+ All Categories
Home > Science > The distribution of genetic variance across phenotypic space and the response to selection - Mark...

The distribution of genetic variance across phenotypic space and the response to selection - Mark...

Date post: 05-Aug-2015
Category:
Upload: australian-bioinformatics-network
View: 142 times
Download: 2 times
Share this document with a friend
Popular Tags:
20
The distribu,on of gene,c variance across phenotypic space and the response to selec,on Mark Blows School of Biological Sciences University of Queensland
Transcript
Page 1: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

The  distribu,on  of  gene,c  variance  across  phenotypic  space  and  the    response  to  selec,on  

Mark  Blows    

School  of  Biological  Sciences    University  of  Queensland  

Page 2: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

Nothing  would  happen  without  these  guys  at  UQ  

•  Katrina  McGuigan  and  Emma  Hine  –  Long-­‐term  collaborators  on  mul,variate  responses  to  selec,on  and  the  gene,c  analysis  of  high  dimensional  traits  

•  Steve  Chenoweth,  Julie  Collet  and  ScoI  Allen  –  Collabora,on  on  the  gene,c  analysis  of  gene  expression  

Page 3: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

Framework  for  today’s  talk:  Understanding  the  distribu,on  of  gene,c  variance  

How  does  gene,c  covariance  (pleiotropy)  change  the  availability  of  

gene,c  variance?  (a  bit  of  theory  and  data)  

How  does  pleiotropy  influence  the  response  to  selec,on  in  

small  sets  of  traits?  (a  selec,on  experiment)    

How  widespread  is  pleiotropy  among  small  sets  of  traits?  

(some  random  matrix  theory)  

What  is  the  phenome-­‐wide  extent  of  pleiotropy?  

(gene,c  analysis  of  1000s  of  gene  expression  traits)  

Page 4: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

The  geometry  of  gene,c  varia,on  and  mul,variate  evolu,on  

A  covariance  matrix  of  gene,c  rela,onships  among  

traits  

1v 1,2cov … 1,ncov2v 2,ncov

nv

!

"

######

$

%

&&&&&&

G

∆z = Gβ

β1β 2β n

#

$

% % % %

&

'

( ( ( (

A  vector  of  the  strength  of  selec,on  ac,ng  on  mul,ple  

traits  

β

Page 5: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

How  does  it  all  fit  together?  Spectral  decomposi,on  of  Lande’s  equa,on  

ββββ TTT1 λλλ nnn222maxmax ggggggΔz +++== …G

Projec,on  of  the  direc,on  of  selec,on  along  the  first  eigenvector  of  G,  weighted  by  its  eigenvalue  

Consequence  1  If  gene,c  variance  is  unevenly  distributed  in  G  (eigenvalues  vary  greatly  in  size),  the  response  to  selec,on  will  o\en  be  biased  

away  from  β  

Consequence  2  The  response  of  individual  traits  may  be  in  a  direc,on  opposite  to  the  selec,on  applied  on  them,  par,cularly  when  β  is  in  a  direc,on  with  low  gene,c  variance  

   

Page 6: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

What  does  the  distribu,on  of  gene,c  variance  look  like  for  func,onally  related  traits?  

1 −0.52 −0.52−0.52 1 −0.45−0.52 −0.45 1

#

$

% % %

&

'

( ( (

Toy  example:  A  nearly  singular    

G  matrix  

Time (minutes)8.0 8.5 9.0 9.5 10.0 10.5

30

34

38

42

46

Sig

nal s

treng

th (p

A)

5,9-C24

5,9-C25

9-C259-C26

2-Me-C26

5,9-C27

5,9-C29

2-Me-C28

2-Me-C30

Time (minutes)8.0 8.5 9.0 9.5 10.0 10.5

30

34

38

42

46

Sig

nal s

treng

th (p

A)

5,9-C24

5,9-C25

9-C259-C26

2-Me-C26

5,9-C27

5,9-C29

2-Me-C28

2-Me-C30

99%  of  the  gene,c  variance  in  the  10  Drosophila  wing  traits  explained  by  5  gene,cally  independent  traits    

(McGuigan  and  Blows  2007,  Evolu,on)  

 

98%  of  the  gene,c  variance  in  9  cu,cular  hydrocarbons  is  contained  

in  5  significant  dimensions  (Van  Homrigh  et  al  2007,  Current  Biology)  

Page 7: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

High  dimensional  selec,on  experiment:  will  the  en,re  phenotypic  space  respond?  

