+ All Categories
Home > Documents > The Benthic Geoecology Model within the Modular System for ... · geoecology model was introduced...

The Benthic Geoecology Model within the Modular System for ... · geoecology model was introduced...

Date post: 01-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
13
Conference Paper, Author's Postprint Nasermoaddeli, Mohammad Hassan; Lemmen, Carsten; Hofmeister, Richard; Kösters, Frank; Klingbeil, Knut The Benthic Geoecology Model within the Modular System for Shelves and Coasts (MOSSCO) Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/104579 Vorgeschlagene Zitierweise/Suggested citation: Nasermoaddeli, Mohammad Hassan; Lemmen, Carsten; Hofmeister, Richard; Kösters, Frank; Klingbeil, Knut (2014): The Benthic Geoecology Model within the Modular System for Shelves and Coasts (MOSSCO). In: 11th International Conference on Hydroinformatics (HIC 2014), August 17 - 21, 2014, New York City, USA. (Special Issue - Journal of HydroInformatics). Red Hook, NY: Curran. Standardnutzungsbedingungen/Terms of Use: Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of the restrictive license will be binding.
Transcript
  • Conference Paper, Author's Postprint

    Nasermoaddeli, Mohammad Hassan; Lemmen, Carsten; Hofmeister,Richard; Kösters, Frank; Klingbeil, KnutThe Benthic Geoecology Model within the Modular Systemfor Shelves and Coasts (MOSSCO)

    Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/104579

    Vorgeschlagene Zitierweise/Suggested citation:Nasermoaddeli, Mohammad Hassan; Lemmen, Carsten; Hofmeister, Richard; Kösters,Frank; Klingbeil, Knut (2014): The Benthic Geoecology Model within the Modular System forShelves and Coasts (MOSSCO). In: 11th International Conference on Hydroinformatics (HIC2014), August 17 - 21, 2014, New York City, USA. (Special Issue - Journal ofHydroInformatics). Red Hook, NY: Curran.

    Standardnutzungsbedingungen/Terms of Use:

    Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichendenNutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, dieWeiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung derNamensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigenNutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

    Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license isapplicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the materialof the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms ofthe restrictive license will be binding.

  • AutorenfassungNasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO

    ‐ ‐

    Erstveröffentlichung in: 11th International Conference on Hydroinformatics (HIC 2014),Informaticsand theEnvironment:DataandModel Integration inaHeterogeneousHydroWorld,17–21August2014,Vol.1of4.NewYork:CurranAssociates2015,S.2823‐2830. FüreinekorrekteZitierbarkeitistdieSeitennummerierung derOriginalveröffentlichungfürjedeSeitekenntlichgemacht. S.

    TheBenthicGeoecologyModelWithin theModularSystem forShelvesandCosts(MOSSCO)Nasermoaddeli,M.H.a;Lemmen,C.b;Hofmeister,R.c;Koesters,F.aandKlingbeil,K.caDepartmentofHydraulicEngineeringinCoastalAreas,FederalWaterwaysEngineeringandResearchInstitute,Hamburg, ,GermanybHelmholtzCentrumGeesthacht,CentreforMaterialsandCoastalResearch,InstituteforCoastalResearch,Geesthacht, ,GermnaycLeibnizInstituteforBalticSeaResearchWarnemuende,Dept.forPhysicalOceanographyandInstrumentation,Rostock‐Warnemuende, ,GermanyTheModularSystemforShelvesandCoasts MOSSCO integratesphysical,biological,chemicalandgeologicalmodelsofshelvesandcoasts for theNorthSeaandBalticSea inanexchangeableway.TheMOSSCOsoftwareformsacouplingframeworkforexchangingdataandmodels,whichdistin‐guishes betweenphysical domains Earth System compartments such as the benthic andpelagiczone andprocesses suchasbenthicgeochemistry,physicalerosionandbiologicalstabilization .Information exchange across physical domainswith different grids and time steps aremanagedusingtheESMF EarthSystemModellingFramework ,whereascouplingofprocesseswithinindi‐vidualmodulesisachievedusingFABM FrameworkforAquaticBiogeochemicalModels .Thispa‐per reportscouplingofanewlydevelopedbenthicgeoecologymodel to theMOSSCO framework.Thisnewmodelincorporatesthebiologicaleffectsofmacrofauna thebivalveTellinafabulaistak‐enasanexample andmicrophytobenthosonerodibilityandcriticalbedshearstress.Themodelisimplementedinanobject‐orientedgenericmodularwaysothatitcanbeextendedtoanynumberofbiologicaleffectsonthesedimenttransportforanarbitrarynumberofspecies.Finally,theappli‐cationofthecoupledmodelisdemonstratedinsimulationofa Dsetup.IntroductionChallengingquestionswithinandattheboundariesofdifferentEarthSystemcompartmentssuchasthefluxofcarbonbetweenthepelagicandbenthiczone e.g.deHaasetal. [ ] maketheintegrationofdifferentphysicaldomains compartments andprocessesinEarthsystemmodellinginevitable.Besidesthetraditionallycoupleddomainmodels,suchasatmosphereandocean,modelsofcoastalsystemsmustintegratemorechemicalandbiologicalprocessmodels,whicharetypicallynot coupledwithin the largerEarth SystemModel ESM context. If representedat all, biologicaland biogeochemical processes are incorporated in ocean models. Such monolithic approaches,

  • AutorenfassungNasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO

    ‐ ‐

    however,aredominatedbythephysicaloceanmodelingcommunities.Progress inunderstandingofbiologicalandchemicalprocessescanonlypartiallyandslowlybeintegratedinmonolithicoceanmodelsduetothemodelcomplexity.Theabilitytoexchangeprocessdescriptionsinsuchmonolith‐icmodelsislimited,orevenimpossible,whichmakesmodelintercomparisons,andextensionsbydifferentinternationalscientificcommunitiesdifficult. Nasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO .S. In: thInternationalConferenceonHydroinformatics HIC ,InformaticsandtheEnviron‐ment:DataandModelIntegrationinaHeterogeneousHydroWorld, – August ,Vol. of .NewYork:CurranAssociates ,S. ‐ .Converselytothisstrongly‐coupledmonolithicapproach,aflexiblemodularapproach,whichaimsatmakingmodels asmodular and exchangeable as possible, offers the opportunity to exchange,maintain and develop each sub‐model independently by different communities. Furthermore, itpromotescommunicationandcollaborationamongscientistsfromdifferentdisciplines.Oneofthemost successful strategies for modular domain coupling is employed in Earth System Models,whereindividualphysicaldomainsoftheEarthSystem compartments ,e.g.ocean,ice,atmosphere,orbiosphereareconcurrentlysimulatedandtheexchangeofinformationismediatedbyadomaincoupler. If the individual stand‐alone domain representations exhibit a coupler specific interfacetheycanbecoupledtooneanotherwithcoarsegranularity.Theroleofthiscouplertypicallyistonegotiatedifferentphysicalgridrepresentations,orcoordinatesystemsbetweenthedomainmod‐els, toensurethecorrect transportof fluxesacross thedomains,andtodistribute thecomputingloads of the different domainmodels in a high performance computing HPC parallel executionenvironment.Amongthecurrentcouplingtechnologiesare,theModelCouplingToolkit MCT ,theEarthSystemModelingFramework ESMF ,theFlexibleModelingSystem FMS ,theCommunityClimateSystemModel CCSM , theOASIS coupler or the Bespoke FrameworkGenerator BFG . These and othertechniqueshaverecentlybeenreviewedandcomparedquantitativelybyJagers [ ] orquali‐tativelybyValckeetal. [ ]. Thecouplingtechnologiesdifferinseveralaspects,suchascodeinvasiveness, code‐level generator versus executable‐level coupling, performance, flexibility, re‐searchcommunityheritage, implementationlanguagesandaddressee.Jagers [ ] concludesthatmostcouplingtechnologiesareconvergingtowardscommonconceptsandrecommendsreus‐abilityofcomponentsandco‐operationofdevelopers.Valckeetal. [ ] concludethat intheendscienceneedsbothflexibleandhighperformancecouplingcapabilities .Adifferent approach is takenby theHighlyStructuredModularEarthSubmodelSystem MESSy,Jöckeletal. [ ] todescribe thecouplingofprocesseswithinadomainatveryhighprocessmodularity; this allows for a fine‐grained coupling and efficient data flowbetween processes. InMESSy,which is currently operational in the atmosphericdomain, diverseprocesses such as the

  • AutorenfassungNasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO

    ‐ ‐

    quasi‐biannualoscillation,waterphysics, radiocarbongenerationoraerosol scavengingare inde‐pendentlydescribedinsubmodels.Allthesesubmodels,however,hadtobewrittenorrewritten,tomeetthespecificinfrastructureenforcedbyMESSy.Similar to MESSy, but emerging from the pelagic ecosystem community is the Framework forAquaticBiogeochemistry FABM,Trolleetal. [ ] .Thisisacommunitybasedmodelframe‐workthatfacilitatestheintegrationoflocalprocessmodelswithinalargerspatialcontextandcou‐pling to other local processmodels by providing interfaces for information sharing. AlsowithinFABM,existingmodelshavetobepartiallyrewrittentomeettheseinterfacestandards.Currently,theFABMlibraryofprocessmodelsincludesadiversityofexchangeabledescriptionsoffoodweb,nutrient,andsuspendedsedimentinteractions.Challengesincoastalandshelfareas,forexample,humanpressureonresourcesandecosystem,callfortheintegrationofphysical,chemicalandbiologicalprocessesbothbetweenandwithindomains,and thus fora coupling strategy thatgoesbeyondpuredomainandprocesscoupling.This is thegoaloftheMOSSCOinfrastructure,whichtakesahybridapproachofdomainandprocesscouplingrelyingonESMFandFABMasmajor butnotexclusive couplingtechnologies.TheModularSystemforShelfandCoasts MOSSCO isasoftwarearchitectureenablingexchangea‐bility of process descriptions in variousmodel levels through standard interfaces. This softwarearchitectureutilizestheEarthSystemModelingFramework ESMF tocouple Nasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO .S. In: thInternationalConferenceonHydroinformatics HIC ,InformaticsandtheEnviron‐ment:DataandModelIntegrationinaHeterogeneousHydroWorld, – August ,Vol. of .NewYork:CurranAssociates ,S. ‐ .processesbetweenEarthcompartments,suchasbenthicandpelagiccompartments.Additionally,itapplies the Framework for Aquatic Biogeochemical Models FABM to set up communicationamongdifferentprocesseswithineachcompartment,suchasbiogeochemicalprocesseswithinthepelagicdomain.ThusMOSSCOcouplesdifferentphysical,chemicalandbiologicalprocessesacrossandwithinphysicaldomains.ThepresentworkdemonstratescouplingofanewlydevelopedgenericmodulargeoecologymodelwithMOSSCO.Inthecurrent Dsetup,theGeneralOceanTurbulenceModel GOTM hasbeenap‐pliedtomodel D‐verticalhydrodynamics pelagicdomain representingconditionsattheshallowNorth Sea shelf.Wemakeuse of the FABM framework to describe the local pelagic dynamics ofsuspendedparticulatematter SPM asusedinBurchardetal. .FABMprovidesalibrarythatholdsmodels, each containing state variableswith its local zero‐dimensional rate of change.TheSPMprocessmodelusedheredefinesmassconcentrationofSPMasstatevariableandconsiderslight attenuationdue to shading and sinking of particles only.Non‐local processes of pelagic dy‐

  • AutorenfassungNasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO

    ‐ ‐

    namicsonanumericalgrid,suchasmixing,advectionandboundaryfluxesofFABM’sstatevaria‐bles, arehandledby thegridded dpelagic ecosystemcomponent.EachFABMmodel can run inmultipleinstances.TheSPMstatevariablesinFABMcomprisebasicpropertiessuchasdensityandequivalentsphericaldiameter.Thesepropertiesarecommunicatedtogetherwiththedata,astand‐ardnameandunitdescriptionasESMFfields.ThesedimentfluxbetweenpelagicandbenthicdomainiscomputedusinganabridgedversionoftheDelft Dbedmodel.Thebedmodel,inthefollowingcallederosed,wasatthepresentstagesim‐plifiednot taking into account sedimentmixing in thebed.The exchange layerbetween the twomentioneddomainsisassumedtobeanearthcomponent,whichiscoupledtotheMOSSCOframe‐workbymeansofESMF.Sincebenthiclifeisnotsimulateddynamicallyyet,thedemandforcouplingofbiogeochemicalpro‐cessesislimited.Thedescriptionofbiologicaleffectsontheentrainmentofbedsediments benthicgeoecologymodel wasintroducedasanewgenericmodularcomponent,called benthoseffect ,totheMOSSCOsystemviaESMF.TheMOSSCOsystemprovidesanintegratedinfrastructuretocom‐municatedataarraysandmetadataacrossdomainsandprocesses refertoFigure .

