+ All Categories
Home > Documents > TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the...

TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the...

Date post: 23-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
36
TESTS OF GRAVITY WITH GRAVITATIONAL WAVES & COSMOLOGY TESSA BAKER, UNIVERSITY OF OXFORD
Transcript
Page 1: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

T E S T S O F G R AV I T Y W I T H G R AV I TAT I O N A L W AV E S & C O S M O L O G Y

T E S S A B A K E R , U N I V E R S I T Y O F O X F O R D

Page 2: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

• The EFT of cosmological perturbations.

• The impact of GW170817.

• Constraints from cosmology & summary.

O U T L I N E

Page 3: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

T H E E F T O F C O S M O L O G I C A L

Image: Tom Barrett

P E R T U R B AT I O N S

Page 4: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

1. Let Θ be a vector of fields mediating gravity.

2. Taylor expand the gravitational Lagrangian in perturbations δΘ:

L ' L + L⇥a �⇥a +1

2L⇥a⇥b�⇥a�⇥b + . . .

Gives us linearised grav. field equations.

@L

@⇥a

ds

2 =� (1 + 2�) dt2 + 2@iB dx

idt

+ a

2(t) [(1� 2 ) �ij + 2@i@jE] dxidx

j

Scalar perturbations of metric:

L A G R A N G I A N E X PA N S I O N

Page 5: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

3. Build Lagrangian containing all combinations of fields in Θ. Simplest case:

usual fluid matter sector +

�2L =

+ + +L 2 @i@

iBL @2B . . .

++L�� �2 � L� . . .

��2 . . .++ +L�� �� @i@iEL�@2E

�, , B, E, �.

~ 70 terms in total.

L A G R A N G I A N E X PA N S I O N

Page 6: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

Enforce linear diff symmetry:

4. The action must be coordinate-invariant.

x

µ ! x

µ + ✏

µ

✏µ =�⇡, @i✏

�⇒

⇒ �2S ! �2S +terms linear in δφ, 𝛟, 𝛙 etc.

ii⇥ (⇡ or ✏)

must vanish

Invariance of action under a non-dynamical symmetry gives a set of constraint relations.

S Y M M E T R I E S A N D C O N S E Q U E N C E S

Page 7: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

Invariance of action under a non-dynamical symmetry gives a set of constraint relations.

4. The action must be coordinate-invariant.

usual fluid matter sector +

�2L =

+ + +L 2 @i@

iBL @2B . . .

++L�� �2 � L� . . .

��2 . . .++ +L�� �� @i@iEL�@2E

S Y M M E T R I E S A N D C O N S E Q U E N C E S

Page 8: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

Invariance of action under a non-dynamical symmetry gives a set of constraint relations.

4. The action must be coordinate-invariant.

L

+L�� L�

+L�� L�@2E

3H = 0

� 5 = 0 etc.

E.g. :

⇒ Solve system constraint equations.

⇒ Reduce to a handful of `true’ free functions.

S Y M M E T R I E S A N D C O N S E Q U E N C E S

Page 9: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

T H E A L P H A PA R A M E T E R S

↵B(t) `braiding’ — mixing of scalar + metric kinetic terms.:

kinetic term of scalar field.↵K(t) :

speed of gravitational waves, . ↵T (t) : c2T = 1 + ↵T

↵M (t) =1

H

d ln M2(t)

dt: running of effective Planck mass.:

↵H(t) disformal symmetries of the metric.:

Page 10: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

T H E A L P H A PA R A M E T E R SBellini & Sawicki,

1404.3713

Page 11: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

V E C T O R - T E N S O R R E S U LT S

We can play the game over again with a vector field.

Aµ ⇠�A� �A0, @

i �A1

, , as for the scalar case.↵T (t) ↵K(t) ↵M (t) =1

H

d ln M2(t)

dt:

Results:

↵V (t) vector mass mixing ~ �A0 �A1

↵A(t) `auxiliary friction’ ~ �A0 �A1

↵C(t) conformal coupling excess ~ changes effective mass scale of theory

k4 �A1↵D(t) small-scale dynamics ~ �A21

Lagos+, 1711.09893

Page 12: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

Fields # True free functions Example full theory

1 GR

5 Horndeski

7 Generalised Proca

4 Einstein-Aether

5 Massive Bigravity

12 Uber-case

gμν , φ

gμν

gμν , Aμ

gμν , Aμ, λ

gμν , qμν

gμν , φ, Aμ, qμν

R E S U LT S B R E A K D O W N

(Some restrictions imposed, e.g. 1 propagating d.o.f.)

