+ All Categories
Home > Documents > The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I....

The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I....

Date post: 22-Dec-2015
Category:
View: 214 times
Download: 0 times
Share this document with a friend
20
The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1 , I. Mandjavidze 1 , B. Andrieu 2 , O. Le Dortz 2 , D. Terront 2 , A. Vallereau 2 , C. Gutjahr 3 , K. Mizouchi 3 , C. Ohlmann 3 , F. Sanchez 4 1 CEA/DSM/IRFU/SEDI, Saclay, France 2 CNRS/IN2P3/LPNHE, Paris, France, 3 TRIUMF, Vancouver, Canada 4 IFAE, Barcelona, Spain
Transcript
Page 1: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

The Back-End Electronics of the Time Projection Chambers in the T2K

Experiment

D. Calvet1, I. Mandjavidze1, B. Andrieu2, O. Le Dortz2, D. Terront2,

A. Vallereau2, C. Gutjahr3, K. Mizouchi3, C. Ohlmann3, F. Sanchez4

1CEA/DSM/IRFU/SEDI, Saclay, France2CNRS/IN2P3/LPNHE, Paris, France,

3TRIUMF, Vancouver, Canada4IFAE, Barcelona, Spain

Page 2: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

Tokai to Kamioka (T2K) experiment

Main Physics Goal: neutrino oscillation

• μ disappearance for improved accuracy on 23

• e appearance to improve sensitivity to 13

50 kT water

2

Experiment now taking data

Page 3: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May 2010

Summary of features

• Amplification: MicroMegas modules segmented in 7 x 10 mm pads

• Over 124.000 pads to instrument ~9 m2 sensitive [email protected]

T2K Time-Projection Chambers

1 of 3 TPCs shown

1 m

2 m

3

Page 4: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

T2K TPC-FGD readout: AFTER chip

4

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600

V(Vsk)

1.2

1.4

1.6

1.8

2

2.2

2.4

0.0E+00 5.0E-08 1.0E-07 1.5E-07 2.0E-07 2.5E-07 3.0E-07 3.5E-07 4.0E-07 4.5E-07 5.0E-07

V(Vpzc)

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

0.0E+00 5.0E-08 1.0E-07 1.5E-07 2.0E-07 2.5E-07 3.0E-07 3.5E-07 4.0E-07 4.5E-07 5.0E-07

V(vcsa)

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

0.E+00 1.E-04 2.E-04 3.E-04 4.E-04 5.E-04 6.E-04 7.E-04 8.E-04 9.E-04 1.E-03

pole zero cancellation

Cs

16 values

+-

Cp

Rp

Vdc

CSA

in

Cl

Cdet

Cf

Rf4 Rf*Cf (100us)

AD

C inVdcinG-

2

Cg2

+-

2*Cg2

Gain-2

x511

Cm

Memory Cell

ckw ckr

r1

vic

m

+-

r1

r2

r2Buffer

Cs

Sallen&Key Filter

16 values

Cg

Cs

2*Cg

+-

V(Vinsca)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0.0E+00 5.0E-08 1.0E-07 1.5E-07 2.0E-07 2.5E-07 3.0E-07 3.5E-07 4.0E-07 4.5E-07 5.0E-07

0

0.5

1

1.5

2

2.5

0.00E+00 5.00E-08 1.00E-07 1.50E-07 2.00E-07 2.50E-07 3.00E-07 3.50E-07 4.00E-07 4.50E-07

Q max. MIP Noise <

120fC 75 103 e 750 e

240fC 150 103 e 1500 e

360fC 225 103 e 2250 e

600fC 375 103 e 3750 e

Tp(5%-100%) ns116 610 1054 1546200 695 1134 1626412 912 1343 1834505 993 1421 1912

ckw: 1MHz-50MHzckr: 20MHz

Noise <2mV

ADCin2V/10MIPs

• 7272 Analog Channels Analog Channels• SSwitched witched CCapacitor apacitor AArray: rray: 511511 cells cells• 44 Gains; Gains; 1616 Peaking Time values (100ns to 2µs) Peaking Time values (100ns to 2µs)• Input Current Polarity:Input Current Polarity: positive positive oror negative negative• Readout:Readout: 76*511 cells at 20MHz [external 12bits ADC] 76*511 cells at 20MHz [external 12bits ADC]

P. Baron et al.

Page 5: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

TPC Read-Out Diagram

72 x 2 Gbps fibres

124.414 detector pads

72 Front-EndElectronic Modules

18 Quad-optical link DataConcentrator Cards

24-ports Gbit Ethernet Switch

TPC DAQ PC

On-line databaseGlobal event builderRun controlMass storage

Nd 280 network

Slave Clock

Module

18

Master Clock

Module

On-detectorin magnet

Off-detectorback-endelectronics

~20 m

Clock/Trigger

Control/Data

5

Back-end elements

• Data Concentrator Cards (DCCs) to aggregate data from front-end

• Gbit Ethernet private network and PC for TPC local event building

Page 6: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

Data Concentrator CardsMain requirements

• Fanout global 100 MHz clock, synchronous trigger to front-end with low skew (< 40 ns)