Select  along  all  8  gene,c  eigenvectors  of  the  8  dimensional  

phenotypic  space  Time (minutes)

8.0 8.5 9.0 9.5 10.0 10.5

30

34

38

42

46

Sig

nal s

treng

th (p

A)

5,9-C24

5,9-C25

9-C259-C26

2-Me-C26

5,9-C27

5,9-C29

2-Me-C28

2-Me-C30

Time (minutes)8.0 8.5 9.0 9.5 10.0 10.5

30

34

38

42

46

Sig

nal s

treng

th (p

A)

5,9-C24

5,9-C25

9-C259-C26

2-Me-C26

5,9-C27

5,9-C29

2-Me-C28

2-Me-C30

 Index  T1  0.659  T2  0.209  T3  0.052  T4  0.316  T5  0.325  T6  0.528  T7            -­‐0.116  T8  0.146  

Design  of  selec,on  experiment  •  3  replicate  popula,ons  for  each  

of  the  8  selec,on  indices  •  Select  for  6  genera,ons  •  50%  trunca,on  selec,on  •  2  control  lines  

Page 8: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

Selec,on  along  all  eight  gene,c  eigenvectors  

Distribu,on  of  standing  gene,c  variance  in  the  base  popula,on  

?  

?  

?  Hine  et  al  2014,  American  Naturalist  

Black  indicates  a  trait  evolved  in  the  direc,on  opposite  to  its  selec,on  gradient  

95%  Bayesian  uncertainty  intervals  

Page 9: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

How  to  compare  base  G  and  the  response:  The  realised  G  matrix  

Δz11Δz12Δz13Δz21Δz22Δz23

"

#

$$$$$$$$$

%

&

'''''''''

=

w11 w12 w13 0 0 0

0 w11 0 w12 w13 0

0 0 w11 0 w12 w13

w11 w12 w13 0 0 0

0 w11 0 w12 w13 0

0 0 w11 0 w12 w13

"

#

$$$$$$$$$

%

&

'''''''''

v1cov12cov13v2

cov23v3

"

#

$$$$$$$$$

%

&

'''''''''

Response  to  selec,on  of  traits  

Example  for  3  traits  and  2  selec,on  indices  (popula,ons)  

Selec,on  weights  

Realised  gene,c  (co)variances  

Note  the  overes,ma,on  of  the  gene,c  variance  in  the  base  popula,on  

Mul,variate  gene,c  variances  successfully  predicted  responses  

Hine  et  al  2014,  American  Naturalist  

Page 10: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

Can  we  make  any  generaliza,ons  about  the  spectral  distribu,on  of  gene,c  variance?  

 

40  5-­‐d  G  matrices    From  Pitchers  et  al  (2014)  

Yes,  gene,c  “nearly-­‐null”  spaces  may  be  common    But,  how  do  we  know  if  the  exponen,al  decline  in  eigenvalues  is  more  than  expected  in  the  absence  of  gene,c  covariance?    In  other  words,  what  is  the  null  model  for  mul,variate  quan,ta,ve  gene,cs?    

Recent  colla,on  of  all  es,mated  G  matrices  by  Pitchers  et  al  2014,  Phil.  Trans.  R.  Soc.  B    

6

5

4

3

2

1

0

-1

-2

-3

-4

Ge

ne

tic V

aria

nce

1 2 3 4 5Eigenvector

Life History - 2

Morphology - 32

Sexually Selected - 7

61 2 3 4 5

Eigenvector

6

4

2

0

-2

-4

Ge

ne

tic V

aria

nce

Life History - 9

Morphology - 26

Sexually Selected - 38

10

12

-6

761 2 3 4 5Eigenvector

6

5

4

3

2

1

0

-1

-2

-3

Ge

ne

tic V

aria

nce

7Life History - 4

Morphology - 11

Sexually Selected - 7

(b)

(a)

(c)

Blows  and  McGuigan  2015,  Molecular  Ecology  

Page 11: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

Random  Matrix  Theory:  The  quarter-­‐circle  law  for  P  matrices  

BA

1 2 3 4 5 6 7 8 9 10

Trait

1.0

0.6

0.8

1.2

1.4

1.6

VP

0.5

1.0

1.5

0.00.6 0.8 1.0 1.2 1.4 1.6

Eigenvalues

De

nsity

10  traits  drawn  from  N(0,1),  with  250  individuals  measured,  and  the  iden,ty  matrix  as  the  covariance  matrix    

The  bulk  and  edge  behaviour  of  eigenvalues  of  symmetrical  matrices  follow  some  surprisingly  universal  laws  

