+ All Categories
Home > Documents > The Effects of a Selected Wheel Design and Caster Fixture ...

The Effects of a Selected Wheel Design and Caster Fixture ...

Date post: 18-Dec-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
85
University of Wisconsin Milwaukee UWM Digital Commons eses and Dissertations December 2014 e Effects of a Selected Wheel Design and Caster Fixture Design on Pushing Force When Pushing Four Wheeled Industrial Carts David Wein University of Wisconsin-Milwaukee Follow this and additional works at: hps://dc.uwm.edu/etd Part of the Industrial Engineering Commons is esis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in eses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. Recommended Citation Wein, David, "e Effects of a Selected Wheel Design and Caster Fixture Design on Pushing Force When Pushing Four Wheeled Industrial Carts" (2014). eses and Dissertations. 618. hps://dc.uwm.edu/etd/618
Transcript

University of Wisconsin MilwaukeeUWM Digital Commons

Theses and Dissertations

December 2014

The Effects of a Selected Wheel Design and CasterFixture Design on Pushing Force When PushingFour Wheeled Industrial CartsDavid WeinUniversity of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etdPart of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by anauthorized administrator of UWM Digital Commons. For more information, please contact [email protected].

Recommended CitationWein, David, "The Effects of a Selected Wheel Design and Caster Fixture Design on Pushing Force When Pushing Four WheeledIndustrial Carts" (2014). Theses and Dissertations. 618.https://dc.uwm.edu/etd/618

THEEFFECTSOFASELECTEDWHEELDESIGNANDCASTERFIXTUREDESIGNON

PUSHINGFORCEWHENPUSHINGFOURWHEELEDINDUSTRIALCARTS

by

DavidS.Wein

AThesisSubmittedin

PartialFulfillmentofthe

RequirementsfortheDegreeof

MasterofScience

inEngineering

at

TheUniversityofWisconsin‐Milwaukee

December2014

ii

ABSTRACTTHEAFFECTSOFASELECTEDWHEELDESIGNANDCASTERFIXTUREDESIGNSON

PUSHINGFORCEWHENPUSHINGFOURWHEELEDINDUSTRIALCARTSby

DavidS.Wein

TheUniversityofWisconsin‐Milwaukee,2014UndertheSupervisionofDr.WilkistarOtieno

Manualmaterialhandlingstasks,manyofwhichrequirepushingandpulling

arecommoninalmostallindustrialandservicesectorenvironments.Thesetasks

exposeworkerstomusculoskeletalstressesaswellasotherrelatedslippingand

trippinghazards.Thecompanysponsorofthisstudysoughttolowertheriskof

injuryfrommanuallypushingandpullingcarts.Thecompanywantedtoevaluatea

newerstyleofsplitwheelandalsoanoffsetpivotdualorbitalcaster,whichthe

manufacturerstateswillreducepushingandpullingforce.Atotalofeight

participants(4male,4female)wereincludedinthestudy.Participantswere

requiredtopushafour‐wheeledcart16timesfor10meters.Thecartwaspushed8

timeswithatotalgrossweightof250lbs(113.4kgs)andanother8timeswith750

lbs(340.2kgs).Onlytherearwheelscouldswivelandweretestedboth

perpendicularandinlinetothedirectionoftravel.Thesplitwheelwascomparedto

asinglewheelandthedualorbitalcasterwascomparedtoastandardstyleofcaster.

iii

Allpossiblecombinationsweretested.Appliedforcewasmeasuredandanalysis

wasconductedoninstantaneouspeakforce.

Resultsshowedthatthecasterdesigndidnotsignificantlyaffecttheinitial

appliedforce.However,thedualorbitalcasterwasconsistentintheamountof

appliedforcewhenthewheelswereperpendicularoralignedtothedirectionof

travel.Thedualorbitalcasterresultedinlowerinitialappliedforceswhenused

togetherwiththesinglewheeldesign.Inaddition,thedualorbitalcastershowed

markeddecreaseintheappliedpushforcewhenwheelswherepositioned

perpendiculartothedirectionoftravelcomparedtothestandardcaster.These

resultsstrengthentherecommendationforthecompanytoinvestinthedualorbital

–alsoreferredtooffsetpivotcaster.Secondly,thoughthewheeltypesignificantly

affectedtheappliedforcethemeanappliedforcedifferencebetweenthetwowheel

typeswasnotpracticallysignificantenoughtowarrantachangeofthewheeltypein

thecompany.

iv

©CopyrightbyDavidS.Wein,2014AllRightsReserved

v

Thisthesisisdedicatedtomywonderfulwifewhoencouragedmethroughoutthe

entireprogram.Itisalsodedicatedtomychildrenasareminderofthenecessityto

perseveretotheend.

vi

TABLE OF CONTENTS 

Contents 

TABLEOFCONTENTS.............................................................................................................................vi

LISTOFFIGURES....................................................................................................................................viii

LISTOFTABLES........................................................................................................................................ix

ACKNOWLEDGEMENTS..........................................................................................................................x

Chapter1:ResearchBackground......................................................................................................1

Chapter2:LiteratureReview..............................................................................................................3

2.1Force/LoadGuidelines..............................................................................................................................3

2.2RelatedPriorResearch..............................................................................................................................4

2.3FactorsAffectingPullandPushForces............................................................................................12

Weight................................................................................................................................................13

Friction/WheelHardness..........................................................................................................13

WheelPosition/Orientation.....................................................................................................14

WheelDiameter.............................................................................................................................17

Slope...................................................................................................................................................17

HandleHeight.................................................................................................................................18

HandleWidth..................................................................................................................................18

Chapter3:CurrentStudy....................................................................................................................18

3.1StudyVariables...........................................................................................................................................18

3.2ResearchQuestions..................................................................................................................................20

3.3ResearchHypotheses...............................................................................................................................21

Chapter4:MethodologyandDataAnalysis...............................................................................22

4.1ExperimentParticipants.........................................................................................................................22

4.2EquipmentandInstrumentation........................................................................................................24

CartDesign.......................................................................................................................................24

Handle................................................................................................................................................27

CasterFixtures...............................................................................................................................27

Wheels...............................................................................................................................................28

CartLoad...........................................................................................................................................29

Floor....................................................................................................................................................30

DataCollectionElectronics.......................................................................................................31

vii

Calibration........................................................................................................................................31

RatingsofPerceivedExertionScale......................................................................................32

4.3StudyDesign................................................................................................................................................32

4.4ExperimentalProcedure.........................................................................................................................34

4.5StatisticalAnalysis....................................................................................................................................36

Chapter5:ResultsandDiscussions...............................................................................................37

5.1Results............................................................................................................................................................37

DataProcessing..............................................................................................................................37

AnalysisofPhysicalMeasures–PeakForce.....................................................................38

PsychophysicalSelfReportedExertionData....................................................................39

5.2ParticipantData/Information..............................................................................................................39

5.3PhysicalForceMeasurementAnalysis–InitialPushForce......................................................40

5.4PsychophysicalAnalysisofPerceivedExertion............................................................................49

Chapter6:Discussion............................................................................................................................58

6.1HypothesisDiscussion.............................................................................................................................58

6.2VariabilityBetweenSubjects................................................................................................................62

6.3PerceivedExertion....................................................................................................................................63

6.4ApplicationoftheResults/PsychophysicalApplication............................................................64

6.4.1Scenario1–ChangingFixtures....................................................................................64

6.5LimitationsoftheStudy..........................................................................................................................65

6.5.1InstantaneousPeakForce..............................................................................................65

6.5.2LateralForce........................................................................................................................65

6.6ContributiontotheBodyofKnowledge...........................................................................................65

6.7FutureStudies.............................................................................................................................................66

Chapter7:Conclusion...........................................................................................................................66

References..................................................................................................................................................68

Appendices................................................................................................................................................71

Appendix A – Pre Screening Form.................................................................................................................72

Appendix B – Participant Information..........................................................................................................73

Appendix C – Pain and Exertion Rating........................................................................................................74

viii

LIST OF FIGURES 

Figure 1 ‐ Wheel Positions.....................................................................................................................15Figure 2 ‐ Swivel Eaz Wheel...................................................................................................................19Figure 3 ‐ Cart design...............................................................................................................................25Figure 4 ‐ Handle Notches......................................................................................................................26Figure 5 ‐ Swivel Eaz Pro Figure 6 ‐ Standard Swivel Caster (Fixture).........................28Figure 7 ‐ Swivel Eaz Caster...................................................................................................................29Figure 8 ‐ Single Wheel...........................................................................................................................29Figure 9 ‐ Wheel/Fixture Orientation................................................................................................33Figure 10 ‐ Example of Graph of Push Force...................................................................................38Figure 11 ‐ Boxplot Gender Effect – Females versus Males.......................................................40Figure 12 ‐ General Linear Model........................................................................................................41Figure 13 ‐ ANOVA: Max Peak Initial Force vs Wheel Type & Wheel Position....................42Figure 14 ‐ Main Effects Plots...............................................................................................................43Figure 15 ‐ Interaction Plot....................................................................................................................43Figure 16 ‐ ANOVA....................................................................................................................................45Figure 17 ‐ Main Effects Plot.................................................................................................................46Figure 18 ‐ Interaction Plot....................................................................................................................47Figure 19 ‐ ANOVA, Fixture ‐ Wheel Type........................................................................................48Figure 20 ‐ Main Effects Plot, Fixture ‐ Wheel Type ‐ Wheel Position....................................48Figure 21 ‐ Interaction Plot; Fixture ‐ Wheel Type ‐ Wheel Position.......................................49Figure 22 ‐ Pearson’s Correlation, Back – Shoulder ‐ Weight....................................................50Figure 23 ‐ Normal Probability, Shoulder and Back......................................................................51Figure 24 ‐ Box Cox ‐ Shoulder and Back Data Transformation................................................51Figure 25 ‐ ANOVA General Linear Model ‐ Shoulders................................................................53Figure 26 ‐ ANOVA General Linear Model – Back..........................................................................55Figure 27 ‐ Boxplot ‐ Peak Initial Force..............................................................................................60Figure 28 ‐ Summary of Box Plot of Combinations.......................................................................60

ix

LIST OF TABLES 

Table 1 ‐ Related Research.......................................................................................................................5Table 2 ‐ Additional Weight Added.....................................................................................................30Table 3 ‐ Experiment Design Combinations.....................................................................................35Table 4 ‐ Participant Information & Statistics.................................................................................39Table 5 ‐ Applied Peak Force Range...................................................................................................63

 

x

ACKNOWLEDGEMENTS 

 Iwouldliketothankthefollowingpeoplefortheirguidance,mentoring,andfor

sharingtheirknowledgethroughouttheprocess:Dr.WilkistarOtieno,Dr.Jay

Kapellusch,andProf.ArunGarg.

IwouldalsoliketothankthefollowingOshkoshCorporationemployeesfortheir

contributioninthedesignandbuildofthecartandassistancewiththedata

collection:AndyGratton,RyanSchumacher,andJeffVolkman.