• Aggregate data from multiple front-ends (typ. 4 modules per DCC, i.e. 7000 channels). Target DAQ rate: 20 Hz

• Configure front-end and read-back run-time settings

• Interfaces

• to TPC DAQ PC through standard Gbit Ethernet switch

• to front-end via 72 duplex optical links – 2 x 144 Gbps aggregate

• to Slave Clock Module via dedicated LVDS links

6

Design strategy

• Development of dedicated board too slow to meet project deadlines

→ Extend platform used for single module readout; scale it up to full size system by trivial duplication

→ Common hardware design with T2K Fine-Grain Detector (FGD) toshare development effort

Page 7: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

Doing more with an evaluation board3+1 optical ports

Gbit Ethernet

RJ45

100 MHz ref. ClockTrigger input

PLL

7

Page 8: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

DCC Close-up

Design risks and benefits

• Optical link board easily adds 3 SFP transceivers to ML405

• External clock distribution requires hardware modification of ML405

→ Lowest cost, minimal design effort and shortest deployment time solution

1 of 18 DCCs

Optical link extension

card

Clockboard

External ClockTrigger input

Xilinx ML405EvaluationPlatform

8

Page 9: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

DCC Transmitters Eye Diagram

9

On-board SFP Link via SMA

Link via SATA#1 Link via SATA#2

Prototype: Local 25 MHz local oscillator + LMK03000 PLL multiplication for 200 MHz RocketIO referenceFinal design: Silicon Laboratories Si5326 PLL

Page 10: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

DCC Optical Transmitter Jitter

10

Optical link onSATA#2 connector

Remarks

• Clock quality not significantly degraded by add-on cards and modifications on ML405 board

• In real experiment 100 MHz ref. clock have to use cat. 6 cable (~1 m)

→ All 72 links in final system running stably – Estimated BER < 10-15

Page 11: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

Clock/Trigger fanout capability

11

Remarks

• Phase of recovered clock on Virtex 2 Pro / 4 RocketIO w.r.t. phase of sender not predictable from one system configuration to the next – but remains stable (<~2 ns) after link synchronized

• Limited control of skew of synchronization signals sufficient for this TPC

→ R&D on Virtex 5: predictable latency achievable with GTP transceivers

DCCClock

FEM#1Clock

FEM#2Clock

0

2

4

6

8

10

12

14

320 324 328 332 336 340 344

delay (ns)

occ

ure

nce

DCC->FEM path delay

DCC to FEM path delay variations over 100 FPGA reconfigurations (16 ns primary reference clock)

Recovered clock on 2 FEMs compared to DCC reference clock (16 ns primary reference clock)

Page 12: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

TPC Backend Electronics Crate

Principles

• Each DCC mounted on an aluminum plate

• 6 DCCs per 6U crate (i.e. 1 crate reads-out 1 TPC or 1 FGD)

• All cables and fibers at the back; CompactFlash (firmware) at the front

→ Most practical way found to rack-mount non-standard form factor cards

1 of 3 DCC crates

12

Page 13: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May 2010

Complete TPC Back-end SystemFront-end

Power & Slow Control Rack

Back-end Electronics Rack

[email protected] 13

Front-end slow control PC

Front-endpower supplies

(2 Wiener PL508)

Crates of DCCs

Slave clockmodule

Ethernet switch

Power supplies

Power supply

Page 14: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

DCC Embedded Firmware/Software

Multi-portMemorycontroller

Cache controller

PowerPC 405

(300 MHz)

Data-Side-On Chip Memory bus

32-bit 100 MHz

to/from front-end via optical links

Virtex 4 FPGA

RocketIO1K-32bit

rxtx

RocketIO1K-32bit

rxtx

RocketIO1K-32bit

rxtx

RocketIO1K-32bit

rxtx

Processor Local Bus32/64-bit100 MHz

D-CacheI-Cache

EthernetMAC

User Logic

PHY

128 MBDRAM

to/from TPC DAQ PC

DMA

14

Principles

• Use hard IP blocks of Virtex 4: transceivers, processor, Ethernet MAC…

• Finite state machine in user logic pulls data from 4 front-ends in parallel

• Standalone server program in PowerPC 405 unloads front-end data, elementary checks, uncapsulates in UDP/IP frames sent by MAC

Page 15: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May 2010

Hard-wired data collection FSM

NextChannel

ZS

F(0 to 5)

ZS, FEC, ASIC, Channel

FiniteState

Machine

Send Enable<3..0>Sender 0

1896 entryLUT

counters A(0 to 3)

C(0 to 78)