Marchenko-­‐Pastur  distribu,on  

Individual  trait  

1st  eigenvalue  

Blows  and  McGuigan  2015,  Molecular  Ecology  

SNP  relatedness  matrices  will  conform  to  this  distribu,on  

Page 12: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

The  need  for  a  null  model  in    mul,variate  quan,ta,ve  gene,cs  

 

1v 1,2cov … 1,ncov2v 2,ncov

nv

"

#

$ $ $ $ $ $

%

&

' ' ' ' ' '

1.  10  traits  drawn  at  random  from  N(0,1),  with  the  iden,ty  matrix  as  the  covariance  matrix    

2.  Experimental  design;  50  lines,  5  individuals  per  line.  

3.  Use  mul,variate  linear  model  to  es,mate  among-­‐line  G  

 for  200  replica,ons  of  a  10-­‐trait  G  matrix:  

Eigenvector1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Eig

enva

lue

AB

-5 -4 -3 -2 -1 0 54321 6

600

0

500

300

200

100

400

Fre

quency

TW Statistic

Clearly,  there  is  a  need  for  determining  how  real  data  deviate  from  the  random  expecta,on  for  the  spectral  distribu,on  

       If,                Then,  

Page 13: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

The  leading  eigenvalue  of  G  and  the    Tracy-­‐Widom  Law  

200  leading  eigenvalues  from  the  simulated  G  (10  of  200  significantly  deviate  from  random)  

Caveat  Analy,cal  expressions  for  the  centering  and  scaling  parameters  of  the  TW  distribu,on  for  variance-­‐component  matrices  are  unknown  at  present.    Approxima,on  method  of  Saccen,  et  al  2011  used.  

10000  samples  from  the  Tracy-­‐Widom  distribu,on  for  the  leading  eigenvalue  

5%  cut-­‐off  value  of  0.979  

-5 -4 -3 -2 -1 0 54321

600

0

500

300

200

100

400

Fre

quency

TW Statistic

Blows  and  McGuigan  2015,  Molecular  Ecology  

Page 14: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

Using  the  TW  distribu,on  for  real  data:  40  5-­‐

dimensional  G  matrices  

-5 -4 -3 -2 -1 0 54321 6 7 8

600

0

500

300

200

100

400

Fre

qu

en

cy

70

-4 -3 -2 -1 0 43210

60

50

40

30

20

10

Fre

qu

en

cy

1451cases

BA

40  leading  eigenvalues  from  es,mated  G  in  Pitchers  et  al  (2014)  data  set    

(26  significantly  deviate  from  random  expecta,on)  

Grey  bars:  10000  samples  from  the  TW  distribu,on  Open  bars:  10000  simulated  values  of  the  TW  sta,s,c  for  the  leading  eigenvalues  of  5-­‐d  correla,on  matrices  with  random  off-­‐diagonal  elements  

Analy,cal  steps:  1.  Simulate  the  structure  of  the  real  

matrices  (here,  5-­‐d  correla,on  matrices)    

2.  Scale  leading  eigenvalues  to  the  TW  distribu,on  to  establish  scaling  parameters  

3.  Use  scaling  parameters  to  adjust  observed  leading  eigenvalues  

Blows  and  McGuigan  2015,  Molecular  Ecology  

Page 15: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

What  is  the  extent  of  gene,c  covariance  across  the  phenome?  

Grey  bars:  TW  distribu,on  Open  bars:  Simulated  5  traits  sets  Dark  bars:  leading  eigenvalue  from  5-­‐d  G    

Gene,c  analysis  of  gene  expression;  30  inbred  lines  derived  from  a  natural  popula,on  of  D.  serrata  (data  from  McGuigan  et  al  2014,  Gene,cs)  

 

Vast  majority  (95%)  of  5-­‐trait  G  had  a  leading  eigenvalue  larger  than  expected  by  chance  

Approach:  randomly  allocate  8750  expression  traits  with  significant  gene,c  variance  at  5%  FDR  to  one  of  1756  5-­‐trait  sets  

-4 -3 -2 -1 0 43210

60

40

20

Fre

quency

TW Statistic-5

80

100

120

Fre

quency

0.0 1.00.80.60.40.2Broad Sense Heritability

0

100

200

300

400

500

BA

Page 16: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

What  is  the  extent  of  muta,onal  covariance?  Muta,onal  pleiotropy  in  gene  expression  