    Figure .Thecoupledsystemconsistingofwaterphysics GOTM ,pelagicecosystem FABMgotm ,bedsedimentflux erosed andbenthicgeoecology benthoseffects .Inthefollowing,technicalissuesregardingthecouplingofanexistingmodel here:erosed andanewmodel here:benthos‐effect toMOSSCOaredemonstrated.Finally,theapplication Nasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO .S. In: thInternationalConferenceonHydroinformatics HIC ,InformaticsandtheEnviron‐ment:DataandModelIntegrationinaHeterogeneousHydroWorld, – August ,Vol. of .NewYork:CurranAssociates ,S. ‐ .

  • AutorenfassungNasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO

    ‐ ‐

    ofthenewlydevelopedbenthicgeoecologymodelwithinMOSSCOformodellingtheeffectofben‐thicfaunaonsedimenttransportina D‐setupispresented.MethodsThepurposeofthissectionisfirsttodescribehowanexistingmodelcanbepreparedtobecoupledwithMOSSCOandsecondtoexplainthestructureofthebenthicgeoecologymodel.InordertostudySPMdynamicsarepresentationoferosionanddepositionisneeded.Forthisrea‐sontheopensourcecodeofDelft Dwastaken,whichwasmadeavailableinanabridgedformbyDeltares.Thissimplifiedversioncomputessedimentfluxesofnon‐cohesivesoilandmudatthebedsurface for different sediment fractions, thus different classes of sediments with different grainsizes.Thebedstratificationmethodsarecurrentlyleftoutandhavebeendisintegratedtobelatercoupled as a separate earth compartment using ESMF. The coupling strategy was to leave theDelft D routinesunchangedby integrating them throughwrappers.For thispurpose thealreadyexiting main routine erosed was modified to a wrapper interface invoking Delft D routines,whichareencapsulatedinFortran objectclassesasshowninFigure .

    Figure .Embeddingerosedinaninterfacetotheobjects a andencapsulationofDelft Droutineswithintheobjectstructure b Encapsulationofsubroutinesandtheirargumentsinobjectsallowstomaketheminaccessibleout‐side the interface private to the interface , for example, fromESMF routines. The arguments ofeachsubroutinewereembeddedinadatastructureusingpointersthatareinitializedandfinalizedinseparatemethods.Passingargumentsthroughpointerassignment,runningthesubroutineandpointerassignmentoftheoutputargumentsaredoneseparately,aswell Figure .ThisapproachenablesindependentdevelopmentoforiginalroutinesbyotherscientificcommunitieswithouttheneedtochangetheinterfacestotheMOSSCOsystem.Evenlatermodificationoftheargumentlist

  • AutorenfassungNasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO

    ‐ ‐

    canbeeasilyimplementedusingthisapproach.Additionally,itisstraightforwardtogeneratesuchinterfaces foralmostanyexistingwellstructuredprocess‐orientedroutines.Tomaintaincompati‐bilitywith ESMF, any interface should be implemented in away to be invoked in three generalsteps:initialize,runandfinalize seeFigure . Nasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO .S. In: thInternationalConferenceonHydroinformatics HIC ,InformaticsandtheEnviron‐ment:DataandModelIntegrationinaHeterogeneousHydroWorld, – August ,Vol. of .NewYork:CurranAssociates ,S. ‐ .

