+ All Categories
Home > Documents > Temporal Influence on Subject Reaching Strategies

Temporal Influence on Subject Reaching Strategies

Date post: 31-Dec-2015
Category:
Upload: lunea-richmond
View: 20 times
Download: 1 times
Share this document with a friend
Description:
Temporal Influence on Subject Reaching Strategies. CoSMo 2012. M att Balcarras I rene Tamagnone L eonie Oostwoud Wijdenes A ndrew Brennan D eborah Barany Y ashar Zeighami. “ Kalman , maybe?”. Outline. - PowerPoint PPT Presentation
Popular Tags:
14
Temporal Influence on Subject Reaching Strategies Matt Balcarras Irene Tamagnone Leonie Oostwoud Wijdenes Andrew Brennan Deborah Barany Yashar Zeighami CoSMo 2012 “Kalman, maybe?”
Transcript

Temporal Influence on Subject Reaching Strategies

Matt BalcarrasIrene TamagnoneLeonie Oostwoud WijdenesAndrew BrennanDeborah BaranyYashar Zeighami

CoSMo 2012

“Kalman, maybe?”

Outline

• How do reaching strategies depend on recent experience and current sensory information?

• Analyzed Körding & Wolpert (2004) data from the ★DREAM★ database

• Original paper did not consider recent trial effects on performance

Outline

• Three approaches

1. Regression analysis

2. Prior evolution

3. Kalman Filter

Temporal Structure

Regression Analysis

Kalman Filter

PriorEvolution

Körding & Wolpert (2004)

End pointhand position

Deviation from midpointand endpoint positions

End pointcursor position

Regression Analysis

• Predictors

1. Mid-point hand position

2. Mid-point cursor position

3. Five-trial running mean

4. Cumulative mean

Regression Coefficients

Estimating the Prior

μposterior = r⋅ μ likelihood + 1 − r( )⋅ μ prior

r =σ prior

2

σ prior2 +σ likelihood

2

MSE =σ prior

2 ⋅σ likelihood2

σ prior2 +σ likelihood

2 +σ motor2

μposterior = −(end point position)

μ likelihood = lateral shift (based on feedback at midpoint)

μ prior = estimated lateral shift

r = estimated weight

σ motor2 = motor noise

Berniker, Voss, & Körding, 2010

Prior Estimate Over Time

Trial Bin

Pri

or (

cm)

Likelihood Variance

σ likelihood2 =

MSE −σ motor2

r

μposterior = r⋅ μ likelihood + 1− r( )⋅ μ prior

σ likelihood2 : 0.29 0.43 0.60 ∞

σ0 σM σL σ∞

Implementation of Kalman Filter

At =α 1 −α1

t −11 −

1

t −1

⎣ ⎢ ⎢

⎦ ⎥ ⎥,C = 1 0[ ]

μ =0

0

⎣ ⎢

⎦ ⎥,∑ =

1/4 0

0 1/100

⎣ ⎢

⎦ ⎥

ε(σ s) =0.36 if cond(σ

s) = 1 ; 0.67 if cond(σ

s) = 2

0.8 if cond(σs

) =3 ; 100 if cond(σs

) =4

⎧ ⎨ ⎪

⎩ ⎪

• Our state vector : Current perturbation Pt and perturbation mean μt computed on all the previous trials

• Our observer: Midpoint Cursor Position

)(

,1

1

smpt

tt

t

tt

t

t

hP

Cy

NP

AP

σμ

μμμ

where:

• Parameter α • Weights the contributions of the previous perturbation and

of the whole history of perturbations in the current prediction

• Is optimized on the training data (first 1000 trials)

Kalman Filter Fit

KalmanFilter

SubjectData

Trial

End

Han

d Po

sitio

n (c

m)

α (across subjects)=0.35

R2 = 0.18

Typical Subject

Conclusions• Recent trial history and online cursor

feedback play a significant role in predicting end position

• The prior is learned quickly and is stable over time

• Likelihood variance increases with uncertainty

• The Kalman filter reveals that subjects trust the estimation of the previous trial

• Under uncertain conditions, temporal factors influence subject strategy suboptimally

M I L A D Y


Recommended