+ All Categories
Home > Documents > Thales nano reactor overview jan 2013

Thales nano reactor overview jan 2013

Date post: 28-Aug-2014
Category:
Upload: hgraehl
View: 504 times
Download: 0 times
Share this document with a friend
Description:
 
Popular Tags:
67
Accessing new chemical space with flow chemistry Heather Graehl, MS, MBA Director of Sales North America
Transcript
Page 1: Thales nano reactor overview jan 2013

Accessing new chemical space with flow chemistry

Heather Graehl, MS, MBA Director of Sales North America

Page 2: Thales nano reactor overview jan 2013

Agenda •  Company Background •  Intro to Flow Chemistry •  H-Cube Pro Overview •  Reaction Examples •  Gas Module for H-Cube Pro •  Phoenix Module for H-Cube Pro

Page 3: Thales nano reactor overview jan 2013

Who  are  we?  

•  ThalesNano  is  a  technology  company  that  gives  chemists  tools  to  perform  novel,  previously  inaccessible  chemistry  safer,  faster,  and  simpler.  

•  Market  leader:  800  customer  install  base  on  6  conDnents.  •  10  years  old-­‐most  established  flow  reactor  company.  •  33  employees  with  own  chemistry  team.  

•  Headquarters  in  Budapest  •  R&D  Top  100  Award  Winner.

Page 4: Thales nano reactor overview jan 2013

Customers (>800 worldwide)

§  20 out of 20 top pharmaceutical §  Top 3 agrochemical companies §  Petrochemical emerging

Page 5: Thales nano reactor overview jan 2013

Number of Publications on ThalesNano Instruments

0 2 4 6 8

10 12 14 16 18 20

2005

2006

2007

2008

2009

2010

2011

142 in 7 years

Page 6: Thales nano reactor overview jan 2013

What is flow chemistry?

Page 7: Thales nano reactor overview jan 2013

What is flow chemistry?

Performing a reaction continuously by pumping fluid through a coil or fixed bed reactor.

Coil/Glass Chip Homogeneous: Liquid-Liquid

Column Homogeneous: Liquid-Liquid (inert column) Heterogeneous: Liquid-Solid Heterogeneous: Liquid-Solid-Gas

Page 8: Thales nano reactor overview jan 2013

Heating Control

Lower reaction volume. Closer and uniform temperature control

Outcome:

Safer chemistry. Lower possibility of exotherm.

Batch

Flow

Larger solvent volume. Lower temperature control.

Outcome:

More difficult reaction control. Possibility of exotherm.

Page 9: Thales nano reactor overview jan 2013

Heating Control

Lithium Bromide Exchange

Batch

Flow

•  Batch experiment shows temperature increase of 40°C. •  Flow shows little increase in temperature.

Ref: Thomas Schwalbe and Gregor Wille, CPC Systems

Page 10: Thales nano reactor overview jan 2013

Reactants

Products

By-products

Traditional Batch Method

Gas inlet

Reactants

Products

By-products

Batch vs. Flow

Better surface interaction Controlled residence time Elimination of the products

Flow Method

H-Cube Pro™

Page 11: Thales nano reactor overview jan 2013

Catalyst System - CatCart®

• Benefits •  Safety •  No filtration necessary •  Enhanced phase mixing

• Over 100 heterogeneous and Immobilized homogeneous catalysts

10% Pd/C, PtO2, Rh, Ru on C, Al2O3 Raney Ni, Raney Co Pearlmans, Lindlars Catalyst Wilkinson's RhCl(TPP)3 Tetrakis(TPP)palladium Pd(II)EnCat BINAP 30

• Different sizes • 30x4mm • 70x4mm (longer residence time or scale up)

• Ability to pack your own CatCarts • CatCart Packer (with vacuum) • CatCart Closer (no vacuum)

Page 12: Thales nano reactor overview jan 2013

Other Advantages

•  Fast Optimization §  Analytical sample after 5 min to change parameters

•  Safety §  Generate H2 on demand, no tanks §  CatCart system ideal pyrophoric catalysts

•  Automation •  Selectivity

§  Residence time on catalyst controlled, not possible batch

•  Speed §  Better mass transfer, high temp, high pressure §  Optimize for single pass 100% conversion for under

10min reactions

Page 13: Thales nano reactor overview jan 2013

Industry Perspective

Page 14: Thales nano reactor overview jan 2013

The innovation gap

Page 15: Thales nano reactor overview jan 2013

Closing the Innovation Gap

•  Companies are actively looking at new techniques to: §  Decrease reaction times → Faster to market §  Cut down on number steps→Lower cost §  Increase yields→Less purification downstream §  Reduce solvent/waste → Cost savings §  Re-examine industry wide untouchable

chemistries→novel molecules→competitive edge

•  Flow chemistry is one of these techniques being investigated.

