+ All Categories
Home > Documents > Tests of Hardened Concrete

Tests of Hardened Concrete

Date post: 16-Jan-2016
Category:
Upload: alagan
View: 322 times
Download: 29 times
Share this document with a friend
Description:
Tests of Hardened Concrete. Axial tension. Stress. Balance for equilibrium loads = external forces internal forces = stress. Strain. deformation (elastic or permanent) load change in temperature change in moisture unit deformation = strain. Axial. Strain. Strength Envelope - PowerPoint PPT Presentation
61
Tests of Hardened Concrete
Transcript
  • Tests of HardenedConcrete

  • StressBalance for equilibriumloads = external forces internal forces = stress

  • Straindeformation (elastic or permanent)loadchange in temperaturechange in moistureunit deformation = strainAxial

  • Strain

  • StrengthEnvelopeFor Concrete

  • Effect of Confinement

  • Affect of Water Cement Ratio

  • Compressive Testingbrittlestronger in compressioncross-sectional area cylindrical, cubeends must be plane & parallelend restraint apparently higher strength

  • Loaded Compressive Specimen

  • Elastic Properties

    Linear Elastic

    Nonlinear ElasticE = modulus of elasticity = Youngs modulus = slopeStrain energy per unit volume = area

  • Elastic PropertiesPoissons ratio =- (radial strain/axial strain)

  • Poissons Ratio (u)ratio of lateral strain to axial strain

    0.15 to 0.50steel 0.28wood 0.16granite 0.28concrete 0.1 to 0.18rubber 0.50

  • Flexure (Bending)CompressionTensionNeutralAxisHow would the cross-section deform?

  • Flexure (Bending)CompressionTensionNeutralAxis

  • Laboratory Measuring DevicesDial gage:Measure relative deformation between two points.Two different pointers: one division of small pointer corresponds to one full rotation of the large pointer.

  • Laboratory Measuring Device Linear Variable Differential Transformer (LVDT)Electronic device for measuring small deformations.Input voltage through the primary coilOutput voltage is measured in the secondary coilLinear relationship between output voltage and displacement.Primary coilSecondarycoilSecondarycoilzero voltageShell attached to point ACore attached to point B

  • LVDT SchematicPrimary coilSecondarycoilSecondarycoilPositive voltagezero voltageNegative voltage

  • Longitudinal DisplacementGage lengthLVDT

  • Radial DisplacementLVDT

  • Electrical Strain GageMeasure small deformation within a certain gage length.A thin foil or wire bonded to a thin paper or plastic.The strain gage is bonded to the surface for which deformation needs to be measured.The resistance of the foil or wire changes as the surface and the strain gage are strained.The deformation is calculated as a function of resistance change.

    Surface wire

  • Load CellElectronic force measuring device.Strain gages are attached to a member within the load cell.An electric voltage is input and output voltage is obtained.The force is determined from the output voltage.Strain gagesStrain gages

  • Data Acquisition Setup8 Channel LVDT Input Module8 Channel Universal Strain/Bridge Module2 Voltage Inputs from the controller (Stroke LVDT, and Load Cell)6 strain Gauges

  • Strength

  • Tensile TestingDirect: ductilecylindrical, prismaticreduced section @ center

    Test Parameterssurface imperfectionsrate of loadingtemperature (ductile)specimen sizeIndirect: brittlecylindricalsplitting tension / diametral compression

  • Flexure (Bending)CompressionTensionNeutralAxis

  • Flexural TestingThree-point (center point)smaller specimenshigher flexural strength (size effect)shear may be a factorGeneralshear effects ignored as long as l/d > 5apply load uniformly across widthFour-pointconstant moment, no shear in center

    localized loading stresses (3 vs. 4 pt)load symmetrically

  • Correlation of Concrete Strengths

  • Torsiontorque pure shear strain (g)cylindrical (radius r)

    G=shear modulusT = torque, twisting momentJ = polar moment of inertiag = angle of rotation

    for isotropic materials

    ttgdsl

  • Standards & Standard Testsallow comparisonensure design = construction

    standard specifications for materialsproperties specified in design, measured with standard testsStandards OrganizationsASTMAASHTOACIState AgenciesFederal AgenciesOther

  • Scanning Electron Microscope

  • Impact Hammers

  • Ultrasonics

  • Pulse Velocity TestingASTM C 597Velocity of sound wave from transducer to receiver through concrete relates to concrete strengthDevelop correlation curve in labPrecision to baseline cylinders: 10%

  • Pulse Velocity12Compressive Strength (MPa)Compressive Strength (psi)2468101214024681005001,0001,500Pulse Velocity (1000 m/s)01234(1000 ft/s)Semi-direct mode

  • Concrete Strength ModelsCompressive StrengthModulus of ElasticityTensile Strength