Page 13: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

Image: Tijana Mihajlovic

T H E I M PA C T O F G R AV I TAT I O N A L W AV E S

Page 14: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

T H E A L P H A PA R A M E T E R S

↵B(t) `braiding’ — mixing of scalar + metric kinetic terms.:

kinetic term of scalar field.↵K(t) :

speed of gravitational waves, . ↵T (t) : c2T = 1 + ↵T

↵M (t) =1

H

d ln M2(t)

dt: running of effective Planck mass.:

↵H(t) disformal symmetries of the metric.:

Page 15: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

G W 1 7 0 8 1 7 & G R B 1 7 0 8 1 7 A

c2T = 1 + ↵T

�t ' 1.7 s

) |↵T | . 10�15

!! c. f. |↵M |, |↵B | . O(1)!! c. f.

Image: LIGO-VIRGO Collaboration, ApJ 848:2 (2017).

Page 16: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

G W 1 7 0 8 1 7 & G R B 1 7 0 8 1 7 A

1. No fine-tuned cancellation of intrinsic emission delay.

2. Propagation time dominated by cosmological regime.

3. No finely-tuned, protected functional cancellations in theory

Assumptions:Image: NASA Goddard

Page 17: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

G W 1 7 0 8 1 7 & G R B 1 7 0 8 1 7 A

What does this mean for gravity theories?

Scalar case clearest; full theory is Horndeski gravity.

S =

Zd

4x

p�g ⌃5

i=2 Li + SM

L4 = G4R+G4,X

�(⇤�)2 �rµr⌫�rµr⌫�

L2 = K L3 = �G3 ⇤�

where Gi = Gi (�, X) and .X = �r⌫�r⌫�/2

L5 = G5Gµ⌫rµr⌫�� 1

6G5,X

�(r�)3

� 3rµr⌫�rµr⌫�⇤�+ 2r⌫rµ�r↵r⌫�rµr↵�

1710.06394 1710.05877 1710.05893 1710.05901

Page 18: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

G W 1 7 0 8 1 7 & G R B 1 7 0 8 1 7 A

What does this mean for gravity theories?

Scalar case clearest; full theory is Horndeski gravity.

Linearised theory maps to alpha parameters:

) ↵T (t) =2X

M2⇤

h2G4,X � 2G5,� �

⇣�� �H

⌘G5,X

i

Barring fine-tuned cancellations, .) G4,X = G5,� = G5,X = 0

L4 = G4R+G4,X

�(⇤�)2 �rµr⌫�rµr⌫�

L5 = G5Gµ⌫rµr⌫�� 1

6G5,X

�(r�)3

� 3rµr⌫�rµr⌫�⇤�+ 2r⌫rµ�r↵r⌫�rµr↵�

Page 19: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

G W 1 7 0 8 1 7 & G R B 1 7 0 8 1 7 A

What does this mean for gravity theories?

Scalar case clearest; full theory is Horndeski gravity.

Linearised theory maps to alpha parameters:

Barring fine-tuned cancellations, .) G4,X = G5,� = G5,X = 0

L4 = G4R+G4,X

�(⇤�)2 �rµr⌫�rµr⌫�

L5 = G5Gµ⌫rµr⌫�� 1

6G5,X

�(r�)3

� 3rµr⌫�rµr⌫�⇤�+ 2r⌫rµ�r↵r⌫�rµr↵�

= 0 by Bianchi identity

) ↵T (t) =2X

M2⇤

h2G4,X � 2G5,� �

⇣�� �H

⌘G5,X

i

Page 20: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

G W 1 7 0 8 1 7 & G R B 1 7 0 8 1 7 A

What does this mean for gravity theories?

Scalar case clearest; full theory is Horndeski gravity.