Page 16: Thales nano reactor overview jan 2013

Survey  Conducted  

Small  scale:  §  Making  processes  safer  §  Accessing  new  chemistry  

§  Speed  in  synthesis  and  analysis  

§  AutomaDon  

Large  scale:  §  Making  processes  safer  §  Reproducibility-­‐less  batch  to  batch  variaDon  

§  SelecDvity  

   Why  move  to  flow?  

Page 17: Thales nano reactor overview jan 2013

Survey Conducted

What chemistries are of interest?

Difficult to perform chemistries

•  Low temperature exothermic reactions •  Reactions with gases •  Very slow reactions or unaccessible chemistry •  Reactions with selectivity issues

Approx. 30% of reactions!

Page 18: Thales nano reactor overview jan 2013

Catalysis reactor: Modular: H-Cube Pro

H-Cube Pro H2 Generation 150°C, 100 bar Hydrogenation Selective C-C coupling

Gas Module 12 Extra gases 100 bar

Phoenix Module 450°C Novel heterocycles

Automated injection & collection. Optimization

H-Cube Midi H2 Generation 150°C, 100 bar Scale Up

Page 19: Thales nano reactor overview jan 2013

H-Cube Pro

Page 20: Thales nano reactor overview jan 2013

H-Cube Pro Overview

•  HPLC pumps continuous stream of solvent •  Hydrogen generated from water electrolysis •  Sample heated and passed through catalyst •  Up to 150°C and 100 bar (almost 1500 psi!)

Page 21: Thales nano reactor overview jan 2013

In Situ H2 Production No more H2 Tanks or costly bomb rooms Safe hydrogenations up to 1450 PSI!!

Hydrogen generator cells §  Solid Polymer Electrolyte

High-pressure regulating valves

Water separator, flow detector, bubble detector

New on H-Cube Pro: •  Double H2 production •  Full H2 mode at any pressure up to 100bar!

Page 22: Thales nano reactor overview jan 2013

H-Cube Pro Overview

Hydrogenation Reactions

Reactions without H2

§ Nitro Reduction § Nitrile reduction § Heterocycle Saturation § Double bond saturation § Protecting Group hydrogenolysis § Reductive Alkylation § Hydrogenolysis of dehydropyrimidones § Imine Reduction § Desulfurization

No Modules § Suzuki Reaction § Heck Reaction § Catalysis (homogeneous or heterogeneous)

With Adding Modules § Carbonylation § Oxidation § Diels Alder § Rearrangements § Supercritical fluids

Page 23: Thales nano reactor overview jan 2013

H-Cube Pro - Higher temperature capability

Page 24: Thales nano reactor overview jan 2013

Lower temperature capability-more selective

T (oC) p (bar) Flow rate (ml/min) Conversion (%) B Selectivity (%)

20 1, controlled 1 37 99 20 1, controlled 2 65 93 20 1, controlled 3 87 77

Solvent Conc. Temp. (°C) Pressure (bar)

Flow Rate (mL/min)

Product Distribution (%, GC-MS)

A B C EtOH 0.1 M 10 10 1 0 100 0

H-Cube

H-Cube Pro

Page 25: Thales nano reactor overview jan 2013

Simple Validation Reactions (out of 5,000)

10% Pd/C, RT, 1 bar Yield: 86 - 89%

Raney Ni, 70°C, 50 bar, 2M NH3 in MeOH, Yield: >85%

Page 26: Thales nano reactor overview jan 2013

Simple Validation Reactions (out of 5,000)

10% Pd/C, 60˚C, 1 bar Yield: >90%

Batch reaction of {3-[(2-carbazol-9-yl-acetylamino)-methyl]-benzyl}-carbamic acid benzyl ester Reagent: H2, catalyst: 10% Pd/C, EtOH, 1 atm, Yield: 76 % Conn, M. Morgan; Deslongchamps, Ghislain; Mendoza, Javier de; Rebek, Julius; JACSAT; J. Am. Chem. Soc.; EN; 115; 9; 1993; 3548-3557.

