edition M7-A7, 2006, 26-2.

7. Reference Method for Broth Dilution Antifungal Susceptibility Testing in Yeasts; Approved standard; Third Edition M27A3, 2008, 28-14.

S3. Schemes and Figures

17

Page 18: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Scheme S1. Synthesis of short-chain monomers with amine and ammonium groups and

corresponding silica. i) hν, DMPA; ii) NEt3; iii) MeI; iv) SiO2, DMF, 80º C.

Scheme S2. Synthesis of long-chain monomers and corresponding silica. i) PhtK; ii) hν,

DMPA; iii) NH2-NH2, 80º C; iv) (EtO)3Si(CH2)3NCO; v) MeI; vi) SiO2, DMF, 80º C.

18

Page 19: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S1. Dendrimers [GnX(S-NH2)m-1(Si(OEt)3)] (X = Si, n = 0, m = 4 (1); X = Si, n = 1, m

= 8 (2); X = O3, n = 1, m = 6 (3); X = O3, n = 2, m = 12 (4)).

19

Page 20: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S2. Dendrimers [GnPAMAM(NH2)m-1(Si(OEt)3)] (n = 0, m = 4 (5); n = 1, m = 8 (6)).

Figure S3. Neutral dendrons (EtO)3SiGn(S-NMe2)m (n = 1, m = 2 (7); n = 2, m = 4 (8); n = 3, m

= 8 (9)).

20

Page 21: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S4. Cationic dendrons (EtO)3SiGn(S-NMe3+)m) (n = 1, m = 2 (10); n = 2, m = 4 (11); n

= 3, m = 8 (12)) and third generation dendron with terminal amine protected groups

(EtO)3SiG3(S-NHBoc)12 (15).

Figure S5. Number of functions per 100 g of silica (obtained by TGA).Dendrimers Dendrons Linear

Functional group-NH2

-NMe2

-NMe3+

-NHBoc

21

Page 22: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S6. TGA of silica modified with –NH2 groups on the surface 1-SiO2.

Figure S7. TGA of silica modified with –NH2 groups on the surface 2-SiO2.

22

Page 23: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S8. TGA of silica modified with –NH2 groups on the surface 3-SiO2.

Figure S9. TGA of silica modified with –NH2 groups on the surface 4-SiO2.

3-SiO2

4-SiO2

23

Page 24: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S10. TGA of silica modified with –NH2 groups on the surface 5-SiO2.

Figure S11. TGA of silica modified with –NH2 groups on the surface 6-SiO2.

24

Page 25: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S12. TGA of silica modified with –NMe2 groups on the surface 7-SiO2.

Figure S13. TGA of silica modified with –NMe2 groups on the surface 8-SiO2.

25

Page 26: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S14. TGA of silica modified with –NMe2 groups on the surface 9-SiO2.

Figure S15. TGA of silica modified with –NMe3+ groups on the surface 10-SiO2.

9-SiO2

26

Page 27: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S16. TGA of silica modified with –NMe3+ groups on the surface 11-SiO2.

Figure S17. TGA of silica modified with –NMe3+ groups on the surface 12-SiO2.

27

Page 28: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S18. TGA of silica modified with –NH2 groups on the surface 15-SiO2.

Figure S19. TGA of silica modified with –NHBoc groups on the surface 15Boc-SiO2.

15-SiO2

28

Page 29: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S20. TGA of silica modified with –NH2 groups on the surface 16-SiO2-a.

Figure S21. TGA of silica modified with –NH2 groups on the surface 16-SiO2-b.

16-SiO2-a

16-SiO2-b

29

Page 30: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S22. TGA of silica modified with –NMe2 groups on the surface 18-SiO2-a.

Figure S23. TGA of silica modified with–NMe2 and –NMe3+ groups on the surface 18-SiO2-

b.

30

Page 31: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S24. TGA of silica modified with –NMe3+ groups on the surface 19-SiO2.

