+ All Categories
Home > Documents > The Algebra of Ciliates

The Algebra of Ciliates

Date post: 17-Oct-2021
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
49
The Algebra of Ciliates Workshop on Language Theory in Biocomputing Turku, June 9, 2011 Robert Brijder Hasselt Hendrik Jan Hoogeboom Leiden 10th International Conference on Unconventional Computation image: http://www.depts.ttu.edu/hillcountry/research/protozoa.php
Transcript
Page 1: The Algebra of Ciliates

The Algebra of Ciliates

Workshop on

Language Theory in Biocomputing

Turku, June 9, 2011

Robert Brijder Hasselt

Hendrik Jan HoogeboomLeiden

10th International Conference onUnconventional Computation

image: h

ttp:/

/w

ww

.depts

.ttu

.edu/hillc

ountr

y/re

searc

h/pro

tozoa.p

hp

Page 2: The Algebra of Ciliates

the book

Computation in Living CellsGene Assembly in Ciliates

A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg

Natural Computing Series, Springer, 2004.

Page 3: The Algebra of Ciliates

ciliatesThe ciliates are a group of protozoans characterized by the presence of hair-like organelles called cilia, […] variously used in swimming, crawling, attachment, feeding, and sensation.

Ciliates are one of the most important groups of protists, common almost everywhere there is water — in lakes, ponds, oceans, rivers, and soils. Ciliates have many ectosymbiotic and endosymbiotic members, as well as some obligate and opportunistic parasites. Ciliates tend to be large protozoa, a few reach 2 mm in length, and are some of the most complex protozoans in structure

http://en.wikipedia.org/wiki/Ciliate

Oxytricha trifallax

Page 4: The Algebra of Ciliates

micro and macro

cell structure:

3. macronucleous4. micronucleous8. cilium

Unlike most other eukaryotes, ciliates have two different sorts of nuclei: a small, diploid micronucleus (reproduction), and a large, polyploid macronucleus (general cell regulation). The latter is generated from the micronucleus by amplification of the genome and heavy editing.

http://en.wikipedia.org/wiki/Ciliate

Page 5: The Algebra of Ciliates

from micro to macro

51 3 7 92 4 6 8

63 24 5 87 9 1

micronucleus

macronucleus

recombination

DNA: 1604 bp

gene

DNA: 2374 bp

http://oxytricha.princeton.edu/cgi-bin/get_MDS_IES_Info.cgi?num=38

here: segment numbers in sorted order

Page 6: The Algebra of Ciliates

from micro to macro

Greslin, Prescott etal. Reordering of nine exons is necessary to form a functional actin gene in Oxytricha nova. PNAS 86, 6264-6268, Aug 1989.

micronucleus

macronucleus

9 exons

Page 7: The Algebra of Ciliates

pointers

3

22 343 4

1 2 4

e.g., pointer 5 of actin gene: 13 bp

pointers – overlapping segments (for glueing)

Page 8: The Algebra of Ciliates

recombination

rc4 recombination on pointer 4 ‗generic‘

43 5

43

54

4

3 5

before after ‗ciliate view‘

after ‗math view‘

Page 9: The Algebra of Ciliates

recombination on pointers

43

54

43 5

4

43 54

43 45

no pointers

43

54

43 45

43

54

89

78

1. loop recombination

2. hairpin recombination

3. double-loop recombination

Page 10: The Algebra of Ciliates

four models

quest for the ―right‖ model

• strings

• graphs

• matrices

• set systems

Page 11: The Algebra of Ciliates

abstraction: pointers

22 343 4

22 343 4

3423̅ 2̅4 ‗legal‘ string

realistic stringsvs. generalizations... 4774 ...

Page 12: The Algebra of Ciliates

string positive rule

22 343 4

rc3

24 323 4

rcp( u1pu2p̅u3 ) = u1pu̅2p̅u3

3423̅ 2̅4

32̅ 4̅ 3̅ 2̅4

hairpin inversion

translating recombinations into string operations

Page 13: The Algebra of Ciliates

string pointer reduction systems

rcp( u1pu2p̅u3 ) = u1pu̅2p̅u3

rcp( u1ppu2 ) = u1ppu2

rcp,q( u1pu2qu3pu4qu5 ) = u1pu4qu3pu2qu5

no rearrangementexcision circular molecule

Page 14: The Algebra of Ciliates

definability

22 343 4

rc4

3 4

22 34

3423̅ 2̅4

undefined

(we will come beack to this)