Raney Ni, 80˚C, 80 bar Yield: 90%

Batch reference: Reagent: HCOONH4, catalyst: 10% Pd/C, solvent: MeOH, Reaction time: 30 min, 1 atm. Yield: 78 % Kaczmarek, Lukasz; Balicki, Roman; JPCCEM; J. Prakt. Chem/Chem-Ztg.; EN; 336; 8; 1994; 695-697

Page 27: Thales nano reactor overview jan 2013

H-Cube® Reaction Examples

Batch: 200°C, 200 bar, 48 hours

Batch: 150°C, 80 bar, 3 days

Page 28: Thales nano reactor overview jan 2013

Chemoselective hydrogenations

Selective reduction in presence of benzyl protected O or N 5% Pt/C, 75°C, 70 bar, 0,01M, ethanol,no byproduct Yield: 75%

Batch reference: Reagent: aq. NaBH4, Solvent: THF; 0°C, Yield: 76,1 % Nelson, Michael E.; Priestley, Nigel D.; JACSAT; J. Am.

Chem. Soc.; EN; 124; 12; 2002; 2894-2902

Route A: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 25°C. Yield: 80%

Route B: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 100°C. Yield: 85%

No batch reference

Page 29: Thales nano reactor overview jan 2013

Hydrogenations in a simplified manner

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 97% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

Conditions: Au/TiO2, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

H-Cube® - Chemoselective hydrogenations

Ürge, L.et al. submitted for publication

Selective hydrogenation of the double-bond

Selective hydrogenation to afford oxime

Selective hydrogenation of the double-bond

Page 30: Thales nano reactor overview jan 2013

Hydrogenations in a simplified manner

Conditions: 10% Pd/C, 70 bar, 0°C, residence time 16s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 11-17s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 100% yield

Ürge, L.et al. submitted for publication

H-Cube® - Chemoselective hydrogenations

Nitro group reduction in the presence of a halogen

Nitro group reduction in the presence of Cbz-group

Nitro group reduction without retro-Henry as a

side-reaction

Page 31: Thales nano reactor overview jan 2013

Hydrogenations in a simplified manner

Conditions:

Raney Ni

Full H2 mode

T = 40°C

v = 1 mL/min

c = 0,012M (25 mL, MeCN)

Result: Yield: 95%

Kappe, O.C. et al. J. Comb. Chem., 2005, 7, 641-43

H-Cube® - Dethionation

Conditions:

10% Pd/C

p = 40 bar

T = 50°C

v = 0.5 mL/min

c = 10 mg/mL (MeOH)

Result: Quantitative reaction (was used in the following reaction step without further purification

Porco, J.A. et al. Angew. Chem. Int. Ed., 2009, 48 (8), 1494-1497

H-Cube® - Formyl group reduction

Page 32: Thales nano reactor overview jan 2013

Deuteration

Substrate Product Deuterium content(%)

Isolated yield / %

99 99

97 98

93 97

96 98

96 99

Mándity, I.M.; Martinek, T.A.; Darvas, F.; Fülöp, F.; Tetrahedron Letters; 2009, 50, 4372–4374

Page 33: Thales nano reactor overview jan 2013

Conversion: 90-95% (TLC) Purity: 70% (LC-MS) without work-up

Batch parameters: K3PO4, TBA-Br, Pd(OAc)2, DMF, 2 hours, 130 °C Reference: (Zim, Danilo; Monteiro, Adriano L.; Dupont, Jairton; Tetrahedron Lett.; EN; 41; 43; 2000; 8199-8202)

Suzuki-Miyaura C-C cross coupling:

Sample reactions

Br

N O 2 B

O H O H

N O 2 CatCart TM 70*4 mm Pd EnCat TM BINAP 30, 2-propanol, TBAF, 80°C, 20 bar, 0.05M, 0.5 ml/min

+

Page 34: Thales nano reactor overview jan 2013

Selective Suzuki coupling (Cl, Cl)

The  condiDons  were:  

1  equivalent  of  2,6-­‐dichloroquinoxaline  with  1.2  equivalent  of  o-­‐Tolylboronic  acid    

ConcentraDon  set  to  0.02M  

Solvent:  Methanol  

Base:  NaOH  

AnalyDcs:  GC-­‐MS  

Flow  rate  (ml/min)  

