+ All Categories
Home > Documents > The Demonstrations & Science Experiment (DSX)Experiment...

The Demonstrations & Science Experiment (DSX)Experiment...

Date post: 17-May-2018
Category:
Upload: hoanganh
View: 226 times
Download: 1 times
Share this document with a friend
61
The Demonstrations & Science Experiment (DSX) Experiment (DSX) Update for RBSP Science Working Group 23-24 May 2011 Dave Lauben, Stanford Gregory Ginet, MIT/LL Michael Starks, AFRL Mark Scherbarth, AFRL
Transcript

The Demonstrations & Science Experiment (DSX)Experiment (DSX)

Update for RBSP Science Working Group

23-24 May 2011

Dave Lauben, Stanford Gregory Ginet, MIT/LLMichael Starks, AFRLMark Scherbarth, AFRL

In Memory…

The Team

Launch SegmentProgram OfficeProgram OfficeSystems EngineeringSystems EngineeringIntegration and TestIntegration and Test

Spacecraft BusSpacecraft Bus

VLF WaveVLF Wave--Particle Interaction Particle Interaction a ea e a t c e te act oa t c e te act oExperimentExperiment

Space EnvironmentalEffects

Space WeatherSpace WeatherExperimentsExperiments

PROPULSIONDIRECTORATE

Outline

• Introduction and Motivation• DSX spacecraft and experimental payloads• Science question where is the 20 dB?• Science question – where is the 20 dB?• Science question – radiation pattern in plasma?• Conjunction opportunities• Summary

Wave-Particle Interactions

Particles mirroring below 100 km are “lost” Particle pitch-angle

ELF/VLF Waves Control Particle Lifetimes Electromagnetic waves

L shell = distance/RE

Electromagnetic waves in the Very Low Frequency (VLF) range (3 30 kHz) scatterFrequency (VLF) range (3-30 kHz) scatter and accelerate radiation belt electrons through cyclotron resonance interactions

Waves from CRRES (1990)

Space Weather Forecasting

Transmitters

Diffusion coefficient along field lines

Particle lifetime along field lines(approximate 1D solution)

Wave power in the magnetosphere

Diffusion coefficients along field lines

( ) ( )⎥⎥⎦

⎢⎢⎣

⎡ℑ

ℑ∑ jXX

iijX

tXfD

X=

ttXf

ji ∂∂

∂∂

∂∂ ,1,

F ll 3D l b l ti d d t

Natural VLF

gFull 3D global, time dependent

particle distributions Xi = (L, E, α )Distribution of Resonant

Wave Vectors

Quantitative understanding of VLF wave power distribution & resultant wave-particle interactions is

Wave-particle resonance condition

crucial for radiation belt specification & forecasting

Diffusion coefficients = sum over resonancesComplex dependence on energy,

frequency, and pitch angle

Non-Local Origins of Hiss

[Bortnik et al., Nature 452, 6 March 2008]

[Bortnik et al., Science 324, 8 May 2008][Bortnik et al., Science 324, 8 May 2008]

Whi tl d hi h l t l th• Whistler-mode hiss helps control the lifetime of radiation belt electrons.

• Hiss may originate in chorus waves, and enter the plasmasphere via high p p glatitude ray paths

Conjunction experiments with space-based VLF transmitters and receivers can definitively probe the nature of ray-paths.

Map the MEO EnvironmentMap the MEO Environment

Satellite designers need a definitive model of the trapped energetic particle and plasma environment to include:

Slot (Dose behind 82.5 mils Al)

Quantitative accuracyIndications of uncertaintyFlux probability of occurrence and worst cases for different exposure periodsB d HEO

250

alie

s

Broad energy ranges Complete spatial coverage

MEO is sorely under sampled!

HEO

GPS

GEO0

50

100

150

200

CR

RES

MEP

-SEU

Ano

m

SEUs

HEO

ICO

TSX5

LEO

0CR

ES V

TCW

Ano

mal

ies

5

10

15Internal

Charging

Outer BeltInner Belt

RBSPICO

DSX

GEO

LEO0

CR

R

20

30

Surf

ace

ESD

SurfaceCharging

SCATHA

Slot

L ~ Equatorial Radial Distance (RE)1 2 3 4 5 6 7 8

0

10SC

ATH

A

New Radiation Belt Model AP9/AE9

e)

7.0

Satellite data Statistical & physics based analysis Mission orbit

TEM1c PC 4 (6.77%)4 18 months

L sh

ell (

Re

1.0

Ener

gy (k

eV)

( %)

