+ All Categories
Home > Documents > The Algorithmics of Probabilistic Automata Weak Bisimulation

The Algorithmics of Probabilistic Automata Weak Bisimulation

Date post: 23-Feb-2016
Category:
Upload: moana
View: 58 times
Download: 0 times
Share this document with a friend
Description:
The Algorithmics of Probabilistic Automata Weak Bisimulation. Andrea Turrini Saarland University based on a joint work with Holger Hermanns. Probabilistic Automata ( PA ). s. coin. coin. f. u. retry. flip. flip. flip. 8/16. 8/16. 12/16. 4/16. t f. t u. h f. h u. n. sms. - PowerPoint PPT Presentation
Popular Tags:
20
The Algorithmics of Probabilistic Automata Weak Bisimulation Andrea Turrini Saarland University based on a joint work with Holger Hermanns
Transcript
Page 1: The Algorithmics of Probabilistic  Automata Weak Bisimulation

The Algorithmicsof

Probabilistic AutomataWeak Bisimulation

Andrea TurriniSaarland University

based on a joint work with

Holger Hermanns

Page 2: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Probabilistic Automata (PA)s

u

hf tf hu ntu

flip flip flip retry

coin

4/16 8/16 8/16 12/16

beepu beepf flashf flashu

sms

coin

f

vibrate

sms sms sms sms

Page 3: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Probabilistic Automata (PA)

PA = (Q, q0, E, H, D)Transition relation D Q (E ) (Q)

Internal (hidden) actions

External actions: E H =

Initial state: q0 Q

States

H Disc

Page 4: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Weak bisimulation

p 1-p

Weak bisimulation between A1 and A2

Equiv. Rel. R Q QQ = Q1 Q2, such that+

bbb

s0

s1 s2 t1

t3s3 s4

r

m

s, t, a,

s

t

R R

a

a

C Q/R . m (C) = r (C)

m R r [JL91]

t t

m r

Page 5: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Usual decision procedure

Bisimulation(A1, A2)

W := {Q1 Q2}

(C, a) := FindSplit(W)

while C do W := Refine(W, a, C)

(C, a) := FindSplit(W)

return W

+

FindSplit(W)

for each (s, a, ) D1 D2

for each t [s]W

if there does not exist such that t and W return ([s]W, a)

return (, a)

a r rmr

m

NN

N

N = max (| D1 D2 |, | Q1 Q2 |)+ +

+

Page 6: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Weak transition

{beep: 5/16, flash: 7/16, vibrate: 4/16} {beep: 2/16, flash: 2/16, vibrate: 12/16}

s

u

hf tf hu ntu

flip flip flip retry

coin

4/16 8/16 8/16 12/16

beepu beepf flashf flashu

coin

f

vibrate

sms sms sms sms sms

Page 7: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

How many weak transitions?

C00: bbbbbC01: bbbbtC02: bbbtb

C30: ttttbC31: ttttt

t t t t t

t t t t t

Page 8: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Weak transition as Flow

{beep: 5/16, flash: 7/16, vibrate: 4/16}

s

u

hf tf hu ntu

flip flip flip retry

coin

4/16 8/16 8/16 12/16

beepu beepf flashf flashu

coin

f

vibrate

sms sms sms sms sms

Page 9: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Weak transition vs. Flow Problems

u

hf tf hu ntu

flip flip flip retry

coin

4/16 8/16 8/16 12/16

beepu beepf flashf flashu

coin

f

vibrate

{beep: 0/16, flash: 16/16, vibrate: 0/16}

16/16

16/16 16/16 16/16 16/16 16/16

16/16 16/16

16/16

sms sms sms sms sms

Page 10: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Flow as Linear Programming Problem

f0 = 1f9 + f12 = 5/16f10 + f11 = 7/16f13 = 4/16

s

u

hf tf hu ntu

8/16

beepu vibratebeepf flashf flashu

f

8/16 12/16 4/16

0 ≤ fi ≤ ci (< )f0 + f8 = f1 + f4

f1 = f2 + f3 f2 = f9

f3 = f10

f4 = f5 + f6 + f7 f5 = f8 + f11 f6 = f12 f7 = f13

f1 f4

f0

f2 f3 f5 f6 f7f8

f9 f10 f11 f12 f13

min S fi

under constraints

{beep: 5/16, flash: 7/16, vibrate: 4/16}f2 = 8/16(f2 + f3)f3 = 8/16(f2 + f3)f5 = 12/16(f5 + f6)f6 = 4/16(f5 + f6)

beep

flash

vibrate

Complexity:#variables O(|Q||D|)

