+ All Categories
Home > Documents > The biosynthesis of albicidin - Ciradwith p-amino benzoic acid derivatives. ... (Cya) as well as the...

The biosynthesis of albicidin - Ciradwith p-amino benzoic acid derivatives. ... (Cya) as well as the...

Date post: 18-Apr-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
1
NRPS-1 NRPS-2 NRPS-3 NRPS-4 NRPS-5 The biosynthesis of albicidin Daniel Petras 1 *, Andi Mainz 1 , Benjamin Hempel 1 , Stéphane Cociancich 2 , Monique Royer 2 , Roderich D. Süssmuth 1 1 Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany. 2 Cirad, UMR BGPI, F-34398 Montpellier Cedex5, France. INTRODUCTION RESULTS AND DISCUSSION REFERENCES CONTACT INFORMATION Albicidin is a potent inhibitor of bacterial DNA gyrase with IC 50 values in a nM range, produced by the sugarcane pathogenic bacterium Xanthomonas albilineans [1]. The structure of albicidin remained unclear for more than three decades after its first description by Birch et al. [2]. After the identification and sequencing of three gene islands, responsible for the albicidin biosynthesis, a PKS-NRPS hybrid, build up by three enzymes, Alb01, Alb05 and Alb09 was proposed for the albicidin assembly [3, 4]. Most recently we were able to solve the hitherto unknown structure, revealing a unique polyaromatic oligopeptide mainly composed of p-amino benzoic acids [5, 6]. In-vitro studies of the non-ribosomal albicidin assembly line provided further insights into the biosynthetic machinery of albicidin. Together with our bioinformatic investigations we were able to propose a comprehensive biochemical assembly, expanding the non-ribosomal code of adenylation domains with p-amino benzoic acid derivatives. Furthermore our study reveals a new type of dehydratase domain responsible for the in situ formation and incorporation of cyano-alanine [6]. Figure 3. In silico substrate selectivity of adenylation domains in albicidin NRPS modules. a) Selectivity-conferring residues of A domains are derived from sequence alignments to GrsA. Note that the highly conserved residue D235 (red), which commonly interacts with the α- amino group of the substrate, is preserved only for the Asn/Cya-activating NRPS-2* A domain. However, a new aspartic acid appears for all A domains that have been shown to activate p-aminobenzoic acid derivatives (highlighted in red). Relevant interactions in the substrate binding pockets of A domains are shown for (b) the Phe-activating GrsA (PDB 1amu)11 and (c) the structural model of NRPS-1 (based on homology modeling with the ITASSER webtool using GrsA as template). 1. Hashimi, S.M., Wall, M.K., Smith, A.B., Maxwell, A. & Birch, R.G. Antimicrobial agents and chemotherapy 51, 181-7 (2007). 2. Birch R. G., P.S.S. Phytopathology 73, 1368-1374 (1983). 3. Huang, G., Zhang, L., Birch, R.G., Microbiology 147 (Pt 3), 631-42 ( 2001). 4. Royer, M., Costet, L., Vivien, E., Bes, M., Cousin, A., Damais, A., Pieretti, I., Savin, A., Megessier, S,, Viard, M., Frutos, R., Gabriel, D.W., Rott, P.C., Mol Plant Microbe Interact. 17, 414-27, (2004) 5. Süssmuth, R.D., Kretz, J., Schubert, V., Pesic, D., Hügelland, M., Royer, M., Cociancich, S., Rott, P., Kerwat, D., Grätz, S., ALBICIDIN DERIVATIVES, THEIR USE AND SYNTHESIS, Patent, WO2014125075, (2014) 6. Cociancich, S., Pesic, D., Petras, D., Uhlmann, S., Kretz, J., Schubert, V., Vieweg, L., Duplan, S., Marguerettaz, M., Noell, J., Pieretti, I., Hügelland, M., Kemper, S., Mainz, A., Rott, P., Royer, M., Süssmuth, R.D. Nat. Chem. Biol., 2015, published online * [email protected] MCA Cya pABA pABA pMBA pMBA Figure 1. The structure of the albicidin. Albicidin is composed of a methylated derivative of p-coumaric acid (MCA), the non-proteinogenic α -amino acid cyanoalanine (Cya) as well as the aromatic δ-amino acids p-aminobenzoic acid (pABA, pABA) and 4-amino-2-hydroxy- 3-methoxybenzoic acid (pMBA, pMBA) [5, 6]. 