L4 = G4R+G4,X

�(⇤�)2 �rµr⌫�rµr⌫�

L2 = K L3 = �G3 ⇤�L2 = K L3 = �G3 ⇤�

f(R)�RfR� = fR 0

f [R] gravity fits the template, so it survives.⇒

Page 21: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

G W 1 7 0 8 1 7 & G R B 1 7 0 8 1 7 A

What does this mean for gravity theories?

The vector-tensor equivalent of Horndeski is Generalised Proca:

L4 = G4R

+G4,X

⇥(rµA

µ)2 + c2r⇢A�r⇢A� � (1 + c2)r⇢A�r�A⇢⇤

L5 = G5Gµ⌫rµA⌫

� 1

6G5,X [(rµA

µ)3 � 3d2rµAµr⇢A�r⇢A� + similar ]

where and .X = �1

2AµA

µGi = Gi(X)

L1 = �1

4Fµ⌫F

µ⌫ L2 = G2 L3 = G3rµAµ

Heisenberg+ 1605.05565

Page 22: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

G W 1 7 0 8 1 7 & G R B 1 7 0 8 1 7 A

What does this mean for gravity theories?

The vector-tensor equivalent of Horndeski is Generalised Proca:

L4 = G4R

+G4,X

⇥(rµA

µ)2 + c2r⇢A�r⇢A� � (1 + c2)r⇢A�r�A⇢⇤

L5 = G5Gµ⌫rµA⌫

� 1

6G5,X [(rµA

µ)3 � 3d2rµAµr⇢A�r⇢A� + similar ]

↵T =A2

M2⇤

h2G4,X � (HA� A)G5,X

i) G4,X = G5,X = 0

Heisenberg+ 1605.05565

Page 23: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

G W 1 7 0 8 1 7 & G R B 1 7 0 8 1 7 A

What does this mean for gravity theories?

The vector-tensor equivalent of Horndeski is Generalised Proca:

L4 = G4R

+G4,X

⇥(rµA

µ)2 + c2r⇢A�r⇢A� � (1 + c2)r⇢A�r�A⇢⇤

L5 = G5Gµ⌫rµA⌫

� 1

6G5,X [(rµA

µ)3 � 3d2rµAµr⇢A�r⇢A� + similar ]

↵T =A2

M2⇤

h2G4,X � (HA� A)G5,X

i) G4,X = G5,X = 0

by Bianchi identity again.= 0

Page 24: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

L4 = G4R

+G4,X

⇥(rµA

µ)2 + c2r⇢A�r⇢A� � (1 + c2)r⇢A�r�A⇢⇤

G W 1 7 0 8 1 7 & G R B 1 7 0 8 1 7 A

What does this mean for gravity theories?

The vector-tensor equivalent of Horndeski is Generalised Proca:

L1 = �1

4Fµ⌫F

µ⌫ L2 = G2 L3 = G3rµAµ

Page 25: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

mg . 10�32 eV

G W 1 7 0 8 1 7 & G R B 1 7 0 8 1 7 A

What does this mean for gravity theories?

For bimetric theories, get a bound on graviton mass:

mg . 10�22 eV

This is not competitive with existing Solar System bounds:

(from Lunar Laser Ranging & Earth-Moon precession)

de Rham, 1606.08462

Image: Yicai Global

Page 26: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

C O S M O L O G I C A L O B S E R VAT I O N S

Image: Allen Cai

Page 27: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

T H E A L P H A PA R A M E T E R S

↵B(t) `braiding’ — mixing of scalar + metric kinetic terms.:

kinetic term of scalar field.↵K(t) :

speed of gravitational waves, . ↵T (t) : c2T = 1 + ↵T

↵M (t) =1

H

d ln M2(t)

dt: running of effective Planck mass.:

↵H(t) disformal symmetries of the metric.:

Page 28: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

C O D E S

Zumalacarregui, Bellini, Sawicki & Lesgourgues (2016).

Hu, Raveri, Frusciante & Silvestri (2014).