Page 15: The Algebra of Ciliates

sorting = reduction

22 343 4

rc3,4

34 223 4

rc2

Micronuclear DNA

Macronuclear DNA

3423̅ 2̅4

3 2̅4234

22 343 4 3423 2̅4

rcp( u1pu2pu̅3 ) = u1pu̅2pu̅3

rcp,q( u1pu2qu3pu4qu5 ) =u1pu4qu3pu2qu5

Page 16: The Algebra of Ciliates

nondeterministic

Micronuclear DNA

Macronuclear DNA

rcp( u1pu2pu̅3 ) = u1pu̅2pu̅3

rcp,q( u1pu2qu3pu4qu5 ) =u1pu4qu3pu2qu5

rc3,4

rc2

3 2̅4234

3423 2̅4

rc3

3423̅ 2̅4

32̅ 4̅ 3̅ 2̅4

rc4

3 2̅ 4̅̅̅234

rc2

rc4

Page 17: The Algebra of Ciliates

(?)

question:

is the result of reductions independent of operations chosen?

rc3,4

rc2

3 2̅4234

3423 2̅4

rc3

3423̅ 2̅4

32̅ 4̅ 3̅ 2̅4

rc4

3 2̅ 4̅̅̅234

rc2

Page 18: The Algebra of Ciliates

four models

quest for the ―right‖ model

• strings

• graphs

• matrices

• set systems

Page 19: The Algebra of Ciliates

circle & overlap graph

2

2̅ 3

3

4

45̅

5 6

6

7

6

5 4 7

2

3

7267̅345̅632̅45

Page 20: The Algebra of Ciliates

string to overlap graph

rc2

rc2

6

5 4 7

2

3

6

5 4 7

2

3

7267̅345̅632̅45 723̅ 6̅54̅ 3̅76̅ 2̅45

real generalization

local complementation

Ehrenfeucht etal, Theor. Comp. Sci., 2003(for signed graphs instead of looped graphs)

Page 21: The Algebra of Ciliates

local complementation looped vertex p

graph operations

p

N‘(p)

p

rcp

Page 22: The Algebra of Ciliates

local complementation looped vertex p

graph operations

p

q

N(p)\N(q) N(q)\N(p)

N(p)∩N(q)

p

q

p

N‘(p)

p

edge complementation unlooped edge pq

rcp

rcp,q

Page 23: The Algebra of Ciliates

example edge complement

6

5 4 7

2

3

p

q

N(p)\N(q) N(q)\N(p)

N(p)∩N(q)rc3,4 on edge 3,4

rc3,4

6

5 4 7

2

3

Page 24: The Algebra of Ciliates

two worlds

rc3,4

rc2

Micronuclear DNA

Macronuclear DNA

3 2̅4234

3423 2̅4

rc3

3423̅ 2̅4

32̅ 4̅ 3̅ 2̅4

rc4

3 2̅ 4̅̅̅234

rc2

3 4

2

3 4

2

3 4

2

3 4

2

3 4

2localcompl

edgecompl

Page 25: The Algebra of Ciliates

(?)

question:

how do rcp,q and rcp‘,q‘ interact ?

p

q

N(p)\N(q) N(q)\N(p)

N(p)∩N(q)

Page 26: The Algebra of Ciliates

four models

quest for the ―right‖ model

• strings

• graphs

• matrices

• set systems

Page 27: The Algebra of Ciliates

graphs and matrices

6

5 4 7

2

3

2 3 4 5 6 7

2 1 0 1 1 0 13 0 0 1 1 1 04 1 1 0 1 1 05 1 1 1 1 1 06 0 1 1 1 0 17 1 0 0 0 1 1

Page 28: The Algebra of Ciliates

reconsider local/edge complementation

6

5 4 7

2

3

6

5 4 7

2

3

2 3 4 5 6 7

2 1 0 1 1 0 13 0 0 1 1 1 04 1 1 0 1 1 05 1 1 1 1 1 06 0 1 1 1 0 17 1 0 0 0 1 1

2 3 4 5 6 7

2 1 0 1 1 0 13 0 0 1 1 1 04 1 1 1 0 1 15 1 1 0 0 1 16 0 1 1 1 0 17 1 0 1 1 1 0

rc2 rc2

Page 29: The Algebra of Ciliates

what is happening?