Figure S25. TGA of silica modified with –NMe3+ groups on the surface 24-SiO2.

31

Page 32: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S26. SEM images of pristine SiO2 and modified silicas.

Figure S27. EDS graph of SiO2.

32

Page 33: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S28. EDS graph of 2-SiO2.

Figure S29. EDS graph of 3-SiO2.

Figure S30. EDS graph of 6-SiO2.

33

Page 34: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S31. EDS graph of 12-SiO2.

Figure S32. EDS graph of 18-SiO2-a.

Figure S33.EDS graph of 19-SiO2.

Si 84.3%S 4.5%I 5.3%

34

Page 35: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S34. EDS graph of 24-SiO2.

Figure S35. IR spectra of silicas modified with dendrimers 1-6-SiO2 and short linear model

16-SiO2-a, all containing –NH2 moieties. * silica bands; bands in box belong to dendritic

systems.

Figure S36. IR spectra of silicas modified with neutral dendrons 7-9-SiO2 and short linear

model 18-SiO2-a, all containing –NMe2 moieties. * silica bands; bands in box belong to dendritic

systems.

35

Page 36: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S37. IR spectra of silicas modified with cationic dendrons 7-9-SiO2 and short linear

model 19-SiO2, all containing –NMe3+ moieties. * silica bands; bands in box belong to dendritic

systems.

Figure S38. IR spectra of silicas modified with –NHBoc dendron 15-SiO2. * silica bands;

bands in box belong to dendritic systems.

Figure S39. Z potential at initial time and after 25 days of stirring in water suspension of

silica covered with G1 PAMAM dendrimer 6-SiO2 and covered with G1 CBS dendrimer with a

Si atom core 2-SiO2. Both dendrimers contain seven –NH2 functions after grafting to silica

surface.

36

Page 37: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Figure S40. Stability of materials by Z potential. A) Silicas with different surface

availability. B) Silicas with different degrees of functionalization. C) Silicas funcionalized with

molecules with different length chain. D) Silicas funcionalized with molecules whit different

topology.

Figure S41. 13C CP-MAS spectra of 19-SiO2 previous to water treatment (A) and after water

treatment (B).

37

Page 38: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

Si S I

1-SiO2 89.90 8.10 -

2-SiO2 97.10 2.90 -

3-SiO2 36.77 36.47 -

4-SiO2 94.10 5.90 -

7-SiO2 97.00 3.00

8-SiO2 93.12 4.72

9-SiO2 95.81 4.19

10-SiO2 90.43 2.71 6.87

11-SiO2 90.31 4.30 5.39

12-SiO2 84.22 4.50 5.29

16-SiO2-a 89.70 8.00 -

18-SiO2-a 81.54 11.90 -

19-SiO2 69.80 7.52 22.68

24-SiO2 92.83 2.03 5.13

Table S1. EDX analysis for modified silicas (data in %).

E. coli S. aureus

MIC (mg/ml) MIC (mg/ml)

1-SiO2 < 20 < 10

2-SiO2 < 20 < 20

3-SiO2 < 20 < 10

4-SiO2 < 20 < 10

5-SiO2 < 10 < 10

38

Page 39: Template for Electronic Submission to ACS Journals · Web viewand F. Javier de la Mata *, a,b,c a Department of Química Orgánica y Química Inorgánica, Instituto de Investigación

6-SiO2 < 10 < 10

16-SiO2-a < 10 < 10

7-SiO2 < 20 < 10

8-SiO2 < 20 < 10

9-SiO2 < 10 < 10

18-SiO2-a < 20 < 10

10-SiO2 < 20 < 10

11-SiO2 < 20 < 10

12-SiO2 < 10 < 10

19-SiO2 < 10 < 10

Table S2. Antibacterial light scattering assays of modified silicas. Red: materials that did not

inhibit bacteria growing. Green: materials that inhibited bacteria growing.

39


Recommended