+ All Categories
Home > Documents > The essence of Particle Physics

The essence of Particle Physics

Date post: 23-Feb-2016
Category:
Upload: dillan
View: 50 times
Download: 4 times
Share this document with a friend
Description:
The essence of Particle Physics. The essence of Particle Physics. Particles are actually not like balls but essentially more fields!. Well, not quite. They are quantized fields. Fields when quantized are not like fields any longer, but more like particles. Quantum Field Theory. - PowerPoint PPT Presentation
Popular Tags:
62
The essence of Particle Physics
Transcript
Page 1: The essence of Particle Physics

The essence of Particle Physics

Page 2: The essence of Particle Physics

The essence of Particle Physics

Particles are actually not like balls but essentially more fields!

Well, not quite.

Page 3: The essence of Particle Physics

Quantum Field Theory

They are quantized fields.Fields when quantized are not like fields any longer, but more like particles.

Page 4: The essence of Particle Physics

Classical Field Theory

Space and time are treated equally as parameters.

It is manifestly Lorentz Invariant.

But they are quantized fields.

Page 5: The essence of Particle Physics

狀態 Ket

物理量 算子 operator

O

在狀態時,物理量測量期望值等於

Bra

Dirac Notation of Quantum Mechanics

O

O 與 的內積

所有狀態組成一向量空間此向量空間的 Dual 空間

Page 6: The essence of Particle Physics

狀態 波函數測量 運算子

)(x

O

dxxOxO )(ˆ)(ˆ *測量期望值

x

i例如

在波動力學中,以上的體系就對應到波函數及其運算!

波函數就是 xx)(

xx )(*

波函數 )(x 就是以 x 為基底表示的向量分量!你一樣可以選擇其他基底例如: p

Page 7: The essence of Particle Physics

Classical Field Theory

Space and time are treated equally as parameters.

It is manifestly Lorentz Invariant.

Quantum Field Theory

For a quantum theory of field, the field is promoted to operators!It is still manifestly Lorentz Invariant.

Particle Quantum Mechanics

)(tx

Space is operator while time remains a number parameter.

That is why Particle QM can not be Lorentz invariant.

Page 8: The essence of Particle Physics

場的觀念原來是來自一個粒子系統的連續極限!

當粒子間隔區向無限小,離散足標趨向連續變數:),()( txytyi

y

xi

粒子排列整齊,編號自然以平衡時的水平位置最自然!

場並不必然需要有粒子系統的存在,例如電場。注意以上只是一個有用的比喻。

所以位置基本上是足標,但與時間一樣都是數字!

Page 9: The essence of Particle Physics

Classical Field Theory

It is just like electric field but simpler.

It is easiest to describe fields using Lagrangian and Hamiltonian.

ϕ is a scalar not a vector as electric field: E

Page 10: The essence of Particle Physics

x

Action is defined as the integral over time of the Lagrange.

For the fields spreading over space, the Lagrangian would be the integral over space of the Lagrange Density (Lagrangian) .

The equation of motion is given by the principle of Least Action.

Hence the action is an integral over spacetime.

S=𝐿𝑑𝑡

L=

Page 11: The essence of Particle Physics

The integration is Lorenz Invariant.

The Lorenz invariance of the Lagrangian density will guarantee the Lorenz invariance of Action.

Hence the action is a integral over spacetime.

=

=

=

The invariance of Action under Lorentz transformation will guarantee the invariance of equation of motion!

Page 12: The essence of Particle Physics

The equation of motion is given by the principle of Least Action.

Euler Equation

有了 Lagrangian L ,場的運動方程式即可得出。

Under arbitrary change of fields the change of action is zero.