8,000

600

500

400

300

200

100

00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Count

ofT

raits

Among-Line Variance

~

A

B

600

500

400

300

200

100

0

Co

un

to

fT

raits

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0Among-Line Variance

Average = 0.344

Average = 0.033

•  Most  traits  (71%)  unaffected  by  muta,on  in  27  genera,ons  

•  3385  traits  (29%)  with  non-­‐zero  VM  •  Mean  muta,onal  heritability  of  0.001  (0.1%  

of  the  phenotypic  variance  generated  by  muta,on  each  genera,on)  

•  Randomly  allocate  the  3385  traits  to  5-­‐trait  sets  

•  21%  of  trait  sets  displayed  significant  muta,onal  gene,c  covariance  (at  5%  FDR)  

•  Suggests  a  muta,on  affects  70  traits  on  average  (assuming  modules  of  equal  size)  

McGuigan  et  al  2014,  Gene,cs  

Standing  VG  

Muta,onal  VM  

Univariate  parameters  

Evidence  for  muta,onal  pleiotropy  

Gene,c  analysis  of  41  muta,on  accumula,ons  lines  of  D.  serrata  

Page 17: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

Why  do  we  see  widespread  gene,c  covariance  among  small  sets  of  random  traits?  

G =

B1,1 B1,2 B1,m

B2,2

Bm,m

!

"

#####

$

%

&&&&&

K =

B1,1 0 0

B2,2

0Bm,m

!

"

#####

$

%

&&&&&

Gnk =

B1,11/2 0 0

B2,21/2 0 0

0Bm,m

1/2 0 0

!

"

######

$

%

&&&&&&

B1,11/2 B2,2

1/2 Bm,m1/2

0 0 0 0 0 0 0

!

"

#####

$

%

&&&&&

Take  the  8750  expression  traits,  arranged  in  the  5x5  matrices  Bi,j.    There  are  too  many  elements  in  G  to  es,mate  (3.83  x  107)  

Es,mate  only  the  5x5  principal  submatrices  along  the  diagonal  of  K.    Only  need  to  es,mate  223125  (0.6%)  elements  

Complete  an  approxima,on  of  the  8750-­‐d  G  using  a  geometric  mean  approach  

What  does  the  eigenstructure  of  BIG  G  reveal?  

Blows  et  al  2015,  American  Naturalist  

Page 18: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

Pleiotropy  exists  among  a  large  number  of  traits  

500

400

300

200

100

0

-0.36 -0.24 -0.12 0.00 0.240.12Trait Loading on gmax

Fre

qu

en

cy

BA

0 5 10 15 20 25 30 35-15 -10 -50

10

20

2

4

6

8

12

14

16

18

22

Fre

qu

en

cy

Sum of +/- Loadings

Null  distribu,on  of  loadings  on  the  leading  eigenvector  

Large  number  of  traits  influenced  in  the  same  direc,on  by  gmax  

Trait  contribu,ons  to  the  leading  eigenvector  (gmax)  

Consistent  with  the  ubiquitous  presence  of  correlated  responses  to  selec,on    

Blows  et  al  2015,  American  Naturalist  

Page 19: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

Gene  enrichment  analysis  of  GO  terms    500

400

300

200

100

0

-0.36 -0.24 -0.12 0.00 0.240.12Trait Loading on gmax

Fre

qu

en

cy

BA

0 5 10 15 20 25 30 35-15 -10 -50

10

20

2

4

6

8

12

14

16

18

22

Fre

qu

en

cy

Sum of +/- Loadings

100  genes  with  lowest  contribu,ons  to  gmax  

 2  GO  terms  enriched:  

transferase  ac,vity  (GO:0016740)  cell  surface  (GO:0009986)  

 

100  genes  with  highest  contribu,ons  to  gmax  

 31  GO  terms  enriched:  

Captured  many  processes  related  to  regula,on  of  gene  expression,  including  transcrip,on  factors  

Blows  et  al  2015,  American  Naturalist  

Page 20: The distribution of genetic variance across phenotypic space and the response to selection - Mark Blows

PLEIOTROPY  

1.  Reduces  the  availability  of  gene,c  variance  in  some  dimensions,  resul,ng  in  gene,c  nearly-­‐null  subspaces  

3.  Gene,c  nearly-­‐null  subspaces  likely  to  be  common,  but  more  work  in  RMT  needed  

2.  Response  to  selec,on  governed  by  the  spectral  distribu,on  of  gene,c  variance  

4.  Muta,onal  pleiotropy  is  widespread  among  expression  traits  for  selec,on  to  act  upon  

5.  Pleiotropy  can  be  among  a  very  large  number  of  traits  of  disparate  func,on  


Recommended