  • Hitting Target Strengths

  • Variability of Strength

  • VARIABILITYmeasured properties not exact

    always variabilitymaterialsamplingtesting

    probability of failure

    mean, standard deviation (s), coefficientof variation (COV)

  • DESIGN / SAFETY FACTORS

    design strength = f(material, construction variables)

    working stress = f(sy)

    N = 1.2 to 4 = f(economics, experience, variability in inputs, consequences of failure)

  • Variability-SpecificationUsing the normally distributed tensile test data for concrete, determine the mean and standard deviation for both MoR & ft. In order to maintain a 1 in 15 chance that ft 320 psi, what average ft must be achieved?SpecimenMoR (psi) ft(psi)1580319257832235883314588352

  • Crack Growth

  • aCrack TipxyStress DistributionStress Intensity Factor

  • Fracture MechanicsKI = stress intensity factor = Fs(pC)1/2 F is a geometry factor for specimens of finite sizeKI= KIC OR GI=GIC unstable fractureKIC= Critical Stress Intensity Factor= Fracture ToughnessGI=strain energy release rate (GIC=critical)

  • Fracture MechanicsThree modes of crack opening

    Focus on Mode I for brittle materials

  • FAlpha2 d2 aKIccAlpha = a/d

  • Failure Criterion

  • Linear Fracture MechanicsNon-Linear Fracture Mechanics

  • CrackdacfKIProcess ZoneAlpha = a/d

  • Fracture specimens

  • Specimen Apparatus

  • Specimen Preparation

  • Test Specimens

  • Failure Criterion

  • Fracture Spread Sheet

    Chart1

    0

    0

    0

    0

    0

    0

    Regression

    X

    Y

    Split Tension Test

    Module1

    specimenD (m)L (m)2ao (mm)holed (0 or 1)P (N)alpha0F0(alpha)F'0(alpha)g(alpha)g'(alpha)X (m)Y MPa.mNot

    10.15240.15240011000000.964-0.02602.91947631360.000003.818E-1510

    20.15240.15240011000000.964-0.02602.91947631360.000003.818E-1510

    30.15240.152425.41700000.16666666670.99939814810.44383333330.0104505153.6023221190.000227.640E-1500.0000000489

    40.15240.152425.41700000.16666666670.99939814810.44383333330.0104505153.6023221190.000227.640E-1500.0000000489

    50.15240.1524101.61500000.66666666671.66833333330.2130.009627578310.23263975070.000075.272E-1500.0000000051

    60.15240.1524101.61500000.66666666671.66833333330.2130.009627578310.23263975070.000075.272E-1500.0000000051

    Kif =0.24MPa.m217.55psi.in

    Cf =0.23mm0.009in.

    Relative Probable Error of KIf =0.12%

    Relative Probable Error of cf =0.00%

    SUMMARY OUTPUT

    Regression Statistics

    Multiple R0.9811388937

    R Square0.9626335288

    Adjusted R Square0.953291911

    Standard Error0

    Observations6

    ANOVA

    dfSSMSFSignificance F

    Regression100103.04783911290.0005302572

    Residual400

    Total50

    CoefficientsStandard Errort StatP-valueLower 95%Upper 95%

    Intercept003.23873748730.031711850800

    X Variable 10010.15124815540.000530257200

    &A

    Page &P

    &A

    Page &P

    Module1

    &A

    Page &P

    Regression

    X

    Y

    Split Tension Test

  • Fracture Spread Sheet

    Spec

    #

    b

    (in)

    d

    (in)

    2a0

    (in)

    P

    (lb)

    a

    1

    3

    6

    0

    13000

    0

    2

    3

    6

    1

    10000

    0.167

    3

    3

    6

    4

    3500

    0.667

    F()

    g()

    g'()

    X (in)

    (g/g') d

    Y (psi.in1/2) 1/(g'2)

    0.964

    0.000

    2.92

    0.0000

    1.620E-06

    0.999

    0.523

    3.60

    0.8711

    2.219E-06

    1.645

    5.699

    10.02

    3.4125

    6.512E-06

  • Fracture Spread Sheet

    Split Tensile

    Cn

    Plain#

    0.0

    0.964

    0.0

    2.9195

    Slotted#

    0.1667

    0.9994

    0.5230

    3.6023

    Hole and Slot##

    0.6667

    1.6497

    5.6997

    10.0214

    #

    ##

    Beam###

    Cn

    ###

    _1138700812.unknown

    _1138709138.unknown

    _1138709307.unknown

    _1138709733.unknown

    _1138712390.unknown

    _1138709696.unknown

    _1138709284.unknown

    _1138708715.unknown

    _1138700714.unknown

    _1138700731.unknown

    _1138700692.unknown

  • Applications of Fracture Parameters Strength Determination - Beam

    Chart2

    3.82446206813.9017220928

    3.82446206813.1440460849

    02.5502810439

    0.12.082793002

    0.21.713575928

    0.31.4211496778

    0.41.1887416544

    0.51.0031924834

    0.60.8542139296

    0.70.7338116828

    a = a/d

    sN (MPa)