𝛿 (𝜕𝜇𝜙 )=𝜕𝜇𝛿𝜙

Page 13: The essence of Particle Physics

Euler Equation

有了 Lagrangian L ,場的運動方程式即可得出。

純量場最簡單的 Lagrangian:

02 m

代入 Euler Equation ,得到:

ℒ=12 (𝜕𝜇𝜙 ) (𝜕𝜇𝜙 ) − 1

2𝑚2𝜙2

Klein-Gordon Equation

滿足羅倫茲不變性的 ϕ 之最簡單的線性運動方程式

Page 14: The essence of Particle Physics

022 m

Klein-Gordon Equation

02 m

Page 15: The essence of Particle Physics

Klein-Gordon Equation

02 m

這個方程式在一維空間就和連續弦幾乎一樣,只是多了最後一項:

2 2

2 2

y yx t

Page 16: The essence of Particle Physics

022 m

若再要求 Lagrangian 是 Lorenz Invariant ,以上為最簡單的選擇。

尋找 ϕ 的運動方程式是線性的, L 必須由場及其一次微分的平方組成

Klein-Gordon Equation

滿足羅倫茲不變性的 ϕ 之最簡單的線性運動方程式

ℒ=12 (𝜕𝜇𝜙 ) (𝜕𝜇𝜙 ) − 1

2𝑚2𝜙2

此 Lagrangian 是 Lorenz Invariant ,因此運動方程式亦是 Lorenz Invariant 。

Page 17: The essence of Particle Physics

Expand the KG field in terms of Fourier Series

Solving KG Equation:

Plug into KG Eq.:

Every Fourier Component behaves like a SHO with ω

KG Field is just a collection of SHO’s.Each SHO is characterized by its k or p “momentum”.

The frequency ω or “energy” of the SHO is just that of a relativistic particle with mass m.

22 mpEpp

022

2

tEtt ppp

022 m

對空間微分簡化為動量乘積

Page 19: The essence of Particle Physics

這就是場:

Page 20: The essence of Particle Physics

量子彈簧

e

一個如電子的微觀粒子,位於一個彈簧般的位能內:22

21

21 p

mkxE

測不準原理強制微觀的位置及動量無法同時測準!

22 ˆ21ˆ

21ˆ p

mxkE

位置與動量是無法交換的算子

Page 21: The essence of Particle Physics

量子彈簧的能量不是如一般彈簧般是連續的,而是固定量子的整數倍的離散型式。量子 (Quantum) 的大小與頻率成正比!

hfE

無法同時測準的位置及動量導出驚人的結果:

Page 22: The essence of Particle Physics

粒子數目可改變的粒子系統的狀態的能量正是這樣的能階!量子彈簧就對應到不可分割的粒子

hfE

Page 23: The essence of Particle Physics

Every Fourier Component behaves like a SHO with ωKG Field is just a collection of SHO’s.

量子化的 KG 場事實上是相對論粒子!

22 mpE pp

如果這些 SHO 也是量子彈簧,它們就對應到能量為 Ep 的粒子系統如果 p 即是動量,這些粒子就正好是滿足相對論動量能量關係的粒子。

022

2

tEtt ppp

Page 24: The essence of Particle Physics

以上的討論可以推廣到複數場

Φ=𝜙1+𝑖𝜙2

√2

如果將此複數場分解為其實數部及虛數部兩個場:

可見實數部及虛數部皆滿足 KG 方程式因此整個複數場也滿足 KG 方程式

022 m

ℒ=(𝜕𝜇Φ∗) (𝜕𝜇Φ ) −𝑚2 Φ∗Φ

實數部與虛數部分解為獨立的 Klein Gordon 場ℒ=

12 (𝜕𝜇𝜙1 ) (𝜕𝜇𝜙1 )− 1

2𝑚2𝜙1

2+12 (𝜕𝜇𝜙2 ) (𝜕𝜇𝜙2 )− 1

2𝑚2𝜙2

2

Page 25: The essence of Particle Physics

這個結果也可以用一個技巧來推導:將及視為獨立變數,代入個別的 Euler Equation 即可

結果立刻可以看見,注意在 Lagrangian 中的項可以作部分積分而忽略表面項

對 變分, Lagrangian 與其微分無關,因此只須考慮: 𝜕ℒ𝜕Φ∗

[ (𝜕2 Φ) −𝑚2 Φ   ]=0

022 m

Page 26: The essence of Particle Physics

Non-Relativistic Field Theory

ℒ=𝑖𝜑∗𝜕0𝜑− 12𝑚

𝛻𝜑∗ ∙𝛻𝜑−𝑔2 (𝜑∗𝜑 )2

複數場和它的複數共軛,在推導運動方程式時看成獨立的變數𝜕𝜕𝑡 ( 𝜕ℒ

𝜕 ( 𝜕𝜙𝜕𝑡 ) )+𝛻 ∙ ( 𝜕ℒ𝜕 (𝛻𝜙 ) )− 𝜕ℒ

𝜕𝜙 =0

𝜕𝜕𝑡 ( 𝜕ℒ

𝜕 ( 𝜕𝜑∗

𝜕𝑡 ))+𝛻 ∙( 𝜕ℒ𝜕 (𝛻𝜑∗ ) )− 𝜕ℒ

𝜕𝜑∗ → − 12𝑚

𝛻 ∙𝛻𝜑− 𝑖𝜕0𝜑− 2𝑔2 (𝜑∗𝜑 )𝜑=0

𝜕𝜕𝑡 ( 𝜕ℒ

𝜕 ( 𝜕𝜑𝜕𝑡 ) )+𝛻 ∙ ( 𝜕ℒ𝜕 (𝛻𝜑 ) )− 𝜕ℒ

𝜕𝜑 →𝑖 𝜕𝜕𝑡 𝜑∗− 1

2𝑚𝛻 ∙𝛻𝜑∗ −2𝑔2 (𝜑∗𝜑 )𝜑∗=0

𝑖𝜕0𝜑+1

2𝑚𝛻 ∙ 𝛻𝜑+2𝑔2 (𝜑∗𝜑 )𝜑=0

這與上式是一致的。

Schrodinger Equation

Page 27: The essence of Particle Physics

U(1) Abelian Symmetry

)()( xex iQ

The Lagrangian is invariant under the phase transformation of the field operator:

)(xee iQiQ

ℒ=(𝜕𝜇Φ∗) (𝜕𝜇Φ ) −𝑚2 Φ∗Φ

The symmetry of Complex KG Field

這個對稱變換是由一個連續變數 標定。

)(xee iQiQ

在量子力學中,複數物理量的 phase 是無法觀測的!

Page 28: The essence of Particle Physics

SU(N) Non-Abelian Symmetry

n

3

2

1

Assume there are N fields:

If the particles have identical masses, the free theory has a SU(N) symmetry!

)()()( xexUxiiTi

This Lagrangian is invariant under SU(N)!

ℒ=∑𝑖=1

𝑛

[ (𝜕𝜇Φ𝑖∗ ) (𝜕𝜇Φ 𝑖)−𝑚2Φ𝑖

∗Φ𝑖 ]  ≡ (𝜕𝜇Φ† ) (𝜕𝜇Φ ) −𝑚2 Φ† Φ

Page 29: The essence of Particle Physics

Isospin SU(2) 變換

在 Isospin SU(2) 變換之後,強交互作用將運作如常,並沒有變化!矩陣 U 如同旋轉一般可以以三個角度 (like Euler Angles) 來標定 ),,( 321 U

du

Udu

Particleu Field)(xu

Every particle corresponds to a field.

)()(

,,)()(

321 xdxu

Uxdxu

The Lagrangian is invariant under SU(2)

ℒ=[(𝜕𝜇𝑢† ) (𝜕𝜇𝑢) −𝑚2𝑢†𝑢 ]+[ (𝜕𝜇𝑑† ) (𝜕𝜇𝑑) −𝑚2𝑑†𝑑 ]

Page 30: The essence of Particle Physics

22 mpEp For every p, the frequency of the SHO has two solutions: pE

0,, 22

2

tpEtpt p

xpiiEt

pxpiiEt

p ecpdeapdx

3

3

3

3

22)(

iEtp

iEtp eceatp

),(

代回 Fourier 展開式:可得 KG Equation 的一般解

022 m

xpietppdtx

,2

),( 3

3

對作 Fourier 展開:代入 KG Equation:

求解:

Page 31: The essence of Particle Physics

These SHO’s correspond to the plane wave solutions of KG Eq.