1

Chapter 1:  Research Background Manualmaterialhandlingtaskscanbefoundinmanyindustrialandservicesector

environments.Muchfocusandattentioninresearchhasbeengiventoreducingrisk

factorsassociatedwithliftingandloweringofparts,components,orboxesinthe

workplace.TheNationalInstituteofOccupationalSafetyandHealth(NIOSH)first

publishedtheirLiftingGuidein1981[2].Sincethattime,industryhasresponded

byworkingtoreducetheamountofmanuallifting,lowering,andcarryingfoundin

workplaces,oftenreplacingthosetaskswithpushingandpulling[3].Incertain

industries,pushingandpullingmaneuverscanaccountforanestimated50%ofthe

manualmaterialtasks[1].

Intheworkplace,overexertionfromanoutsidesourcewasrankedasthehighest

causeofdisablinginjuries.Theseinjuriesincludedthoseinvolvingpushing,pulling,

lifting,orthrowing.In2011,injuriesrelatedtomaterialhandlingcostbusiness

$14.2billionindirectexpenses[4].

Itisestimatedthat9‐20%oflowerbackinjuriesintheindustrialenvironmentare

associatedwithpushingorpullingtasks[5].InthestateofOhio,thetotalannual

costforbackinjuriesisover$100milliondollarswhiletheaveragecostofaback

injuryis$18,290peroccurrence[6].AccordingtothestateofTexasDepartmentof

Insurance,theaveragecostforabackinjuryis$15,000.Backinjuriesalsoaccount

for24%oftheworker’scompensationinjuriesinTexas[7].Inadditiontoincreasing

2

riskofinjurytotheback,pushingandpullinghasledtoincreaseddiscomfortinthe

shouldersofworkerswhomanuallypushcartsonaregularbasis[8].Accordingto

NIOSH,approximately600,000employeesareafflictedwithbackinjuriesannually,

atacostofover$50billion[26].Anundocumentedbutbelievedtobesignificant

portionoftheseinjuriesandcostsareattributabletopushingandpullingtasks.

Thesponsorofthisstudy,amanufacturerofmediumandheavymilitarytrucks,

tacticalwheeledvehicles,andcommercialvehicleshasbeenworkingtoreduce

forcesofmanualpushingandpullingofcarts.Thecompanyseekstolowerinjuries

byreducingpushingandpullingforce,apresumedriskfactorforinjury[1].Inan

efforttoreducepushingandpullingforces,theyhavestartedpurchasingsplit

wheeledcastersmanufacturedbyAubinIndustriesofTracy,California.Inaddition

tothesplitwheelcasternamedSwivel‐Eaz™,AubinIndustriesandhasdevelopeda

newstyleofcasterfixturecalledaSwivel‐Eaz™Pro.Thesponsorofthestudyseeks

toverifythemanufacturer’sclaimsthatbothproductsreducetheforcerequiredto

pushorpullacart.

Thisresearchstudywasdesignedtorespondtothesponsoringcompany’sconcerns.

Weseektodetermineifthesplitwheelandoffsetpivotcasterindividuallyor

interactivelyhaveaneffectoneitherinitialorsustainedforcewhencomparedtoa

standardsinglewheelandcasterdesign.Torealizethisgoal,wesoughttotestthe

followingthreehypotheses,whichwillbediscussedindetailinChapter3ofthis

thesis.

3

1.Split‐wheeldesignwillaffecttheinitialappliedpeakforcerequiredtomovea

fourwheeledcart

2.Theoffsetpivotcastermountingwillaffecttheinitialpeakappliedforcerequired

tomoveafourwheeledcart.

3.Thereisastatisticallysignificantinteractionbetweenwheeltypeandcastertype

ontheinitialappliedpeakforcerequiredtomoveafourwheeledcart.

 

Chapter 2:  Literature Review 

2.1 Force/Load Guidelines IntheUnitedStates,theOccupationalSafetyandHealthAdministration(OSHA)has

neitherestablishedasafethresholdontheweightofacartanditscontents,northe

maximumforceanindividualisallowedtopushorpull.Theoften‐usedguidelinein

generalindustryforpushingandpullingcomesfromthepsychophysicalresearch

thatwasconductedattheLibertyMutualResearchCenterbySnookandCirielloin

1991[9].TousethetablesdevelopedbySnookandCiriello,theusermustidentify

thefollowing:task(pushingorpulling),gender,heightofthehandswhilepushing

orpulling,frequencyofthetask,andthedistancetraveled.Thegoalistodesignthe

tasksoitcanbesafelyaccomplishedby75%and99%ofthefemaleandmale

workers,respectively[9].

4

2.2 Related Prior Research Table1isachronologicalsummaryofpublishedresearchdirectlyorindirectly

relatedtothisstudy.

Table 1 ‐ Related Research 

5

6

7

8

9

10

11

12

Thisstudyisdifferentfromothersthathavepreviouslybeenconductedasit

comparesthenewersplitwheeldesigntoastandardsinglewheelwhichis

commonlyusedinmanyindustries.Additionally,theSwivel‐Eaz™Proswivelcaster

wasrecentlypatentedandisnewtothemarket;thereforeithasnotbeenstudiedin

thepast.

Thisstudywillcontributetothebodyofknowledgebyfillinginthedearthof

researchthatspecificallystudiestheeffectofSwivelEaz™wheelsandSwivelEaz™

Procastersinthepushandpullforces.

2.3 Factors Affecting Pull and Push Forces Intheindustrialsetting,employeesmayberequiredtopushcartswithvarious

loads.Thereareseveraldifferentfactorsthatcontributetotheactualforcerequired

tomovethecartincluding:friction,wheelposition,wheeldiameter,wheelhardness,

floorslope,andthecartandcontentweight.Initialforceisdefinedastheforce

requiredtogetanobjectinmotionwhilesustainedforceistheforcerequiredto

keepanobjectinmotion[9].Alldataanalysisinthisstudywasconductedonthe

peakinstantaneousappliedforcerecordedduringtheinitialphasewhilethecart

wasbeingpushed.Forconvenienceinidentification,thepeakinstantaneousforceis

thehighestpointfoundinatenthofasecondintimeduringtheinitialpushing

phase.Hereinafter,thepeakinstantaneousforceisreferredtoaspeakapplied

forceorpeakforce.

13

Weight 

Inavehicleassemblyplant,workersmayberequiredtopushcartsthatarefullof

metalpartswhicharerelativelyheavy;ortheycouldpushasmallcartoflightweight

plasticcomponents.Attimes,workersmayberequiredtopushorpullloadsof

variousweightsincludingthosewhichmayrequirenearmaximalstrengthtomove.

Forinstance,Cirielloetal.(1999)analyzed25,291manualmaterialhandlingtasks

ofwhich1,879requiredpushingand1,866requiredpulling.Theyfoundthat28%

ofthepushingtasksrequiredforcesgreaterthan70lbs(311N)[15].Inyetanother

study,Resnick(1996)foundthatthemeanstaticpeakhorizontalforcewas75lbs

(335N)forwomenand139lbs(620N)formen.Thesepeakforceswerefound

withahandleheightofabout80%ofshoulderheight[16].Loadweightsthatare

transportedinmostindustriescanvaryupto3,300lbs(1,500kgs)whichfarexceed

therecommendweightlimitof496lbs(225kgs)forfourwheeledcartsand251lbs

(114kgs)fortwowheeledcarts[13]‐[14].Inthisstudy,twodifferentloadweights

wereused250lbs(113kgs)and750lbs(340kgs).

Friction/Wheel Hardness 

Frictionisdefinedasa“forcethatactstoresisttherelativemotion(orattempted

motion)ofobjectsormaterialsthatareincontact”[27].Inwheeledcarts,friction

betweenthewheelandtheaxleandrollingresistancebetweenthefloorandthe

wheeldeterminetheamountofforcerequiredtomovethecart[1].Higherfriction

contributestoincreasedrollingresistanceandthusrelativelyhigherpushingand

pullingforces.Forthisreason,low‐frictionwheelbearings,andrelativelyhard

wheelsarepreferredwhenpushingandpullingcartswithheavierloads[10]‐[13].

14

Therelationshipbetweentherollingresistance,friction,andloadisgovernedbythe

followingequation[28]‐[29]:

F=fxW/R

F=theforcerequiredtoovercometherollingfriction

f=thecoefficientofrollingfriction(unitsmustmatchsameunitsasR(radius))

W=Loadonthewheel

R=Radiusofthewheel

Ittakeslessforcetopushorpullhardwheelsthansoftwheelsduetoalowerrolling

friction[10].Softwheelsorpneumaticwheelstendtodevelopflatspotswhena

cartloadedwithaheavyweightisstoredforalongperiodoftime[13].

Wheel Position/Orientation 

Whetherinthemanufacturingortheservicesectorenvironment,itiscommonto

findacartwithfourcastershavingonepositionedoneachcorner.Thereareother

casterconfigurationsthatcanbeusedwhendesigningacart,suchashavingasingle

orpairoffixedcastersinthecenterandaswivelcasteroneachofthefourcorners

whichallowsthecarttobepositionedandmaneuveredintotightspaces[12].Some

cartshavetwofixedcastersandtwoswivels,whileothershavefourswivels.Three

morecommonlyfoundwheelpositionsarelistedin(Figure1)where“R”represents

aridgedorfixedcasterand“S”isaswivelcaster.Wheelsinthestudywere

positionedasdepictedinFigure1b.

15

Figure 1 ‐ Wheel Positions 

(1a) (1b) (1c)

Isthisstudy,twoswivelcastersweremountedononeendofthecartnearestthe

handleandtwofixedcastersweremountedontheoppositeend.

ThemanufacturerDarcorCastersandWheels,definesSwivelCasterasabasiccaster

unitwiththeadditionofabearingthatallowsthecastertoswivelaboutavertical

axis[30].Oneoftheproblemswithhavingasetofswivelwheelsonacartis

occasionallythewheelsarenotalignedinthedirectionoftravel.Whenthis

happens,additionalforceisrequiredtogetthecartwheelstoswivelaroundand

becomeproperlyalignedinthedirectionoftravel.AccordingtoastudybyAl‐

Eisawietal.,whenfrontwheelsofacartwerealignedinthedirectionoftraveland

rearwheelswereperpendiculartothedirectionoftravel,minimumpullforcewas

19%higherthantheminimumpushforce.Thissuggeststhatswivelwheelsshould

beplacedintherearifthecartwillbeprimarilypushed[10].

Swivelwheelsaffecttheamountofforcerequiredwhenpushingorstoppingacart

[10].Al‐Eisawietal.alsofoundthatwhenthereartwoswivelcastersarealigned

perpendiculartothedirectionoftraveltheaverageforcewas13.1%higherthan

whenallfourcasterswerealignedinthedirectionoftravel.Inaddition,theyfound

R

R

R

R

S

S

R

R

SS

R

R

16

thatwhenallfourswivelcasterswerealignedperpendiculartothedirectionof

traveltheaverageforcewas30.7%higherthanwhenallfourwerealignedtothe

directionoftravel.Asaresultoftheirstudy,theyfoundthatthesmallestforce

requiredtomovethecartwasrecordedwhenallfourwheelswerealignedinthe

directionoftravel.Additionally,thegreatestforcewasrecordedwhenallfour

wheelswerealignedperpendiculartothedirectionoftravel[10].Therefore,inthis

studythefrontwheelswerefixedtothedirectionoftravel,whiletherearwheels

werepositionedbothin‐lineandperpendiculartothedirectionoftravelaswillbe

reportedinthedesignofexperiment.