    Figure .ESMF‐componentanditsroutines a ,andcouplingproceduretoESMF b These three routines are only accessible through an ESMF‐SetService routine within the ESMFcomponent,whichisthelaststageofcouplinganexistingroutinetoESMF.Therestoftheneces‐sarycouplingstepswithESMFaregenericroutines ESMFMainandESMFToplevelcomponentsinFigure whicharegeneratedautomaticallywithinMOSSCO.CouplerstaketheroleofintegrationofsuchESMF‐componentsintoMOSSCO.Theroleofsuchcouplersisthemanagementofthedataflowamongcomponents.Assecondaspectofthissection,thenewlydevelopedbenthoseffectcomponentisexplainedbrieflyinthefollowingandtechnicalissuesarediscussed.Specieslivingonorwithintheseafloorrangefromplantstoanimalsandarecollectivelyreferredtoasbenthos LalliundParsons [ ] .Ben‐thicanimals larger than mmarecalledmacrofauna suchas thebivalveTellina fabula .Marineplantsattachedtotheseabedandmicroalgae benthicmicrophytes areotherexamplesofbenthicorganisms.

  • AutorenfassungNasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO

    ‐ ‐

    Flow and sediment transport can be affected by the presence of benthic organisms in differentways.Protrusionofbenthicanimalsandmacrophytesintheboundarylayerchangethebedrough‐nessandthusthebedshearstressandconsequentlythesedimenttransport.Theerodibilityofsed‐iment can bemodified by themucus produced by benthic organisms, for example, extracellularpolymeric substances secreted bymicrophytobenthos Paterson [ ] . The erodibility of theupperbedsedimentcanbealteredbybioturbationgeneratedbymacrofauna Deckereetal., [ ] .Inthepresentwork,thebiologicaleffectsofmicrophytobenthosandofbenthicmacrofaunaonsedimenterodibilityandcriticalbedshearstressaretakenintoaccount.Benthicmacrofaunacon‐sistsofabroadrangeofdifferentspecies,e.g.worms,starfishes,bivalvesandsnails.Inthefollow‐ingthebivalveTellinafabulaistakenasanexample,whichhasbeenstudiedbefore e.g.Borsjeetal., [ ] .Itwasseenasarequirementtoimplementthebiologiceffectsinagenericwaysothatthenumberofbiologicaleffectsandspeciescanbearbitrarilyextended.Hence thebenthoseffectwas imple‐mented object‐orientedmanner. An abstract generic object super class has been defined fromwhich other species can be generatedwith all features of the super class, having polymorphismcapability.Thisallowsthemodificationandadditionofbiologicaleffectsofeachnewspecieswhilekeepingthesamegenericmethodsandclassesusedbythesuperclassforinvokingnecessarysub‐routines.Thetwomainclassesgeneratedfromthebenthos‐effectclassaremicrophytobenthosandmacrofauna; latermacrophyteswillbeadded too.Specialmeasureswererequired for the imple‐mentationofmacrofauna,sinceseveralspecieshavingdifferenteffectsonsedimenttransportbe‐longtothisgroupofbenthicorganisms.Infacttheeffectofacommunityofdifferentmarinespeciesonthesedimenttransportisnon‐linear.Asyetthereexistsnotheoreticalapproachtoparameterizetheeffectofmacrofaunacommunities Nasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO .S. In: thInternationalConferenceonHydroinformatics HIC ,InformaticsandtheEnviron‐ment:DataandModelIntegrationinaHeterogeneousHydroWorld, – August ,Vol. of .NewYork:CurranAssociates ,S. ‐ .onsedimenttransport;theirstabilizinganddestabilizingeffectsaresimplytreatedasamultiplica‐tionofindividualeffectsoneachabioticparametersuchasroughnessorerodibility.Thisiscarriedoutasapublicinterfaceoverwhichallmacrofaunaclasses includingmethods areinitialized,set,runandfinalized refertoFigure .ThisapproachfacilitatedcouplingthebenthicgeoecologyintotheMOSSCOframeworkwithESMF‐componentsaspreviouslyshown.

  • AutorenfassungNasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO

    ‐ ‐

    Figure .StructureofthegenericmodularbenthicgeoecologymodelinMOSSCOframeworkResultsandDiscussionsThecoupledsystemisappliedtosimulatebenthoseffectsonSPMdynamicsatastationontheshal‐lowshelfintheNorthSeafarenoughoffshoreinordertoassumelateralcoastalSPMtransportasasecondaryeffectonly.TheSPMdynamicsareexpectedtobecontrolledmainlybyverticalexchangeprocesses,suchasturbulentmixing,erosion,settlementofSPMandsedimentation.Themeanwa‐terdepthwassetataneffectivedepthof m.TidalcurrentsinthisregionaredominatedbytheM andS tide,suchthataspring‐neapcycleisacharacteristicfeature.Currentvelocitiesgenerallydonotexceed cm/s.Thewatercolumnisresolvedby verticallayers,whichpositionvariesinheightwiththetidalsurfaceelevation.Windstress,radiationandheatfluxesattheseasurfacearecalculatedbasedonmeteorologicaldataforthestationHelgoland.GOTM UmlaufandBurchard, [ ] isappliedforthe DVhydrodynamicmodellinghavingak‐epsilonturbulencemodel.Temperaturestratificationandcurrentprofilesaretakenintoaccountinternallybytheturbulencemodel.Thewaterdensityvarieswithtemperatureduetometeorologi‐calforcing.Currentvelocitiesareforcedbyanalyticaltidalpressuregradients.Salinityistakenasconstantinthepresentsetup.ThepelagicecosystemcomponentusestwoinstancesoftheSPMmodelinFABMtorepresenttwofractionsof different sizeof SPM,whichare consistentwith those in theerosed component.Theparameterconfigurationisgivenintable .Theverticalmovementofsedimentsinthewatercol‐umn is calculated based on a constant settling velocity and turbulentmixing obtained from theGOTMroutines.

  • AutorenfassungNasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO

    ‐ ‐

    Table .ParameterconfigurationofSPMmodelclasses.

    Nasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO .S. In: thInternationalConferenceonHydroinformatics HIC ,InformaticsandtheEnviron‐ment:DataandModelIntegrationinaHeterogeneousHydroWorld, – August ,Vol. of .NewYork:CurranAssociates ,S. ‐ .Asinglebedlayerofnon‐cohesivesoilwithoutamudfractionwasassumedforthepresentsimula‐tion.AChezyfactorof andareferenceheightof cmabovethebedwerechosen.Criticalbedshear stress is calculatedwithin erosed and the biological effects on erodibility and critical bedshearstressarecomputedwithinthebenthicgeoecologymodelbasedontheassumedintensityofTellinafabulaandbiomassofChlorophyllaatthebedsurface.Inthefollowingthesimulationresultsofthefirstsedimentfractionarepresented.AsitcanbeseenfromFigure theSPMconcentrationinthewatercolumnfollowsthetidalwaterlevelfluctuationsandthusmainlythetidalcurrent,notshownhere .Asexpected,raisingtheintensityofT.fabula, and ind.m‐ resultsinanincreaseofSPMinthewatercolumncomparedtothecasewithout biological effects Abundance = , Chlorophyll = μgg‐ in Figure . In contrast, an in‐creaseofthebiomassofmicrophytobenthos,Chlorophylla, , μgg‐ yieldsinadecreaseofSPMinthewatercolumn.

  • AutorenfassungNasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO

    ‐ ‐

    Figure .Simulationresultsof D‐set‐upshowingthebiologicaleffectsonthesedimentconcentra‐tioninthewatercolumn.T.fabulaabundancehasbeenmadedimensionless.Thecoexistenceofbothbenthosorganismscounteractstheireffectsonthesedimenttransport,sothatforexampleataT.Fabulaabundanceof ind.m‐ andChlorophyllabiomassof μgg‐ thenetbiologicaleffectdiminishesaccording toPaarlberget al. [ ].This casecouldberepro‐ducedinthecurrentcouplingeffort notshownhere .ConclusionsWehavepresentedanewlydevelopedgenericmodularbenthicgeoecologymodelanditscouplingtotheMOSSCOframeworktoinvestigatethebiologicaleffectsonsedimenttransport.MOSSCOuti‐lizes theESMF, but not exclusively, tomanage information flowbetweenEarth system compart‐ments and FABM to handle the data exchange within compartment level. Its modular approachenablesexchangeablecouplingofdifferentphysical,chemicalandbiologicalprocessesdescriptionswithinandbetweenearthcompartments.Itwasshownhowagenericmodularstructureofanewlydevelopedbenthosgeoecologymodelallowsforastraightforwardcouplingprocedure.AdditionallyitwasshownhowanalreadyexistingmodelcanbecoupledtotheMOSSCOframework.Finally,thesimulationofa Dcoupledsetuphasshownplausible

  • AutorenfassungNasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO

    ‐ ‐

    Nasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO .S. In: thInternationalConferenceonHydroinformatics HIC ,InformaticsandtheEnviron‐ment:DataandModelIntegrationinaHeterogeneousHydroWorld, – August ,Vol. of .NewYork:CurranAssociates ,S. ‐ .resultsofthecoupledbenthicgeoecologymodel. Itshouldbenotedherethatthebiological inputdatawaschosenwithintherangeofobservationsbutisnotbasedonobservationsonaspecificsite.TheintensityofbiologicaleffectsontheSPMconcentrationiscloselyrelatedtosedimentproper‐tiessuchasthemeangraindiameter,whichwillbefurtherinvestigatedinfutureprocessstudies.AcknowledgementsTheMOSSCOprojectwasfundedbytheGermanBMBFaspartoftheCoastalResearchAgendafortheNorthSeaandBalticSea.ThisworkresultsfromjointeffortsoftheMOSSCOpartners grantsF A, F A, F B ;contributionsofDeltaresarethankfullyacknowledged.References[ ] Borsje, BastiaanWijnand; Hulscher, Suzanne Jacqueline Marie Hélène; Herman, Peter MariaJozef; Vries, Mindert Bareld, On the parameterization of biological influences on offshore sandwavedynamics ,OceanDynamics,Vol. ,No. ,pp – [ ]Deckere,E.M.G.Tde;Tolhurst,T.J;Brouwer,J.F.Cde, DestabilizationofCohesiveIntertidalSed‐imentsbyInfauna ,Estuarine,CoastalandShelfScience,Vol. ,No. ,pp – .[ ] De Haas, H., T.C.E.van Weering and H.C.de Stigter, Organic Carbon in shelf seas; sinks orsources,processesandproducts .ContinentalShelfResearch,Vol. ,pp ‐ .[ ]Jagers,H.R.A.,"LinkingData,ModelsandTools:AnOverview",InternationalCongressonEnvi‐ronmentalModellingandSoftwareModellingforEnvironment'sSake,Ottawa,Canada, .[ ] Jöckel,P.,Sander,R.,Kerkweg,A.,Tost,H.,&Lelieveld, J., TechnicalNote:TheModularEarthSubmodelSystem MESSy ‐anewapproachtowardsEarthSystemModeling ,AtmosphericChem‐istryandPhysics,Vol. ,pp – .[ ]Lalli,C.,Parsons,T.R., TimothyRichardBiologicaloceanography.Anintroduction , ndEdition,Oxford .[ ]Lemmen,C.,Hofmeister,R.,Wirtz,K.W.,Nasermoaddeli,M.H.,Klingbeil,K., ModularCouplinginCoastalandShelfScience ,TobesubmittedtoGeoscientificModelDevelopment,

  • AutorenfassungNasermoaddeli,Lemmen,Hofmeister,Koesters,Klingbeil:TheBenthicGeoecologyModelWithintheModularSystemforShelvesandCosts MOSSCO

    ‐ ‐

    [ ]Paterson,D.M.andBlack,K.S., Waterflow,sedimentdynamicsandbenthicbiology ,AdvancesinEcologicalResearch,Vol. ,pp. – .[ ]Paarlberg,A.J.,Knaapen,M.A.F.,Vries,M.B.de,Hulscher,S.J.M.H.,Wang,Z.B., Biologicalinfluencesonmorphologyandbedcompositionofanintertidalflat ,Estuarine,CoastalandShelfScience,Vol. ,No. , ,pp – .[ ]Trolle,D.,Hamilton,D.P.,Hipsey,M.R.,Bolding,K.,Bruggeman,J., Acommunitybasedframe‐workforaquaticecosystemmodels ,Hydrobiologia,Vol. ,pp ‐ .[ ]Umlauf,L.,andBurchard,H., Second‐orderturbulenceclosuremodelsforgeophysicalbound‐arylayers.areviewofrecentwork ,Cont.Shelf.Res.,Vol. ,pp ‐ .[ ]Valcke,S.,Balaji,V.,Craig,A.,Deluca,C.,Dunlap,R.,Ford,R.,Jacob,R.,Larson,J.,O'Kuinghttons,R.,Riley,G.,Vertenstein,M., CouplingtechnologiesforEarthSystemModelling ,GeoscMD.,Vol. ,pp ‐ .


Recommended