    split

    (b)

    split

    3.82446206813.9017220928

    3.82446206813.1440460849

    02.5502810439

    0.12.082793002

    0.21.713575928

    0.31.4211496778

    0.41.1887416544

    0.51.0031924834

    0.60.8542139296

    0.70.7338116828

    a = a/d

    sN (MPa)

    size effect

    (b)

    size effect

    -0.0662287473-0.34689160441.375

    -0.1854952741-0.5166863503-0.014437236

    -0.2620386717-0.6107960582-0.1647715037

    -0.318520074-0.6762351209-0.2527568564

    -0.3633014049-0.7264526431-0.31519608

    -0.4004079218-0.7672103788-0.3636329977

    -0.4320893939-0.8015136015-0.4032115607

    -0.4597316541-0.8311298715-0.4366763408

    -0.4842491616-0.8571873635-0.465665853

    -0.5062771713-0.880450327-0.4912370886

    -0.5262749698-0.901460525-0.5141118134

    &A

    Page &P

    alpha=0.2

    alpha=0.6

    LEFM

    log(sN/Bfu)

    log(d/da)

    sawcut

    &A

    Page &P

    sawcut

    0.59402260780.84007482830.59402260780.84007482830.36511156190.73022312370.26774847870.5354969574

    0.25352917560.45505327080.15981162760.30530330090.36511156190.73022312370.26774847870.5354969574

    0.19117596540.35798401560.11595042040.2261200036

    0.16055399240.30677686350.09579936790.188418625

    0.13952445640.26895288820.08269027130.163202843

    0.12160620040.23451503260.07204716720.1422209298

    15.24 cm

    15.24 cm

    45.72 cm

    45.72 cm

    dT = 5.56 C

    dT = 11.11 C

    dT = 5.56 C

    dT = 11.11 C

    6 hrs (15.24 cm)

    12 hrs (15.24 cm)

    6 hrs (45.72 cm)

    12 hrs (45.72 cm)

    a

    sN (MPa)

    4 aggs

    &A

    Page &P

    4 aggs

    0.78586727170.3383520772

    0.6721904308

    0.5802433343

    0.7761468745

    0.971246283

    1.6073201355

    0.3383520772

    X = d g/g' (m)

    Y = cn2/g' s2 (MPa)

    Waco

    Sheet15

    0.10922293490.2367755563

    0.12277359990.1929205596

    0.1181970323

    0.1457857929

    0.1670844254

    0.2946898967

    0.258439072

    0.2367755563

    0.1929205596

    X = d g/g' (m)

    Y = cn2/g' s2) (MPa)

    El Paso

    Sheet16

    0.28607322370.1887027689

    0.17824821730.5707283042

    0.2064463085

    0.1561430475

    0.3170658673

    0.7200774435

    0.4621253079

    0.1887027689

    0.5707283042

    X = d g/g' (m)

    Y = cn2/g' s2 (MPa)

    Blue Mound

    0.29926220680.3710188314

    0.37585696310.6036022889

    0.3477741635

    0.438266033

    0.2819280559

    0.4650815602

    0.401020169

    0.3710188314

    0.6036022889

    X = d g/g' (m)

    Y = cn2/g' s2 (MPa)

    Altair

    &A

    Page &P

    &A

    Page &P

  • Applications of Fracture Parameters Strength DeterminationSize effect on strength( a0 = 0.2; Bfu = 3.9 MPa = 566 psi; da = 25.4 mm = 1 in)

    log (d/da) Specimen or structure sizelog (sN / Bfu) sN d (mm or inch) (MPa or psi) 0.70127 or 5 - 0.182.57 or 373 1.00305 or 12 - 0.262.15 or 312

    1.30507 or 20 - 0.351.75 or 254

  • Durability

    1) Tensile stresses at the ends of the specimen may cause tensile splitting failure perpendicular to the direction of loading.

    2) Barrelling effect changes the length/diameter ratio.The difference in 3 point bending and 4 point bending is 25%.

    Shear effects tends to cause greater deflection and back-calculation of lower elastic modulus. (as would be the case in shorter beams).Concrete permeability, porosity, and density affect strength. Concrete is stronger in compression than in tension. Often used with reinforcing steel to carry the tensile load after cracking has occurred.

    Concrete strength also depends on the w/c and the degree of hydration. The degree of hydration depends on temperature and moisture of the concrete.


Recommended