multiply (over the binary numbers)

2 3 4

2 1 1 03 1 1 14 0 1 0

rc3 rc4 rc2

2 3 4

2 1 0 13 0 0 14 1 1 0

3423̅ 2̅4 3 2̅4234

+ xor ⊕ 1+1=0* and ∧

1 1 01 1 10 1 0

1 0 10 0 11 1 0 0

=

micro macro

Page 30: The Algebra of Ciliates

what is happening? inversion

multiply (over the binary numbers)

sorting DNA = computing the inverse

2 3 4

2 1 1 03 1 1 14 0 1 0

rc3 rc4 rc2

2 3 4

2 1 0 13 0 0 14 1 1 0

1 1 01 1 10 1 0

1 0 10 0 11 1 0

1 0 00 1 00 0 1

=

3423̅ 2̅4 3 2̅4234

1 1 01 1 10 1 0

1 0 10 0 11 1 0

=

-1

micro macro

Page 31: The Algebra of Ciliates

partial inverse

principal pivot transform

A * X is defined iff A[X] is invertible

A x = y iff A-1 y = x

A = iff A*X = x1

x2

y1

y2

y1

x2

x1

y2

X pointers

X

X P QR S

P-1 -P-1 QR P-1 S – R P-1 Q

A * X = A =

P = A[X] invertible / nonsingular i.e. det P ≠ 0

real recipe (which we do not need)

M.J. Tsatsomeros. Principal pivot transforms: properties and applications.Linear Algebra and its Applications, 307(1-3):151–165, 2000

other

Page 32: The Algebra of Ciliates

principal pivot transform

using partial inversion

( A * X ) * Y = A * ( X ⊕ Y ) (when defined)

xor

this shows • how the rcp and rcp,q interact• result does not depend on order of operations

A = iff A*X = x1

x2

y1

y2

y1

x2

x1

y2

A * {p1,p2} … * pn = A * V = A-1 (all pointers)

Page 33: The Algebra of Ciliates

applicability

3423̅ 2̅422 343 4

rc4

3 4

22 34

undefined

2 3 4

2 1 1 03 1 1 14 0 1 0

A * X is defined iff A[X] is invertible

rc3,4 3423 2̅43 4

2 1 1 01 0 10 1 0

rc2 3423̅ 2̅4

3 4

2 1 1 01 1 10 1 0

3 4

2

Page 34: The Algebra of Ciliates

three worlds

rc3,4

rc2

Micronuclear DNA

Macronuclear DNA

3 2̅4234

3423 2̅4

3423̅ 2̅4 3 4

2

3 4

2

3 4

2

1 1 01 1 10 1 0

1 0 10 0 11 1 0

1 1 01 0 10 1 0

ppt*{2}

*{3,4}

Page 35: The Algebra of Ciliates

conclusion (for now)

by careful modeling we find thatgene assembly is actually principal pivot transform (ppt)

we can use results about ppt to know more about gene assembly

independent order operations

interaction operations

Page 36: The Algebra of Ciliates

four models

quest for the ―right‖ model

• strings

• graphs

• matrices

• set systems

Page 37: The Algebra of Ciliates

applicable sets

2 3 4

2 1 1 03 1 1 14 0 1 0

A[ {3,4} ]

V = {2,3,4}D = { ∅, {2}, {3}, {2,4}, {3,4}, {2,3,4} }

A * X is defined iff A[X] is invertible

set system

3 4

2

3 4

2

3 4

2rc3 rc4

Page 38: The Algebra of Ciliates

which operation ?

V = {2,3,4}D = { ∅, {2}, {3}, {2,4}, {3,4}, {2,3,4} }

V = {2,3,4}D‘ = { ∅, {3}, {4}, {2,3}, {2,4}, {2,3,4} }

2 3 4

2 1 1 03 1 1 14 0 1 0

2 3 4

2 0 1 13 1 1 14 1 1 1

graphs ⊆ set systems (strict)

rc3 ?

3423̅ 2̅4

32̅ 4̅ 3̅ 2̅4

Page 39: The Algebra of Ciliates

which operation ?

V = {2,3,4}D = { ∅, {2}, {3}, {2,4}, {3,4}, {2,3,4} }

V = {2,3,4}D‘ = { {3}, {2,3}, ∅, {2,3,4}, {4}, {2,4} }

2 3 4

2 1 1 03 1 1 14 0 1 0

2 3 4

2 0 1 13 1 1 14 1 1 1

graphs ⊆ set systems (strict)

rc3

3423̅ 2̅4

32̅ 4̅ 3̅ 2̅4

?