1111ZS 0000

ZS 0011

Rx FIFO 0 Free > 2 KB

Sender 1

Sender 2

Sender 3

Rx FIFO 1 Free > 2 KB

Rx FIFO 2 Free > 2 KB

Rx FIFO 3 Free > 2 KB

&

request

Suspend

PowerPC 405(300 MHz)

PLB 32-bit 100 MHz

Startevent

Abort

[email protected] 15

Operation

• Requests data channel by channel from 4 front-end modules in parallel

• Suspends if any FIFO cannot store data of next request

• Next request posted automatically when data of pending request entirely received or pre-defined timeout has elapsed

To RocketIO

TX

From RocketIORX Fifo’s

Page 16: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May 2010

T2K Nd280 DAQ systemTPC DAQ PC

fetpcdcc0

fetpcdcc17

Local eventbuilder

Cascade

to/from DCCsvia private

Gbit Ethernet switch

nd280network

Global eventbuilder

FGD DAQ PCPODDAQ PCxxx

DAQ PC

Global DAQ PC

On-line database,Mass storage, etc.

[email protected] 16

Architecture

• Local event building in TPC DAQ PC

• Bridge to MIDAS global event builder via Cascade

• Private nd280 network provides access to services shared by other detectors in the experiment

See: M. Thorpe et al.,“The T2K near Detector Data

Acquisition Systems”,this conference

See: R. Poutissou et al.,“Cascading MIDAS DAQ

Systems and Using MySQL Database for Storing History

Information”,this conference

Page 17: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May 2010

TPC DAQ System Performance

[email protected] 17

Global system performance in running conditions of T2K

• 33 Hz event taking rate in zero-suppressed mode (required: 20 Hz)

• 50 ms latency for laser calibration events (1 DCC in full readout mode)

• Max. DCC throughput: 16 MB/s (limitation: PPC405 I/O over DS-OCM)

• Global throughput linear with # of DCCs until GbE link saturation

→ All requirements met – system in exploitation

Event acquisition time for 1 DCCin full readout mode

Event acquisition rate for 1 front-endmodule in zero-suppressed mode

T2K laserevents

T2K beam,cosmic events

Page 18: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May 2010

Experience Return

[email protected] 18

System robustness and stability

• All optical links very stable despite sub-optimal clocking; BER < 10-15

• Clock skew stable in operation but variation from one power-up to next

• No hardware failure after ~6 months of operation

• Need improve handling of oversized events to minimize deadtime

→ Successful assembly of production system from evaluation hardware

Beam spill + Cosmic events

Typical TPC event size: ~65 kB (spill or cosmic)750 kB on 1 DCC for laser calibration events

Mean: 3.5 kB

A cosmic event seen at T2K Nd280

Page 19: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

Summary• Purpose of the development

A 1-to-72 clock-trigger fanout tree plus a 72-to-1 data aggregation system. Bridges TPC front-end 144 Gbps optical path to 1 Gbit Ethernet on DAQ side

• Key elements

18 Xilinx Virtex 4 evaluation boards with minimal add-ons + off-the-shelf PC and Ethernet networking products

• Performance and limitations

Clock distribution stable during operation but each link settle to a different skew (~40 ns p.p.) at system power-up due to Virtex 2Pro / 4 RocketIO limitations – other R&D show this can be much better controlled with Virtex 5

Limited I/O capability of PPC405, DOCM faster than PLB. Our application: 130 Mbit/s usage of Gbe link – by-pass processor if one needs to fully exploit Gbe

• System pros and cons

Low-cost and shortest deployment time solution. Evaluation kits not meant for production systems…but it works!

19

See poster: Y. Moudden et al., “The level 2 trigger of the H.E.S.S 28 meter Cerenkov  telescope”

Page 20: The Back-End Electronics of the Time Projection Chambers in the T2K Experiment D. Calvet 1, I. Mandjavidze 1, B. Andrieu 2, O. Le Dortz 2, D. Terront 2,

RT2010 – Lisboa 23-28 May [email protected]

Outlook• FPGA board design is getting more and more complex

Manufacturer has to provide many guidelines, notes, reference design schematics…but still need skilled designers / layout engineers to build your own board. Time consuming, technical risks at design and production

• Many applications require same common blocks beyond FPGA itself

De-coupling capacitors, external memory (DDR2, 3), configuration Flash, several high speed serial links, many customizable user I/O, flexible clocking

• Evaluation boards

Originally to help designers make their own board design. Brings very latest FPGA technology instantly to anyone at low cost and no risk. An eval board has a lot in common with the core of a typical end product – why re-invent?

• Think evaluation boards (have them made) as macro-components?

Worked for us. Improvements: lower-profile (2 cm stacking), smaller form factor, access to more user I/O and high speed serial links, flexible clocking

→ Towards a better eval. board paradigm?: FPGA + SDRAM + Flash, I/O connectors on a general purpose module directly re-usable by customer; the element for demo is the carrier board (largest diversity of interface standards)

20


Recommended