2

103

104 18 months+ =E

L

2 3 4 5 6 7 8

102

Statistical Monte-Carlo Model User application

• New AP-9/AE-9 model being developed by NRO - AFRL - Aerospace – MIT/LL - LANL consortium• New AP-9/AE-9 model being developed by NRO - AFRL - Aerospace – MIT/LL - LANL consortium• Provides significant improvement in spectral coverage, error estimation and statistical output• Needed by satellite engineers to control risk, maximize capability and reduce cost • Version Beta released Apr 2010 and now being evaluated by 20+ independent spacecraft

engineers from industry and government – Version 1.0 due in June 2011• Version 2.0 (~2015) will utilize measurements from NASA Radiation Belt Storm Probes (RBSP)

and AFRL DSX missions

Past Active VLF Space Experiments

Satellite Orbit Epoch TX (RX) Freq. [kHz]

TX Type Comments

LOFTI I 166 x 960 km28.4°

21 Feb 61 –30 Mar 61

(18) - First space VLF experiment designed to measure ground stations (NBA ,Panama).

LOFTI - IIA 170 x 925 km70°

15 Jun 63 –15 Jul 63

(10-18) - Focus was on impedance variations as functions of environment.

OV3-3 362 x 4488 km81.6°

4 Aug-66 –30 May 67

Broadband Solar cell current noise Focus on plasma density influences on impedance variation.y p

OV1-21S (1971-67A)

800 x 921 km87.6°

7 Aug 71 –3 Sep 71

0.4 – 14.5 Electric dipole: 2 x 16 m elements, Voltage: 10 mV - 100 V peak-to-peak

Observed impedances are in reasonable agreement with linearplasma sheath dominated predictions. No far-field measurements.

OV1-20S (1971-67B)

75 x 1948 km92°

7 Aug 71 –28 Aug 71

300 Electric dipole: 2 x 1.27 cm elements, 2.45 cm separationVoltage: 30 V

Observed resonance cone and angle/width compared favorably to cold and warm plasma theory predictions.

Activny 500 x 2500 km82 6°

28 Sep 88 –30 Apr 90

9.5 – 10 Magnetic loop: 20 m diameter 1 m thick

Antenna did not deploy properly. Measurements by DE 1 indicate < 1082.6 30 Apr 90 diameter, 1 m thick Measurements by DE-1 indicate < 10 mW radiated power (no detections.)

IMAGE 1000 x 45922 km40°, precesses

25 Mar 00 -18 Dec 05

3 - 3000 Electric dipole:X: 125 m - 250 m Power: 0.1 mW -10 W

Not optimized for VLF transmission but good sheath impedance measurements.

*

*Heritage for DSX

DSX 6000 x 12000 km120° retrograde

Oct 2012(pending)

3 – 50000 Electric dipole:Y: 80 m tip-to-tip

Image/RPI Chirp Rx by Cluster/WBD

506 kHz Line of sight

ImageSC2SC4

DSX Mission Objectives

Three science experiments:1) Wave-particle interactions (WPIx)

• Determine efficiency of injecting VLF into space• Determine efficiency of injecting VLF into space plasmas in situ

• Determine global distribution of natural & man-made ELF-VLF waves

• Characterize and quantify wave-particle interactions

2) Space weather (SWx)• Map MEO radiation & plasma environment

6000 x 12000 km, 120°, launch ~ Oct 2012

Map MEO radiation & plasma environment• Diagnose in-situ environment for wave generation experiments

3) S i t ff t (SF ) tch-

angl

e

3) Space environment effects (SFx)• Quantify effects of MEO environment on new technologies

• Determine physical mechanisms responsible forEq

uato

rial p

itDetermine physical mechanisms responsible for material breakdown

Magnetic phase spaceL*

DSX Experimental ApparatusDSX Experimental Apparatus

Wave-Particle Interactions (WPIx)– VLF transmitter & receivers– Loss cone imager

V t t t

AC Magnetometer (GSFC)– Tri-axial search coils

– Vector magnetometerSpace Weather (SWx)

– 5 particle & plasma detectorsSpace Environmental Effects (SFx)

NASA S E i t T tb d

8 m

Z-Axis Booms• VLF E-field Rx – NASA Space Environment Testbed

– AFRL effects experiment

ESPA Ring• Interfaces between EELV & satellite

• VLF E-field Rx

Loss Cone Imager (BU) & satellite

Y-Axis Booms

Loss Cone Imager (BU)- High Sensitivity Telescope - Fixed Sensor Head

VLF Transmitter & Receivers- Broadband receiver (Stanford)- Transmitter & tuning unit (UML)

8 m• VLF E-field Tx/Rx

DC Vector Magnetometer

DSX being integrated!DSX satellite

Boom deployment test

Wave-Particle Interactions Payload (WPIx)

• Receiver (Stanford, Lockheed-Martin, NASA/Goddard):– Three search coil magnetometers (3 B components)– Two dipole antennas (2 E components)– Frequency range: 100 – 50 kHz – Sensitivity 1.0e-16 V2/m2/Hz (E) & 1.0e-11 nT2/Hz (B) T itt (UM L ll SWRI AFRL)

