+ All Categories
Home > Documents > The Central Visual System. Transduction Photoreceptors release the neurotransmitter glutamate (glu)...

The Central Visual System. Transduction Photoreceptors release the neurotransmitter glutamate (glu)...

Date post: 15-Dec-2015
Category:
Upload: kendal-hardisty
View: 223 times
Download: 1 times
Share this document with a friend
21
The Central Visual System
Transcript

The Central Visual System

Transduction Photoreceptors release the neurotransmitter

glutamate (glu) when depolarized. Depolarized in the dark. Hyperpolarized by light.

Only ganglion cells have action potentials. Photoreceptors produce graded response that

provides input aggregated by bipolar cells. Magno ganglion cells receive input from rods,

parvo ganglion cells from cones

Bipolar Cell Receptive Fields The receptive field is the area of the retina

capable of changing the bipolar cell’s membrane potential

Two kinds of receptive fields: OFF cell – excitatory ON cell – inhibitory OFF and ON refers to light, not the cell

Center and surround are opposites

Edge Detection The center-surround organization of the

receptive fields of ganglion cells exaggerates the contrast at borders.

Visual processes “fill in” what occurs between borders (edges).

Contrast effects occur because we notice variations, not absolute magnitudes of light.

Color Contrast Cones respond to specific wavelengths of

light that determine hue. Color cells have complementary surrounds

that heighten contrast and strengthen their signal.

Opponents are: red/green, blue/yellow.

Color Opponency Certain colors are never seen in combination:

Reddish green, bluish yellow. Red and green mix to form yellow; yellow and blue mix

to form white. Hering’s opponent process theory – perceptual

cancellation occurs because colors are processed as opponent pairs.

Color cells have complementary surrounds that heighten contrast and strengthen their signal.

Color Processing The brain compares responses of three types

of cone cells. Inputs from the three types of cones are

combined in different ways. The brain computes responses of specific cones

but also all cones in the retina (background) to compensate for ambient light (constancy).

Area V4 responsible for color constancy – damage results in loss of color experience.

Visual Fields Each eye has a visual field that overlaps the

visual field of the other eye. Each eye’s visual field is divided in half –

called a hemifield. The right hemifield of each eye is viewed by

the left hemisphere of the brain. The left hemifield of each eye is viewed by

the right hemisphere of the brain.

Some Terminology The suffix “fugal” means to flee Retinofugal refers to where the axons of the

optic nerve go after they leave (flee) the retina.

Decussation – crossing of a bundle of fibers (axons) from one side of the brain to the other.

Tract – a bundle of fibers going the same way

Retinotopic Mapping The relationship between an image in the

world, its impact on the retina, and the retina’s projection to the cortex is maintained. This is called topographic mapping.

Stimulation of neighboring retinal locations results in stimulation of corresponding areas of the LGN, superior colliculus, and occipital cortex (primary visual cortex). Relationships between areas are maintained.

Types of Ganglion Cells Magnocellular (M cells) – large cells that

receive input from rods. Parvocellular (P cells) – small cells that

receive input from cones. Blob pathway – concerned with color perception. Interblob pathway – concerned with shape/form.

Koniocellular (nonM-nonP) – small cells involved in color vision (not well understood).

Mapping Within the LGN Optic nerve carries information from ganglia

to LGN. Crosses at optic chiasm. Separate layers are maintained for each eye

and for each type of cell (M and P). Interneurons project from areas of the LGN to

striate cortex (also called primary visual cortex or V1).

Mapping in the Striate Cortex Separate layers from LGN to striate cortex are

maintained in ocular dominance columns. M, P, & non-M/P cells enter the cortex at

different levels of layer 4 of the visual cortex. Information is combined by pyramidal cells

that synapse at higher levels in the striate cortex. Input from both eyes is combined at layer 3.

Stages in Edge Detection Retinal bipolar cells have center-surround

receptive fields. LGN ganglion cells respond to contrast and

change in visual input. Center-surround (on-off) receptive field.

Neurons in the visual cortex have rectilinear receptive fields with excitatory and inhibitory zones.

Edge Detectors Hubel & Weisel found simple cells

responding to edges at different orientations. Complex cells in the visual cortex collect on-

off data from multiple cells to form edges. Complex cells provide positional invariance.

M-channel cells are orientation and direction selective, for motion detection.

P-IB channel cells analyze object shape.

Extrastriate Pathways Parallel processing of visual information from

the striate cortex. Three pathways:

Color processing – P blob cells, goes from V1 to V2, then V4, then inferior temporal cortex.

Shape processing, depth perception – P interblob cells, go from V1 to interior temporal cortex.

Motion & spatial relations – M cells, V1 to V2, then MT (V5), to parietal cortex.

Equiluminance Holding brightness constant permits the study

of the contribution of color to perception. Results:

Brightness, not color, is important to motion detection, perspective, relative sizes, depth perception, figure-ground relations, visual illusions.

Motion is a cue for distinguishing among objects. Things that move together belong together.

Complex Forms, Motion Processing of form occurs outside the visual

cortex – inferior temporal cortex. Not organized retinotopically. 10% selective for specific images (hands, faces).

Processing of motion occurs in middle temporal area (MT or V5), then parietal lobe. Used for seeing moving objects, pursuit eye

movements, guidance of bodily movement

Binding Mechanisms How is information from the separate, parallel

pathways brought together and associated? Cells may identify patterns of synchronous

activity. Treisman & Julesz – combination requires

attention. A pre-attentive process detects the major outline

of an object. An attentive process notices, selects & highlights

combinations of features.

Visual Agnosias Existence of distinct agnosias for aspects of

perception suggests that these abilities are localized to areas selectively damaged.

Achromatopsia – good perception of form despite inability to distinguish hues.

Prosopagnosia – inability to recognize faces as particular people (identity). Can recognize that it is a face, and tell the parts.

Development of the Visual System Pathways are developed before birth. Fovea develops in the first four months after

birth – ability to see detail. Connections between layers in visual cortex

develop with experience, after birth. Visual acuity becomes adult-like by 12

months.


Recommended