+ All Categories
Home > Documents > The Crab Impact

The Crab Impact

Date post: 24-Feb-2016
Category:
Upload: yered
View: 42 times
Download: 0 times
Share this document with a friend
Description:
Roger Blandford Yajie Yuan KIPAC Stanford. The Crab Impact. W ind , S h ock , J et , T orus (not P ulsar)? . =10,000mas. Pulsar: F ~50PV, I ~ 200 TA; L EM ~ 10 38 erg s -1 ~ 0.3 L neb Nebula: U~ 3 x 10 49 erg; B eq ~0.3mG 3 M sun filaments Wind: B~0.3(R/r) s 1/2 mG - PowerPoint PPT Presentation
12
5 vii 2012 Frascati 1 The Crab Impact Roger Blandford Yajie Yuan KIPAC Stanford
Transcript
Page 1: The Crab Impact

Frascati 15 vii 2012

The Crab Impact

Roger BlandfordYajie Yuan

KIPACStanford

Page 2: The Crab Impact

Frascati 2

Wind, Shock, Jet, Torus (not Pulsar)? • Pulsar:

– F~50PV, I ~ 200 TA;– LEM ~ 1038 erg s-1 ~ 0.3 Lneb

• Nebula:– U~ 3 x 1049 erg; Beq~0.3mG– 3 Msun filaments

• Wind:– B~0.3(R/r)s1/2 mG– Striped? Dissipation?– Relativistic beaming/sector structure vs power– L/LEM<DW/4p<tvar/100d in flow model.

• Hard to satisfy!

• Ring/Shock?:– R~ 100 lt d ~ 2 x 109 Rlc

– Current Sheet? Dissipation?• Jets

– >0.1 R?, B~0.3(R/r)I14 mG– Pinch? Dissipation?

1 lt hr = 3 masLarmor radius= 60g9B-3

-1mas 5 vii 2012

W

SJ

TP

=10,000mas

Page 3: The Crab Impact

Frascati 3

Flare Electrodynamics

5 vii 2012

High energy particles carry the current?Electron “synchrotron” radiation in uniform B• E~2B-3

-1/2PeV; Ne~4 x 1038(DW/4p); Ue~1042B-3-3/2 erg;

• rL~3B-3-3/2 lt d; tcool~12B-3

-3/2 hr ~ 12o

• Compensate loss with E||~140Vm-1~9B-3-1/2 PVrL

-1~ 5B• (Ue/3Pneb)1/3~B-3

rL; (Uf/3Pneb)1/3~10B-3 rL if isotropic

• tvar > 1 d!

0.01Lneb

tvar~1-10hr

Page 4: The Crab Impact

Frascati 4

Radiative shocks

5 vii 2012

s=1

s=100CylindricalAngle

• No reflection; downstream dissipation• g9=3; B=1mG• Planar, cylindrical, ellipsoidal shocks• Time-dependent shocks• Relativistic shock motion• Receding brightest• Understand kinematics

s=100SphericalMoving

Page 5: The Crab Impact

Denver 5

Particle drifts and current

28 vi 2012

Normal approach is to analyze particle orbits and deduce currentsCan also start from static equilibrium and understand what is happening

Curvature perpendicular magnetization gradient ExB

Orbit, fluid approaches to Ohm’s law perpendicular to field are identicalParallel current requires additional physics eg wave-particle scatteringA closely related approach is double adiabatic theory

P⊥ = 12 ∫ dpp⊥v⊥ f ∝ ρp⊥

2 ∝ ρB ( NR)

P|| = ∫ dpp||v|| f ∝ ρp||2 ∝ ρ 3B−2 ( NR)

Complete?

Incomplete?

Page 6: The Crab Impact

Frascati 6

Pinch Equilibrium?• Resistance in line current

– Current carried by high energy particles

– Resistance due to radiation reaction– Pairs undergo poloidal gyrations

which radiate in all directions– Relativistic drift along direction of

current - Jet!!– Compose current from orbits self-

consistently– Illustration of Poynting’s theorem!– Variation intrinsic due to instability

5 vii 2012

jBf

r

X

E

E⋅ j = −∇⋅N

jz =1

cμ0

∇⋅ E

< j >=Prr

B2

dBdϖ

+Pφφ

Page 7: The Crab Impact

CIFAR 7

Formalism

1 iv 2011

x(t), u, a, j

x

r

fres =2q2

3( j + j.uu)

A = −quξ.u

F =q

3ξ.u[ξ.ua∧ξ + (1+ ξ.a)ξ∧u]

T =q2

64πξ.u[(a.aξ.u2 − (1+ ξ.a)2)ξ ⊗ξ − (1+ ξ.a)ξ.u(ξ ⊗u + u⊗ξ) + ξ.u2(ξ ⊗a + a⊗ξ +

12

g)]

t

dawn

dusk

Dp = d∫ ∑• T

Pem

Pres

1D Jerk

Take limit to demonstrateenergy flow.

Page 8: The Crab Impact

Broader

30 v 2012 Ginzburg 8

2x1050erg s-1 isotropicBreaks due to recombination radiation?

Marscher

Page 9: The Crab Impact

Radio Monitoring (OVRO 40m)

• ~1500 sources• Radio and g-ray active• Spectrum, polarization

30 v 2012 Ginzburg 9

Max-Moerbeck etal

Page 10: The Crab Impact

Rapid MAGIC variation• PKS

1222+21– 10 min

• MKN 501– 5 min

• PKS 2155-304– 2 min Aharonain

(Aharonian30 v 2012 Ginzburg 10

PKS 1222+21 (Aleksik et al)

How typical?How fast is GeV variation?

Page 11: The Crab Impact

3C 279: multi-l observation of g-ray flare

• ~30percent optical polarization => well-ordered magnetic field• t~ 20d g-ray variation => r~g2ct ~ pc or tdisk?• Correlated optical variation?

=> common emission site• X-ray, radio uncorrelated

=> different sites• Rapid polarization swings

~200o => rotating magnetic field in dominant part of source

Abdo, et al Nature, 463, 919 (2010)

r ~ 100 or 105 m?

30 v 2012 11Ginzburg

Page 12: The Crab Impact

PKS1510+089

(Wardle, Homan et al)

30 v 2012 Ginzburg 12

z=0.36• Rapid swings of

jet, radio position angle• High polarization ~720o (Marscher)• Channel vs Source• TeV variation (Wagner / HESS)• EBL limit• rmin ; rTeV>rGeV (B+Levinson)

bapp=45


Recommended