Transmitter control & tuning units

• Transmitter (UMass Lowell, SWRI, AFRL):– 3 – 50 kHz at up to 5 kV (9 kV at end of life)– 50 – 3000 kHz at 1W (local electron density)

• Loss Cone Imager (Boston University AFRL)

Broadband receiver & tri-axial search coils

14 May 2007NASA GSFC 14 May 200714 May 2007NASA GSFC

• Loss Cone Imager (Boston University, AFRL)– High Sensitivity Telescope (HST): measures 100 – 500 keV e- with 0.1

cm2-str geometric factor within 6.5 deg of loss cone– Fixed Sensor Heads (FSH): 130 deg x 10 deg of pitch angle distribution Loss Cone Imager

HST & FSH( ) g g p gfor 50 – 700 keV electrons every 167 msec

• Vector Magnetometer (UCLA, UMich)– 0 – 8 Hz three-axis measurement at ±0.1 nT accuracy

HST & FSH

Vector magnetometer

Space Weather Payload (SWx)

LIPS

HIPSHEPS

ProtonsLIPS

HIPSHEPS

Protons

Radiation beltsRing current & auroraPlasmasphere

LEESA

LIPS HEPS

HIPSElectrons

LEESA

LIPS HEPS

HIPSElectronsCEASE

CEASE

HEPS

LEESALIPS

HIPSElectrons

LEESALIPS

HIPSElectronsLCI-FSH

HIPS

HEPS

0.0001 0.001 0.01 0.1 1 10 100 10000.0001 0.001 0.01 0.1 1 10 100 1000

CEASE - Compact Environment Anomaly Sensor (Amptek, AFRL)LEESA - Low Energy Electrostatic Analyzer (AFRL)

CEASEEnergy (MeV)

gy y ( )LIPS - Low Energy Imaging Particle Spectrometer (PSI)HIPS - High Energy Imaging Particle Spectrometer (PSI)HEPS - High Energy Particle Sensor (Amptek, ATC)

LIPS

Comprehensive SWx sensor suite will map full range of MEO space particle hazards

Comprehensive SWx sensor suite will map full range of MEO space particle hazards

LEESA

Space Weather Effects Payload (SFx)

CREDANCE Photometers

SET Carrier (NASA-GSFC)

NASA Space Environment Testbed (SET)• Correlative Environment Monitor (QinetiQ)

1”• Correlative Environment Monitor (QinetiQ)

– Dosimeter & deep-dielectric charging package

• DIME (Clemson Univ)– Dosimetry Intercomparison and Miniaturization

• ELDRS (Arizona State)– Development of space-based test platform for the

characterization of proton effects and Enhanced Low Dose Rate Sensitivity (ELDRS) in bipolar junction

AFRL/PRS “COTS” sensorsRadiometers

Objective: directly measure changes intransistors

• COTS-2 (CNES and NASA)– Validation of single event effects mitigation via fault

tolerant methodology

Objective: directly measure changes in • Optical transmission, • Thermal absorption• Thermal emission

d t MEO di ti i tdue to MEO radiation environment

SFx experiments will quantify MEO environment effects on advanced spacecraft technologies & determine basic physics of breakdown

SFx experiments will quantify MEO environment effects on advanced spacecraft technologies & determine basic physics of breakdown

Where is the 20 dB?

Abel & Thorne (1998)

Starks, et al. (2008)

Abel & Thorne (1998)

Ground transmitter VLF power needed in the inner magnetosphere but where is it?Ground transmitter VLF power needed in the inner magnetosphere… but where is it?

20dB? It’s not the Absorption Model…

• The four models operate entirelyoperate entirely differently: empirical, mode theory, finite differences, full wave

• All predict essentially the same ionospheric penetration fields

• However, all of them overestimate the fields by 20 dB or more.

Questions:• Where is the transmitter power going?

– Non-linear lower-hyrbid wave – density fluctuation scattering?• What is scattering the particles at L < 2 ?

– Could lightning be more effective then previously thought?

20db? What About Wave Type?

(250 850 Hz) (2 5 6 5 kHz)

Table 1. Adopted Wave Parameters, in Abel & Thorne (1998a)

(250 – 850 Hz) (2.5 – 6.5 kHz)

Abel & Thorne (1998) ω – k|| v|| = –m Ω / γm=222.3 kHzLargest Impact

@ L=2

m=1

17.1 kHz

Important?

L=2, 500 keV

2.5 – 6.5 kHz Whistler Model

at mag. equator

Whistler range 6.5 – 12 kHz occurs frequently, yet not presently modeledImpacts same 500 keV electrons at L=2 but with m=1 order instead of m=2

Typical Whistlers in the Slot Region

POLAR/PWI : Example waves in equatorial slot region

enor

mal

wav

eity

inte

nsi

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. A12, PAGES 29745-29770, 2001.