Afour‐wheeledcartneedstohaveatleasttwowheelsthatswiveltoallowittoturn.

Cartswithfourswivelwheelsrequiremoreforcetooperate[10].Theextraforce

requiredtooperateafour‐wheeledcartwithswivelwheelscouldberelatedtothe

additionalforcethatisappliedtokeepitundercontrolinthelateraldirection[1].

Inthisstudy,lateralforcewasmeasuredtodetermineifitdecreasedwithanyofthe

newcasterdesignsorcombinations.

Asfour‐wheeledcartsarecommonlyfoundinthecompanysponsoringthisstudy,a

four‐wheeledcartwasconstructedwithswivelwheelspositionedattherearclosest

tothehandle.

17

Wheel Diameter 

Generally,theeffectofwheeldiameteronthepushandpullforceismodeledusing

theequationdescribedintheprevioussectionentitledFriction;whereR=radius,W

=loadonthewheel,f=coefficientofrollingfriction,anF=forcerequiredto

overcomerollingfriction.

F=fxW/R

Thereforeifallotherfactorsareequal,bydoublingradiusofthewheel,pushand

pullforcewilldecreasebyhalf.Increasingthediameterofawheelcanbean

effectivemeasureinreducingtheforceneededtomoveacart.Inastudyofpushing

floor‐basedpatientliftingdevices,itwasfoundthattherewerehighersheerforces

intheuser’sbackwhenpushingthedevicewithsmallerdiameterwheelscompared

toasimilarliftingdeviceequippedwithlargerdiameterwheels[1].Irrespectiveof

thefloorsurface(carpetorconcrete),pullforcedecreasedwhenwheeldiameter

wasincreased[10].However,pushandpullforceisgreaterwithlargerwheels

whenswivelwheelsarenotalignedinthedirectionoftravel[10].Largerdiameter

wheelsareabletocrossoverbumps,holes,andotherobstructionsinthefloormore

effectivelythansmallerwheels[1].Inthisstudy,diametersofthewheelschosen

were6in.(15.2cm)becausethisdimensionisprimarilyusedinthesponsoring

company.Inaddition,withthisdiameter,anybumpsintheconcreteinthetesting

facilitywouldnotinterferewiththedatacollectionprotocol.

 

Slope 

Insomegeneraltaskssuchasmovingproductsusingtwo‐wheeledhandcarts,stairs

andcurbscancreateanobstaclethatisdifficultforthecarttogetover.Anoption

18

maybetoinstallaramptohelpnavigatethestepsorcurb;althoughanincreasein

slopewillcauseanincreaseinpushandpullforce.Itisrecommendedthatwhen

usingaramptheslopeshouldbekepttolessthan3.5%(2∘)[15].

 

Handle Height 

Al‐Eisawiet.al(1999)reportednostatisticaldifferenceinpushforcewithaload

weightof160lbs(73kgs)atthreedifferenthandleheights;knuckle,elbow,

shoulder.However,thedifferencewassignificantataloadweightof399lbs(181

kgs).Pushforcerequiredwhenhandleheightwasattheshoulderlevelwas10%

lowerthanatelbowheight,andelbowheightwas10%lowerthanknuckleheight

[11].Thepreferredhandleheightforhorizontalpushingisataboutelbowheight

[13].Inaddition,biomechanicalresearchhasfoundcompressionforceontheL5/S1

vertebraewaslowestwhenhandleheightissetatelbowheight[16].

Handle Width 

Handlewidthshouldbedesignednogreaterthan18in.(45.7cm).Widerhandles

mayplacehigherloadsontheweakershouldermuscles[13].Inthisstudy,the

handlewidthwasfixedat20in.(51cm).

Chapter 3:  Current Study 

3.1 Study Variables Thefollowingsummarizedvariableswereconsideredinthisstudy:(1)loadweight

(2)wheelalignment(3)casterfixturedesignand(4)wheeltype.

19

Onecastermanufacturer,AubinIndustrieslocatedinTracy,Californiahasdesigned

awheelandcasterassemblywhichtheyclaim“reducesturningandrolling

resistanceonswivel,ridgedandfixedaxlesystems[18].”Thewheelmanufactured

byAubinIndustriesisasplitwheeldesignwherethewheelsrotateindependently

andshareasinglehubassemblyasshownin(Figure2).

Figure 2 ‐ Swivel Eaz Wheel 

Accordingtothepatentforthewheels:

Thetwo‐wheelcasterofferedanimprovementoverthesinglewheelintwo

importantregards.Theabilityofthewheelstorotateatdifferentratesorin

oppositedirectionsatthesametimegreatlyenhancestheabilitytoturn

abouttheverticalpivotaxis,makingachangeinoveralldirectionofthe

objectmuchsmoother[20].

20

ThecasterassemblyalsomanufacturedbyAubinIndustries“allowsthecasterto

pivoteasilytoaccommodatethedirectionofthrustappliedtoanobjectsupported

bythecaster[20].”

Accordingtothepatentforthecaster:

Thisadvantageousfeatureismadepossiblebyprovidingadualpivot

assemblyinthecastermountingthatislaterallyoffset,wherebythecaster

wheelsmaynotonlypivotaboutawheelpivotaxisthatextendsthroughthe

planeofthecasterwheel,butalsorevolveorbitallyaboutamountingpivot

axisthatislaterallyoffsetfromthewheelaxis.Asaresult,thecaster

assemblyeasilymayassumetheproperorientationforanythrustappliedto

thecaster‐supportedobject[20].

3.2 Research Questions 

Thisstudysoughttoanswerthefollowingquestions:

1.Doesthesplitwheelhaveaneffectoneitherinitialorsustainedforcewhen

comparedtoastandardsinglewheelinvariouscasterorientations?

2.Doestheoffset‐pivotfixture(caster)haveaneffectoneitherinitialorsustained

forcewhencomparedtoastandardcasterfixtureinvariouswheelorientations?

3.Dothesefactors:wheeltype(splitversussingle),fixture(standardversusoffset),

andwheelorientation(alignedversusmisaligned)haveaninteractiveeffectonthe

pushforces?

21

3.3 Research Hypotheses TheoverarchinggoalofthisresearchistodeterminetheefficacyoftheSwivelEaz™

splitwheelandoffsetpivotalSwivelEaz™Procasterinreducingpushforcesthat

occurwhenmanuallymovingacart.Torealizethisgoal,wesetupthreemainaims

fromwhichwedefinedtheresearchhypothesisasfollows:

1.Split‐wheeldesignwillaffecttheinitialappliedpeakforcerequiredto

moveafourwheeledcart.

Hypothesis1a:Splitwheelswillreducetheinitialappliedpeakforcewhen

therearwheelsarepositionedat90degreestothedirectionoftravel.

Hypothesis1b:Splitwheelswillaffecttheinitialappliedpeakforcewhenthe

rearwheelsarepositionedat0degrees(alignedwiththedirectionoftravel).

2.The“offsetpivot”castermountingwillaffecttheinitialpeakappliedforce

requiredtomoveafourwheeledcart.

Hypothesis2a:Theoffsetpivotcastermountingwillreducetheinitial

appliedpeakforcerequiredtomovethecartwhentherearwheelsare

positionedat90degreestothedirectionoftravel.

Hypothesis2b:Theoffsetpivotcastermountingaffecttheinitialapplied

peakforcewhentherearwheelsarepositionedat0degrees(alignedwith

thedirectionoftravel).

3.Thereisastatisticallysignificantinteractionbetweenwheeltypeandcaster

typeontheinitialappliedpeakforcerequiredtomoveafourwheeledcart.

Hypothesis3a:Thereisastatisticallysignificantinteractionbetweenwheel

typeandcastertypeontheinitialappliedpeakforcerequiredtomoveafour

22

wheeledcartwhentherearwheelsarepositionedat90degreestothe

directionoftravel.

Hypothesis3b:Thereisastatisticallysignificantinteractionbetweenwheel

typeandcastertypeontheinitialappliedpeakforcerequiredtomoveafour

wheeledcartwhentherearwheelsarepositionedat0degrees(alignedwith

thedirectionoftravel).

Chapter 4:  Methodology and Data Analysis 

4.1 Experiment Participants Inordertobeginconductingthestudyonhumansubjects,approvalwasobtained

fromtheUniversityofWisconsin‐MilwaukeeInstitutionalReviewBoard(IRB).

FinalapprovaltobeginthisstudyIRB#14.316wasgivenonAugust13,2014for

oneyear.Whileeightparticipantswasthetargetgroupsize,theIRBalloweda

totaloftwelvesubjectstoparticipateinthestudytoallowforpossibleparticipant

withdrawal.

Eightprofessionalworkers(4male,4female)ofvariousagesandoccupationswere

recruitedtoparticipateinthestudy.Allofthesubjectswereemployeesoftheheavy

truckandmilitaryvehiclemanufacturerthatsponsoredthestudyandacceptedto

jointhestudyvoluntarily.Allofthesubjectsworkedinaprofessionaloffice

environment.

23

Subjectscompletedthestudyduringtheirnormalworkday;therebyreceivingtheir

standardwage.Noovertimewaspaidtoparticipantsnorweretheypaidanything

beyondtheirnormalwage.Participantswhosuccessfullycompletedthestudy

receiveda$40creditcard,whichwasapprovedbytheUWMIRBcommittee.Before

subjectswereallowedtoparticipateinthestudytheycompletedapre‐screenform

(AppendixA)aswasstipulatedbytheIRBinclusion/exclusionprotocol.Thepre‐

screenformaskedthepotentialparticipantiftheyhadanypreviousinjuriesintheir

backorshouldersoriftheywereatthetimeexperiencinganypainordiscomfortin

theirbackorshoulders.Iftheyansweredyestoanyofthesequestionstheywould

beprecludedfromparticipatinginthestudy.Iftheparticipantsuccessfullypassed

thescreeningprocesstheyweregiventheUWM‐IRBcommitteeapprovedconsent

formforreviewandsignature.Thestudentprincipalinvestigatormetwith

supervisorsofeachpotentialparticipanttoobtainapprovalfortheiremployeesto

participateinthestudy.Testingwasconductedonsiteatthesponsoringcompany's

testanddevelopmentfacility.

Afterthesubjectreviewedandsignedtheconsentformtheywerereadyto

participateinthestudy.Ashortdemographicandanthropometricformwas

completedthatincludedheight,weight,genderandstandingelbowheight

(AppendixB).Participantswereaskedtoprovidetheiroverallstature.Standing

elbowheightwasmeasuredinthelab.Thesemeasurementsweretakenwiththeir

shoeson.

24

Subjectswereaskedtopushthecartoncefor10metersforeachofthe16test

combinations.Testingoccurredovertwoseparatesessionsforatotalof8trials

eachsession.Tominimizetheeffectofmusclefatigue,subjectswereallowedtorest

2minutesbetweentrialsandweregivenupto5minutesbetweentrialsifnecessary.