Pressure   Temperature  Catalyst   Base  

Result  (bar)   (oC)   LC-­‐MS,  220nm  

0.8   20   100  Fibrecat  1007  

(70mm)  3  ekv  

Conversion:  82%  SelecDvity:  48%  

0.3   20   100  Fibrecat  1007  

(70mm)  3  ekv  

Conversion:  99%  SelecDvity:  48%  

0.8   20   100  Fibrecat  1035  

2.5  ekv  Conversion:  16%  

(30mm)   SelecDvity:  100%  

0.8   20   100  Fibrecat  1029  

(30mm)  2.5  ekv  

Conversion:  18%  SelecDvity:  100%  

0.8   20   100  Fibrecat  1048  

(30mm)  2.5  ekv  

Conversion:  40%  SelecDvity:  100%  

0.8   20   100  10%  Pd/C  

2.5  ekv  Conversion:  89%  

(30mm)   SelecDvity:  14%  

0.5   20   50  Fibrecat  1048  

2.5  ekv  Conversion:17%  

(30mm)   SelecDvity:  ~100%  

0.5   20   100  Fibrecat  1048  

2.5  ekv  Conversion:  35%  

(30mm)   SelecDvity:  ~100%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecDvity:  73%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecDvity:  80%  

0.2   20   100  Fibrecat  1029  

2.5  ekv  Conversion:  12%  

(30mm)   SelecDvity:  100%  

Page 35: Thales nano reactor overview jan 2013

Purity (LCMS): 63%

Batch parameters: Pd(OAc)2, PPh3, TEA, DMF, 3 days, 110°C, yield: 70% Reference: J. Chem. Soc. Dalton Trans., 1998, 1461-1468 J. Chem. Soc. Dalton Trans., 1998, 1461-1468

Heck C-C cross coupling:

Sample reactions

CatCartTM: Pd (PPh3)4, TBAF, 2-propanol, 0.05M, 100oC, 1 bar, 0.2 ml/min.

Page 36: Thales nano reactor overview jan 2013

Conversion: complete Purity (crude azide product): 95-100% (TLC)

Batch reference: (Saxon, Eliana; Luckansky, Sarah J.; Hang, Howard C.; Yu, Chong; Lee, Sandy C.; Bertoyyi, Carolyn R.; J. Am. Chem. Soc. EN; 124; 5`; 2002; 14893-14902) Parameters: NaN3, DMF, 12 hours, 20 °C; Yield: 91%

In-situ organic azide synthesis:

Sample reactions

Page 37: Thales nano reactor overview jan 2013

Faster Optimization

Monitor reaction progress after 5 minutes!

Temperature can be changed during the reaction

50 reaction conditions can be validated in a day.

Page 38: Thales nano reactor overview jan 2013

Example for fast optimization

•  Batch reactions gave results after 4 hours!

H. H., Horváth; G, Papp; Cs., Csajági; F., Joó; Catalysis Communications; 8; 3; 2007; 442-446

Page 39: Thales nano reactor overview jan 2013

Hydrogenation of diphenylacetylene, one day optimization, %f(T)

•  [RuCl2(mTPPMS)2]/Molselect DEAE

•  p(H2) = 30 bar, [S] = 0.1 M •  Solvent: toluene/ethanol 1/1 •  24 experiments, total operation time

is one day H. H., Horváth; G, Papp; Cs., Csajági; F., Joó; Catalysis Communications; 8; 3; 2007; 442-446

Page 40: Thales nano reactor overview jan 2013

Hydrogenation of diphenylacetylene, one day optimization, %f(pressure) [RuCl2(mTPPMS)2]/Molselect DEAE

T = 50 oC, [S] = 0.1 M Solvent: toluene/ethanol 1/1

26 experiments, total operation time is one day

H. H., Horváth; G, Papp; Cs., Csajági; F., Joó; Catalysis Communications; 8; 3; 2007; 442-446

Page 41: Thales nano reactor overview jan 2013

Prof. Oliver Kappe, University of Graz, B. Desai, D. Dallinger, C. O. Kappe, Tetrahedron, 2006, 62, 4651-4664.