0 10 20 30 40 50 60 70 80 90 100 110 NRPS-1 Blank pABA pMBA pABA-2,3-diOH L-Phe L-Asn 0 10 20 30 40 50 60 70 80 90 100 110 NRPS-3 Blank pABA pMBA pABA-2,3-diOH L-Phe L-Asn 0 10 20 30 40 50 60 70 80 90 100 110 NRPS-2* Blank pABA pMBA L-Asn D-Asn L-Asp L-Cya D-Cya 0 10 20 30 40 50 60 70 80 90 100 110 NRPS-2 Blank pABA pMBA L-Asn D-Asn L-Asp L-Cya D-Cya 0 10 20 30 40 50 60 70 80 90 100 110 NRPS-4 Blank pABA pABA-2-OH pABA-3-OH pMBA pABA-2,3-diOH 0 10 20 30 40 50 60 70 80 90 100 110 NRPS-5 Blank pABA pABA-2-OH pABA-3-OH pMBA pABA-2,3-diOH Figure 5. Substrate specificities of NRPS activation domains in albicidin biosynthesis. Relative turnover of activated substrates are shown. Radioactive ATP/PPi exchange assays were performed for the A domains of NRPS-1, NRPS-2, NRPS-2*, NRPS-3, NRPS-4 and NRPS-5. Normalization to 100% refers to 65.9 μCi/mol (NRPS-1), 1160.8 μCi/mol (NRPS2 and NRPS-2*), 168.3 μCi/mol (NRPS-3), 259.8 μCi/mol (NRPS-4) and 557,2 μCi/mol (NRPS-5), respectively. Experiments were performed in duplicates and error bars of standard deviation are shown. precursor synthesis PKS NRPS tailoring proteins resistance genes NRPS associated proteins esterase transposase genes/ regulaon albicidin transporter , Figure 2. Gene cluster of albicidin biosynthesis. The gene machinery responsible for albicidin biosynthesis is located on three loci (XALB1-3). XALB1 contains the main genes. XALB2 and XALB3 encode each only one ORF, a phosphopantetheinyl transferase and a heat shock protein HtpG [3, 4]. a a b b c c (pABA) (pHBA-CoA) (pABA) (pAHBA) (pAHBA) (Asn) AL AT A A (Asn) A A A A TE C C C C C ? ? ? ? A KS KR KS ACP ACP ACP DH T0 T1 T2 T3 T4 T2* T2* T2* T2* T2* T5 MT PKS-1 PKS-2 PKS-3 NRPS-1 NRPS-2 NRPS-2* NRPS-3 NRPS-4 NRPS-5 X Alb08 pMBA Alb20 Alb18/ pabC pABA pAHBA pHBA-CoA Chorismate Alb17/ pabAB Alb02 SAM SAH Gln Glu Alb12 NADP O , NADPH 2 + NADH NAD + pyruvate Alb07 CoA, ATP AMP, PP i pyruvate Alb09 ATP PP i OH O OH O O OH OH O OH OH O S CoA NH 2 O OH O O OH NH 2 O OH NH 2 O OH OH NH 2 O S OH NH 2 O S OMe NH 2 O S OMe OH Alb09 Alb04 Alb13 Al b01 S O HN O HO MeO HN O NH N O NH O OH HN O HN O HO MeO HO MeO HN O NH N O NH O OH O S S O HN O NH N O NH O OH S O NH N O NH O OH S O NH O OH S O OH OH S O S O OH O O N H 2 NH 2 OH S - + ATP - PPi O O N H 2 NH 2 AMP B O O N H NH 2 S P O O - O - O O N H 2 NH 2 S O NH 2 S O N N H 2 S H N H B O ATP AMP AMP PO 4 3- NO HIT Module A domain signature Predicted substrate NRPS-1 GrsA A V K Y V A N D A K D A W T I A A I C K NO HIT NO HIT NRPS-3 A V K Y V A N D A K NRPS-2* D L T K I G E V G K E L T Y V H A - - R Asx NRPS-2 NRPS-4 A I K Y F S I D M K NO HIT NRPS-5 A I K Y F S I D M K NO HIT 235 236 239 278 299 301 322 330 331 517 D235 D321 K221 Y260 A217 T278 W239 K517 K510 O O NH 3 I330 NH 3 O O HO N H O O NH 3 H 2 N H 3 C A322 H 3 C OH H 3 2 N O O N313 NH O K517 D235 I330 C331 A236 W239 A322 I299 A301 T278 K510 A217 D321 V218 K221 N313 V287 A289 Y260 Figure 4. Model of albicidin biosynthesis. a) Proposed biosynthetic assembly line for albicidin. Substrates of the NRPS are indicated at the A domains. PKS and NRPS modules are color-coded in blue and green, respectively. b) Suggested pathways for the biosynthesis of the MCA-1 precursor pHBA-CoA as well as the δ- amino acids pABA and pMBA. c) Suggested mechanism for the transformation of activated Asn into Cya by Alb04. Conventional activation of Asn by adenylation is mediated by the A domain of Alb04. The substrate is subsequently stored as a thioester at the 4’-phosphopantetheine arm (T2* domain). A second activation occurs by phosphorylation of the Asn side-chain, which finally leads to a formal elimination of water and thus to the formation of Cya. NRPS-2*
Transcript
Page 1: The biosynthesis of albicidin - Ciradwith p-amino benzoic acid derivatives. ... (Cya) as well as the aromatic δ-amino acids p-aminobenzoic acid (pABA, pABA) and 4-amino-2-hydroxy-