Inaddition,therewasalongerrest/recoveryperiodofatleast2daysbetweenthe

initial8trialsandthelater8trials.Voltage,speed,andtimewerecollectedduring

eachofthetrialsandtheexperimentcombinationrunswererandomizedusinga

randomnumbergeneratoravailableonlineatrandom.org.

Thefloorofthetestfacilityisapouredconcretepad,whichisrepresentativeofthe

floorsurfacefoundinmanyfactories.Tomaximizeforwardforceandminimize

downwardforce,handleheightwasadjustedtothesameheightastheparticipant’s

standingelbowheight.

4.2 Equipment and Instrumentation 

Cart Design 

Toreducesetuptimebetweentrials,twocarts(hereinnamedcart1and2)were

builttothesamedimensionsusingthesameconstructionmaterialsfoundinFigure

3.

25

Figure 3 ‐ Cart design 

Thecartswerebuiltusing1in.(2.5cm)rectangularsteelstockwhichwerewelded

togetheratthejoints.Thetotaldimensionsofthecartplatformmeasure24in.(61

cm)x36in.(91cm).A24in.(61cm)x36in.(91cm)x¾in.(2cm)thicksheetof

plywoodwasscrewedtothetopoftheplatformframetoprovideasolidsurfacefor

theweights.Toallowforaquickersetuptimebetweentrials,thestandardcaster

fixtureswereinstalledononecartandtheSwivelEaz™Procasterfixtureswere

installedonthesecondcart.Therefore,toreducesetuptimebetweentrials,either

theweightorthewheelshadtobechanged,nevertheentirefixture.

26

Thehandlewasbuiltusing¾in.(2cm)roundsteelcutandweldedtothe¾in.(2

cm)squaresteelstock.Overalldimensionofthehandleis20in.(51cm).The

verticalsupportforthehandlewasbuiltusinga¾in.(2cm)x¾(2cm)steelsquare

tubethatmeasures40in.(102cm)inlength.Theverticalsupportwasinsertedinto

a1in.(2.5cm)x1(2.5cm)squaretubewhichmeasured14in.(35.6cm)intotal

length.Holesweredrilledthroughthe1in.(2.5cm)x1in.(2.5cm)squaretube

every1in.(2.5cm)andapinwasinsertedtosupporttheverticalhandlestructure.

Thisallowedthehandletoadjustverticallytomatchstandingelbowheightofeach

participant.Thehandlewasdesignedtobeeasilyremovedandwassharedbetween

thetwocarts.Theverticalsupportforthehandlewasnotchedonall4edgesto

allowsupporttoflexandactivatethestraingaugesasshowninFigure4.

Figure 4 ‐ Handle Notches 

Weightswereusedtobringthetotalweightofthecartupto250lbs(113.4kgs)or

750lbs(340.1kgs)dependingonthetrial.Weightofthecartsvariedduetothe

variabilityinweightofthedifferentwheelsandfixtures.Therefore,itwas

27

necessarytoincorporateadditionalsmallerweightstothecarttobringthetotal

weight(cartandload)uptothetarget.

Whilecartloadweightvariesinthesponsoringcompanymanufacturing

environment,thesetwoweightlevelswereselectedastheyarerepresentativeof

theloadweightrangethatcouldexistinaheavy‐vehiclemanufacturing

environment.Preliminaryforcetestingwascompletedusingahandheldforce

measurementdevice(ergoFET300manufacturedbyHogganHealth).Toestablish

themaximumpushforcethattheparticipantsinthisstudycouldexperience,a

preliminarytestwasconductedintheworst‐casescenariowithwheelsaligned

perpendiculartothedirectionoftravelandthecartwaspushedtoahighvelocity.

Thisinitialtestresultedinforcesthatdidnotexceed50lbs.(222N),whichwaswell

belowthemeanstaticforceforbothwomenandmenreportedbyResnick,(1996)

[16].

Handle 

Thehandlewasdesignedtobeadjustable,hencetoberaisedorloweredto

accommodatethestandingelbowheightforeachsubject.Toaccommodate98%of

theworkingpopulation[24]thehandlewasdesignedsothatitcouldbeloweredto

37in(94cm)andraisedto48in(122cm).

Caster Fixtures 

AllofthecasterfixturesweremanufacturedbyAubinIndustries.Thedualoffset

swivelfixturenamedtheSwivelEaz™Proandhastwoseparatepivotorswivel

28

points,thatallowsmultipleorientations(Figure5).TheSwivelEaz™Procasterwas

comparedtoastandardswivelcasterthatistypicalofwhatiscurrentlybeingused

bythestudysponsor(Figure6)

Figure 5 ‐ Swivel Eaz Pro Figure 6 ‐ Standard Swivel Caster (Fixture) 

Wheels 

Wheelswereprovidedbytwodifferentmanufacturers.Boththesinglewheeland

splitwheelare6in.(15.2cm)indiameterandwereselectedtoensuresimilar

hardness.Thebearingsinbothtypesofwheelswereprecisionballbearingsof

similardesign.The6in.(15.2cm)diametersplitwheelwasmanufacturedbyAubin

IndustriesinTracy,California.Perthemanufacturer,thepolyurethaneSwivel‐Eaz

wheelhasahardnessdurometerof70A[18].TheSwivel‐Eazwheelmeasuresa

totalof2in.(5.1cm)wideacrossbothedgesandhasacrownedsurfaceasshownin

Figure7.

 

 

 

29

Figure 7 ‐ Swivel Eaz Caster 

Thestandardstylesinglewheelwhichalsomeasures2in.(5.1cm)wideand6in.

(15.2cm)indiameterismanufacturedbyArbcoIncorporated(Figure8).Itisa

phenolicwheelandhasasimilarhardnessastheSwivel‐Eazsplitwheel.

Figure 8 ‐ Single Wheel 

Cart Load 

Steel weights were used to bring the gross weight of the cart up to 250 lbs (113.4 kgs) or

750 lbs (340.2 kgs) depending on the trial. The weight of the carts varied due to the

30

variability in weight of the different wheels and fixtures. Therefore, each of the 4 unique

caster/wheel combinations required different amounts of additional weight to achieve the

gross weights of 250 lbs (113.4 kgs) and 750 lbs (340.2 kgs). A chart was created listing

the possible caster/wheel combinations, their gross weight, and additional weight needed

to achieve the target weight (Table 2).

Table 2 ‐ Additional Weight Added 

Floor 

Thefloorofthetestfacilitywasalevelpouredconcretepad,whichisrepresentative

ofthefloorsurfacefoundinmanyfactories.

 

 

31

Data Collection Electronics 

Thehandlesupportwasnotchedatallfouredgesat18in.(45.7cm)fromthe

bottom.Straingaugesweremountedonallfoursidesofthehandletoallowfor

measuringforceinthreeaxis:(X)laterally,(Y)longitudinally,(Z)andvertically.

Thefourstraingaugesweremountedtotheverticalhandlewithtapeandusedto

measuredeflectionofthehandleunderload.Thefourstraingaugeswerewiredtoa

5‐channelbridgecompletionmodule.Thebridgecompletionmodulewas

connectedtotheVbox3andwassetuptorunatasamplingrateof10Hz.Datawas

savedonacompactflashmemorycard.Aphotosensorwasmagneticallyattached

tothefrontwheelandcapturedspeedbyemittinglightontherotatingwheeland

countingthemarkers.Thewheelrotationdatawasalsorecordedandlater

convertedtospeedinmilesperhour.Thephotosensorwasalsoconnectedtothe

Vbox.

Calibration 

Tocalibratethestraingaugesthecartwasaffixedtoabedplate.Anoverhead

bridgecranewasusedtosupporta500lbloadcellwhichwasattachedtoaratchet

device.TheratchetwasusedtopullagainstthecartinX,Y,Zorientations.The

testswereconductedin10lbincrementsfrom0to100lbs.Bendingofthehandle

wasmeasuredandrecorded.Loadversusstrainwasrecordedandusedtodevelop

aregressiontoallowforthedataconversion.Thewheelopticalreaderwasalso

calibrated.

32

Ratings of Perceived Exertion Scale 

Afterpushingthecart,theparticipantcompletedaperceivedphysicalexertion

questionnaire(AppendixC).Perceivedexertionisaresponsevariableandrated

usingtheBorgCR10scale.Attheendofeachtrial,participantswereaskedtorate

thelevelofexertiontotheirshouldersandback,usingtheBorgCR10scale[22].

TheBorgCR10scaleisacategoricalpsychophysicalscalethatprovidesaratingof

perceivedexertion(RPE).Thisscalehasbeenusedwidelyinavarietyof

applicationssuchasrehabilitationandsportstrainingtoassesstheintensityofa

givenphysicalprocedure[23].Additionally,theywereaskedtoratehowwellthey

likedordislikedthewheelandfixturecombination,subjecttoeaseofoperation.

4.3 Study Design Thepurposeoftheresearchwastoinvestigatetheeffectsofthesewheelandfixture

designsonpushingforceofafour‐wheeledcart.Weuseda24balancedfullfactorial

experimentdesign,with8participants(fourmaleandfourfemale).Each

participantwasaskedtopushthecartforeachofthecombinations(foratotalof

128experimentruns).Inbrief(detailswillbediscussedinthemethodology

chapter),thevariablesthatwereconsideredinclude:(i)astandardcommonlyused

2in.(5.1cm)thick,6in.(15.2cm)diametersinglewheelversusa2in.(5.1cm)

thick,6in(15.2cm)diametersplitwheel(Swivel‐Eaz™),(ii)astandardswivel

casterversustheoffset‐pivotorbitalcaster(Swivel‐Eaz™Pro),(iii)representative

loadweightlevelsof250lbs(113.4kgs)and750lbs(340.2kgs),and(iv)rearwheel

position(0degreei.e.alignedtothedirectionoftravel)versus90degrees

(perpendiculartothedirectionoftravel).Itmustbenotedthatallwheel,fixture,

33

andweightcombinationsweretestedwiththefrontwheelsfixedon0degreesto

directionoftravel.Tokeepthestudyfocusedondeterminingpushforcewith

wheelsalignedinthedirectionoftravelandalsopositionat90degreesor

perpendiculartothedirectionoftravel,pushingthecartaroundacornerwasnot

consideredinthisstudy.

BecausetheSwivel‐Eaz™Prohastwodifferentpivotpoints,thecasterassemblycan

beorientedinmultiplepositions.Inthisstudy,thefixturetransferplateandwheels

werepositionedinlinetothedirectionoftravel(Figure9a),hereinreferredtoas

F0R0throughoutthestudy.Thecombinationwasalsostudiedwiththetransfer

plateandwheelsfullyextendedperpendiculartothecart(Figure9b),herein

referredtoasF0R90.

Figure 9 ‐ Wheel/Fixture Orientation 

(9a)–F0R0 (9b)–F0R90

Asmentionedearlier,testingoccurredatsponsoringcompany’sTestand

DevelopmentfacilityinOshkosh,Wisconsin.Thesponsoringcorporation“isa

34

leadingmanufacturerandmarketerofaccessequipment,specialtyvehiclesand

truckbodiesfortheprimarymarketsofdefense,concreteplacement,refusehauling,

accessequipmentandfireandemergency[22].”