Page 32: The essence of Particle Physics

𝑖𝜕0𝜑+1

2𝑚𝛻 ∙ 𝛻𝜑=0

0,2

,

tp

mpptp

ti

xpietppdtx

,2

),( 3

3

對作 Fourier 展開:代入場 Equation:

tiEp

peatp

),( 𝐸𝑝=

|𝑝|2

2𝑚

此式的解就是複數的指數函數:

對無交互作用的非相對論性場論可以用同樣方法求解:

xpitiE

ppeapdx

3

3

2)(

Page 33: The essence of Particle Physics

A general solution is a linear superposition of all plane waves.

xpiiEt

pxpiiEt

p ecpdeapdx

3

3

3

3

22)(

xpiiEt

pxpiiEt

p ecpdeapd

'

'3

3

3

3

2'

2 pp

'

𝑝 ∙ 𝑥=𝐸𝑡−𝑝 ∙𝑥Explicitly Lorentz Invariant

Page 34: The essence of Particle Physics

xipp

xipp ebeapdx

3

3

2

For real field:

The solution of complex KG Equation:

The real solution of KG Equation:

Page 35: The essence of Particle Physics

To quantize the field theory, it’s easier to use Hamiltonian Formalism

For field system, remember the space coordinates are just indices

Conjugate Momentum

Page 36: The essence of Particle Physics

For Klein-Gordon Fields:

t

x

L

Page 37: The essence of Particle Physics

x

ip ˆ xx ˆ

非相對論性量子力學的原則

x

dxxOxO )(ˆ)(ˆ *

O

這些運算動作將代表狀態的波函數映射到另一個波函數!

xOˆ

所有古典物理的數字物理量在量子力學中都對應於一個作用在波函數上的運算動作!

而這個物理量測量的期望值可以計算:

Page 38: The essence of Particle Physics

那些物理量是確定的?確定的物理量 O 算子化為數

oO作用於測量結果確定的狀態,算子的效果與數一樣,數 o 就是確定的測量結果。

oO

本徵函數Eigenfunction

本徵值Eigenvalue

對一物理量測量結果確定的狀態就是該物理量算子的本徵態。此確定的測量值即本徵值。

Page 39: The essence of Particle Physics

測量一個物理量時的不確定性是由測量結果的標準差或稱統計漲落來描述 :

0

ˆˆ

ˆˆˆˆ

2222

222

222

oooo

OO

OOOO

Page 40: The essence of Particle Physics

對於自由粒子,動量是確定的(因為守恆)(但位置測量不確定):)(

0tkxi

p e kp

),(),(ˆ 0 txpkex

itxp pptkxi

p

pp ˆ 作用於測量結果確定的狀態,算子的效果與數一樣,此數就是確定的測量結果。

動量算子作用於自由粒子波函數,效果和乘上一個數 hk 相同:),(),(ˆ txptxp pp

Page 41: The essence of Particle Physics

oO

p

xx

動量的本徵函數

位置的本徵函數

波狀的態,動量完全確定

粒子狀的態,位置完全確定x

pppp ˆ

p

xxxx ˆ

Page 42: The essence of Particle Physics

)ˆ(2

)ˆ(2ˆˆ

2

222

xVxm

xVm

pH

能量的本徵態

EH

與時間無關的薛丁格方程式是在求解能量的本徵態! ExVm

dxd

)(222

2

)()()ˆ()(2 2

22

xExxVxxm

能量算子是由其他物理量算子組成: EE

Page 43: The essence of Particle Physics

xppx ˆˆˆˆ

pxix

xxxix

xixp ˆˆˆˆ

0ˆ,ˆˆˆˆˆ ipxxppx

算子與數最大的不同就是算子沒有交換性:

ipx ˆ,ˆ

Canonical Commutation Relation

所以量子化的程序除了將物理量提升為算子,還需要說明算子的交換性!

Page 44: The essence of Particle Physics

兩個物理量能否同時精確測量,由它們是否可交換決定!

0ˆ,ˆˆˆˆˆ ipxxppx電子的動量與位置不能同時測準!

這兩物理量不能同時測量。

0ˆˆˆˆˆ,ˆ122121 OOOOOO

這兩物理量能同時測量。

0ˆˆˆˆˆ,ˆ122121 OOOOOO

0ˆˆˆˆˆ,ˆ 222 LLLLLL zzz 0ˆˆˆˆˆ,ˆ xzzxzx LLLLLL

Page 45: The essence of Particle Physics

ipx ˆ,ˆ

Canonical Commutation Relation

任一量子物理系統的廣義座標及其共軛動量必須滿足此一交換關係!這種程序稱為 Canonical Quantization

Page 46: The essence of Particle Physics

Now! Quantum Field Theory

Page 47: The essence of Particle Physics

We use Canonical Quantization to go from mechanics to quantum mechanics:

Upgrade all observable to operators and impose a commutation relation between position and momentum:

Page 48: The essence of Particle Physics

當粒子間隔區向無限小,離散足標趨向連續變數:),()( txytyi

y

xi

Space coordinates x are actually indices!