Page 40: The Algebra of Ciliates

how simple can it get …

V = {2,3,4}D = { ∅, {2}, {3}, {2,4}, {3,4}, {2,3,4} }

V = {2,3,4}D‘ = { {3}, {2,3}, ∅, {2,3,4}, {4}, {2,4} }

2 3 4

2 1 1 03 1 1 14 0 1 0

2 3 4

2 0 1 13 1 1 14 1 1 1

graphs ⊆ set systems (strict)

rc3 ⊕3 xor 3

3423̅ 2̅4

32̅ 4̅ 3̅ 2̅4

applicability (!)XOR {4} is defined, while rc4 is not

nb. {4} not in D

Page 41: The Algebra of Ciliates

four worlds

sdr rc3,4

spr rc2

Micronuclear DNA

Macronuclear DNA

3 2̅4234

3423 2̅4

3423̅ 2̅4 3 4

2

3 4

2

3 4

2

1 1 01 1 10 1 0

1 0 10 0 11 1 0

1 1 01 0 10 1 0

{ ∅, {2}, {3}, {2,4},{3,4}, {2,3,4} }

{ {2}, ∅, {2,3}, {4},{2,3,4}, {3,4} }

{ {2,3,4}, {3,4},{2,4}, {3}, {2}, ∅}

XOR ⊕ {2}

⊕ {3,4}

localcompl

edgecompl

ppt

*{2}

*{3,4}

Page 42: The Algebra of Ciliates

algebra of set systems

{ ∅, {q}, {p,q}, {p,r}, {p,q,r} }

Page 43: The Algebra of Ciliates

algebra of set systems

{ ∅, {q}, {p,q}, {p,r}, {p,q,r} }

loopcomplementlocal

complementation

XOR

Page 44: The Algebra of Ciliates

algebra of set systems

loopcomplementlocal

complementation

XOR

*p and +pgenerate group S3

Page 45: The Algebra of Ciliates

edge complement vs. local complement

6

5 4 7

2

3

rc3,4

rc46

5 4 7

2

3

6

5 4 7

2

3

6

5 4 7

2

3

rc36

5 4 7

2

3

6

5 4 7

2

3

rc3

ignoring loops

Page 46: The Algebra of Ciliates

edge complement vs. local complement

+3 *3 *4 +3 *3 +3 =+3 *3 +3 *3 +3 *4 =+3 *3 *3+3 *3 *4 =

+3 +3 *3 *4 =*3 *4 =

*{3,4}

basic algebra S3

*3 *4 = *4 *3

*3 *3 = id = +3 +3

+3 *3 +3 = *3 +3 *3

rc3,4

loop3

rc3

loop3

applicability

3 4

3 4 3 4 3 4

3 4

rc4

rc3

3 4

3 4loop3

Page 47: The Algebra of Ciliates

conclusion (updated)

by careful modeling we find thatgene assembly is actually principal pivot transform (ppt) and XOR

we can use results about ppt (on matrices) and XOR (on set systems) to know more about gene assembly

but also inspiration the other way around …

kiitos!

however …

parallellism

‗simple‘ operations

Page 48: The Algebra of Ciliates

references (to self)

R. Brijder, H.J. Hoogeboom. The Group Structure of Pivot and Loop Complementation on Graphs and Set Systems. Eur.J.Comb. (2011).

R. Brijder, H.J. Hoogeboom. Maximal Pivots on Graphs with an Application to Gene Assembly. Discr.Appl.Math. 158 (2010) 1977-1985.

R. Brijder, H.J. Hoogeboom. Reality-and-Desire in Ciliates.In: Algorithmic Bioprocesses (Condon etal, eds.), Natural ComputingSeries, Springer (2009) pp.99-115.

R. Brijder, T. Harju, H.J. Hoogeboom, Pivots, determinants, and perfect matchings of graphs (2008) submitted for publication – really a long time ago now [arXiv:0811.3500]

A. Ehrenfeucht, T. Harju, I. Petre, D. Prescott, G. Rozenberg, Computation in Living Cells: Gene Assembly in Ciliates, Natural Computing Series, Springer (2004)

(this one you know, of course)

Page 49: The Algebra of Ciliates

Recommended