Lightning Magnetic Field Line Footprints

VLF Ground Station Conjunctions

NAA

University of Florida

NML

HAARP

Day

Year NWC

NTS

Year

Month

DSX provides ample Lightning and Ground Tx overflights for comparison

Radiation Pattern: Linear Dipole in Vacuo

,t

ϕ ∂= −∇ −

∂AE

1 0ϕ∂∇ +A

z

rd

a

θ x Potentials:

Lorentz gauge:

= ∇×B A

2 0c t

ϕ∇⋅ + =

∂A

30 ( , )( , )4

t tt d x dt t tc

μ δπ

′⎛ − ⎞′ ′ ′= − +⎜ ⎟′− ⎝ ⎠

∫ ∫x xJ xA x

x x

rd

0V 0I

Lorentz gauge:

Green’s function: 4 V cπ −∞ ⎝ ⎠x x

ˆ ( ) 0, 0 | |2

ˆ ˆ( ) ( ) 0

zdE a z

E a V z z

ρ

ρ δ

= = < <

= = =

x ϕBoundary conditions:

/2 2202 0

0 02/2

exp 4 ˆ( , ) ( )d

d

jk r jkk dz I z a V zz r

π δω−

′−⎛ ⎞∂ ′ ′+ = −⎜ ⎟ ′∂⎝ ⎠∫

0( ) ( ), 0zE a V z zρ δ= = − =

Hallén integral equation:

Can be solved analytically in electrically thin & short limit:

2π 0 0j V k dπ0 0

0

2, ,d akπλ λ λ<< << =Radiation pattern 0 0

0

0

.2 ln 1

2

j V k dIdZa

π=

⎡ ⎤⎛ ⎞ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Antenna Radiation in Plasma

+ _

Iplasma

I1 I2+ _++

+

+ +

+

+ ++

__

_ _ _

_ _

__

ΔV = V2-V1

+ ___

• Far field power radiated ~ ( )d I I I+ +

1 2

• Far-field power radiated ~ ( )1 2 plasmaI I Idt

+ +

• Sheaths can change antenna reactance

• Antenna fields heat local plasma

• Anisotropic medium can dictate complicated far-field radiation pattern

• Antenna fields heat local plasma

Radiation in Plasma: Resonance Cones

B0

In the laboratory In space

B0

Resonance cones

Resonance cones

Fisher and Gould, Resonance Cones in the Field Pattern of a Short Antenna in an Anisotropic Plasma, Phys. Rev. Lett., 22, 1092-1095, 1969.

Koons, et al., Oblique resonances excited in the near field of a satellite-borne electric dipole antenna, Radio Sci., 9, 541-545, 1974.

Plasma Environment

Magnetic field

)B

(Gau

ss)

DSX transmitter

Plasma densityy

(#/c

m^3

)

Characteristic frequencies

n (

Radius (Re)

Stix S, D, P, R, L Rrad( kx, ky, kz )

DSX Radiation Patterns

3 kHz

Bz

50 kHzInside the plasmasphere

x y

Parallel

z

vacuum

B

x y

Perpendicular

vacuum

θcutoff = 89.4° – 68.3°, ν = 3 – 50 kHz

Magnetoplasma Strongly Controls Far-Field Whistler-Mode Radiation Pattern

DSX Pattern Self-Measurement

Atmospheric Reflectiontopside ionosphere

fl ti i t

Boomerang Returnmagnetospheric

fl ti i t

0 4

0.6

0.8reflection point

0.6

0.8

reflection point

0

0.2

0.4

DSXreturn wavesS

0

0.2

0.4

DSXreturn wavest ddl DSX

1 1 5 2

-0.4

-0.2 straddle DSX(blue)

1 1 5 2-0.6

-0.4

-0.2 straddle DSX(blue)

1 1.5 2

02040

n ||

Radiated Wavenormals

Ψ ~ -62 deg

1 1.5 2

200

2040

n ||Radiated Wavenormals

Ψ ~ 88 deg

-150 -100 -50 0 50 100 150-40-20

n⊥

-150 -100 -50 0 50 100 150-40-20

n⊥

What Resonant Energies?

L = 2 1 Preliminary! L = 2 6

Evaluate ω – k|| v|| = –m Ω / γ along ray paths to solve for v||

L 2.1 Preliminary! L 2.6

DSX Far-Field Propagation(1)

But, whistler ray paths are NOT LINE OF SIGHT!

They’re not generallyfield-aligned, either!