We know how to quantize particle system and hence we know how to quantize fields!

Fields grow out of systems of particles

Page 49: The essence of Particle Physics

xi

0,),,(,),,(

),(,),,( )3(

tytxtytxyxitytx

Quantum Field Theory is done!

Upgrade all observables to operators and impose a commutation relation between fields and their momenta:

xx ˆii qq ˆ

Page 50: The essence of Particle Physics

xipp

xipp eaeapdx

ˆˆ

3

3

xx ˆ

baba ˆ,ˆ,

What is the commutation relation of the a operators?

Page 51: The essence of Particle Physics

Hints from Quantum SHO:

2

aaq2iaap

KG Field is just a collection of SHO’s.

𝑞=√𝑚𝜔𝑥𝑝=

𝑚𝑣√𝑚𝜔

量子化:

這與場類似:

Page 52: The essence of Particle Physics

回到場論, Reasonable Guess:

SHO of different p are decoupled and hence their operators commute.

0,),,(,),,(

),(,),,( )3(

tytxtytxyxitytx

Page 53: The essence of Particle Physics

The operator a+ can be used to raise the energy by one quantum while the operator a can be used to lower the energy by one quantum

2

aaq

2iaap

BCACBACABABCCAB ,,,

再回到量子彈簧:將 Hamiltonian 以 a 算子來寫:

Page 54: The essence of Particle Physics

a+ is called Raising Operator while a Lowering Operator.

將 Raising Operator 作用在基態上,就得到整個能階態:

在這個空間中, operators p,q 的作用就可以由 operator a 在上面的作用全部推導出來。

Page 55: The essence of Particle Physics
Page 56: The essence of Particle Physics

Quantum Field Theory is just a series of quantum SHO.

The operator ap+ can be used to raise the energy by one quantum ωp

while the operator ap can be used to lower the energy by ωp.

Page 57: The essence of Particle Physics

There is a conserved momentum.

The operator ap+ can be used to raise the momentum by one quantum p

while the operator ap can be used to lower the energy by p.

Page 58: The essence of Particle Physics

量子彈簧的行為非常類似數目可改變的一種粒子粒子最重要的就是不可分割性量子彈簧最適合描述不可分割的基本粒子

Page 59: The essence of Particle Physics

ap+ Creation operator and ap Annihilation operator

of a particle with momentum p and energy Ep

npan

p ,0

npnEnpH p ,, nppnnpP ,,

Particle space are built.

Page 60: The essence of Particle Physics

Assuming that the field operator is a complex number field.

The creation operator b+ in a complex KG field can create a different particle!

Scalar Antiparticle

The particle b+ create has the same mass but opposite charge. b+ create an antiparticle.

ℒ=(𝜕𝜇Φ∗) (𝜕𝜇Φ ) −𝑚2 Φ∗Φ

xipp

xipp ebeapdx

22 3

3

Page 61: The essence of Particle Physics

ipxp

ipxp ebeapdx

21

)2()( 3

3

ipxp

ipxp eaebpdx

21

)2()( 3

3 Complex KG field can either annihilate a particle or create an antiparticle!

Its conjugate either annihilate an antiparticle or create a particle!

The charge difference a field operator generates is always the same!

Page 62: The essence of Particle Physics

xpitiE

ppeapdx

ˆ2

)(ˆ3

3

ap+ Creation operator and ap Annihilation operator of a particle

with momentum and energy

ℒ=𝑖𝜑∗𝜕0𝜑− 12𝑚

𝛻𝜑∗ ∙𝛻𝜑

Non-Relativistic Field Theory

非相對論性複數場並沒有反粒子!反粒子是一個相對論性現象。

其解為:

量子化後場算子的方程式為:𝑖𝜕0 ��+

12𝑚

𝛻 ∙ 𝛻��=0


Recommended