NRPS-1 NRPS-2 NRPS-3 NRPS-4 NRPS-5

The biosynthesis of albicidinDaniel Petras1*, Andi Mainz1, Benjamin Hempel1, Stéphane Cociancich2, Monique Royer2, Roderich D. Süssmuth1

1Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.2Cirad, UMR BGPI, F-34398 Montpellier Cedex5, France.

INTRODUCTION

RESULTS AND DISCUSSION

REFERENCES

CONTACT INFORMATION

Albicidin is a potent inhibitor of bacterial DNA gyrase with IC50 values in a nM range, produced by the sugarcane pathogenic bacterium Xanthomonas albilineans [1]. The structure of albicidin remained unclear for more than three decades after its first description by Birch et al. [2]. After the identification and sequencing of three gene islands, responsible for the albicidin biosynthesis, a PKS-NRPS hybrid, build up by three enzymes, Alb01, Alb05 and Alb09 was proposed for the albicidin assembly [3, 4]. Most recently we were able to solve the hitherto unknown structure, revealing a unique polyaromatic oligopeptide mainly composed of p-amino benzoic acids [5, 6]. In-vitro studies of the non-ribosomal albicidin assembly line provided further insights into the biosynthetic machinery of albicidin. Together with our bioinformatic investigations we were able to propose a comprehensive biochemical assembly, expanding the non-ribosomal code of adenylation domains with p-amino benzoic acid derivatives. Furthermore our study reveals a new type of dehydratase domain responsible for the in situ formation and incorporation of cyano-alanine [6].

Figure 3. In silico substrate selectivity of adenylation domains in albicidin NRPS modules. a) Selectivity-conferring residues of A domains are derived from sequence alignments to GrsA. Note that the highly conserved residue D235 (red), which commonly interacts with the α- amino group of the substrate, is preserved only for the Asn/Cya-activating NRPS-2* A domain.However, a new aspartic acid appears for all A domains that have been shown to activate p-aminobenzoic acid derivatives (highlighted in red). Relevant interactions in the substrate binding pockets of A domains are shown for (b) the Phe-activating GrsA (PDB 1amu)11 and (c) the structural model of NRPS-1 (based on homology modeling with the ITASSER webtool using GrsA as template).