 

4.4 Experimental Procedure Subjectsparticipatedintwo60minutesessions.Aminimumof24hoursofrestwas

providedbetweeneachsession.Atthebeginningofthefirstsession,eligible

subjectscompletedashortdemographicandanthropometricform(AppendixC)

thatincludedheight,weight,genderandstandingelbowheight(measuredinthelab

withshoeson).Subjectsthencompletedthe16pushandpulltrials(Table3)in

randomorder,with8trialsperformedineachsession.

35

Table 3 ‐ Experiment Design Combinations 

Combo #  Cart Weight (lbs) 

Fixture  Wheel Type Wheel Position 

1  1  250  Standard  Single  F0, R0 

2  1  250  Standard  Single  F0, R90 

3  1  250  Standard  Swivel Eaz (dual)  F0, R0 

4  1  250  Standard  Swivel Eaz (dual)  F0, R90 

5  2  250  Offset Pivot  Single  F0, R0 

6  2  250  Offset Pivot  Single  F0, R90 

7  2  250  Offset Pivot  Swivel Eaz (dual)  F0, R0 

8  2  250  Offset Pivot  Swivel Eaz (dual)  F0, R90 

9  1  750  Standard  Single  F0, R0 

10  1  750  Standard  Single  F0, R90 

11  1  750  Standard  Swivel Eaz (dual)  F0, R0 

12  1  750  Standard  Swivel Eaz (dual)  F0, R90 

13  2  750  Offset Pivot  Single  F0, R0 

14  2  750  Offset Pivot  Single  F0, R90 

15  2  750  Offset Pivot  Swivel Eaz (dual)  F0, R0 

16  2  750  Offset Pivot  Swivel Eaz (dual)  F0, R90 

Tominimizetheeffectofmusclefatigue,subjectsrestedaminimumof2minutes

betweenconsecutivetrials.Upto5minutesrestwasprovidedifthesubjectsfeltit

wasnecessary.

Priortoeachtrial,theheightofthecarthandlewassettomatchthesubject’s

standingelbowheightandthecartwasequippedwiththeappropriatewheel,caster

fixture,andweightcombination.Thecartwasmovedintopositionandthewheels

weresetateither90degreestothedirectionoftravelorat0degrees(inline)with

thedirectionoftravel.Participantswereinstructedtopushthecartatasteadybut

comfortablepacefor10metersuntiltheyreachedapredeterminedstopline.The

36

Vboxdatacollectionunitwassettorecordtheforce(ie,calibratedvoltage),speed,

andtimeduringthetrial.

AftereachtrialthesubjectcompletedthePainandExertionratingform(Appendix

C),andprovidedtheirsubjectivefeedbackabouthowwellthey“liked”the

fixture/wheelcombination.Finally,theresearcherrecordedtheVBoxtrialnumber

onthePainandExertionratingformandreturnedthecarttothestartline.

4.5 Statistical Analysis AppliedpeakforcedatawasprocessedinMicrosoftExcel2007.Handlebending

datawasconvertedtopoundsofforceinlateralandlongitudinaldirections.Force

wasalsorecordedintheverticaldirection;howeverduetoalimitationinthedesign

ofthecarthandlethestraingaugewasnotabletorecordverticaltensionaccurately.

Therefore,only2axisofdatawereused,lateral(sidetoside),andlongitudinal

(fronttoback).

Sincea24fullyrandomizedfactorialdesignwasused,thepeakforcemeasurements

wereanalyzedwithageneralizedlinearmodelusingabackwardseliminationusing

Minitabversion17.Minitabperformsastepwiseregressionwithbackward

eliminationbystartingwithallpredictorsinthemodelandremovestheleast

significantvariableforeachstepandeventuallystopswhenthep‐valueislessthan

orequaltothespecified“Alpha‐to‐Removevalue”[31].

37

PsychophysicalselfreportedexertiondatawasanalyzedusingaPearson’s

Correlationcoefficient.Analysiswasconductedtounderstandrelationshipbetween

thevariablesandperceivedexertionontheshoulderandback.

 

Chapter 5:  Results and Discussions 

5.1 Results 

Data Processing 

Samplingdatawascollectedforeachtrialrunandsavedinitsrawformat.Datawas

collectedfromeachofthe4straingauges,pulsedataforthewheelrotation,and

time.Next,voltagefromthestraingaugeswasconvertedintolongitudinaland

lateralbendingloadinpoundsofforce.Rootmeansquare(RMS)valuewas

calculatedusingthelateralandlongitudinalbendingload.Verticalloadwas

recordedanddiscardedandwasnotusedinthecalculation.Thedesignofthe

handleandplacementofthestraingaugesdidnothaveenoughsensitivityto

accuratelycaptureverticalloadinthedownwardorupwardmotion.Inthisstudy,

verticalloadwasminimizedashandleheightwasadjustedtostandingelbowheight

foreachparticipant.

Pulsedatafromthewheelwasconvertedtorevolutionperminutethenultimately

convertedtomilesperhour.Onceallofthedatawasconvertedintotherequired

formatandunitsofmeasure,datawasplottedinMicrosoftExcelonascatterplot

withstraightlinesasshowninFigure10.EvidentinFigure10,forcevaluesbecame

38

negativewhenthehandlewasbendingbacktowardstheparticipanttodecelerate

thecart(longitudinalbending).

Figure 10 ‐ Example of Graph of Push Force 

Analysis of Physical Measures – Peak Force 

Sincea24randomizedfullfactorialdesignwasusedintheexperiment,peak–

instantaneousinitialforcemeasurementswereanalyzedusingageneralizedlinear

modelwithbackwardseliminationprocedure.Statisticalprocedureswerecarried

inMinitabVersion17forMicrosoftWindows.Backwardseliminationwasusedto

removetheleastsignificantvariablesforeachstepuntilallofthevariableshaveap‐

valuelessthanthespecifiedtypeIerror[30].

0.0

0.5

1.0

1.5

2.0

2.5

3.0

‐30.0

‐20.0

‐10.0

0.0

10.0

20.0

30.0

40.0

50.0

0 5 10 15 20 25

longitudinalbendingloadlb(+tofront)lateralbendingloadlb(+toright)

totalloadinhorizontalplanelb

speedmph

lbs.offorce

Time(seconds)

RPM

39

Psychophysical Self Reported Exertion Data 

APearsoncorrelationtestwasrunonthepsychophysicalperceivedexertiondatato

determinethepresenceorabsenceofcorrelationbetweentheperceivedexertion

dataandtheinitialforce.Thiscorrelationwasvalidatedbyaddingweightasan

additionalcorrelationvariable.“Thelargertheabsolutevalueofthecorrelation

coefficient,thestrongerthelinearrelationshipbetweenthevariables[30]”.

5.2 Participant Data/Information Thefollowingchartprovidesanthropometricaswellasthedemographic

informationforthe8participantsincludingmeanandstandarddeviation(Table4).

Table 4 ‐ Participant Information & Statistics 

Subject Gender Age Weight StandingElbowHeight

1 Male 29 195 47”

2 Male 26 185 44”

3 Male 49 215 44”

4 Male 45 183 43”

5 Female 57 125 42”

6 Female 43 200 42”

7 Female 48 189 41.5”

8 Female 38 190 42.5”

Range 26‐ 57 125‐ 215

MaleMean(std.dev)

37.3(9.9)

194.5(12.7)

FemaleMean(std.dev)

46.5(7.0)

176(29.8)

OverallMean(std.dev)

41.9(9.8)

185.3(24.7)

40

Theboxplotsummary(Figure11)formaximuminitialforcebygendershowsthat

malesexertedmoreinitialforcewhenpushingthecartforboth250lbs(113.4kgs)

and750lbs(340.4kgs).

Figure 11 ‐ Boxplot Gender Effect – Females versus Males 

(Figure 11a)            (Figure 11b) 

 

  

250 lbs (113.4 kgs)                  750 lbs (340.4 kgs) 

 

5.3 Physical Force Measurement Analysis –Initial Push Force UsingMinitab17,ageneralizedlinearmodelwasfittedtothedatafollowingthe

backwardeliminationprocedure,theresultsofwhicharesummarizedinFigure12.

Inthismodelfixture,wheeltype,wheelposition,andweightweretreatedasthe

mainfactorswhileparticipantsweretreatedasablockingfactortoaccommodate

theexpectedvariabilitywithinsubjects.

 

41

Figure 12 ‐ General Linear Model 

GeneralLinearModel:MaxPeakForversusWeight(lbs),WheelType,...MethodFactorcoding(‐1,0,+1)

BackwardEliminationofTermsCandidateterms:Weight(lbs),WheelType,Fixture,WheelPosition,Participant ‐‐‐‐‐Step1‐‐‐‐ ‐‐‐‐‐Step2‐‐‐‐ CoefP CoefPConstant 31.316 31.317Weight(lbs) ‐9.2490.000 ‐9.2500.000WheelType ‐1.1480.068 ‐1.1480.067Fixture ‐0.2230.721WheelPosition ‐1.5450.014 ‐1.5450.014Participant 12.300.000 12.310.000S 7.03694 7.01067R‐sq 76.96% 76.93%R‐sq(adj) 74.77% 74.96%R‐sq(pred) 71.95% 72.39%Mallows’Cp 12.00 10.13αtoremove=0.1

Givena90%confidencelevel,itwasfoundthatonlywheeltype,wheelposition,

weight,andparticipantsignificantlyaffectedtheinitialpushforce.Inthefollowing

sectionwepresentanddiscusstheresultsoftheanalysisthatwerecarriedoutto

testeachofthethreehypotheses.

42

Testofhypothesis1:

1.Split‐wheeldesignwillaffecttheinitialappliedpeakforcerequiredto

moveafourwheeledcart.

Hypothesis1a:Splitwheelswillreducetheinitialappliedpeakforcewhen

therearwheelsarepositionedat90degreestothedirectionoftravel.

Hypothesis1b:Splitwheelswillaffecttheinitialappliedpeakforcewhenthe

rearwheelsarepositionedat0degrees(alignedwiththedirectionoftravel).

Figure13indicatesthattheinteractionbetweenwheeltypeandpositionhasap‐

valueof0.947,henceitisnotsignificant.However,bothfactorsareindividually

significant.Inthisanalysis,weightwastreatedasafixedfactor,whosesignificance

wasexpected.Toaccountfortheexpectedvariabilitywithinparticipants,the

participantvariablewastreatedasablockingfactor,whichalsoturnedouttobe

significant.

Figure 13 ‐ ANOVA: Max Peak Initial Force vs Wheel Type & Wheel Position    

43

Figures14and15arethemaineffectsandinteractionplotsforwheeltypeand

wheelposition,respectively.

Figure 14 ‐ Main Effects Plots 

Figure 15 ‐ Interaction Plot 

44

Testofhypothesis2:

The“offsetpivot”castermountingwillaffecttheinitialpeakappliedforce

requiredtomoveafourwheeledcart.

Hypothesis2a:Theoffsetpivotcastermountingwillreducetheinitial

appliedpeakforcerequiredtomovethecartwhentherearwheelsare

positionedat90degreestothedirectionoftravel.