University of Graz-Prof. Oliver Kappe

Page 42: Thales nano reactor overview jan 2013

Catalysis reactor: Modular: H-Cube Pro

H-Cube Pro H2 Generation 150°C, 100 bar Hydrogenation Selective C-C coupling

Gas Module 12 Extra gases 100 bar

Phoenix Module 450°C Novel heterocycles

Automated injection & collection. Optimization

H-Cube Midi H2 Generation 150°C, 100 bar Scale Up

Page 43: Thales nano reactor overview jan 2013

H-Cube Pro Modules

Expanding Chemistry Capability of H-Cube and

H-Cube Pro

Page 44: Thales nano reactor overview jan 2013

Gas Module

Page 45: Thales nano reactor overview jan 2013

Gas  Module  

•   Versa7le:    Compressed  Air,  O2,  CO,  C2H4,  SynGas,  CH4,  C2H6,  He,  N2,  N2O,  NO,  Ar.  

•   Fast:    ReacDons  with  other  gases  complete  in  less  than  10  minutes  

•   Powerful:    Up  to  100  bar  capability.  

•   Robust:    All  high  quality  stainless  steel  parts.  

•   Simple:    3  bubon  stand-­‐alone  control  or  via  simple  touch  screen  control  on  H-­‐Cube  Pro™.  

Page 46: Thales nano reactor overview jan 2013

Use of Gas Module Attached to the H-Cube Pro™

Gas Module HPLC pump H-Cube Pro™

Filter included Check valve included

Page 47: Thales nano reactor overview jan 2013

Alcohol oxidation: Optimization

Pressure Temp. (oC) CatCart Conversion Selectivity

40 25 1 % Au/TiO2 0 – 40 65 1 % Au/TiO2 6.5 >85 40 25 1 % Au

/Fe2O3 0 – 40 65 1 % Au

/Fe2O3 12.7 0 40 25 5 % Ru

/Al2O3 2.8 ~100 40 65 5 % Ru

/Al2O3 3.6 ~100 100 65 5 % Ru

/Al2O3 2.7 ~100 100 100 5 % Ru

/Al2O3 8.5 ~100 100 140 5 % Ru

/Al2O3 15.5 ~100 100 65 1 % Au/TiO2 5.6 84 100 100 1 % Au/TiO2 47.2 93 100 140 1 % Au

/TiO2 ~100 93 100 65 1 % Au

/Fe2O3 4 0 100 100 1 % Au

/Fe2O3 31 7 100 • Area% of desired product in GC-MS / (100 – Area% of reactant in GC-MS)

General conditions: H-Cube Pro with Gas Module, 50 mL/min oxygen gas, 1 mL/min liquid flow rate (0.05M in acetone, 20 mL sample volume), CatCart: 70mm., 1 % Au/TiO2 (cartridge: 70mm, THS 01639),

Batch ref.: Oxygen; perruthenate modified mesoporous silicate MCM-41 in toluene T=80°C; 24 h; Bleloch, Andrew; et al. Chemical Communications, 1999 , 8,1907 - 1908

Very fast addition of alcohol to gold surface. Alkoxide formation.

Page 48: Thales nano reactor overview jan 2013

Aromatization of heterocycles

Reaction parameters were tested: -  H-Cube Pro with and without GasModule -  Oxidizing agent: Hydrogen-peroxide and Oxygen -  Catalyst: MnO2, Amerlyst 36, Au/TiO2 -  Solvent: Acetone/H2O2, Acetone -  Temperature 60-150oC, pressure 20-50 bar, flow rate 1 ml/min, concentration: 0.05 mmol/ml

Oxidizing  agent   Solvent   Catalyst  

Temperature  (oC)  

Pressure  (bar)   Conversion   Comment  

MnO2   Acetone   MnO2   60   20   82%   Blockage  afer  10  minutes  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   70   20  68%  afer  1  run  78%  afer  2  run  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   100   30  68%  afer  1  run  98%  afer  2  run  

The  catalyst  was  reacDvated  with  H2O2  between  the  runs.  

O2  (10  ml/min)   Acetone   Au/TiO2   75   11   8%  

O2  (10  ml/min)   Acetone   Au/TiO2   150   11   95%  

Afer  10  minutes  the  conversion  was  dropped  to  

50%  

O2  (50  ml/min)   Acetone   Au/TiO2   150   20   >  98%  

Page 49: Thales nano reactor overview jan 2013

Ø  Conditions: 100oC, 30 bar, CO gas, 0.5 ml/min liquid flow rate, 0.01 M in THF Ø  Catalyst: Polymer supported Pd(PPh3)4 Ø  Reaction was repeated Ø  Different gas flow rates were tested

Results

Aminocarbonylation

ReacDon  HC-­‐Pro  with  gas  module  (CO  flow  rate)  

10 ml/min

30  ml/min  

30  ml/min  

30  ml/min  

60  ml/min  

60  ml/min  

60  ml/min  

60  ml/min  

Conversion  %   60   65   62   66   79   79   79   82  

Reproducible Conversion for Each Flow Rate

Page 50: Thales nano reactor overview jan 2013

Phoenix Module

Page 51: Thales nano reactor overview jan 2013

Phoenix Flow Reactor High Temperature Synthesis

Powerful & New Parameter Space Up to 450°C, 100 bar

Versatile: Cartridges for Heterogeneous and loops homogeneous capabilities.