1. Hashimi, S.M., Wall, M.K., Smith, A.B., Maxwell, A. & Birch, R.G. Antimicrobial agents and chemotherapy 51, 181-7 (2007).2. Birch R. G., P.S.S. Phytopathology 73, 1368-1374 (1983).3. Huang, G., Zhang, L., Birch, R.G., Microbiology 147 (Pt 3), 631-42 ( 2001).4. Royer, M., Costet, L., Vivien, E., Bes, M., Cousin, A., Damais, A., Pieretti, I., Savin, A., Megessier, S,, Viard, M., Frutos, R., Gabriel, D.W., Rott, P.C., Mol Plant Microbe Interact. 17, 414-27, (2004)5. Süssmuth, R.D., Kretz, J., Schubert, V., Pesic, D., Hügelland, M., Royer, M., Cociancich, S., Rott, P., Kerwat, D., Grätz, S., ALBICIDIN DERIVATIVES, THEIR USE AND SYNTHESIS, Patent, WO2014125075, (2014)6. Cociancich, S., Pesic, D., Petras, D., Uhlmann, S., Kretz, J., Schubert, V., Vieweg, L., Duplan, S., Marguerettaz, M., Noell, J., Pieretti, I., Hügelland, M., Kemper, S., Mainz, A., Rott, P., Royer, M., Süssmuth, R.D. Nat. Chem. Biol., 2015, published online

* [email protected]

MCA CyapABA pABA pMBA pMBAFigure 1. The structure of the albicidin. Albicidin is composed of a methylated derivative of p-coumaric acid (MCA), the non-proteinogenic α-amino acid cyanoalanine (Cya) as well as the aromatic δ-amino acids p-aminobenzoic acid (pABA, pABA) and 4-amino-2-hydroxy- 3-methoxybenzoic acid (pMBA, pMBA) [5, 6].

0

10

20

30

40

50

60

70

80

90

100

110

NRPS-1

Blan

k

pABA

pMBA pA

BA-2

,3-d

iOH L-

Phe

L-As

n

0

10

20

30

40

50

60

70

80

90

100

110

NRPS-3

Blan

k

pABA

pMBA

pABA

-2,3

-diO

H

L-Ph

e

L-As

n

0

10

20

30

40

50

60

70

80

90

100

110

NRPS-2*

Blan

k

pABA

pMBA

L-As

n

D-As

n

L-As

p

L-Cy

a

D-Cy

a

0

10

20

30

40

50

60

70

80

90

100

110

NRPS-2

Blan

k

pABA

pMBA

L-As

n

D-As

n

L-As

p

L-Cy

a

D-Cy

a

0

10

20

30

40

50

60

70

80

90

100

110NRPS-4

Blan

k

pABA

pABA

-2-O

H

pABA

-3-O

H

pMBA

pABA

-2,3

-diO

H

0

10

20

30

40

50

60

70

80

90

100

110NRPS-5

Blan

k pABA

pABA

-2-O

H

pABA

-3-O

H

pMBA

pABA

-2,3

-diO

H

Figure 5. Substrate specificities of NRPS activation domains in albicidin biosynthesis. Relative turnover of activated substrates are shown. Radioactive ATP/PPi exchange assays were performed for the A domains of NRPS-1, NRPS-2, NRPS-2*, NRPS-3, NRPS-4 and NRPS-5. Normalization to 100% refers to 65.9 µCi/mol (NRPS-1), 1160.8 µCi/mol (NRPS2 and NRPS-2*), 168.3 µCi/mol (NRPS-3), 259.8 µCi/mol (NRPS-4) and 557,2 µCi/mol (NRPS-5), respectively. Experiments were performed in duplicates and error bars of standard deviation are shown.