Page 29: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

0

2000

4000

6000

DTT` [µK2]

�0.50.00.5�DTT

` /DTT` [%]

0

10

20

30

40

50

DEE` [µK2]

⇤CDM↵K,B

↵K,M

↵K,T + w

↵K,B,M,T + w

�0.50.00.5

�DEE` /DEE

` [%]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

107 ⇥ D��` [µK2]

101 102 103

Multipole `

�0.50.00.5�D��

` /D��` [%]

�100

�50

0

50

100

DTE` [µK2]

2 1000 2000 3000Multipole `

�0.50.00.5

�DTE` [µK2]

100

101

102

103

104

105

P(k)[(h�1 Mpc)3]

z=0⇤CDM↵K, B

↵K, M

↵K, T + w

↵K, B, M, T + w

�0.50.00.5�P(k)/P(k) [%]

100

101

102

103

104

105

P(k)[(h�1 Mpc)3]

z=0.5

�0.50.00.5

�P(k)/P(k) [%]

100

101

102

103

104

105

P(k)[(h�1 Mpc)3]

z=1

10�4 10�3 10�2 10�1 100 101

k[h/Mpc]

�0.50.00.5�P(k)/P(k) [%]

100

101

102

103

104

105

P(k)[(h�1 Mpc)3]

z=2

10�3 10�2 10�1 100 101

k[h/Mpc]

�0.50.00.5

�P(k)/P(k) [%]

E F F E C T S O N O B S E R VA B L E S

Bellini+, 1709.09135

CMB temperature power spectrum.

CMB lensing power spectrum

Page 30: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

δM(z)

MPl= M0a

β

αB(z) = αB0 aξ

T H E C U R R E N T S TAT E O F P L AY

−1.2 −0.8 −0.4 0.0

αB0

4 8 12 16

ξ0.0 0.2 0.4 0.6

M0

0.9 1.2 1.5 1.8

β

4

8

12

16

ξ

0.0

0.2

0.4

0.6

M0

0.9

1.2

1.5

1.8

β

Planck + BKP

+lens + mpk + BAO + RSD

Kreisch & Komatsu, 1712.02710

SDSS (galaxy survey) + Planck CMB + BOSS BAOs & RSDs + lensing data.

Page 31: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

δM(z)

MPl= M0a

β

αB(z) = αB0 aξ

T H E C U R R E N T S TAT E O F P L AY

−1.2 −0.8 −0.4 0.0

αB0

4 8 12 16

ξ0.0 0.2 0.4 0.6

M0

0.9 1.2 1.5 1.8

β

4

8

12

16

ξ

0.0

0.2

0.4

0.6

M0

0.9

1.2

1.5

1.8

β

Planck + BKP

+lens + mpk + BAO + RSD

Kreisch & Komatsu, 1712.02710

Caution: stability conditions lead to non-trivial contours.

Page 32: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

O N G O I N G & F U T U R E E X P E R I M E N T S

2020

now

2023

2021

Page 33: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

T H E N E W T H E O R Y L A N D S C A P E

Page 34: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

T H E N E W T H E O R Y L A N D S C A P E

Quintic Galileons

Quartic Galileons

TeVeS

SVT

Bigravity

Massive Gravity

Quintessence

K-essence

KGB

Cubic Galileon

Fab Four

Generalised Proca

Horava-Lifschitz

Einstein-Aether

Brans-Dicke

Uncertain? multiscalar-tensor, nonlocal gravity, Chaplygin gases.

DHOST

(Beyond) Horndeski

f(R)

Page 35: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

T H E N E W T H E O R Y L A N D S C A P E

Quintic Galileons

Quartic Galileons

TeVeS

SVT

Bigravity

Massive Gravity

Quintessence

K-essence

KGB

Cubic Galileon

Fab Four

Generalised Proca

Horava-Lifschitz

Einstein-Aether

Brans-Dicke

Uncertain? multiscalar-tensor, nonlocal gravity, Chaplygin gases.

DHOST

f(R)

(Beyond) Horndeski

Page 36: TESTS OF GRAVITY · 1. Let Θ be a vector of fields mediating gravity. 2. Taylor expand the gravitational Lagrangian in perturbations δΘ: L ' L¯ + L ⇥ a ⇥ a + 1 2 L ⇥a⇥

C O N C L U S I O N S

1. The EFT of cosmological perturbations — agnostic & efficient tests of the gravity model landscape.

2. Framework can be linked directly to recent GW events with powerful results.

3. Goal: EFT used by next-generation experiments as standard format for dark energy constraints.

References:1604.01396 1710.063941711.09893

[email protected]


Recommended