Hypothesis2b:Theoffsetpivotcastermountingaffecttheinitialapplied

peakforcewhentherearwheelsarepositionedat0degrees(alignedwith

thedirectionoftravel).

Thereisastatisticallysignificantinteractionbetweenwheeltypeandcastertypeon

theinitialappliedpeakforcerequiredtomoveafourwheeledcart.

FromtheANOVAinFigure16,theinteractionbetweenthefixtureandwheel

positionissignificant,withap‐valueof0.046.

 

 

 

 

 

 

 

 

 

 

 

 

45

Figure 16 ‐ ANOVA 

 

Eventhoughfixtureasasinglemainfactorwasnotsignificant,theoffsetpivot

fixtureregisteredlowerinitialforcesthusprovidingvalidationforconsidering

investingintheoffsetpivotfixtureinplaceofthestandarddesignfixture(Figure

17).

 

 

 

 

 

 

 

 

 

 

46

Figure 17 ‐ Main Effects Plot 

InFigure18,theInteractionPlotforfixtureandwheelposition,itcanbeseenthat

theoffsetpivotcasterremainsrelativelyconsistentinperformanceacrossthetwo

positions.Thisvalidatestheneedtoinvestintheoffsetcastertype.Inaddition,

withtherearwheelsperpendiculartothedirectionoftravelthestandardfixture

registeredremarkablyhighinitialappliedforce.

 

 

 

 

 

 

 

 

47

Figure 18 ‐ Interaction Plot 

Testforhypothesis3:

Quantifythesignificanceofthethreemainfactors(wheeltype,castertypeand

wheelposition)onthepeakforcerequiredtomoveafourwheeledcart.

Hypothesis3a:Thethreemainfactorswillhaveasignificantinteractive

effectonthepeakforce.

Hypothesis3b:Thethreemainfactorswillnothaveasignificantinteractive

effectonthepeakforce.

Figure19givesasummaryofthe3rdand4thstepsinthelinearmodelbuilding

procedure.Itcanbeobservedthattheinteractionbetweenfixtureandwheeltypeis

notsignificantwithap‐valueof0.142whichisnearthethresholdof0.1.The

interactionbetweenfixtureandwheeltype(Figure21),thoughsignificantisnot

dependentonwheelposition.

48

Figure 19 ‐ ANOVA, Fixture ‐ Wheel Type 

Whenusingtheoffsetfixtureitseemsadvisabletousethesinglewheel;however

whenthedualwheeltypeisusedtheredoesnotseemtobeadifferencewhetherthe

standardoroffsetpivotisused(Figure21).Itisadvisabletoinvestintheoffset

pivotfixture;howeverasfarasthetypeofwheelitseemsthesinglewheelperforms

better.Thoughnotconsideredinthisstudy,theremaybeothersetsoffactorsthat

wouldqualifytheneedtoinvestintheSwivelEaz™(dualwheel).

Figure 20 ‐ Main Effects Plot, Fixture ‐ Wheel Type ‐ Wheel Position 

49

Inaddition,theinteractionplotbetweenfixtureandwheeltypeinFigure21shows

thattheinitialpeakforceisreducedmostwhenthesinglewheeltypeis

incorporatedintotheoffsetpivot(SwivelEaz™Pro)fixturewhichkeptinitialforce

nearlyconsistentbetweenthetwowheelpositions.

Figure 21 ‐ Interaction Plot; Fixture ‐ Wheel Type ‐ Wheel Position 

5.4 Psychophysical Analysis of Perceived Exertion Totestthestrengthoftherelationshipsbetweenweight,force,andperceived

exertionontheshouldersandback,aPearson’sCorrelationtestwasused.Itis

evidentfromFigure22thatastrongpositivecorrelationexistsbetweenthesefour

variables.Weightwasaddedasacorrelationfactortovalidatethepositive

correlationbetweentheselfreportedperceivedexertionresponses.Astrong

50

relationshipexistsbetweenweightandperceivedexertionattheshoulderandback

withaPearsoncorrelationof0.609and0.597,respectively(Figure22).

Figure 22 ‐ Pearson’s Correlation, Back – Shoulder ‐ Weight 

51

TheAnderson‐DarlingNormalitytestwasconductedtodetermineiftheperceived

exertiondatawerenormallydistributed.EvidentinFigures23a‐b,bothperceived

exertiondataarenotnormallydistributed.

Figure 23 ‐ Normal Probability, Shoulder and Back 

(Figure 23a)            (Figure 23b) 

 

ItwasthereforenecessarytotransformthedatausingtheBoxCoxpower

transformationmodelasseenFigures24a‐b.

Figure 24 ‐ Box Cox ‐ Shoulder and Back Data Transformation 

(Figure 24a)            (Figure 24b) 

Forconsistencyofinterpretation,shouldersandbackBorgratingsofperceived

exertionweregivenalogarithmictransformation.Generallinearmodelsusingthe

52

backwardeliminationprocedurewereconstructedforbothofthedependent

variables.Weightwasaddedasacorrelationfactortovalidatethepositive

correlationbetweentheselfreportedperceivedexertionresponses.Wheelposition

wasasignificantfactorintheanalysisofperceivedphysicalexertionforthe

shoulder(p=0.02)(Figure25).

   

53

Figure 25 ‐ ANOVA General Linear Model ‐ Shoulders 

Backward Elimination of Terms Candidate terms: Blocks, Fixture, Wheel Type, Weight (lbs), Wheel Position, Fixture*Wheel Type, Fixture*Weight (lbs), Fixture*Wheel Position, Wheel Type*Weight (lbs), Wheel Type*Wheel Position, Weight (lbs)*Wheel Position ------Step 1----- ------Step 2----- Coef P Coef P Constant 0.1946 0.1946 Blocks -0.8011 0.000 -0.8011 0.000 Fixture 0.0313 0.355 0.0313 0.353 Wheel Type -0.0494 0.145 -0.0494 0.143 Weight (lbs) -0.4375 0.000 -0.4375 0.000 Wheel Position -0.0802 0.019 -0.0803 0.018 Fixture*Wheel Type 0.0153 0.651 0.0153 0.649 Fixture*Weight (lbs) -0.0663 0.051 -0.0663 0.050 Fixture*Wheel Position 0.0287 0.396 0.0287 0.392 Wheel Type*Weight (lbs) -0.0252 0.455 -0.0253 0.453 Wheel Type*Wheel Position -0.0303 0.370 -0.0302 0.369 Weight (lbs)*Wheel Position 0.0047 0.888 S 0.376918 0.375219 R-sq 76.92% 76.91% R-sq(adj) 73.28% 73.52% R-sq(pred) 68.61% 69.17% Mallows’ Cp 18.00 16.02 ------Step 3----- ------Step 4----- Coef P Coef P Constant 0.1943 0.1939 Blocks -0.8008 0.000 -0.8004 0.000 Fixture 0.0317 0.346 0.0322 0.336 Wheel Type -0.0491 0.144 -0.0486 0.147 Weight (lbs) -0.4379 0.000 -0.4384 0.000 Wheel Position -0.0803 0.018 -0.0804 0.017 Fixture*Wheel Type Fixture*Weight (lbs) -0.0660 0.050 -0.0655 0.051 Fixture*Wheel Position 0.0287 0.391 0.0287 0.391 Wheel Type*Weight (lbs) -0.0249 0.458 Wheel Type*Wheel Position -0.0302 0.367 -0.0301 0.367 Weight (lbs)*Wheel Position S 0.373867 0.373117 R-sq 76.87% 76.75% R-sq(adj) 73.71% 73.82% R-sq(pred) 69.64% 70.05% Mallows’ Cp 14.23 12.77

54

------Step 5----- ------Step 6----- Coef P Coef P Constant 0.1939 0.1939 Blocks -0.8004 0.000 -0.8004 0.000 Fixture 0.0323 0.335 0.0323 0.333 Wheel Type -0.0486 0.146 -0.0486 0.146 Weight (lbs) -0.4385 0.000 -0.4386 0.000 Wheel Position -0.0799 0.018 -0.0804 0.017 Fixture*Wheel Type Fixture*Weight (lbs) -0.0655 0.051 -0.0655 0.051 Fixture*Wheel Position Wheel Type*Weight (lbs) Wheel Type*Wheel Position -0.0305 0.360 Weight (lbs)*Wheel Position S 0.372687 0.372431 R-sq 76.60% 76.42% R-sq(adj) 73.88% 73.91% R-sq(pred) 70.38% 70.68% Mallows’ Cp 11.50 10.33 ------Step 7----- Coef P Constant 0.1930 Blocks -0.7995 0.000 Fixture 0.0332 0.323 Wheel Type Weight (lbs) -0.4394 0.000 Wheel Position -0.0804 0.017 Fixture*Wheel Type Fixture*Weight (lbs) -0.0647 0.055 Fixture*Wheel Position Wheel Type*Weight (lbs) Wheel Type*Wheel Position Weight (lbs)*Wheel Position S 0.374295 R-sq 75.97% R-sq(adj) 73.65% R-sq(pred) 70.64% Mallows’ Cp 10.42 α to remove = 0.1

55

Fixturewasasignificantfactorintheanalysisofperceivedphysicalexertionforthe

Back(p=0.04)(Figure26).

Figure 26 ‐ ANOVA General Linear Model – Back 

Backward Elimination of Terms Candidate terms: Blocks, Fixture, Wheel Type, Weight (lbs), Wheel Position, Fixture*Wheel Type, Fixture*Weight (lbs), Fixture*Wheel Position, Wheel Type*Weight (lbs), Wheel Type*Wheel Position, Weight (lbs)*Wheel Position ------Step 1----- ------Step 2----- Coef P Coef P Constant 0.0542 0.0542 Blocks -0.6607 0.000 -0.6607 0.000 Fixture 0.0690 0.052 0.0690 0.051 Wheel Type -0.0451 0.200 -0.0451 0.198 Weight (lbs) -0.4366 0.000 -0.4366 0.000 Wheel Position -0.0274 0.436 -0.0275 0.431 Fixture*Wheel Type 0.0208 0.555 0.0208 0.553 Fixture*Weight (lbs) -0.0855 0.016 -0.0855 0.016 Fixture*Wheel Position 0.0142 0.686 0.0143 0.682 Wheel Type*Weight (lbs) -0.0236 0.502 -0.0236 0.500 Wheel Type*Wheel Position -0.0086 0.806 Weight (lbs)*Wheel Position 0.0095 0.787 0.0093 0.789 S 0.392417 0.390723 R-sq 75.68% 75.66% R-sq(adj) 71.85% 72.09% R-sq(pred) 66.90% 67.49% Mallows’ Cp 18.00 16.06

------Step 3----- ------Step 4----- Coef P Coef P Constant 0.0542 0.0542 Blocks -0.6607 0.000 -0.6607 0.000 Fixture 0.0690 0.050 0.0691 0.049 Wheel Type -0.0451 0.196 -0.0451 0.195 Weight (lbs) -0.4366 0.000 -0.4367 0.000 Wheel Position -0.0276 0.427 -0.0274 0.429 Fixture*Wheel Type 0.0208 0.551 0.0208 0.550 Fixture*Weight (lbs) -0.0855 0.015 -0.0855 0.015 Fixture*Wheel Position 0.0145 0.677