precursor synthesisPKSNRPS

tailoring proteins resistance genesNRPS associated proteins

esterase

transposase genes/ regulation

albicidin transporter

,

Figure 2. Gene cluster of albicidin biosynthesis. The gene machinery responsible for albicidin biosynthesis is located on three loci (XALB1-3). XALB1 contains the main genes. XALB2 and XALB3 encode each only one ORF, a phosphopantetheinyl transferase and a heat shock protein HtpG [3, 4].

a

a

b

b

c

c

(pABA)(pHBA-CoA) (pABA) (pAHBA) (pAHBA)

(Asn)

AL

AT

A

A

(Asn)A

A A A TECCCCC

?

???

AKS KR KSACP ACP ACPDH T0 T1 T2 T3 T4

T2*

T2* T2* T2* T2*

T5MT

PKS-1 PKS-2 PKS-3 NRPS-1 NRPS-2

NRPS-2*

NRPS-3 NRPS-4 NRPS-5

X

Alb08

pMBA

Alb20

Alb18/pabC

pABA pAHBA

pHBA-CoAChorismate

Alb17/ pabAB

Alb02

SAM

SAH

Gln

Glu

Alb12

NADP

O , NADPH2

+NADH

NAD+

pyruvate

Alb07

CoA, ATP

AMP, PPipyruvate

Alb09

ATP

PPi

OH

O OH

O

O OH

OH

O OH

OH

O S C o A

N H 2

O OH

O

O OH

N H 2

O OH

N H 2

O OH

OH

N H 2

O S

OHN H 2

O S

OM e

N H 2

O S

OM e

OH

Alb09

Alb04Alb13

Alb01

SO

H NO

H O

M e O

H NO

N HN O

N HO

OH

H NO

H NO

H O

M e O

H O

M e O

H NO

N HN O

N HO

OH

OSS

O

H NO

N HN O

N HO

OH

SO

N HN O

N HO

OH

SO

N HO

OH

SO

OH

OH

SO

SO

OH

O

O

NH2

NH2

OHS-

+ ATP - PPi

O

ONH2

NH2

AMP

B

O

ONH

NH2

S

PO O-

O-

O

ONH2

NH2

S

O

NH2

SO

N

NH2

S

HNH

B

O

ATP

AMP AMP PO43-

NO HIT

Module A domain signature Predicted substrate

NRPS-1

GrsA

A V K Y V A N D A KD A W T I A A I C K

NO HITNO HIT

NRPS-3 A V K Y V A N D A KNRPS-2* D L T K I G E V G K

E L T Y V H A - - RAsx

NRPS-2

NRPS-4 A I K Y F S I D M K NO HITNRPS-5 A I K Y F S I D M K NO HIT

235 236 239 278 299 301 322 330 331 517

D235

D321

K221

Y260

A217

T278

W239

K517 K510OO

NH 3

I330

NH 3

O

O

HO

NH

O

O

NH 3

H2N

H3C

A322 H3C

OH

H32

N

O

O

N313

NH

O

K517

D235

I330C331

A236

W239A322

I299 A301

T278

K510

A217D321

V218

K221N313

V287

A289 Y260

Figure 4. Model of albicidin biosynthesis. a) Proposed biosynthetic assembly line for albicidin. Substrates of the NRPS are indicated at the A domains. PKS and NRPS modules are color-coded in blue and green, respectively. b) Suggested pathways for the biosynthesis of the MCA-1 precursor pHBA-CoA as well as the δ- amino acids pABA and pMBA. c) Suggested mechanism for the transformation of activated Asn into Cya by Alb04. Conventional activation of Asn by adenylation is mediated by the A domain of Alb04. The substrate is subsequently stored as a thioester at the 4’-phosphopantetheine arm (T2* domain). A second activation occurs by phosphorylation of the Asn side-chain, which finally leads to a formal elimination of water and thus to the formation of Cya.

NRPS-2*

Recommended