This animation shows a 0.1 sec pulse of f = 6 kHz rays for duration 2.0 sec

Rays launched w/in 3 deg of local resonance cone,at L = 2.1, mlat = 15 deg

The 1st pass rays = red,2nd = blue, 3rd = cyan

DSX Far-Field Propagation(2)

t = 0.59 s

Significant raysto alt < 700 km

Significant size wavepackets sweep L < 2

Extending to 3D Propagation…

Wave energy settles (and damps) in longitudinal “wings”Morphology is frequency and wavenormal dependent

DSX Global Power Distribution – 3 kHzDSX Global Power Distribution – 3 kHz

EQUATORIAL PLANE MERIDIONAL PLANE

Satellite at 6000 km altitude, 0° magnetic lat, vacuum antenna limit; 3 kHz

MERIDIONAL PLANEL=3

L=4

3 kHz 6000 km

L=2

L=3L=4

Critical Unknown:Importance of scattering and mode-conversion on power and k-spectrum

Critical Unknown:Importance of scattering and mode-conversion on power and k-spectrum

DSX Global Power Distribution – 10 kHzDSX Global Power Distribution – 10 kHz

EQUATORIAL PLANE MERIDIONAL PLANE

Satellite at 6000 km altitude, 0° magnetic lat, vacuum antenna limit; 10 kHz

EQUATORIAL PLANE MERIDIONAL PLANEL=3

L=4

L=2

L=3L 3L=4

Magnetospheric reflection destines rays for lower altitudes at 10 kHz as compared to 3 kHz

DSX Global Power Distribution – 12 kHzDSX Global Power Distribution – 12 kHz

MERIDIONAL PLANEMERIDIONAL PLANE

Satellite at 6000 km altitude, 0° magnetic lat, vacuum antenna limit; 12 kHz

MERIDIONAL PLANE

L=3

L=4

L=3

L=4

Magnetospheric reflection is not a factor above about 12 kHz. Transmitter energy is concentrated around the field line of the transmitter.

DSX Global Power Distribution – 30 kHzDSX Global Power Distribution – 30 kHz

EQUATORIAL PLANE MERIDIONAL PLANE

Satellite at 12000 km altitude, 0° magnetic lat, vacuum antenna limit; 30 kHz

EQUATORIAL PLANE

L=3L=4

O

L=2

L=3L=3L=4

At high altitude, 30 kHz does not propagate well, losing intensity extremely quickly.

DSX Global Power Distribution – Off EquatorDSX Global Power Distribution – Off Equator

Satellite at 6000 km altitude, 30° magnetic lat, vacuum antenna limit; 10 kHz

MERIDIONAL PLANEEQUATORIAL PLANE

L=3

L=4

L=2L=2

L=3

L=4

The off-equatorial transmitters lead to very complex field distributions.

Joint Experiment Opportunities – Space

• Cassiope/Enhanced Polar Outflow Probe (E-PoP), CSA, CRC (James), NRL (Siefring, Bernhardt)– 300 x 1500 km, polar inclination, launch 2011 (?)– Radio Receiver Instrument (RRI), ELF-VLF 10 Hz -30 kHz, two-axis E-field– Fast Auroral Imager (FFI), ~ 1 MeV electronsFast Auroral Imager (FFI), 1 MeV electrons

• Radiation Belt Storm Probes (RBSP), NASA– 2 satellites in GTO, < 18 deg incl, launch no earlier than fall 2011– Electric and Magnetic Field Instrument Suite and Integrated Science Suite (EMFISIS, Univ. of Iowa, Kletzing),

3 axis B-field, 2 axis E-field 10 Hz – 12 kHz (1 channel E-field 10 kHz – 400 kHz)– Magnetic Electron-Ion Spectrometer (MagEIS, BU & Aerospace, Spence & Blake), 40 keV – 10 MeV electrons– Relativistic Electron-Proton Telescope (REPT, BU & Univ. of Colorado, Spence & Baker), 2 MeV – 10 MeV

electrons– RBSP Ion Composition Explorer (RBSPICE, NJIT, Lanzerotti), 25 keV – 500 keV electrons

TARANIS CNES Stanford Co PI (Inan) follow on to DEMETER• TARANIS, CNES, Stanford Co-PI (Inan), follow on to DEMETER– 700 km, polar, launch 2011(?)– IMM-MF, B-field 3 component, ~2 Hz – 20 kHz, 1 component 10 kHz – 1MHz– IDEE, electron detectors, 70 keV – 4 MeV

• VPM AFRL (Starks) Stanford (Linscott)• VPM, AFRL (Starks), Stanford (Linscott)– Cubesat in ~700 km, high-inclination LEO– VLF receiver & loss-cone electron detector– Approved by AFRL in Feb 2011 for development & launch in DSX timeframe

• ORBITALS CSA Univ of Calgary (Mann) Univ of Colorado (Baker)ORBITALS, CSA, Univ. of Calgary (Mann), Univ. of Colorado (Baker)– GTO, launch (?)– SCM, B-field up to 20 kHz– EPS, electrons 25 keV – 12 MeV