56

Wheel Type*Weight (lbs) -0.0236 0.498 -0.0236 0.497 Wheel Type*Wheel Position Weight (lbs)*Wheel Position S 0.389071 0.387620 R-sq 75.65% 75.61% R-sq(adj) 72.33% 72.53% R-sq(pred) 68.04% 68.58% Mallows’ Cp 14.13 12.30 ------Step 5----- ------Step 6----- Coef P Coef P Constant 0.0538 0.0534 Blocks -0.6603 0.000 -0.6599 0.000 Fixture 0.0695 0.047 0.0700 0.044 Wheel Type -0.0447 0.197 -0.0443 0.200 Weight (lbs) -0.4371 0.000 -0.4376 0.000 Wheel Position -0.0275 0.427 -0.0275 0.425 Fixture*Wheel Type Fixture*Weight (lbs) -0.0851 0.015 -0.0847 0.015 Fixture*Wheel Position Wheel Type*Weight (lbs) -0.0231 0.505 Wheel Type*Wheel Position Weight (lbs)*Wheel Position S 0.386509 0.385564 R-sq 75.53% 75.43% R-sq(adj) 72.69% 72.82% R-sq(pred) 69.02% 69.44% Mallows’ Cp 10.65 9.09

------Step 7----- ------Step 8----- Coef P Coef P Constant 0.0534 0.0526 Blocks -0.6599 0.000 -0.6591 0.000 Fixture 0.0700 0.044 0.0708 0.042 Wheel Type -0.0443 0.199 Weight (lbs) -0.4376 0.000 -0.4384 0.000 Wheel Position Fixture*Wheel Type Fixture*Weight (lbs) -0.0847 0.015 -0.0839 0.016 Fixture*Wheel Position Wheel Type*Weight (lbs) Wheel Type*Wheel Position Weight (lbs)*Wheel Position S 0.384958 0.386073

57

R-sq 75.29% 74.93% R-sq(adj) 72.91% 72.75% R-sq(pred) 69.81% 69.89% Mallows’ Cp 7.71 7.31 α to remove = 0.1

Itisunclearwhythewheeldesignseemstosignificantlyaffecttheselfreported

shoulderexertionrating.Similarly,itisalsonotclearwhythecasterdesignseems

tosignificantlyaffecttheselfreportedbackexertionrating.Wethereforepropose

forfurtherstudies,especiallythephysiologicalimpactofthewheelandcaster

designsonthepushandpullactions.

Theperceivedexertionratingmeanfortheshoulderswhilepushingthecart

withagrossweightof750lbs(340.2kgs),usingoffsetpivotfixture,SwivelEaz

(dual)wheels,andwheelspositionedperpendiculartothedirectionoftravel

was2.0withastandarddeviation(s.d)of1.16.Theperceivedexertiononthe

shoulders,usingaBorgCR10scale,wasratedasLight.Perceivedexertiononthe

back,usingthesamecombination,wasratedwithameanof1.68ands.d.of1.19.

A1.68ratingfallsbetweenVeryLightandLightonthescale.

Theperceivedexertionratingmeanfortheshoulderswhilepushingthecart

withagrossweightof750lbs(340.2kgs),usingastandardfixture,SwivelEaz

(dual)wheels,andwheelspositionedperpendiculartothedirectionoftravel

was1.87(VeryLight–Light)withas.d.of1.33.Perceivedexertionontheback,

58

usingthesamecombination,hadaratingmeanof1.62(VeryLight–Light)and

s.d.of1.41.Allofthecombinationsandtheirperceivedexertionscanbefoundin

AppendixC.

Thestandardfixturewithasinglewheelpositionedperpendiculartothe

directionoftravelwith750lbs(340.2kgs)wasactuallyratedlowestwhen

comparedtotheothertwowheel‐fixturecombinations.Thisisattributedto

thestatisticallysignificantinteractionbetweenthewheeltypeandthecaster

design,wheretheleastinitialpushforcewasrequiredwhenusingacartwiththe

singlewheelandoffsetpivotcastercombination.Thisclaimissupportedbythe

datasummaryinFigures27and28.

Chapter 6: Discussion 

Thepurposeofthisresearchwastoinvestigatetheeffectsofwheelandfixture

designsonpushingforceofafour‐wheeledcart.Thefollowingdiscussionisa

reviewofthehypothesisandthepracticaleffectivenessandapplication.

6.1 Hypothesis Discussion Split‐wheeldesignwilleffecttheinitialappliedpeakforcerequiredtomovea

fourwheeledcart.

59

Whenthewheelswerepositionedperpendicularwithdirectionoftravel(F0R90)

andtheSwivelEaz™dualwheelwasusedinthestandardfixture,thepeakapplied

forcemeanwas34.6lbsandwas1.4%greaterthanthepeakappliedforcemeanof

34.1lbsattainedwhenthesinglewheelwasusedinthesamestandardfixture.

Takingintoaccountpossiblestatisticalerror,thedifferenceof1.4%maynotbe

significantenoughtodifferentiateonewheelasabetteroptionovertheother

(Figures27–28).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

Figure 27 ‐ Boxplot ‐ Peak Initial Force 

Figure 28 ‐ Summary of Box Plot of Combinations 

Wheel Position

Fixture Type

Wheel Type

Mean Peak Force

Difference (lbs)

% Difference

90 deg Standard Swivel Eaz (dual)

34.6 .5 1.4

90 deg Standard Single 34.1 90 deg Offset

Pivot Swivel Eaz (dual)

32.4 3.1 9.6

90 deg Offset Pivot

Single 29.3

0 deg Standard Swivel Eaz (dual)

29.0 .5 1.7

0 deg Standard Single 28.5 0 deg Offset

Pivot Swivel Eaz (dual)

32.7 3.9 11.9

0 deg Offset Pivot

Single 28.8

61

Whenthewheelswerepositionedinlinetothedirectionoftravel(F0R0)andthe

SwivelEaz™dualwheelwasusedinthestandardfixture,thepeakappliedforce

meanwas34.1lbs(15.5kgs)andwas1.7%greaterthanthepeakappliedforce

meanof28.5lbs(12.9kgs)attainedwhenthesinglewheelwasusedinthesame

standardfixture.Again,thedifferencebetweenthetwocombinationsmaynotbe

significantenoughtodifferentiateonewheelovertheotherasabetteroption

(Figures27–28).

The“offsetpivot”castermountingwilleffecttheinitialpeakappliedforce

requiredtomoveafourwheeledcart.

Whenthesinglewheelswerepositionedperpendiculartothedirectionoftravel

(F0R90)andusedwiththeoffsetpivot(SwivelEaz™Pro)fixturetheappliedpeak

forcemeanwas29.3lbs(13.3kgs).Thiswas16.4%lowerthantheappliedpeak

forcemeanof29.3lbs(13.3kgs)whichwasattainedwhenasinglewheelwasused

inastandardfixtureandalsopositionedperpendiculartothedirectionoftravel.In

otherwords,whentherearwheelswerepositionedat90degreestothedirectionof

travel,offsetpivotfixture(caster)had16.4%lowerappliedpeakforcemeanversus

thesinglewheelinthestandardfixture.

Quantifythesignificanceofthethreemainfactors(wheeltype,castertypeand

wheelposition)onthepeakforcerequiredtomoveafourwheeledcart.

62

Whenusingtheoffsetfixtureitseemsadvisabletousethesinglewheel;however

whenthedualwheeltypeisusedtheredoesnotseemtobeadifferencewhether

standardoroffsetpivotisused.Itseamsadvisabletoinvestintheoffsetpivot

fixture;howeverasfarasthetypeofwheelitseemsthesinglewheelperforms

betterinthisparticularapplication.Thoughnotconsideredinthisstudy,theremay

beothersetsoffactorsthatwouldqualifytheneedtoinvestintheSwivelEaz™

(dualwheel).Forexample,thisstudydidnotconsiderwheelsurfacedurabilityor

wheelbearingwearovertime.

6.2 Variability Between Subjects Therewasvariationinthepeakforcerangesbetweenthe8differentsubjects.For

example,incombination4whenthegrosscartweightwas250lbs(113.4kgs),rear

wheelswerepositionedatF0R90,SwivelEaz(dual)wheelsweremountedonthe

standardfixture,theminimumpeakappliedforcewas14.3lbs(6.5kgs).The

maximumpeakforceappliedbyaparticipantwas33.2lbs(15.1kgs)thedifference

intherange18.9lbs(8.6kgs)andthestandarddeviationwas6.69lbs(3.0kgs)

(Table5).Incombination12,whenthegrosscartweightwas750lbs(340.2kgs),

rearwheelswerepositionedatF0R90,SwivelEaz(dual)wheelsweremountedon

thestandardfixture,theminimumpeakappliedforcewas27.2lbs(12.3kgs).The

maximumpeakforceappliedbyaparticipantwas65.4lbs(29.7kgs)thedifference

intherangeis38.2lbs(17.3kgs)andthestandarddeviationwas15.41(7.0kgs).

Theoverallrangedifferencesforeachoftherangesineachcombinationvariedfrom

16.5–45.5.

63

Table 5 ‐ Applied Peak Force Range 

 

6.3 Perceived Exertion Asexpected,therewasastrongrelationshipbetweentheamountofweightthe

participanthadtopushandtheirlevelofperceivedexertion.Whatremainsunclear

iswhywheeltypewasasignificantfactorinthelevelofperceivedexertionforthe

shoulderandnotwiththeback.Inaddition,itisunclearwhythefixtureisthe

significantfactorinperceivedlevelofexertionintheback.Participantsdidratethe

levelofperceivedexertionslightlyhigheronboththeshoulderandthebackwhen

pushingthe750lb(340.2kgs)cartwiththeoffsetpivot,SwivelEazwheel,and

positionedperpendiculartothedirectionoftravelversusthesamecombinationand

usingthestandardfixture,LightcomparedtoVeryLight‐Light,respectively.

 

 

64

6.4 Application of the Results/Psychophysical Application Manyoftheforcedifferencesobservedinthisstudyweremodest,andgiventhe

largevariabilitybetweensubjectvariability,itcouldbearguedthatthereareno

practicaldifferencesbetweenanyofthewheel‐fixturecombinations.However,the

offsetpivotfixturecouldbeavaluableinterventioninsomecommonsituations.To

illustratethis,considerthefollowingscenario.

6.4.1 Scenario 1 – Changing Fixtures 

Aworkerisrequiredtopushacartfor200feet(61m)twotimesperhourwiththe

handleheightathiplevel.Theinitialforcerequiredtogetthecartintomotion

whenthewheelsareperpendiculartothedirectionoftravelis40lbs(18.1kgs).

Thesustainedforcerequiredtokeepthecartinmotionis19.0lbs.Accordingtothe

SnookandCirellotables[9]‐[32],theinitialforceof40lbs(18.1kgs)isacceptableto

83%ofmalesand66%offemales.TherecommendeddesigngoalfromSnookand

Cirelliowasforthetasktobeacceptableforatleast75%offemales[9]‐[32].