Fast: Reactions in seconds or minutes.

Chemical Resistance: Stainless steel, Hastelloy, and teflon options

Innovative: Validated procedure to generate novel bicyclic compounds

Scale Up: Different size CatCarts, MidiCart, Loops

Simple: 3 button stand-alone control or via simple touch screen control on H-Cube Pro™.

Page 52: Thales nano reactor overview jan 2013

Catalyst Cartridges (Heterogenous Rxns)

Type   Volume   Max.  T/p  (100  bar  unDl  it  is  indicated  otherwise)  

Comment  

H-­‐Cube  Pro  Type  CatCarts  30  mm   0.38  mL   250°C   Packed  by  

ThalesNano  70  mm     0.76  mL   250°C   Packed  by  

ThalesNano  Metal-­‐Metal  Sealing  High  T  CatCarts    

125  mm  (1/4  SS  id  3  mm)   0.9  mL   450  °C   User  can  fill  125  mm  (1/4  SS  id  3.8  mm)   1.3  mL   450  °C   User  can  fill  125  mm  (1/2  SS  id  9.4mm)   9  mL   450  °C   User  can  fill,  filters  

are  needed  250  mm  (1/4  SS  id  3mm)   1.8  mL   450  °C   User  can  fill,  filters  

are  needed  250  mm  (1/4  SS  id  3.8  mm)   2.6  mL   450  °C    User  can  fill,  filters  

are  needed  250  mm  (1/2  SS  id  9.4mm)   18  mL   450  °C   User  can  fill,  filters  

are  needed  H-­‐Cube  Midi  Type  MidiCarts  

MidiCart   7.6  mL   150  °C   Packed  by  ThalesNano  

Page 53: Thales nano reactor overview jan 2013

Loop-Reactor Options (homogenous rxns)

•  Control Residence/Rxn Time by Length/Volume of Coil.

•  Materials and Sizes §  Stainless steel (1 – 16 mL) – up to

450oC and 100bar •  Coil (1/16” 4-16 ml) •  Short coil (1/16” 1-4ml) •  Static mixer (3/8”, 32ml) •  Acidity limit

§  Hastelloy (4 – 16 ml) – up to 450oC and 100bar

•  Less sensitive to acid though more expensive than stainless steel

§  PTFE coil (4 – 16 ml) – up to 150oC or 20bar

•  Easy to recoil •  Versatile

Page 54: Thales nano reactor overview jan 2013

Places dedicated for connection of Phoenix

2.

1.

1.) reaction in the Phoenix Flow Reactor, followed by a reaction in the H-Cube Pro 2.) reaction in the H-Cube Pro, followed by a reaction in the Phoenix Flow Reactor

i.) if inert CatCart is placed into the H-Cube Pro: reaction in the Phoenix Flow Reactor only ii.) engineering: forget about the H-Cube Pro CatCart place

Page 55: Thales nano reactor overview jan 2013

To Heat Exchanger

Back from Heat Exchanger

To Heat Exchanger Back from Heat Exchanger

Heat exchanger and release valve (140 bar)

Page 56: Thales nano reactor overview jan 2013

Heterocyclic rings of the future, J. Med. Chem., 2009, 52 (9), pp 2952–2963.