Active Injection : Test Chorus Hiss

DSX f = 3kHz

DSX f = 6kHz

[Bortnik et al., Nature 452, 6 March 2008]

ChorusSource

Hiss

DSX f 6kHz

DSX Can Inject “Just Above” the Chorus Hiss Entry Points

DSX – RBSP Conjuctions

Magnetic footprints

1 week (typical) Closest approach ~ 422 km

DSX – RBSP Conjunction Occurence

L shell Magnetic field line Magnetic point

DSX – LEO (Demeter-like) Conjunctions

Magnetic footprints

1 week (typical) Closest approach ~ 5393 km

DSX – LEO Conjunction Occurence

None

L shell Magnetic field line Magnetic point

Joint Experiment Opportunities – Ground

• High-Frequency Active Auroral Research Program (HAARP, AFRL)– Electrojet-modulated VLF antenna at L ~ 4.8 with extensive frequency & mode control

• DoD VLF transmitters, TIPER program (AFRL & Stanford)– Keyed transmissions from NWC at Churchill, Australia, L ~ 1.3, 19.8 kHz, 1 MW– Mobile VLF transmitter broadcasts, ~ 18 kHz

• Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL)Balloon Array for Radiation belt Relativistic Electron Losses (BARREL)– Measurement of precipitating MeV electrons at high latitudes with 5-8 balloon flotilla aloft for ~ one month

DSX – Ground Station Conjunctions

NAA(VLF transmitter)NAA

HAARP

NML (VLF transmitter)

University of FloridaNTS UFL

(triggered lightning facility)YearUniversity of Florida

NWC (triggered lightning facility)

Summary

• DSX is manifest for launch as secondary payload on DMSP F-19 with launch in Oct 2012 (decision on launch date to be made in Jun 2011)

• DSX will make detailed measurements of in-situ VLF waves– Missing 20 dB of VLF power is a big inner magnetosphere questiong p g g p q

• Tremendous opportunities for mono-static and bi-static VLF transmit-receive measurements

– Determine VLF antenna transmission efficiencyDetermine VLF antenna transmission efficiency – Validate chorus – hiss conversion model

• Comprehensive particle detector suite will map poorly explored MEO regionMEO region

– Provides much needed data to update climatological radiation belt models used for spacecraft design

• Lots of good science to be done!• Lots of good science to be done!

Backup Slides

Example LEP Events (DEMETER)W

aves

VLF

ctro

nsEl

ec

Inan et al. GRL (2007)( )

1 sec

Ground-based VLF Injection

Sequence of “standard”

NPM VLF transmitter

models used to estimate VLF distribution in space

Power flux on the ground (LFCOM) Power flux at 1000 km (LFCOM + Helliwell)

p

Power flux in the magnetosphere(LFCOM + Helliwell + PowerTrace)

20dB? Could it be wave type?

(250 – 850 Hz) (2.5 – 6.5 kHz)

Abel and Thorne “Electron scattering loss in Earth’s inner magnetosphere: 1 Dominant physical processes ” JGR 103(A2) 2385– 2396

POLAR/PWI: L = 2.6, mlat = -7POLAR/PWI: L = 3.0, mlat = +6

Abel and Thorne, Electron scattering loss in Earth s inner magnetosphere: 1. Dominant physical processes, JGR, 103(A2), 2385– 2396

Whi

stle

r

OVERLAP

3800H

iss2500

6500

850250

H

Whistler f-t Causes ∆α Peaking

• Natural f-t dispersion leadsto extended resonance andorder-of-magnitude greater

~12 pT7 kHz

5 kHzorder-of-magnitude greaterscattering for same wave pT

• Extended resonance leads to particle phase-bunchingto particle phase-bunching and possible wave growth

• Calculated peak scatteringfor strong natural whistlerfor strong natural whistlercould be as much as 1 deg

Scattered Pitch-Angle vs. Vresfor whistler with E = 50 V/mfor whistler with E100 = 50 V/m

V||

V||V drops as θ 90°

Vres

EQ

Lauben (1998), Stanford Ph.D. Thesis

10-2 10-1 100

∆ pitch-angle (deg)magnetic latitude (deg)

Vres drops as θ → 90°

Antenna Basics

S

V

Z

V0 I0

S0

es

ˆ( ) Re ( ) expf f j tω ω⎡ ⎤= ⎣ ⎦x t xFourier decomposition in time: ( , ) Re ( , ) expf f j tω ω⎡ ⎤⎣ ⎦x t x

( ) ( )0

3 3 20 0 0 0

1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ* * * * *2 2 2 2 s

V V S S

P I V j d x d x d xω μ ε−

= = ⋅ − ⋅ + ⋅ + ⋅ ×∫ ∫ ∫H H E E E J e E H

Fourier decomposition in time:

Poynting’s Theorem:

ohmic radiationR R R= +1X LC

ωω

= −Z R jX= +

Time-averaged power into the system

Ohmic lossesEnergy stored in fields Energy radiated out of system

Impedance:

0 0ˆ ˆV ZI=

20

1 ˆ| |2

P I Z=Ohm’s Law: Smaller

Bigger

( )2

0 22

1 ˆP | |2

radrad

RVR X

=+

Linear Dipole in Cold Plasmazz

rd

a

θ x( ) 12 20 0 .j kωμ ω μ

−= − + ⋅ extE kk I ε J

( ) 12 2k ω μ−

− + =Λkk I ε

Solution to wave equation:

d

0V 0I( ) ( )( )0 2 2 2 2 2

0

,kk k k k k

ω μα + −

+− −

kk I ε

4 2 2 40 0 ,k k k k= − +Λ nn L W

2 21 3( ) sin cos ,α θ ε θ ε θ= +

x ϕ1 3( ) ,

( ) ( ) ( )( ) ( ) ( )

( )

2 2 2 2 2 21 3 2 3 1 2

2 2 2 2 2 22 3 1 3 1 2 ,

x y x z x y x y x z y z

x y x y x y x z y z x z

n n n n j n n n n n n j n n

j n n n n n n n n n n j n n

ε ε ε ε ε ε

ε ε ε ε ε ε

⎡ ⎤+ + + − + + −⎢ ⎥⎢ ⎥= + + + + + +⎢ ⎥⎢ ⎥

L1 3 2 3

2 3 1 32 2

00 .

0 0

jjε ε ε εε ε ε ε

ε ε

−⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

W

( )21 2 1 2 1 1x z y z y z x z zn n j n n n n j n n nε ε ε ε ε⎢ ⎥+ − +⎣ ⎦

1 20 0 ε ε⎢ ⎥−⎣ ⎦

3 3 *1 ˆ ˆ jωμ ∞ ⋅ ⋅∫ ∫

J Λ JElectric field on external surface of antenna

Difficult integral requiring

( )( )3 30

3 2 2 2 2 20

1 ˆ ˆ *2 16

ext extext

V

jP d x d kk k k k k

ωμπ α−∞ + −

= − ⋅ = − ⋅− −∫ ∫

J Λ JE JPower:

Surface current on antenna

g q gcomplex k-plane integration to preserve radiation boundary

conditions2 Re PR =Radiation resistance: 2

0radR

I=Radiation resistance:

Cold Plasma Basics

0 ,ε ρ∇ ⋅ =E∂⎛ ⎞E

( )2 20 ,k jω μ ω− + ⋅ = extkk I ε E J

Maxwell’s equations: Linear wave equation:

ith di l t i t

B0kz

0 ,t

μ ε ∂⎛ ⎞∇× = +⎜ ⎟∂⎝ ⎠0

EB J

,t

∂∇× = −

∂BE

0∇⋅ =B1 2

0 2 1

00 ,

jjε ε

ε ε ε⎡ ⎤⎢ ⎥= −⎢ ⎥ε

2 2

1 2 2 2 21 pe e pi

ce ci

Uω ωε

ω ω ω ω= − −

− −2 2pe ce pi ciω ω ω ω−

with dielectric tensor:

2, ,

,, 0

i e i epi e

i e

n qm

ωε

=

k⊥

0,∇ B

( ) ,ll l l l ldm qdt

υ= + × −v E v B v

0 2 1

30 0j

ε⎢ ⎥⎢ ⎥⎣ ⎦ ( ) ( )2 2 2 2 2

pe ce pi ci

ce ci

εω ω ω ω ω ω

= +− −

2 2

3 2 21 pe piω ωε

ω ω= − −

Equation of motion for species l:

, 0,

,

i eci e

i e

q Bm

ω =

1

,N

l ll

n qρ=

=∑N

Charge and current density:4 2

2 20 0,ck ckk A B Cω μ

ω ω⎛ ⎞ ⎛ ⎞− + = − + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

kk I ε

Normal modes defined by:

with solutions:

( ) 1( ) (f f⎡ ⎤

( )( )

2 21 3

2 2 2 21 2 1 3

2 2 2 23 1 2

sin cos ,

sin (1 cos ),

, 4 0

A

B

C F B AC

ε θ ε θ

ε ε θ ε ε θ

ε ε ε

= +

= − + +

= − = − >

2

,2

ck B FAω

± ±⎛ ⎞ =⎜ ⎟⎝ ⎠

1

.l l ll

n q=

= ∑J v

Fourier representation:

t so ut o s

( ) 1( , ) , exp ( . . ,2

f f j t c cω ω⎡ ⎤= − ⋅ +⎣ ⎦x t k k x( )

Lots of different notations : 1 2 3, , , , , , ,S D P R L X Yε ε ε ⇔ ⇔

Cold Plasma Mode Structure

θ BEverything determined by:

0, , , e in nω θ =B

real k−

zkB0

propagation

k⊥

resθimaginaryk−No propagation

R l i h

“whistler” mode regime

2 20 sin cosε θ ε θ= +

Resonance angle is when:λ → 0 (k → ∞)

Defined by:

Vacuum limit

1 30 sin cosres resε θ ε θ= +

Application to DSX

Parallel orientation:

Bz

Assume a fixed linear current profile

θ

Integrated up to θ cutoff < θ res

B

x yantenna ( )

( )

20 33

2 2 2 4 3 2 20 0 0

2 40

8 ( )sincos

sin sin cos .4

c

radkR d d

k d k k k

k dJ k a

θπωμ θϕ θπ α θ

θ θ

− − +

−−

Λ= − ×

⎛ ⎞⎜ ⎟⎝ ⎠

∫ ∫

Perpendicular orientation:

Bz

antenna

( )0 4⎜ ⎟⎝ ⎠

( )2

0 112 2 2 3 4 3 2 2

8 ( )1sin cos

c

radkR d d

k d k k k

θπωμ ϕ θπ α θ ϕ

−Λ= − ×∫ ∫

x y ( )

( )0 0 0

1/22 2 2 40

sin cos

1 sin cos sin sin cos .4

k d k k k

k dJ k a

π α θ ϕ

θ ϕ θ ϕ

− − +

−−

⎛ ⎞⎡ ⎤− ⎜ ⎟⎣ ⎦ ⎝ ⎠

∫ ∫

DSX parameters:Ch t ff l thAntenna length d [m] 80.0

Antenna radius a [m] 0.1Frequency range ν [kHz] 3 - 50Free-space wavelength λ0 [m] 1.00E+05Plasma density ne [# cm-3] 3.00E+03

max2/ 2

kdπ

=

Choose cutoff wavelength:

( )( )( )( )

2 22

2 2tan c c

cc c

P R L

S RL P

η ηθ

η η

− −= −

− −

22 maxc

ckηω

⎛ ⎞= ⎜ ⎟⎝ ⎠y e [ ]

Magnetic field B0 [Gauss] 5.00E-02( )( )

~ sheath size(inside the plasmasphere)

Antenna Reactance

Electric dipole reactance is due to capacitance

dπε

Inside the plasmasphere

In vacuo:

Static sheath (Mlodnosky & Garriott 1962):

[ ]0

2 ln / 2antdC

d aπε

=

[ ]

[ ] ( )

0

2 2 20

,2 ln /

2 ln / ,2

shsh

sh sh sh sh

dCr a

neV ner r a r a

πε

ε

=

= − + −[ ] ( )0 ,2

2 /ln/ 2

sh sh sh sh

e sat ish

e

kT v vVe v

ππ

⎡ ⎤+= ⎢ ⎥

⎣ ⎦

Dynamic sheath (Song, et al. 2007):

( )0

20ln 2 /

shdC

I ne daπεπ ω

=⎡ ⎤⎣ ⎦

Probably not hugely different than in vacuoProbably not hugely different than in vacuo

Impedance Summary

Inside the plasmasphere

“Quality factor” Q = X/Rrad

Small is good

Qvac(10 kHz) ~ 6.8e+07

Qplasma(10 kHz) ~ 1.2e+03

Dipole Rrad in a plasma look better, at least in the linear limit…

Plasma Antenna Model

Vacuum – dipole radiation in vacuo out to 10 km then cold plasma propagation

Linear cold plasma – voltage and current di t ib ti ifi d t

ZtunerRant

L tdistribution specified on antenna immersed in a cold plasma

Lant

Zcap

Self-consistent linear cold plasma –voltage on terminals specified, current distribution calculated self-consistently for antenna immersed in a cold plasma

Rrad

Effective circuit

Sheath & plasma heating effects –Total power radiated as

function of driving voltage gdetermine sheath capacitance, resistance and antenna-sheath “effective” antenna

current

B

Maximum EfficiencyCircuitsB z

θ

ZtunerRant

Lant

x

Rrad

Zcap

(Inan/Stanford)

CantCsh1 Rsh1Csh2 Rsh2

CshdFor an electric dipole: Rant, ZL << Zcap(Reinisch/UML)Rshd

DSX Pattern Self-Measurement(2)

Cavity ExcitationLower-Hybrid Settling1 1

0.5 0.5

0 DSXwave “mirrors”on constant L

0

1 1.5 2 2.5-1

-0.5

1 1.5 2 2.5-1

-0.5

-100

0

100

n ||

Radiated Wavenormals

Ψ @ res cone 50

0

50

Radiated Wavenormals

-600 -400 -200 0 200 400 600

-100

n⊥

Ψ @ res. cone

-200 -100 0 100 200

-50

n⊥


Recommended