#constraints O(|Q||D|)

Polynomial!s

1

8/16 8/16

4/16 4/16

4/16 4/16

4/16

4/161/16

1/16

3/16

3/16

0

Page 11: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Usual decision procedure

Bisimulation(A1, A2)

W := {Q1 Q2}

(C, a) := FindSplit(W)

while C do W := Refine(W, a, C)

(C, a) := FindSplit(W)

return W

+

FindSplit(W)

for each (s, a, m) D1 D2

for each t [s]W

if there does not exist r such that t r and m W r

return ([s]W, a)

return (, a)

a

N

N

N

N = max (| D1 D2 |, | Q1 Q2 |)+ +

+

Polynomial

Polynomial!

Page 12: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

From bisimulation to minimal automaton

A = (Q, q0, E, H, D)

QA = (W, [q0]W, E, H, DW)

mA = (W, [q0]W, E, H, DW)

Quotienting

Transition reduction

zeroconf-nt: |Q| = 670, |D| = 827

zeroconf-nt: |W| = 41, |DW| = 55

zeroconf-nt: |W| = 41, |DW| = 52

Page 13: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Adding costs to PAc

h0 h1 hn-1 hnp1-p

tr …p

1-p

tr

p1-p

tr

ds 1 1

r2 r2 r2 r2

Overall cost: 1 + nr2/p + 1

p1-p

tr

C(csh0) = 1 x 1C(h0trh1) = r2 x pC(h0trh0trh1) = (r2 + r2) x (1-p) x pC(h0trh0trh0trh1) = (r2 + r2 + r2) x (1-p) x (1-p) x pC((h0tr)ih1) = (i + 1) x r2 x (1-p)i x p

r2 / p

Page 14: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Adding costs to PAc

h0 h1 hn-1 hnp1-p

tr …p

1-p

tr

p1-p

tr

ds 1 1

r2 r2 r2 r2

Minimum cost equals optimal LP solution

p1-p

tr

c

h0 h1 hn-1 hnp1-p

…p

1-pp

1-p

1

1r2 r2 r2 r2

p1-p

r2r2r2r2

c

1

1

1

1

(1-p) / p

1

(1-p) / p

1

(1-p) / p

1

(1-p) / p1

0

0

Polynomial!

Page 15: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Nondeterminism and Cost PA

2 + 89/p cost 2 + 100/p

c

h0 h1 h3 h4p1-p

t5 h2 p1-p

t5

p1-p

t5

ds 1 1

52 52 52 52

p1-p

t5

q1 q3 q4p1-p

t4 q2 p1-p

t4

p1-p

t4

42 42 42

q5p1-p

t4

42

o o00 o

0o

0

Page 16: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Comparing Cost PA

2 + 89/p

2 + 80/pw

k0 k1 k3 k4p1-p

t4 k2 p1-p

t4

p1-p

t4

ds 1 1

42 42 42 42

p1-p

t4 k5p1-p

t4

42

c

h0 h1 h3 h4p1-p

t5 h2 p1-p

t5

p1-p

t5

ds 1 1

52 52 52 52

p1-p

t5

q1 q3 q4p1-p

t4 q2 p1-p

t4

p1-p

t4

42 42 42

q5p1-p

t4

42

o o00

o0

o0

Page 17: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Minor Cost Weak Bisimulation

Page 18: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Comparing Cost PA

2 + 89/p

2 + 80/pw

k0 k1 k3 k4p1-p

t4 k2 p1-p

t4

p1-p

t4

ds 1 1

42 42 42 42

p1-p

t4 k5p1-p

t4

42

c

h0 h1 h3 h4p1-p

t5 h2 p1-p

t5

p1-p

t5

ds 1 1

52 52 52 52

p1-p

t5

q1 q3 q4p1-p

t4 q2 p1-p

t4

p1-p

t4

42 42 42

q5p1-p

t4

42

o o00

o0

o0

Page 19: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Conclusion• Weak transitions as LP problems• Polynomial decision procedure for PA

weak probabilistic bisimulation• Minimal automaton• Cost decorated PA• Prototypical implementation

• Extensions of LP approach– Specific weak transitions, hyper-transitions,

restricted transitions, equivalence matching, …– MDP multi-objective reachability– Interval multi-objective reachability– Multi-objective reachability in interval models

• Base for other models: Markov Automata

Page 20: The Algorithmics of Probabilistic  Automata Weak Bisimulation

Andrea TurriniSaarland University

Decision procedure in practice


Recommended