• 3000 potential bicyclic systems unmade • Many potential drug like scaffolds Why? • Chemists lack the tools to expand into new chemistry space to access these new compounds. • Time • Knowledge

The quest for novel heterocycles

Page 57: Thales nano reactor overview jan 2013

57

Our focus: 2 main cyclization routes

• Gould-Jacobs-reaction

• Meldrum’s acid variation

Curran, T.T. in Named reactions in Heterocyclic Chemistry; Li, J.-J., Corey, E. J. Eds. Wiley Interscience: New York, 2005, pp423-436

Page 58: Thales nano reactor overview jan 2013

Gould-Jacobs Cyclization

•  Standard benzannulation reaction •  Good source of:

•  Quinolines •  Pyridopyrimidones •  Naphthyridines

•  Important structural drug motifs

Disadvantages: • Harsh conditions • High b.p. solvents • Selectivity • Solubility

Condensation

Cyclization

Saponification Decarboxylation

methylenemalonic ester

W. A. Jacobs, J. Am. Chem. Soc.; 1939; 61(10); 2890-2895

Page 59: Thales nano reactor overview jan 2013

59

• Gould-Jacobs-reaction §  Replacement of diphenyl ether with THF

Lengyel L., Nagy T. Zs., Sipos G., Jones R., Dormán Gy., Ürge L., Darvas F., Tetrahedron Lett., (accepted for publishing)

Cyclization conditions: a: 360 °C, 130 bar, 1.1 min b: 300 °C, 100 bar, 1.5 min c: 350 °C, 100 bar, 0.75 min

Pyridopyrimidinone Quinoline

No THF polymerization!

Batch conditions: 2 hours

Page 60: Thales nano reactor overview jan 2013

Pyrolysis of Meldrums Acid

ketene

•  Meldrum’s acid is more acidic than malonic ester=easier synthesis of adduct •  Decomposition needs no purification •  Lower temperature reactions

Page 61: Thales nano reactor overview jan 2013

61

Process exploration

• Meldrum’s acidic route to pyridopyrimidones and to hydroxyquinolines

Lengyel L., Nagy T. Zs., Sipos G., Jones R., Dormán Gy., Ürge L., Darvas F., Tetrahedron Lett., (accepted for publishing)

Cyclization conditions: a: 300 °C, 160 bar, 0.6 min b: 300 °C, 100 bar, 0.6 min c: 360 °C, 100 bar, 1 min d: 350 °C, 130 bar, 4 min e: 300 °C, 100 bar, 1.5 min

The nature of the substituents is critical because they increase or decrease the nucleophilicity of the ring: Electron donating groups increase yields, Electron withdrawing groups decrease yields.

Page 62: Thales nano reactor overview jan 2013

62

• Extension to the synthesis of naphthol and phenyl-substituted salicylic acid-derivatives

• Formal mechanism:

Lengyel L., Nagy T. Zs., Sipos G., Jones R., Dormán Gy., Ürge L., Darvas F., Tetrahedron Lett., (accepted)

Page 63: Thales nano reactor overview jan 2013

63

Thermal cyclisation of amino-flavon

• Solution Phase Flow Thermolysis method

50% Yield 95% NMR purity

In collaboration with the Patonay Group from Debrecen University

Page 64: Thales nano reactor overview jan 2013

Going supercritical: 350°C<T>500°C

Page 65: Thales nano reactor overview jan 2013

Razzaq, T.;, Glasnov, T.N.; Kappe, O. C., Continuous-Flow Microreactor Chemistry under High-Temperature/Pressure Conditions, Eur. J. Org. Chem., 2009, 9, 1321-1325

Transesterification

Esterification

Conditions:

p = 180 bar T = 350°C v = 0.5 mL/min c = 0.05 M (MeOH)

85% yield

Remark: little or no reaction below 200°C

Conditions:

p = 120 bar T = 300°C v = 1.0 mL/min c = 0.33 M (EtOH)

87% yield

Remark: 3 passes little or no reaction below 200°C

Under supercritical conditions

MeOH and EtOH act as an acidic

catalyst

Page 66: Thales nano reactor overview jan 2013

Esterification in supercritical methanol

- Suppression of side reactions by increasing the pressure and flow rate - MeOH: Tcr = 239.4°C, pcr = 80.8 bar - Concentration: 0.05M

Temp.  (°C)   Pressure  (bar)   Residence  7me  (sec)   Calc.  yield  (%)*  300   150   30   15  425   117   18   9  450   118   7,2   38  450   118   12   25  450   109   12   27  460   140   9   55  460   144   9   54  460   135   9   59  436   137   9   74  460   137   9   76  481   137   9   76  496   137   6,9   76  483   137   5   80  483   137   3,3   80  475   137   2,6   74  475   137   2,9   79  

- Isolated yield 60%, NMR 98%

* By calibration curve, loop size 1.5 mL

Rapid optimization

Page 67: Thales nano reactor overview jan 2013

Thank you for your attention


Recommended