+ All Categories
Home > Technology > The Error Bound on SLLN

The Error Bound on SLLN

Date post: 24-Jan-2017
Category:
Upload: guest8e0f17
View: 440 times
Download: 0 times
Share this document with a friend
16
Transcript
Page 1: The Error Bound on SLLN
Page 2: The Error Bound on SLLN

AdviserProf. Dr. Kritsana Neammanee ,

Chulalongkorn UniversityMr. Suwat sriyotee , Mahidol

Wittayanusorn SchoolResearch FundNSTDAJSTPYSC

Page 3: The Error Bound on SLLN

IntroductionIntroductionFrom Strong Law of Large

Numbers1 2 ... nX X X

n

almost surely convergence to E(Xi)

Page 4: The Error Bound on SLLN

ProblemProblemWe can estimate

by E(Xi) which is equal to p when n converges to infinity.

Therefore; the problem is to know the error between those two values when n is known.

1 2 ... nX X Xn

Page 5: The Error Bound on SLLN

ObjectiveObjective

-To implement a computer program to do the random experiment which different p parameters.

-To know the error bound on Strong Law of Large Numbers for Bernoulli random variables by analyzing the data from experiment.

Page 6: The Error Bound on SLLN

MethodMethod

Picture showing the program implementation

Page 7: The Error Bound on SLLN

Picture showing random experiment with p=1/2

MethodMethod

Page 8: The Error Bound on SLLN

The data from the experiment is a maximum error of random variable values summation from expectation value

Therefore; we should divide the data by n to change them into the error bound on Strong Law of Large Numbers

X p

0

n

ii

X np

MethodMethod

Page 9: The Error Bound on SLLN

Analyzing the changed data to obtain the equations and graphs

p=0.5y = 2.3093x-0.5034

R2 = 0.9962

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2000 4000 6000 8000 10000 12000

n

Max

|[∑p(

xi)]/n

-E(x

i)|

p=0.25 y = 1.7936x-0.4977

R2 = 0.9917

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000 10000 12000

n

Max

|[∑p(

xi)]

/n-E

(xi)|

Graph Examples p=0.5 , p=0.25

MethodMethod

Page 10: The Error Bound on SLLN

Let The trend line of data is tend to be the power graph, E=anb , so we use the properties of logarithm to simply it into linear equation as follows

we can draw the graph between log E and log n as a linear graph

AnalysisAnalysisE X p

by axlog( ) log( )by ax

log( ) log( ) log( )by a x

log( ) log( ) log( )y a b x

log( ) log( ) log( )y a b x

Page 11: The Error Bound on SLLN

p=0.5

-1.8

-1.6-1.4

-1.2

-1-0.8

-0.6

-0.4-0.2

00 1 2 3 4 5

log n

log(

Max

|[∑p(

xi)]

/n-E

(xi)|

)

p=0.25

-2-1.8

-1.6-1.4-1.2

-1

-0.8-0.6-0.4

-0.20

0 1 2 3 4 5

log n

log(

Max

|[∑p(

xi)]

/n-E

(xi)|

)

Graph Examples p=0.5 , p=0.25

AnalysisAnalysis

Page 12: The Error Bound on SLLN

Picture showing data analysis

AnalysisAnalysis

Page 13: The Error Bound on SLLN

The error bound on strong law of large numbers of Bernoulli random variables do relate to the number of times doing the random experiment in form of

when a and b are the real numbers as the table.

ConclusionConclusion

bX p an

Page 14: The Error Bound on SLLN

p b(notation) a(coefficient)

0.5 -0.5034 2.3093

0.25 -0.4977 1.7936

0.125 -0.5189 1.5959

0.0625 -0.568 1.828942

0.03125 -0.5232 1.0159

0.015625 -0.5752 1.046

0.007813 -0.5958 0.9052

0.003906 -0.6006 0.7173

0.001953 -0.6466 0.7509

0.000977 -0.6714 0.7037

0.1 -0.5102 1.4359

0.2 -0.4983 1.5455

0.3 -0.4984 1.9903

0.4 -0.4779 1.8628

0.6 -0.4811 1.8605

ConclusionConclusionp b(notation) a(coefficient)

0.7 -0.5274 2.2552

0.8 -0.5057 1.882

0.9 -0.5201 1.583434

0.15 -0.5141 1.712379

0.35 -0.4918 1.899328

0.45 -0.4959 1.997101

0.55 -0.4869 1.988841

0.65 -0.4832 1.812174

0.75 -0.5024 1.915579

0.85 -0.5084 1.631549

0.95 -0.5542 1.477406

0.96 -0.5417 1.223207

0.97 -0.5624 1.240224

0.98 -0.5582 0.994031

0.99 -0.5898 0.869161

Table showing notaion(b) and coefficient(a) in different p

Page 15: The Error Bound on SLLN

K. Neammanee, “ทฤษฎีความน่าจะเป็นขึน้สงูและขอบเขตการประมาณค่า”,

พทัิกษ์การพมิพ,์ 2005.

R.G. Laha , V.K. Rohatfi, “Probability Theory”, Bowling Green State University,1979.

Feller,W , “An Introduction to Probability Theory and Its Application vol 1” , Newyork: Wiley,1968.

Feller,W , “An Introduction to Probability Theory and Its Application vol 2” , Newyork: Wiley,1971.

Abdi, H , “Encyclopedia for research methods for the social sciences” ,

Thousand Oaks(CA),2003

ReferenceReference

Page 16: The Error Bound on SLLN

Recommended