Ifacartdesignerwantedtoreducetheinitialforcewhenthewheelsarepositioned

perpendiculartothedirectionoftravel,theycouldinstallasetofoffsetpivot

(SwivelEaz™Pro)fixtureswithsinglewheels.Basedonresultsfromthisstudy,and

ifallothervariableswereequal,theappliedpeakforcemeanwouldbeloweredby

16.1%.Inotherwords,thepeakforceof40lbs(18.1kgs)wouldbeloweredto33.6

lbs(15.2kgs).Thiswouldnowmakethejobacceptableto84%ofthefemalesand

90%ofthemales[9]‐[32].Itthiscaseitseemsadvisabletoimplementtheoffset

pivotfixturewiththesinglewheel.

65

6.5 Limitations of the Study 

6.5.1 Instantaneous Peak Force 

Although,forcedatawasrecordedfromwhenthecartstartedmotionuntilafterit

stopped,thisstudyonlyfocusedonthepeakappliedinstantaneousforce.Thereisa

possibilitythatthetenthofaseconddatapointwasnotrepresentativeoftheactual

averageinitialforce.Themedianforceoverthebriefinitialperiodmaybeabetter

representationofinitialforce.Henceforfutureanalysisinthisstudy,averageinitial

forceinadditiontothesustainedpushforceswillbeusedasopposedtoinitialpeak

force.

6.5.2 Lateral Force 

Lateralforcewasrecordedduringthestudybutitwasnotafocusforthisthesis.It

seemsreasonabletoexpectthattheoffsetpivotfixturewouldsignificantlyreduce

lateralmovementwhenthecartisinitiallystarted,especiallywhenthewheelsare

positionedat90degreesorotherwiseoutofalignment.

6.6 Contribution to the Body of Knowledge Theimpactofthisstudyistointroducedataandstatisticalanalysisofanewstyleof

wheelandfixtureofwhichnopublishedstudieswerefound.Thestudy

demonstratedthatifanorganizationislookingtoreduceinitialforcewhenwheels

aremisalignedwiththedirectionoftraveltheoffsetpivot(SwivelEaz™Pro)isa

viablealternative.

 

66

6.7 Future Studies FurtherstudycouldbeconductedontheSwivelEaz™wheelstounderstandhow

theyperformafterbeingin‐useforanextendedperiodoftime.Thewheelsand

fixturesusedwerenewatthestartofthestudy.Thewheelscouldalsobetested

overroughsurfacesasitseemsreasonabletoexpecttheSwivelEaz™dualwheels

toperformbetteroversurfacesthatarenotflat.Asmentionedearlier,futurestudy

andanalysiscouldlookattheaverageinitialforce,thesustainedforce,andlateral

force.

Chapter 7: Conclusion 

Thesponsorsoughttoinvestigatetheeffectsofthewheelandfixture(caster)

designsonpushingforceofafour‐wheeledcart.Basedonthestudyfindingsand

resultsfromthisanalysisthefollowingrecommendationsarebeingmadetothe

sponsor:

1) Iflookingtoreducepushforcewhenthewheelsarepositioned

perpendiculartothedirectionoftravel,considerutilizingtheSwivel

Eaz™Profixturewiththesinglewheel;however,thecostoftheSwivel

Eaz™Profixturemaynotbejustifiabletoonlygaina16%reductionin

force.

2) Otherfactorsshouldbeconsideredwhendecidingwhethertopurchase

theSwivelEaz™ProfixtureandSwivelEaz™dualwheelssuchas

67

longevityunderruggedconditionsandwhetherthewheelscantraverse

bumpsorunevensurfacesmoreeasily.

3) Duringthestudy,differencesintheparticipant’sperceivedexertion

ratingsmeansseemednearlyinconsequentialastheratingsfor750lbs

(340.2kgs)rangedfrom1.38–2.00whichfallsbetween“VeryLight–

Light”fortheshouldersand1.19–1.81“VeryLight–Light”fortheback.

Inotherwords,thedifferencesinfixtureandwheeltypewereeffectively

imperceptibletotheparticipant.

   

68

References 1. A.Gargetal.,“Psychophysicalbasisformaximumpushingandpullingforces:A

reviewandrecommendations,”Int.J.ofInd.Ergonom.,vol.44,pp.281‐291,2014.

2. S.Konz,“NIOSHliftingguidelines,”Am.Ind.Hyg.Assoc.J.,vol.43,Iss.12,1982.

3. K.P.GranataandB.C.Bennett,“Low‐backbiomechanicsandstaticstabilityduringisometricpushing,”HumanFactors,”vol.47,no.3,pp.536‐549,Fall2005.

4. LibertyMutualResearchInstituteforSafety,(2013)2013Libertymutualworkplacesafetyindex(Online).Available:http://www.libertymutualgroup.com/omapps/ContentServer?pagename=LMGroup/Views/LMG&ft=2&fid=1138356633468&ln=en

5. K.K.LettandS.M.McGill,“Pushingandpulling:personalmechanicsinfluence

spineloads,”Ergonom.,vol.49,no.9,pp.895‐908,July2006.

6. Ohio‐Bureauofworkers’compensation,(2014)Whatismanualmaterialshandling?(Online).Available:https://www.bwc.ohio.gov/downloads/.../MaterialsHandling.pdf

7. TexasDepartmentofInsurance,(2014)Manualmaterialhandling–Anergonomicapproach(Online).Available:http://www.tdi.texas.gov/pubs/videoresource/wpmanmathand.pdf

8. M.P.Loozeetal.,“Forcedirectionandphysicalloadindynamicpushingandpulling,”Ergonom.,vol.43,pp.377‐390,2000.

9. S.H.SnookandV.M.Ciriello,“Thedesignofmanualhandlingtasks:revisedtables

ofacceptableweightsandforces,”Ergonom.,vol.34,pp.1197‐1213,1991.10. K.W.Al‐Eisawietal.,“Factorsaffectingminimumpushandpullforcesofmanual

carts,”Appl.Ergonom.vol30,pp.235‐245,1999.11. K.W.Al‐Eisawiet.Al.,“Theeffectofhandleheightandcartloadontheinitialhand

forcesincartpushingandpulling,”Ergonom.,vol.42,no.8,pp.1099‐1113,1999.12. T.Brace,“Thedynamicsofpushingandpullingintheworkplace,”J.oftheAmer.

Assoc.ofOccupat.HealthNurses.Vol53,pp.224‐229,2005.13. EastmanKodakCo.,Kodak’sErgonomicDesignforPeopleatWork.vol2,

Hoboken,NJ:JohnWileyandSons,Inc.,2004.

69

14. M.C.Jungetal.,“Pushingandpullingcartsandtwo‐wheeledhandtrucks,”Int.J.ofInd.Ergonom.,vol.35,pp.79‐89,2005.

15. V.M.Cirielloetal.,“Distributionsofmaterialshandlingtaskparameters,”Int.J.ofInd.Ergonom.,vol.24,pp.379‐388,1999.

16. M.L.Resnick,“Kinematics,kinetics,andpsychophysicalperceptionsinsymmetric

andtwistingpushingandpullingtasks,”HumanFactors,vol.38,no.1,pp.114‐129,1996.

17. D.B.Chaffinetal.,OccupationalBiomechanics,3rded.,NewYork,NY:JohnWiley

andSons,Inc.,1999.18. AubinInd,(2014,May2)SwivelEaz[Online].Available:

http://www.aubinindustries.com/products/swivel‐eaz/

19. P.A.Aubin,“Independentlyrotatable,splittread,singlewheelassembly,”U.S.Patent6880203B1,April19,2005.

20. P.A.Aubin,“Casterwithdualoffsetorbitalmountingassembly,”U.S.Patent8

387209B2,March5,2013.21. OshkoshCorporation,(2014,November3)CompanyProfile[Online].Available:

http://www.oshkoshcorporation.com/about/company_profile.html22. G.Borg,“TheBorgCR10Scale,”Borg’sPerceivedExertionandPainScales.,

Champaign,IL:HumanKinetics,1998.23. A.Zamuner,etal.,“AssessmentofSubjectivePerceivedExertionattheAnaerobic

ThresholdwiththeBorgCR‐10Scale”,JournalofSportsScienceMedicine,Vol.10pp.130‐136,2011.

24. HenryDreyfusAssociates,TheMeasureofManandWoman,reviseded.New

York,NY:JohnWileyandSons,Inc.,2002.25. OSHA,01/20/1999,OSHATechnicalManual(OTM)SectionVII:Chapter1,

[Online].Available:https://www.osha.gov/dts/osta/otm/otm_vii/otm_vii_1.html

26. P.G.Hewitt,ConceptualPhysics,9thEd.,SanFrancisco,CA:AddisonWesley,2002.27. D.Lippert,J.Spektor.“Calculatingproperrollingresistance:Asafermovefor

materialhandling.”Internet:http://www.plantengineering.com/single‐article/calculating‐proper‐rolling‐resistance‐a‐safer‐move‐for‐material‐handling/82fa156f91ea516c6b08be3bc595db65.html,Oct.5,2012[Nov.10,2014].

70

28. E.A.Avalloneetal.,“Friction”inMarksStandardHandbookforMechanical

Engineers,11thEdition.E.A.Avalloneetal.,NewYork:McGraw‐Hill,2007,pp.3‐20‐3‐29.

29. DarcorCastersandWheels,(2014,November14)CasterInfoandGlossaryof

Terms[Online].Available:http://www.darcor.com/technical/caster‐info/30. TheMinitabblog,(2014,November16)NoMatterHowStrong,Correlation

Doesn’tImplyCausation(Online).http://blog.minitab.com/blog/understanding‐statistics/no‐matter‐how‐strong‐correlation‐still‐doesnt‐imply‐causation

31. TheMinitabblog,(2012,June12)UsingStepwiseRegressiontoExplainPlant

EnergyUsage(Online).http://blog.minitab.com/blog/real‐world‐quality‐improvement/using‐minitab‐stepwise‐regression‐to‐explain‐plant‐energy‐usage

32. ThomasE.Bernard‐Ergonomics,(2014,November25)LibertyMutualManual

MaterialsHandlingTables(Online).http://personal.health.usf.edu/tbernard/ergotools/

 

71

Appendices 

72

Appendix A – Pre Screening Form 

Pre – Screening Form

Date: Age: Gender: Male Female Height: Weight:

1) Are you currently experiencing any back or shoulder pain? YES NO

a. If you answered YES to question 1 then you are not allowed to participate in the study.

b. If you answered NO then continue to question 2…

2) Have you had any back or shoulder pain lasting more than 24 hours in the past 12 months ? YES NO

a. If you answered YES to question 2, do you feel this pain will prohibit you from safely completing the task? YES NO

i. If you answered YES to question 2a and feel the pain will prohibit you from safely completing the study then you are not allowed to participate in the study.

3) If you answered NO to question 2 then you are allowed to participate in

the study. Thank you for assistance in this project.

4) If you are under the care of a physician and have restrictions regarding pushing, pulling, or other material handling tasks then you are not allowed to participate.

If you have any questions regarding this study, please contact the researcher David Wein at 920-216-3598 or [email protected]. Thank you.

73

Appendix B – Participant Information 

    

74

Appendix C – Pain and Exertion Rating 


Recommended